1
|
Brinkman JC, Makovicka JL, Denard PJ, Colbath GP, Mercuri J, Tokish JM. Compression of an Autograft Biceps Into an Augmentation Patch Does Not Cause Mechanical Damage to the Tenocyte. Arthroscopy 2025; 41:1745-1751. [PMID: 39341262 DOI: 10.1016/j.arthro.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE To evaluate the effects of this graft preparation technique on histologic evidence of tenocyte mechanical damage. METHODS A consecutive series of patients undergoing biceps tenodesis for shoulder pathology were evaluated. After suprapectoral tenodesis, 27 mm of the long head of the biceps was secured for compression into the patch. The remaining length of the residual tendon was longitudinally split, resulting in 2 equal lengths of remnant tendon from the same zone. One sample was sent to pathology with no preparation, and the other was prepared as a compressed biceps autograft patch according to the manufacturer's recommendations. Both grafts were sent to pathology for evaluation of tenocyte morphology. Records were reviewed to determine if compression resulted in mechanical damage to the tenocytes at the time of biceps augmentation. RESULTS Fifty-five shoulder procedures and 110 samples were sent for pathology analysis. Forty-two of the 55 (76%) specimens demonstrated morphologically normal tenocytes in both the compressed and noncompressed groups, and 7 (13%) cases showed evidence of tenocyte necrosis or mechanical damage in both groups. The difference in abnormal tenocyte morphology between the compressed and native groups was not statistically significant (P = .625). CONCLUSIONS Autograft biceps compression into a point-of-care patch did not result in mechanical damage to tenocyte morphology at the time of insertion for augmentation of rotator cuff pathology. CLINICAL RELEVANCE Free proximal biceps tendon compression can result in a patch that does not mechanically damage the tenocyte. The patch can be used as a biologic autograft to enhance shoulder rotator cuff repair, as well as subscapularis repair in the setting of shoulder arthroplasty.
Collapse
Affiliation(s)
- Joseph C Brinkman
- Department of Orthopedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona, U.S.A
| | - Justin L Makovicka
- Department of Orthopedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona, U.S.A
| | | | - Gregory P Colbath
- Department of Orthopaedic Surgery, Medical Group of the Carolinas, Spartanburg, South Carolina, U.S.A
| | - Jeremy Mercuri
- Department of Bioengineering, Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina, U.S.A
| | - John M Tokish
- Department of Orthopedic Surgery, Mayo Clinic Arizona, Phoenix, Arizona, U.S.A..
| |
Collapse
|
2
|
Berrigan WA, Bailowitz Z, Park A, Reddy A, Liu R, Lansdown D. A Greater Platelet Dose May Yield Better Clinical Outcomes for Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis: A Systematic Review. Arthroscopy 2025; 41:809-817.e2. [PMID: 38513880 DOI: 10.1016/j.arthro.2024.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE To determine whether the platelet dose administered during a platelet-rich plasma (PRP) injection for knee osteoarthritis (OA) affects clinical outcomes. METHODS A systematic review was performed by searching PubMed, Cochrane Library, and Embase for randomized controlled trials with at least 1 study arm using PRP for knee OA. Only studies that provided a platelet count, concentration, or dose with a minimum of 6-month outcome scores were included. Studies in which the PRP group had statistically significant positive outcomes were separated from those without statistical significance. The average platelet doses for studies with positive outcomes in the PRP group were compared with those without positive outcomes. RESULTS After exclusion criteria were applied, 29 studies were analyzed. Of the 29, there were 31 arms that used PRP as a treatment method, of which 28 had statistically significant positive outcomes at 6 months compared with the control group. The mean platelet dose in the 28 with a positive outcome was 5,500 ± 474 × 106, whereas the 3 that had no positive difference had a mean platelet dose of 2,302 ± 437 × 106 (P < .01). There were 18 studies with 12-month outcomes, with 16 of 18 having positive outcomes. The positive studies had an average platelet dose of 5,464 ± 511, whereas the studies that had no statistical difference had an average platelet dose of 2,253 ± 753 × 106 (P < .05). CONCLUSIONS Improved clinical outcomes from PRP injections for knee OA may be related to a greater platelet dose. LEVEL OF EVIDENCE Level II, systematic review of Level I and II studies.
Collapse
Affiliation(s)
- William A Berrigan
- Department of Orthopaedics, University of California San Francisco, San Francisco, California, U.S.A..
| | - Zach Bailowitz
- Department of Orthopedics, Kaiser Permanente Oakland, Oakland, California, U.S.A
| | - Anna Park
- University of California San Francisco School of Medicine, San Francisco, California, U.S.A
| | - Aakash Reddy
- University of California Berkeley, Berkeley, California, U.S.A
| | - Ryan Liu
- University of California Berkeley, Berkeley, California, U.S.A
| | - Drew Lansdown
- Department of Orthopaedics, University of California San Francisco, San Francisco, California, U.S.A
| |
Collapse
|
3
|
Lu J, Li H, Zhang Z, Xu R, Wang J, Jin H. Platelet-rich plasma in the pathologic processes of tendinopathy: a review of basic science studies. Front Bioeng Biotechnol 2023; 11:1187974. [PMID: 37545895 PMCID: PMC10401606 DOI: 10.3389/fbioe.2023.1187974] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Tendinopathy is a medical condition that includes a spectrum of inflammatory and degenerative tendon changes caused by traumatic or overuse injuries. The pathological mechanism of tendinopathy has not been well defined, and no ideal treatment is currently available. Platelet-rich plasma (PRP) is an autologous whole blood derivative containing a variety of cytokines and other protein components. Various basic studies have found that PRP has the therapeutic potential to promote cell proliferation and differentiation, regulate angiogenesis, increase extracellular matrix synthesis, and modulate inflammation in degenerative tendons. Therefore, PRP has been widely used as a promising therapeutic agent for tendinopathy. However, controversies exist over the optimal treatment regimen and efficacy of PRP for tendinopathy. This review focuses on the specific molecular and cellular mechanisms by which PRP manipulates tendon healing to better understand how PRP affects tendinopathy and explore the reason for the differences in clinical trial outcomes. This article has also pointed out the future direction of basic research and clinical application of PRP in the treatment of tendinopathy, which will play a guiding role in the design of PRP treatment protocols for tendinopathy.
Collapse
Affiliation(s)
- Jialin Lu
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Han Li
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Ziyu Zhang
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Rui Xu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hui Jin
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Earp JE, Gesick H, Angelino D, Adami A. Effects of isometric loading intensity on patellar tendon microvascular response. Scand J Med Sci Sports 2022; 32:1182-1191. [PMID: 35485297 PMCID: PMC9283377 DOI: 10.1111/sms.14175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Acute increases in tendon blood flow and oxygenation after stress (i.e., hyperemic response) can enhance tendon recovery. While loading intensity is a fundamental part of resistance training programs, its effects on tendon's hyperemic response are unknown. This study aimed to compare acute changes in total (total hemoglobin [THb]) and oxygenated hemoglobin (HbO2 ) concentrations in the patellar tendon after isometric exercise at different intensities. Thirteen participants performed 8 (5 s) isometric knee extensions at 25%, 50%, and 75% maximal load (maximal voluntarily isometric contraction [MVIC]), separated by 20 min recovery, prescribed in randomized and counterbalanced order. Changes in patellar tendon THb, HbO2 and deoxygenated hemoglobin (HHb) in response to exercise at each intensity were measured using near-infrared spectroscopy. Post-exercise, HbO2 increased with 50% ( η p 2 $$ {\eta}_p^2 $$ = 0.305, f = 5.26, p < 0.01) and 75% ( η p 2 $$ {\eta}_p^2 $$ = 0.245, f = 4.56, p < 0.01) but not 25% ( η p 2 $$ {\eta}_p^2 $$ = 0.088, f = 1.16, p = 0.339) MVIC, while THb increased in 50% ( η p 2 $$ {\eta}_p^2 $$ = 0.305, f = 5.26, p = 0.01) but not 25% ( η p 2 $$ {\eta}_p^2 $$ = 0.067, f = 0.865, p = 0.51) or 75% ( η p 2 $$ {\eta}_p^2 $$ = 0.126, f = 1.729, p = 0.14) MVIC. Additionally, increasing load from 25% to 50% MVIC resulted in greater THb (f = 2.459, p = 0.43), HbO2 (f = 3.389, p = 0.13) and HHb (f = 0.320, p = 0.01) post-exercise responses, but no differences were observed between 50% and 75% MVIC (THb: f = 0.748, p = 0.59; HbO2 : f = 0.825, p = 0.54; HHb: f = 0.713, p = 0.62). Our results suggest there is a loading threshold at ~50% MVIC at which the tendon hyperemic response is fully achieved. Training above this intensity is not expected to provide any additional change to the tendon microvascular response. Therefore, moderate loading seems to be sufficient to fully elicit the patellar tendon hyperemic response that's believed to stimulate tendon healing.
Collapse
Affiliation(s)
- Jacob E Earp
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut, USA.,Department of Kinesiology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Haley Gesick
- Department of Kinesiology, University of Connecticut, Storrs, Connecticut, USA
| | - Domenic Angelino
- Department of Kinesiology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Alessandra Adami
- Department of Kinesiology, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
5
|
Peng Y, Guanglan W, Jia S, Zheng C. Leukocyte-Rich and Leukocyte-Poor Platelet-Rich Plasma in Rotator Cuff Repair: A Meta-analysis. Int J Sports Med 2022; 43:921-930. [PMID: 35255508 DOI: 10.1055/a-1790-7982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To systematically review of randomized controlled trials(RCTs) to compared the effects of leukocyte-rich and leukocyte-poor platelet-rich plasma in arthroscopic rotator cuff repair. Two independent reviewers comprehensively searched PubMed, Embase, and Cochrane library databases according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Comparison of leukocyte-rich platelet-rich plasma or leukocyte-poor platelet-rich plasma in rotator cuff repair in a level I RCTs. Methodological quality assessment was carried out using Cochrane Review Manager 5.3 software. P<0.05 was considered statistically significant. Nine RCTs with 540 patients were included in this review. Meta-analysis showed that leukocyte-poor platelet-rich plasma in significantly reduced retear rate in rotator cuff repair [RR=0.56 95%CI (0.42,0.75); P<0.05), and in clinical results, the constant score [MD=3.67, 95%CI (1.62,5.73); P=0.0005], UCLA score [MD=1.60, 95%CI (0.79,2.42); P=0.0001], ASES score [MD=2.16, 95%CI(0.12,4.20);P=0.04] were significantly improved. There was a significant result in favor of PRP for the Constant score [MD=-1.24, 95%CI(-1.50,-0.99); P<0.00001], while SST scores were not significantly different among all groups [MD=0.21, 95%CI(-0.21,0.64); P=0.32]. In conclusion, leukocyte-poor platelet-rich plasma can improved the clinical function and reduced retear rate in arthroscopic rotator cuff repair. In contrast, the efficacy of leukocyte-rich platelet-rich plasma was not significantly improved with the exception of VAS score.
Collapse
Affiliation(s)
- Yundong Peng
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Wang Guanglan
- School of Health Sciences, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Cheng Zheng
- Department of Sports Medicine, Affiliated Hospital, Wuhan Sports University, Wuhan, China
| |
Collapse
|
6
|
Brebels J, Mignon A. Polymer-Based Constructs for Flexor Tendon Repair: A Review. Polymers (Basel) 2022; 14:867. [PMID: 35267690 PMCID: PMC8912457 DOI: 10.3390/polym14050867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
A flexor tendon injury is acquired fast and is common for athletes, construction workers, and military personnel among others, treated in the emergency department. However, the healing of injured flexor tendons is stretched over a long period of up to 12 weeks, therefore, remaining a significant clinical problem. Postoperative complications, arising after traditional tendon repair strategies, include adhesion and tendon scar tissue formation, insufficient mechanical strength for early active mobilization, and infections. Various researchers have tried to develop innovative strategies for developing a polymer-based construct that minimalizes these postoperative complications, yet none are routinely used in clinical practice. Understanding the role such constructs play in tendon repair should enable a more targeted approach. This review mainly describes the polymer-based constructs that show promising results in solving these complications, in the hope that one day these will be used as a routine practice in flexor tendon repair, increasing the well-being of the patients. In addition, the review also focuses on the incorporation of active compounds in these constructs, to provide an enhanced healing environment for the flexor tendon.
Collapse
Affiliation(s)
| | - Arn Mignon
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium;
| |
Collapse
|
7
|
Wellings EP, Huang TCT, Li J, Peterson TE, Hooke AW, Rosenbaum A, Zhao CD, Behfar A, Moran SL, Houdek MT. Intrinsic Tendon Regeneration After Application of Purified Exosome Product: An In Vivo Study. Orthop J Sports Med 2022; 9:23259671211062929. [PMID: 34988236 PMCID: PMC8721391 DOI: 10.1177/23259671211062929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 01/27/2023] Open
Abstract
Background: Tendons are primarily acellular, limiting their intrinsic regenerative capabilities. This limited regenerative potential contributes to delayed healing, rupture, and adhesion formation after tendon injury. Purpose: To determine if a tendon’s intrinsic regenerative potential could be improved after the application of a purified exosome product (PEP) when loaded onto a collagen scaffold. Study Design: Controlled laboratory study. Methods: An in vivo rabbit Achilles tendon model was used and consisted of 3 groups: (1) Achilles tenotomy with suture repair, (2) Achilles tenotomy with suture repair and collagen scaffold, and (3) Achilles tenotomy with suture repair and collagen scaffold loaded with PEP at 1 × 1012 exosomes/mL. Each group consisted of 15 rabbits for a total of 45 specimens. Mechanical and histologic analyses were performed at both 3 and 6 weeks. Results: The load to failure and ultimate tensile stress were found to be similar across all groups (P ≥ .15). The tendon cross-sectional area was significantly smaller for tendons treated with PEP compared with the control groups at 6 weeks, which was primarily related to an absence of external adhesions (P = .04). Histologic analysis confirmed these findings, demonstrating significantly lower adhesion grade both macroscopically (P = .0006) and microscopically (P = .0062) when tendons were treated with PEP. Immunohistochemical staining showed a greater intensity for type 1 collagen for PEP-treated tendons compared with collagen-only or control tendons. Conclusion: Mechanical and histologic results suggested that healing in the PEP-treated group favored intrinsic healing (absence of adhesions) while control animals and animals treated with collagen only healed primarily via extrinsic scar formation. Despite a smaller cross-sectional area, treated tendons had the same ultimate tensile stress. This pilot investigation shows promise for PEP as a means of effectively treating tendon injuries and enhancing intrinsic healing. Clinical Relevance: The production of a cell-free, off-the-shelf product that can promote tendon regeneration would provide a viable solution for physicians and patients to enhance tendon healing and decrease adhesions as well as shorten the time required to return to work or sports.
Collapse
Affiliation(s)
| | | | - Jialun Li
- Division of Plastic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy E Peterson
- Department of Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Van Cleve Cardiac Regeneration Medicine Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander W Hooke
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew Rosenbaum
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Chunfeng D Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Atta Behfar
- Department of Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Van Cleve Cardiac Regeneration Medicine Program, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven L Moran
- Division of Plastic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew T Houdek
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Dyson-Hudson TA, Hogaboom NS, Nakamura R, Terry A, Malanga GA. Ultrasound-guided platelet-rich plasma injection for the treatment of recalcitrant rotator cuff disease in wheelchair users with spinal cord injury: A pilot study. J Spinal Cord Med 2022; 45:42-48. [PMID: 32379581 PMCID: PMC8890529 DOI: 10.1080/10790268.2020.1754676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Context/Objective: Wheelchair users with spinal cord injury (SCI) have a high risk of developing shoulder pain, caused by rotator cuff disease. Platelet-rich plasma (PRP) is a potential treatment after conservative treatments fail and prior to surgical intervention; however, it has not been tested in wheelchair users who have recalcitrant shoulder pain associated with rotator cuff disease. The objective of this pilot project was to test the safety and potential treatment effect of an ultrasound-guided PRP injection for shoulder pain in the aforementioned population.Design: Prospective, quasi-experimental.Setting: Clinical research center.Participants: Six wheelchair users with SCI (3 paraplegia, 3 tetraplegia) who had chronic shoulder pain due to rotator cuff disease (presence of anterior shoulder pain, positive physical examination tests for rotator cuff disease, and tendinopathy demonstrated by ultrasound) and failed at least six months of conservative treatment.Interventions: Ultrasound-guided PRP injection into pathological shoulder tendons, targeting the supraspinatus. Subjects were provided a standardized stretching and strengthening program and were followed for 4, 8, 12, and 24 weeks post-intervention with outcomes collected at each time-point.Outcome Measures: Wheelchair User's Shoulder Pain Index (WUSPI); pain Numerical Rating Scale (NRS); physical and ultrasound examinations for supraspinatus tendinopathy; 5-point patient global impression of change (PGIC).Results: WUSPI (69.9%, P < 0.001), NRS (49.6%, P < 0.01), and physical exam scores (35.7%, P < 0.01) decreased 24 weeks after treatment. Participants reported overall improvement in their status as a result of the treatment. No adverse events were noted, and no changes in ultrasound markers for tendinopathy were observed.Conclusion: A single, ultrasound-guided PRP injection into the supraspinatus tendon, followed by a stretching and strengthening exercise program, was safe and provided improvements in shoulder pain outcome measures in this sample for 24 weeks. Lack of blinding, short-term follow-up, and a suitable control group warrant a larger randomized controlled trial.Trial Registration: NCT01355549.
Collapse
Affiliation(s)
- Trevor A. Dyson-Hudson
- Kessler Foundation, West Orange, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA,Correspondence to: Trevor A. Dyson-Hudson, Kessler Foundation, 1199 Pleasant Valley Way, West Orange, New Jersey07052, USA.
| | - Nathan S. Hogaboom
- Kessler Foundation, West Orange, New Jersey, USA,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Reina Nakamura
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Alon Terry
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Gerard A. Malanga
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA,Kessler Institute for Rehabilitation, West Orange, New Jersey, USA,New Jersey Regenerative Institute, LLC, Cedar Knolls, New Jersey, USA
| |
Collapse
|
9
|
Chen CH, Li DL, Chuang ADC, Dash BS, Chen JP. Tension Stimulation of Tenocytes in Aligned Hyaluronic Acid/Platelet-Rich Plasma-Polycaprolactone Core-Sheath Nanofiber Membrane Scaffold for Tendon Tissue Engineering. Int J Mol Sci 2021; 22:11215. [PMID: 34681872 PMCID: PMC8537129 DOI: 10.3390/ijms222011215] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
To recreate the in vivo niche for tendon tissue engineering in vitro, the characteristics of tendon tissue underlines the use of biochemical and biophysical cues during tenocyte culture. Herein, we prepare core-sheath nanofibers with polycaprolactone (PCL) sheath for mechanical support and hyaluronic acid (HA)/platelet-rich plasma (PRP) core for growth factor delivery. Three types of core-sheath nanofiber membrane scaffolds (CSNMS), consisting of random HA-PCL nanofibers (Random), random HA/PRP-PCL nanofibers (Random+) or aligned HA/PRP-PCL (Align+) nanofibers, were used to study response of rabbit tenocytes to biochemical (PRP) and biophysical (fiber alignment) stimulation. The core-sheath structures as well as other pertinent properties of CSNMS have been characterized, with Align+ showing the best mechanical properties. The unidirectional growth of tenocytes, as induced by aligned fiber topography, was confirmed from cell morphology and cytoskeleton expression. The combined effects of PRP and fiber alignment in Align+ CSNMS lead to enhanced cell proliferation rates, as well as upregulated gene expression and marker protein synthesis. Another biophysical cue on tenocytes was introduced by dynamic culture of tenocyte-seeded Align+ in a bioreactor with cyclic tension stimulation. Augmented by this biophysical beacon from mechanical loading, dynamic cell culture could shorten the time for tendon maturation in vitro, with improved cell proliferation rates and tenogenic phenotype maintenance, compared to static culture. Therefore, we successfully demonstrate how combined use of biochemical/topographical cues as well as mechanical stimulation could ameliorate cellular response of tenocytes in CSNMS, which can provide a functional in vitro environmental niche for tendon tissue engineering.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; (C.-H.C.); (A.D.-C.C.)
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Collage of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (D.-L.L.); (B.S.D.)
| | - Dai-Ling Li
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (D.-L.L.); (B.S.D.)
| | - Andy Deng-Chi Chuang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; (C.-H.C.); (A.D.-C.C.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (D.-L.L.); (B.S.D.)
| | - Jyh-Ping Chen
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Collage of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (D.-L.L.); (B.S.D.)
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
10
|
Lana JFSD, da Fonseca LF, Macedo RDR, Mosaner T, Murrell W, Kumar A, Purita J, de Andrade MAP. Platelet-rich plasma vs bone marrow aspirate concentrate: An overview of mechanisms of action and orthobiologic synergistic effects. World J Stem Cells 2021; 13:155-167. [PMID: 33708344 PMCID: PMC7933989 DOI: 10.4252/wjsc.v13.i2.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
The use of orthobiologics as a novel therapy for the treatment of numerous musculoskeletal disorders has increased considerably over the past decade. Currently, there are multiple alternatives available as suitable treatments; however, the use of autologous blood-derived products such as platelet-rich plasma (PRP), bone marrow aspirate (BMA) and BMA concentrate (BMAC), specifically, is expanding. Although many investigations attempted to demonstrate the effectiveness of these therapies, even with positive results, the literature lacks standardized protocols and overall accuracy in study designs, which leads to variance and difficulty in reproducibility of protocols. The efficacy of PRP for the treatment of cartilage, bone and muscle tissues is well known. Although BMAC has generated optimistic results for the same purposes, its applicability in clinical trials is still relatively recent when compared to PRP. Both products demonstrate the potential to set forth reparative processes, each in their own distinct mechanism. The combination of these biological products has been previously proposed, yet little is known about their synergism. Evidence indicates that growth factor, cytokine, and chemokine profiles seen in both PRP and BMAC vary but are likely to work synergistically to enhance musculoskeletal healing. BMAC products seem to work well without PRP; however, the addition of PRP to BMAC has been shown to act as a rich and natural source of culture medium for stem cells located either peripherally or in the bone marrow itself. Nevertheless, additional variables associated with the use of BMAC and PRP in orthopedics must be further evaluated in order to consolidate the efficacy of this therapeutic strategy.
Collapse
Affiliation(s)
| | | | - Rafael da Rocha Macedo
- Department of Orthopedics, Rede D’Or Unit IFOR Hospital, São Bernardo do Campo 09715-021, SP, Brazil
| | - Tomas Mosaner
- Department of Orthopedics, The Bone and Cartilage Institute, Indaiatuba 13334-170, SP, Brazil
| | - William Murrell
- Department of Orthopaedics, Healthpoint UAE, Abu Dhabi 00000, United Arab Emirates
| | - Ashok Kumar
- Department of Orthopaedics, My Doc Specialist Medical Centre, Dubai 00000, United Arab Emirates
| | - Joseph Purita
- Department of Orthopedics, Institute of Regenerative Medicine, Boca Raton, FL 33432, United States
| | | |
Collapse
|
11
|
Straum OK. The optimal platelet concentration in platelet-rich plasma for proliferation of human cells in vitro-diversity, biases, and possible basic experimental principles for further research in the field: A review. PeerJ 2020; 8:e10303. [PMID: 33240635 PMCID: PMC7668201 DOI: 10.7717/peerj.10303] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the last decades, several in vitro studies have tested the effect of plate-rich plasma (PRP) on the proliferation of human cells in search of a wizard for the use of PRP in a clinical setting. However, the literature displays striking differences regarding this question despite the relatively similar experimental design. The aim of this review is twofold: describe and explain this diversity and suggest basic principles for further in vitro studies in the field. The optimal platelet concentration in vivo will also be discussed. METHODS A search in mainly EMBASE and PubMed was performed to identify in vitro studies that investigate the effect of different PRP concentrations on human cell proliferation. The assessment of bias was based on the principles of "Good Cell Culture Practice" and adapted. RESULTS In total, 965 in vitro studies were detected. After the initial screening, 31 studies remained for full-text screening. A total of 16 studies met the criteria of final inclusion and appeared relatively sound. In general, the studies state consistently that PRP stimulates the proliferation of the human cell. Two main types of experimental techniques were detected: 1. The Fixed PRP Concentration Group using a fixed PRP concentration throughout the experiment, which leads to a substantial decrease in nutrition available at higher concentrations. 2. The Fixed PRP Volume Group using a fixed PRP-to-media ratio (Vol/Vol) throughout the experiment. A general tendency was observed in both groups: when the PRP to media ratio increased (Vol/Vol), the proliferation rate decreased. Further, The Low Leukocyte group observed a substantial higher optimal PRP concentration than The High leukocyte group. No prominent tendencies was seen regarding anticoagulants, activation methods, and blood donor (age or sex). DISCUSSION Two major biases regarding optimal proliferation in vitro is pointed out: 1. Too high PRP volume. It is speculated that the techniques used by some studies led to an adverse growth condition and even cell starvation at higher concentrations. 2. High leukocyte levels. Reduced proliferation rate due to proinflammatory substances released during degranulation of leukocytes. CONCLUSIONS The two main biases may explain the bell-shaped effect of PRP and the detrimental effects at higher platelet concentrations observed in several studies. These biases may also explain the low optimal PRP concentration observed in some studies. Even if one universal optimal PRP concentration does not exist, the review indicates that PRP concentrations in the upper parts of the scale is optimal or at least beneficial. Finally, following basic experimental principles are suggested. 1: The PRP/media ratio (Vol/Vol) should be kept as constant. 2: The PRP/media ratio should provide a sufficient nutrition supply, that is, PRP ≤ 10% (Vol/Vol). 3: The cell density per well (cells/mL) should be defined. 4: Leukocyte level should be kept low, preferable depleted (< 0.1 PLT/µL).
Collapse
Affiliation(s)
- Olav K. Straum
- Faculty of Humanities, Social Sciences, and Education, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Chen ZY, Chen SH, Chen CH, Chou PY, Yang CC, Lin FH. Polysaccharide Extracted from Bletilla striata Promotes Proliferation and Migration of Human Tenocytes. Polymers (Basel) 2020; 12:polym12112567. [PMID: 33139654 PMCID: PMC7694129 DOI: 10.3390/polym12112567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Tendon healing after injury is relatively slow, mainly because of the weak activity and metabolic properties of tendon cells (tenocytes). Bletilla striata polysaccharide (BSP) has been reported to enhance cell proliferation. Here, we aimed to increase tendon cell proliferation by BSP treatment. We isolated tenocytes from the flexor tendon of human origin. Moreover, we improved the process of extracting BSP. When human tenocytes (HTs) were treated with 100 μg/mL BSP, the MEK/ERK1/2 and PI3K/Akt signaling pathways were activated, thereby enhancing the proliferation ability of tenocytes. BSP treatment also increased the migration of HTs and their ability to secrete the extracellular matrix (Col-I and Col-III). In conclusion, BSP was successfully extracted from a natural Chinese herbal extract and was shown to enhance tenocytes proliferation, migration and collagen release ability. This study is the first to demonstrate improved healing of tendons using BSP.
Collapse
Affiliation(s)
- Zhi-Yu Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; (Z.-Y.C.); (S.-H.C.)
| | - Shih-Heng Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; (Z.-Y.C.); (S.-H.C.)
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 333, Taiwan; (C.-H.C.); (P.-Y.C.)
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 333, Taiwan; (C.-H.C.); (P.-Y.C.)
| | - Pang-Yun Chou
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University and Medical College, Taoyuan 333, Taiwan; (C.-H.C.); (P.-Y.C.)
| | - Chun-Chen Yang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 100, Taiwan;
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan; (Z.-Y.C.); (S.-H.C.)
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan
- Correspondence: ; Tel.: +886-928260400
| |
Collapse
|
13
|
Darrieutort-Laffite C, Soslowsky LJ, Le Goff B. Molecular and Structural Effects of Percutaneous Interventions in Chronic Achilles Tendinopathy. Int J Mol Sci 2020; 21:ijms21197000. [PMID: 32977533 PMCID: PMC7582801 DOI: 10.3390/ijms21197000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Achilles tendinopathy (AT) is a common problem, especially in people of working age, as well as in the elderly. Although the pathogenesis of tendinopathy is better known, therapeutic management of AT remains challenging. Various percutaneous treatments have been applied to tendon lesions: e.g., injectable treatments, platelet-rich plasma (PRP), corticosteroids, stem cells, MMP inhibitors, and anti-angiogenic agents), as well as percutaneous procedures without any injection (percutaneous soft tissue release and dry needling). In this review, we will describe and comment on data about the molecular and structural effects of these treatments obtained in vitro and in vivo and report their efficacy in clinical trials. Local treatments have some impact on neovascularization, inflammation or tissue remodeling in animal models, but evidence from clinical trials remains too weak to establish an accurate management plan, and further studies will be necessary to evaluate their value.
Collapse
Affiliation(s)
- Christelle Darrieutort-Laffite
- Rheumatology Department, Nantes University Hospital, 44000 Nantes, France;
- INSERM UMR1238, Bone Sarcoma and Remodeling of Calcified Tissue, Nantes University, 44000 Nantes, France
- Correspondence: ; Tel.: +33-2-40-08-48-01
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19401-6081, USA;
| | - Benoit Le Goff
- Rheumatology Department, Nantes University Hospital, 44000 Nantes, France;
- INSERM UMR1238, Bone Sarcoma and Remodeling of Calcified Tissue, Nantes University, 44000 Nantes, France
| |
Collapse
|
14
|
Gentile P, Garcovich S. Systematic Review-The Potential Implications of Different Platelet-Rich Plasma (PRP) Concentrations in Regenerative Medicine for Tissue Repair. Int J Mol Sci 2020; 21:5702. [PMID: 32784862 PMCID: PMC7460839 DOI: 10.3390/ijms21165702] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
The number of studies evaluating platelet-rich plasma (PRP) concentration has substantially grown in the last fifteen years. A systematic review on this field has been realized by evaluating in the identified studies the in vitro PRP concentration-also analyzing the platelet amount-and the in vivo PRP effects in tissue regeneration compared to any control. The protocol has been developed in agreement with the Preferred Reporting for Items for Systematic Reviews and Meta-Analyses-Protocols (PRISMA-P) guidelines. Multistep research of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov, Scopus database and Cochrane databases has permitted to identify articles on different concentrations of PRP in vitro and related in vivo impact for tissue repair. Of the 965 articles initially identified, 30 articles focusing on PRP concentration have been selected and, consequently, only 15 articles have been analyzed. In total, 40% (n = 6) of the studies were related to the fixed PRP Concentration Group used a fixed PRP concentration and altered the platelet concentration by adding the different volumes of the PRP (lysate) to the culture. This technique led to a substantial decrease in nutrition available at higher concentrations. Sixty percent (n = 9) of the studies were related to the fixed PRP Volume Group that used a fixed PRP-to-media ratio (Vol/Vol) throughout the experiment and altered the concentration within the PRP volume. For both groups, when the volume of medium (nutrition) decreases, a lower rate of cell proliferation is observed. A PRP concentration of 1.0 × 106 plt/μL, appears to be optimal thanks to the constant and plentiful capillary nutrition supply and rapid diffusion of growth factors that happen in vivo and it also respects the blood decree-law. The PRP/media ratio should provide a sufficient nutrition supply to prevent cellular starvation, that is, PRP ≤ 10% (Vol/Vol) and thus best mimic the conditions in vivo.
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery, “Tor Vergata” University, 00133 Rome, Italy
- Scientific Director of AIRMESS, Academy of International Regenerative Medicine & Surgery Societies, 1201 Geneva, Switzerland
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
15
|
Qi J, Liu Q, Reisdorf RL, Boroumand S, Behfar A, Moran SL, Amadio PC, Gingery A, Zhao C. Characterization of a purified exosome product and its effects on canine flexor tenocyte biology. J Orthop Res 2020; 38:1845-1855. [PMID: 31930553 DOI: 10.1002/jor.24587] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/21/2019] [Indexed: 02/04/2023]
Abstract
Flexor tendon injuries and tendinopathy are very common but remain challenging in clinical treatment. Exosomes-based cell-free therapy appears to be a promising strategy for tendon healing, while limited studies have evaluated its impacts on tenocyte biology. The objective of this study was to characterize a novel purified exosome product (PEP) derived from plasma, as well as to explore its cellular effects on canine tenocyte biology. The transmission electron microscope revealed that exosomes of PEP present cup-shaped structures with the diameters ranged from 80 to 141 nm, and the NanoSight report presented that their size mainly concentrated around 100 nm. The enzyme-linked immunosorbent assay kits analysis showed that PEP was positive for CD63 and AChE expression, and the cellular uptake of exosomes internalized into tenocyte cytoplasm was observed. The cell growth assays displayed that tenocyte proliferation ability was enhanced by PEP solution in a dose-dependent manner. Tenogenic phenotype was preserved as is evident by that tendon-related genes expression (SCX, COL1A, COL3A1, TNMD, DCN, and MKX) were expressed insistently in a high level, while tenocytes were treated with 5% PEP solution. Furthermore, migration capability was maintained and total collagen deposition was increased. More interesting, dexamethasone-induced cellular apoptosis was attenuated during the incubation of tenocytes with a 5% PEP solution. These findings will provide the basic understandings about the PEP, and support the potential use of this biological strategy for tendon healing.
Collapse
Affiliation(s)
- Jun Qi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | | | - Soulmaz Boroumand
- Division of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Atta Behfar
- Division of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Steven L Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Peter C Amadio
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Anne Gingery
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Zhang J, Liu Z, Tang J, Li Y, You Q, Yang J, Jin Y, Zou G, Ge Z, Zhu X, Yang Q, Liu Y. Fibroblast growth factor 2-induced human amniotic mesenchymal stem cells combined with autologous platelet rich plasma augmented tendon-to-bone healing. J Orthop Translat 2020; 24:155-165. [PMID: 33101966 PMCID: PMC7548348 DOI: 10.1016/j.jot.2020.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 01/09/2023] Open
Abstract
Objective The purpose of this study was to explore the effect of fibroblast growth factor 2 (FGF-2) on collagenous fibre formation and the osteogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs) in vitro, as well as the effect of FGF-2–induced hAMSCs combined with autologous platelet-rich plasma (PRP) on tendon-to-bone healing in vivo. Methods In vitro, hAMSCs were induced by various concentrations of FGF-2 (0, 10, 20, and 40 ng/ml) for 14 days, and the outcomes of ligamentous differentiation and osteogenic differentiation were detected by quantitative real-time reverse transcription PCR, Western blot, immunofluorescence, and picrosirius red staining. In addition, a lentivirus carrying the FGF-2 gene was used to transfect hAMSCs, and transfection efficiency was detected by quantitative real time reverse transcription PCR (qRT-PCR) and Western blot. In vivo, the effect of hAMSCs transfected with the FGF-2 gene combined with autologous PRP on tendon-to-bone healing was detected via histological examination, as well as biomechanical analysis and radiographic analysis. Results In vitro, different concentrations of FGF-2 (10, 20, and 40 ng/ml) all promoted the ligamentous differentiation and osteogenic differentiation of hAMSCs, and the low concentration of FGF-2 (10 ng/ml) had a good effect on differentiation. In addition, the lentivirus carrying the FGF-2 gene was successfully transfected into hAMSCs with an optimal multiplicity of infection (MOI) (50), and autologous PRP was prepared successfully. In vivo, the hAMSCs transfected with the FGF-2 gene combined with autologous PRP had a better effect on tendon-to-bone healing than the other groups (p < 0.05), as evidenced by histological examination, biomechanical analysis, and radiographic analysis. Conclusion hAMSCs transfected with the FGF-2 gene combined with autologous PRP could augment tendon-to-bone healing in a rabbit extra-articular model. The translational potential of this article hAMSCs transfected with the FGF-2 gene combined with autologous PRP may be a good clinical treatment for tendon-to-bone healing, especially for acute sports-related tendon–ligament injuries.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Ziming Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, China
| | - Jingfeng Tang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Yuwan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Qi You
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Jibin Yang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Ying Jin
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Gang Zou
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Zhen Ge
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Xizhong Zhu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Qifan Yang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Yi Liu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| |
Collapse
|
17
|
Hurley ET, Hannon CP, Pauzenberger L, Fat DL, Moran CJ, Mullett H. Nonoperative Treatment of Rotator Cuff Disease With Platelet-Rich Plasma: A Systematic Review of Randomized Controlled Trials. Arthroscopy 2019; 35:1584-1591. [PMID: 31000394 DOI: 10.1016/j.arthro.2018.10.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To perform a systematic review of randomized controlled trials on the use of platelet-rich plasma (PRP) for nonoperative treatment of rotator cuff disease. METHODS Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 2 reviewers independently screened the MEDLINE, Embase, and Cochrane Library databases for prospective, randomized controlled trials comparing PRP with a control in the nonoperative treatment of chronic rotator cuff disease for inclusion. Clinical data were extracted and evaluated. The quality of evidence was assessed using The Cochrane Collaboration risk-of-bias tool. RESULTS Five randomized controlled trials met the inclusion criteria, with 108 patients treated with PRP and 106 treated with a control. The mean age was 53.7 years, and 61.6% of patients were female patients. All of the studies found that the groups receiving PRP injections experienced improved clinical outcomes at final follow-up compared with baseline. Two studies found that PRP resulted in improved outcomes, mostly pain scores, compared with a control. One study compared PRP with formal exercise versus a saline solution injection with formal exercise therapy. It showed no difference in clinical outcomes between PRP and a saline solution injection when formal exercise therapy was used. Two other studies reported that PRP alone resulted in inferior outcomes to control groups receiving formal exercise therapy. CONCLUSIONS The currently limited available evidence on PRP for nonoperative treatment of chronic rotator cuff disease suggests that in the short term, PRP injections may not be beneficial. When directly compared with exercise therapy, PRP does not result in superior functional outcomes, pain scores, or range of motion. However, interpretation of this literature is confounded by the lack of reporting of the cytology and characteristics of PRP. LEVEL OF EVIDENCE Level II, systematic review of Level I and II evidence.
Collapse
Affiliation(s)
- Eoghan T Hurley
- Sports Surgery Clinic, Dublin, Ireland; Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
18
|
Zhang Y, Yu J, Zhang J, Hua Y. Simvastatin With PRP Promotes Chondrogenesis of Bone Marrow Stem Cells In Vitro and Wounded Rat Achilles Tendon-Bone Interface Healing In Vivo. Am J Sports Med 2019; 47:729-739. [PMID: 30668918 DOI: 10.1177/0363546518819108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendons and ligaments are joined to bone in a specialized interface that transmits force from muscle to bone and permits body movement. Tendon/ligament injuries always occur in the interface areas, and injured tendons/ligaments have a limited healing response because the insertion site is composed of a fibrocartilaginous zone. PURPOSE To study the effect of simvastatin with platelet-rich plasma (PRP) on chondrogenesis of rat bone marrow stem cells (BMSCs) in vitro and wounded rat Achilles tendon-bone interface healing in vivo. STUDY DESIGN Controlled laboratory study. METHODS The in vitro model was performed by the culture of rat BMSCs with various concentrations of simvastatin (0, 10, 50, 100 nM) for 2 weeks. The effect of simvastatin on the chondrogenic differentiation of the BMSCs was examined by histochemical analysis and real-time quantitative reverse transcription polymerase chain reaction. The in vivo model was carried out by testing the healing effect of simvastatin with PRP on 12 wounded rat Achilles tendon-bone interfaces. RESULTS Simvastatin induced chondrogenic differentiation of rat BMSCs in a concentration-dependent manner as evidenced by histological staining and real-time quantitative reverse transcription polymerase chain reaction. The wounds treated with simvastatin alone or with simvastatin-containing PRP gel healed much faster than the wounds treated with saline alone or PRP alone. Histological analysis showed that higher percentages of healed tissues were positively stained with safranin O and fast green in wounds treated with simvastatin-containing PRP gel than in the other 3 groups. Immunohistochemical analysis further demonstrated these findings, as evidenced by more positively stained healed tissues with collagen I and II antibodies in the wound areas treated with simvastatin-containing PRP gel than the other 3 groups. CONCLUSION The combination of simvastatin with PRP induced chondrogenesis of BMSCs in vitro and enhanced fibrocartilage formation in vivo. The simvastatin-PRP gel treatment promotes wounded tendon-bone interface healing in clinical treatment. CLINICAL RELEVANCE The combination of simvastatin with PRP may be a good clinical treatment for wounded tendon/ligament junction healing, especially for acute sports-related tendon/ligament injuries.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Orthopedics, Jinan Central Hospital Affiliated to Shandong University Medical School, Jinan, China
| | - Jing Yu
- Department of Anesthesiology, Jinan Central Hospital Affiliated to Shandong University Medical School, Jinan, China
| | - Jiefeng Zhang
- Department of Trauma Surgery, Taian City Central Hospital, Taian, China
| | - Yongxin Hua
- Department of Orthopedics, Jinan Central Hospital Affiliated to Shandong University Medical School, Jinan, China
| |
Collapse
|
19
|
Chiu CH, Higashikawa R, Yeh WL, Lei KF, Chen ACY. Investigation of Growth Factor and Tenocyte Proliferation Induced by Platelet Rich Plasma (PRP) in a 3-Chamber Co-Culture Device. MICROMACHINES 2018; 9:446. [PMID: 30424379 PMCID: PMC6187681 DOI: 10.3390/mi9090446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023]
Abstract
The platelet-rich plasma (PRP) has become an attractive topic for soft tissue healing therapy recently. While some clinical reports revealed the effective treatments for knee osteoarthritis, lateral epicondylitis, and rotator cuff tears, other case studies showed that there was no statistically significant healing improvement. The efficacy of the PRP therapy is still unclear clinically. Thus, a significant amount of basic studies should be conducted to optimize the preparation procedure and the platelet concentration of the PRP. In this work, a 3-chamber co-culture device was developed for the PRP study in order to reduce the usage of primary cells and to avoid the PRP gelation effect. The device was a culture, well partitioning into 3 sub-chambers. Tenocytes and PRP could be respectively loaded into the sub-chambers and co-cultured under the interlinked medium. The results showed that a higher platelet number in the PRP could diffuse higher concentration of the growth factors in the medium and induce higher tenocyte proliferation. The 3-chamber co-culture device provides a simple and practical tool for the PRP study. It is potentially applied for optimizing the preparation procedure and platelet concentration of the PRP therapy.
Collapse
Affiliation(s)
- Chih-Hao Chiu
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
| | - Rei Higashikawa
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
| | - Wen-Ling Yeh
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
| | - Kin Fong Lei
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan.
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
| | - Alvin Chao-Yu Chen
- Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
| |
Collapse
|
20
|
Chiu CH, Lei KF, Yeh WL. Development of a co-culture device for the study of human tenocytes in response to the combined stimulation of electric field and platelet rich plasma (PRP). Biomed Microdevices 2018; 19:69. [PMID: 28779376 DOI: 10.1007/s10544-017-0214-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the objectives of rotator cuff repairs is to achieve biological healing and recovery in the tendon-bone zone. Some clinical evaluations reported the feasibility of tendon healing based on the stimulations of electric field and platelet-rich plasma (PRP). However, because of lack of appropriate tool for in vitro primary culture under complicated conditions, the efficacy and standard protocol of these healing approaches are still controversial among clinical experts. In this study, a novel co-culture device was developed for the study of tenocytes proliferation under single and combined stimulations of electric field and PRP. The device was a culture well divided into three sub-chambers separated by a barrier and embedded with a pair of parallel plate electrodes. Tenocytes and PRP gel could be respectively loaded into the sub-chambers and cultured with interlinked medium. Hence, tenocytes could concurrently receive a uniform electric field and platelet-derived growth factors by diffusion. Results revealed that the proliferation of tenocytes could be significantly enhanced by these stimulations. The device provides a precise and practical approach for the in vitro study of tendon healing, especially for PRP study. Moreover, optimization of the conditions of electric field and PRP could be determined by in vitro screening procedure before surgery to provide a personalized therapy.
Collapse
Affiliation(s)
- Chih-Hao Chiu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Orthopedic Surgery, Taoyuan Chang Gung Memorial Hospital, Taoyuan, Taiwan.,PhD Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Kin Fong Lei
- Graduate Institute of Medical Mechatronics, Chang Gung University, Taoyuan, Taiwan. .,Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Wen-Ling Yeh
- Department of Orthopedic Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Musculoskeletal Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
21
|
Yoon JY, Lee SY, Shin S, Yoon KS, Jo CH. Comparative Analysis of Platelet-rich Plasma Effect on Tenocytes from Normal Human Rotator Cuff Tendon and Human Rotator Cuff Tendon with Degenerative Tears. Clin Shoulder Elb 2018; 21:3-14. [PMID: 33330145 PMCID: PMC7726368 DOI: 10.5397/cise.2018.21.1.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 11/25/2022] Open
Abstract
Background Platelet-rich plasma (PRP) stimulates cell proliferation and enhances matrix gene expression and synthesis. However, there have been no comparative study of the PRP effect on the normal and degenerative tenocytes. The purpose of this study was to compare the effect of PRP on tenocytes from normal and degenerative tendon. Methods Tendon tissues were obtained from patients undergoing arthroscopic repair (n=9) and from healthy donors (n=3). Tenocytes were cultured with 10% (vol/vol) platelet-poor plasma, PRP activated with calcium, and PRP activated with calcium and thrombin. The total cell number was assessed at days 7 and 14. The expressions of type I and III collagen, decorin, tenascin-C, and scleraxis were evaluated by quantitative real-time reverse transcriptase polymerase chain reaction. The total collagen and glycosaminoglycan (GAG) synthesis was evaluated at days 7 and 14. Results No differences were observed between the groups at day 7, but cell proliferation was remarkably increased in tenocytes from the degenerative tendon at day 14. In both tenocyte groups, the gene expressions of type I and III collagen were up-regulated. GAG synthesis was greater in the normal tendon, whereas the expressions of decorin and tenascin-C were increased in tenocytes from the degenerative tendon. Tenocytes from the degenerative tendon had higher fold-change of GAG synthesis and a lower collagen III/I ratio than normal tenocytes. Conclusions PRP promoted the cell proliferation and enhanced the synthesis of tendon matrix in both groups. PRP has a greater positive effect on cell proliferation, matrix gene expression and synthesis in tenocytes from degenerative tendon.
Collapse
Affiliation(s)
- Jeong Yong Yoon
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Yeon Lee
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Sue Shin
- Department of Laboratory Medicine, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Kang Sup Yoon
- Department of Orthopedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chris Hyunchul Jo
- Department of Orthopedic Surgery and Translational Medicine, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Comparative Analysis of Different Platelet Lysates and Platelet Rich Preparations to Stimulate Tendon Cell Biology: An In Vitro Study. Int J Mol Sci 2018; 19:ijms19010212. [PMID: 29320421 PMCID: PMC5796161 DOI: 10.3390/ijms19010212] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
The poor healing potential of tendons is still a clinical problem, and the use of Platelet Rich Plasma (PRP) was hypothesized to stimulate healing. As the efficacy of PRPs remains unproven, platelet lysate (PL) could be an alternative with its main advantages of storage and characterization before use. Five different blood products were prepared from 16 male donors: human serum, two PRPs (Arthrex, (PRP-ACP); RegenLab (PRP-BCT)), platelet concentrate (apheresis, PC), and PL (freezing-thawing destruction of PC). Additionally, ten commercial allogenic PLs (AlloPL) from pooled donors were tested. The highest concentration of most growth factors was found in AlloPL, whereas the release of growth factors lasted longer in the other products. PRP-ACP, PRP-BCT, and PC significantly increased cell viability of human tenocyte-like cells, whereas PC and AlloPL increased Col1A1 expression and PRP-BCT increased Col3A1 expression. MMP-1, IL-1β, and HGF expression was significantly increased and Scleraxis expression decreased by most blood products. COX1 expression significantly decreased by PC and AlloPL. No clear positive effects on tendon cell biology could be shown, which might partially explain the weak outcome results in clinical practice. Pooled PL seemed to have the most beneficial effects and might be the future in using blood products for tendon tissue regeneration.
Collapse
|
23
|
Rampichová M, Buzgo M, Míčková A, Vocetková K, Sovková V, Lukášová V, Filová E, Rustichelli F, Amler E. Platelet-functionalized three-dimensional poly-ε-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors. Int J Nanomedicine 2017; 12:347-361. [PMID: 28123295 PMCID: PMC5229261 DOI: 10.2147/ijn.s120206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone and cartilage are tissues of a three-dimensional (3D) nature. Therefore, scaffolds for their regeneration should support cell infiltration and growth in all 3 dimensions. To fulfill such a requirement, the materials should possess large, open pores. Centrifugal spinning is a simple method for producing 3D fibrous scaffolds with large and interconnected pores. However, the process of bone regeneration is rather complex and requires additional stimulation by active molecules. In the current study, we introduced a simple composite scaffold based on platelet adhesion to poly-ε-caprolactone 3D fibers. Platelets were used as a natural source of growth factors and cytokines active in the tissue repair process. By immobilization in the fibrous scaffolds, their bioavailability was prolonged. The biological evaluation of the proposed system in the MG-63 model showed improved metabolic activity, proliferation and alkaline phosphatase activity in comparison to nonfunctionalized fibrous scaffold. In addition, the response of cells was dose dependent with improved biocompatibility with increasing platelet concentration. The results demonstrated the suitability of the system for bone tissue.
Collapse
Affiliation(s)
- Michala Rampichová
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Matej Buzgo
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad
| | - Andrea Míčková
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Karolína Vocetková
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Věra Sovková
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Věra Lukášová
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Filová
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Franco Rustichelli
- Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Evžen Amler
- Indoor Environmental Quality, University Center for Energy Efficient Buildings, Czech Technical University in Prague, Buštěhrad; Laboratory of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
24
|
Emadedin M, Labibzadeh N, Fazeli R, Mohseni F, Hosseini SE, Moghadasali R, Mardpour S, Azimian V, Goodarzi A, Ghorbani Liastani M, Mirazimi Bafghi A, Baghaban Eslaminejad M, Aghdami N. Percutaneous Autologous Bone Marrow-Derived Mesenchymal Stromal Cell Implantation Is Safe for Reconstruction of Human Lower Limb Long Bone Atrophic Nonunion. CELL JOURNAL 2016; 19:159-165. [PMID: 28367426 PMCID: PMC5241512 DOI: 10.22074/cellj.2016.4866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/07/2016] [Indexed: 11/06/2022]
Abstract
Objective Nonunion is defined as a minimum of a 9-month period of time since an injury
with no visibly progressive signs of healing for 3 months. Recent studies show that application
of mesenchymal stromal cells (MSCs) in the laboratory setting is effective for bone
regeneration. Animal studies have shown that MSCs can be used to treat nonunions. For
the first time in an Iranian population, the present study investigated the safety of MSC
implantation to treat human lower limb long bone nonunion.
Materials and Methods It is a prospective clinical trial for evaluating the safety of using
autologus bone marrow derived mesenchymal stromal cells for treating nonunion. Orthopedic
surgeons evaluated 12 patients with lower limb long bone nonunion for participation in this
study. From these, 5 complied with the eligibility criteria and received MSCs. Under fluoroscopic
guidance, patients received a one-time implantation of 20-50×106 MSCs into the nonunion site.
All patients were followed by anterior-posterior and lateral X-rays from the affected limb, in addition
to hematological, biochemical, and serological laboratory tests obtained before and 1, 3, 6,
and 12 months after the implantation. Possible adverse effects that included local or systemic,
serious or non-serious, and related or unrelated effects were recorded during this time period.
Results From a safety perspective, all patients tolerated the MSCs implantation during
the 12 months of the trial. Three patients had evidence of bony union based on the after
implantation Xrays.
Conclusion The results have suggested that implantation of bone marrow-derived MSCs
is a safe treatment for nonunion. A double-blind, controlled clinical trial is required to assess
the efficacy of this treatment (Registration Number: NCT01206179).
Collapse
Affiliation(s)
- Mohsen Emadedin
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narges Labibzadeh
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roghayeh Fazeli
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Mohseni
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Moghadasali
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soura Mardpour
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vajiheh Azimian
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Goodarzi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maede Ghorbani Liastani
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Mirazimi Bafghi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
25
|
Drummond J, Fary C, Tran P. The outcome of endoscopy for recalcitrant greater trochanteric pain syndrome. Arch Orthop Trauma Surg 2016; 136:1547-1554. [PMID: 27405492 DOI: 10.1007/s00402-016-2511-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Greater trochanteric pain syndrome (GTPS), previously referred as trochanteric bursitis, is a debilitating condition characterised by chronic lateral hip pain. The syndrome is thought to relate to gluteal tendinopathy, with most cases responding to non-operative treatment. A number of open and endoscopic surgical techniques targeting the iliotibial band, trochanteric bursa and gluteal tendons have, however, been described for severe recalcitrant cases. We report the outcomes of one such endoscopic approach here. MATERIALS AND METHODS We retrospectively reviewed 49 patients (57 operations) who had undergone endoscopic longitudinal vertical iliotibial band release and trochanteric bursectomy. Inclusion criteria included diagnosed GTPS with a minimum of six months of non-operative treatment. Exclusion criteria included concomitant intra- or extra-articular hip pathology and previous hip surgery including total hip arthroplasty. Outcomes were assessed using the Visual Analogue Scale, Oxford hip Score and International Hip Outcome Tool (iHOT-33). RESULTS The series included 42 females and 7 males with a mean age of 65.0 years (26.7-88.6). Mean follow-up time was 20.7 months (5.3-41.2). Eight patients had full thickness gluteal tendon tears, of which 7 were repaired. Adjuvant PRP was injected intraoperatively in 38 of 57 operations (67.2 %). At follow-up, overall mean Visual Analogue Scale values had decreased from 7.8 to 2.8 (p < 0.001), Oxford hip Scores had increased from 20.4 to 37.3 (p < 0.001) and iHOT-33 scores had increased from 23.8 to 70.2 (p < 0.001). Of the 57 operations performed, patients reported feeling very satisfied with the surgical outcome in 28 operations (49.1 %), satisfied in 17 operations (29.8 %) and less than satisfied in 12 operations (21.1 %). CONCLUSIONS While the majority of patients with GTPS will improve with non-operative management, endoscopic iliotibial band release, trochanteric bursectomy and gluteal tendon repair is a safe and effective treatment for severe recalcitrant cases.
Collapse
Affiliation(s)
- James Drummond
- Western Health, Melbourne, VIC, Australia. .,Department of Orthopaedic Surgery, Western Hospital, Level 1 South, 160 Gordon St, Footscray, VIC, 3011, Australia.
| | - Camdon Fary
- Western Health, Melbourne, VIC, Australia.,Department of Orthopaedic Surgery, Western Hospital, Level 1 South, 160 Gordon St, Footscray, VIC, 3011, Australia
| | - Phong Tran
- Western Health, Melbourne, VIC, Australia.,Department of Orthopaedic Surgery, Western Hospital, Level 1 South, 160 Gordon St, Footscray, VIC, 3011, Australia
| |
Collapse
|
26
|
Analysis of experimental tendinitis in rats treated with laser and platelet-rich plasma therapies by Raman spectroscopy and histometry. Lasers Med Sci 2016; 31:19-26. [PMID: 26498452 DOI: 10.1007/s10103-015-1819-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/13/2015] [Indexed: 01/25/2023]
Abstract
The objective of this controlled experimental study was to analyze the changes in the Achilles tendons of rats with experimentally induced tendinitis after treatment with platelet-rich plasma (PRP) and/or laser therapies by histometry to quantify fibroblasts and by Raman spectroscopy to determine the biochemical concentration of collagen types I and III. Fifty-four male Wistar rats were divided into six treatment groups: control (G1); PRP only (G2); irradiation with 660 nm laser (G3); irradiation with 830 nm laser (G4); PRP plus 660 nm laser irradiation (G5); and PRP plus 830 nm laser irradiation (G6). Injuries (partial tenotomy) were inflicted in the middle third of the Achilles tendon, with PRP added prior to suture in the appropriate experimental groups. A diode laser (model Laser Flash® III, DMC Equipamentos Ltda, São Carlos, SP, Brazil) that can be operated in two wavelengths 660 and 830 nm was used for irradiation treatments. The irradiation protocol was energy density of 70 J/cm², 20 s irradiation time, and 0.028 cm² spot area, per point in three points in the injured. The histometry was made in micrographical images of the H&E stained sections and evaluated by ImageJ (version 1.46r)®. Raman spectra were collected using a dispersive spectrometer at 830 nm excitation, 200 mW power, and 10 s integration time (P-1 Raman system, Lambda Solutions, Inc. MA, USA). The relative amount of type I collagen was significantly greater in the PRP plus 830 nm laser irradiation group (468 ± 188) than in the control (147 ± 137), 630 nm laser only (191 ± 117), and 830 nm laser only (196 ± 106) groups (p < 0.01), while the quantity of type III collagen was significantly greater in the PRP-only group compared to both irradiated groups without PRP (p < 0.05). Treatment with PRP combined with irradiation at 830 nm resulted in a larger number of fibroblasts and increased concentration of type I collagen, thus accelerating the healing of the injured tendon.
Collapse
|
27
|
Labibzadeh N, Emadedin M, Fazeli R, Mohseni F, Hosseini SE, Moghadasali R, Mardpour S, Azimian V, Ghorbani Liastani M, Mirazimi Bafghi A, Baghaban Eslaminejad M, Aghdami N. Mesenchymal Stromal Cells Implantation in Combination with Platelet Lysate Product Is Safe for Reconstruction of Human Long Bone Nonunion. CELL JOURNAL 2016; 18:302-309. [PMID: 27602311 PMCID: PMC5011317 DOI: 10.22074/cellj.2016.4557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/03/2016] [Indexed: 12/29/2022]
Abstract
Objective Nonunion is defined as a minimum of 9 months since injury without any visible progressive signs of healing for 3 months. Recent literature has shown that the application of mesenchymal stromal cells is safe, in vitro and in vivo,
for treating long bone nonunion. The present
study was performed to investigate the safety of mesenchymal stromal cell (MSC) implantation
in combination with platelet lysate (PL) product for treating human long bone nonunion.
Materials and Methods In this case series clinical trial, orthopedic surgeons visited
eighteen patients with long bone nonunion, of whom 7 complied with the eligibility criteria. These patients received mesenchymal stromal cells (20 million cells implanted once
into the nonunion site using a fluoroscopic guide) in combination with PL product. For
evaluation of the effects of this intervention all the patients were followed up by taking
anterior-posterior and lateral X-rays of the affected limb before and 1, 3, 6, and 12 months
after the implantation. All side effects (local or systemic, serious or non-serious, related or
unrelated) were observed during this time period.
Results From a safety perspective the MSC implantation in combination with PL was
very well tolerated during the 12 months of the trial. Four patients were healed; based on
the control Xray evidence, bony union had occurred.
Conclusion Results from the present study suggest that the implantation of bone marrow-derived MSCs in combination with PL is safe for the treatment of nonunion. A double
blind, controlled clinical trial is required to assess the efficacy of this treatment (Registration Number: NCT01206179).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nasser Aghdami
- P.O.Box: 16635-148Department of Regenerative BiomedicineCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| |
Collapse
|
28
|
PRP Treatment Efficacy for Tendinopathy: A Review of Basic Science Studies. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9103792. [PMID: 27610386 PMCID: PMC5004020 DOI: 10.1155/2016/9103792] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/08/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022]
Abstract
Platelet-Rich Plasma (PRP) has been widely used in orthopaedic surgery and sport medicine to treat tendon injuries. However, the efficacy of PRP treatment for tendinopathy is controversial. This paper focuses on reviewing the basic science studies on PRP performed under well-controlled conditions. Both in vitro and in vivo studies describe PRP's anabolic and anti-inflammatory effects on tendons. While some clinical trials support these findings, others refute them. In this review, we discuss the effectiveness of PRP to treat tendon injuries with evidence presented in basic science studies and the potential reasons for the controversial results in clinical trials. Finally, we comment on the approaches that may be required to improve the efficacy of PRP treatment for tendinopathy.
Collapse
|
29
|
Zhang L, Chen S, Chang P, Bao N, Yang C, Ti Y, Zhou L, Zhao J. Harmful Effects of Leukocyte-Rich Platelet-Rich Plasma on Rabbit Tendon Stem Cells In Vitro. Am J Sports Med 2016; 44:1941-51. [PMID: 27184544 DOI: 10.1177/0363546516644718] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Platelet-rich plasma (PRP) is now widely used as a promising treatment for patients with tendinopathy. However, the efficacy of PRP treatment for tendinopathy is controversial mainly because of inconsistent results from human clinical trials and particularly because the concentration and effect of leukocytes in PRP remain largely unknown. HYPOTHESIS Leukocyte-rich PRP (L-PRP) inhibits growth factor release, decreases proliferation, and induces nontenocyte differentiation of tendon stem cells (TSCs); increases catabolic cytokine concentrations; and causes inflammation and apoptosis. Thus, L-PRP has a detrimental effect on tendon stem/progenitor cells, which impairs injured tendon healing. STUDY DESIGN Controlled laboratory study. METHODS Pure PRP (P-PRP) and L-PRP were prepared from the same individual rabbit blood, and platelet numbers in each PRP product were adjusted to reach the same level. The leukocyte level in L-PRP was 4 and 8 times higher than those in whole blood and P-PRP, respectively. The growth factors in both P-PRP and L-PRP were measured by enzyme-linked immunosorbent assay kits. The morphology, stemness, proliferation, and differentiation of TSCs grown in L-PRP and P-PRP were examined by microscopy, immunocytochemistry, population doubling time, quantitative real-time polymerase chain reaction, and histological analysis. RESULTS L-PRP produced lower levels of growth factors, such as vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), transforming growth factor (TGF)-β1, and platelet-derived growth factor (PDGF), than did P-PRP. TSC proliferation was significantly decreased in L-PRP in a concentration-dependent manner. Furthermore, TSCs cultured in P-PRP produced more collagen and formed tendon-like tissue; however, TSCs grown in L-PRP differentiated into nontenocytes and produced more inflammatory factors such as membrane-associated prostaglandin synthase (mPGES) and interleukin (IL)-1β. Moreover, L-PRP was associated with increased apoptosis. CONCLUSION L-PRP has harmful effects on TSCs. CLINICAL RELEVANCE This study revealed the direct effects of different compositions of PRP on TSCs and provided basic scientific data to help understand the cellular and molecular mechanisms of the efficacy of PRP treatment in clinical use.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shuo Chen
- Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Peng Chang
- Department of Plastic and Reconstructive Surgery, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Nirong Bao
- Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chao Yang
- Department of Orthopedics, School of Clinical Medicine, Nanjing University, Nanjing, China
| | - Yufan Ti
- Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Liwu Zhou
- Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
30
|
Hudgens JL, Sugg KB, Grekin JA, Gumucio JP, Bedi A, Mendias CL. Platelet-Rich Plasma Activates Proinflammatory Signaling Pathways and Induces Oxidative Stress in Tendon Fibroblasts. Am J Sports Med 2016; 44:1931-40. [PMID: 27400714 PMCID: PMC4970921 DOI: 10.1177/0363546516637176] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendon injuries are one of the most common musculoskeletal conditions in active patients. Platelet-rich plasma (PRP) has shown some promise in the treatment of tendon disorders, but little is known as to the mechanisms by which PRP can improve tendon regeneration. PRP contains numerous different growth factors and cytokines that activate various cellular signaling cascades, but it has been difficult to determine precisely which signaling pathways and cellular responses are activated after PRP treatment. Additionally, macrophages play an important role in modulating tendon regeneration, but the influence of PRP on determining whether macrophages assume a proinflammatory or anti-inflammatory phenotype remains unknown. PURPOSE To use genome-wide expression profiling, bioinformatics, and protein analysis to determine the cellular pathways activated in fibroblasts treated with PRP. The effect of PRP on macrophage polarization was also evaluated. STUDY DESIGN Controlled laboratory study. METHODS Tendon fibroblasts or macrophages from rats were cultured and treated with either platelet-poor plasma (PPP) or PRP. RNA or protein was isolated from cells and analyzed using microarrays, quantitative polymerase chain reaction, immunoblotting, or bioinformatics techniques. RESULTS Pathway analysis determined that the most highly induced signaling pathways in PRP-treated tendon fibroblasts were TNFα and NFκB pathways. PRP also downregulated the expression of extracellular matrix genes and induced the expression of autophagy-related genes and reactive oxygen species (ROS) genes and protein markers in tendon fibroblasts. PRP failed to have a major effect on markers of macrophage polarization. CONCLUSION PRP induces an inflammatory response in tendon fibroblasts, which leads to the formation of ROS and the activation of oxidative stress pathways. PRP does not appear to significantly modulate macrophage polarization. CLINICAL RELEVANCE PRP might act by inducing a transient inflammatory event, which could then trigger a tissue regeneration response.
Collapse
Affiliation(s)
- Joshua L Hudgens
- Departments of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109
| | - Kristoffer B Sugg
- Departments of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109,Departments of Molecular & Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109,Departments of Surgery, Section of Plastic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109
| | - Jeremy A Grekin
- Departments of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109
| | - Jonathan P Gumucio
- Departments of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109,Departments of Molecular & Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109
| | - Asheesh Bedi
- Departments of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109
| | - Christopher L Mendias
- Departments of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109,Departments of Molecular & Integrative Physiology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI, 48109,To whom correspondence should be addressed: Christopher L Mendias, PhD, ATC, Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200, 734-764-3250,
| |
Collapse
|
31
|
Translation of cell therapy into clinical practice: validation of an application procedure for bone marrow progenitor cells and platelet rich plasma. J Appl Biomater Funct Mater 2016; 14:e1-8. [PMID: 26689816 DOI: 10.5301/jabfm.5000255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2015] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Tissue regeneration can be improved by local application of autologous bone marrow derived progenitor cells (BMSC) and platelet rich plasma (PRP). However, there is a lack of standardized application procedures for clinical use. Therefore, a technique in accordance with the guidelines for advanced therapies medical products of the European Medicine Agency was developed and established. METHODS In detail, a process for the isolation and formulation of autologous bone marrow cells (BMC) and PRP in a clinical setting was validated. To investigate the influence of storage time and temperature on gel formation and gel stability, different concentrations of BMC were stored with and without additional platelets, thrombin and fibrinogen and analyzed over a period of 28 days. In addition, cell vitality using a live-dead staining and migration ability of human mesenchymal stem cells (hMSC) in the gel clot was investigated. RESULTS For an optimized stable gel clot, human BMC and PRP should be combined with 10% to 20% fibrinogen (9 mg/mL to 18 mg/mL) and 5% to 20% thrombin (25 I.E. to 100 I.E.). Both freshly prepared and stored cells for 1 to 7 days had a stable consistence over 28 days at 37°C. Different platelet concentrations did not influence gel clot formation. The ratio of living cells did not decrease significantly over the observation period of 5 days in the live-dead staining. CONCLUSIONS The study identified an optimal gel texture for local application of BMC and PRP. Seeded hMSC could migrate therein and were able to survive to initiate a healing cascade.
Collapse
|
32
|
Verhaegen F, Brys P, Debeer P. Rotator cuff healing after needling of a calcific deposit using platelet-rich plasma augmentation: a randomized, prospective clinical trial. J Shoulder Elbow Surg 2016; 25:169-73. [PMID: 26775091 DOI: 10.1016/j.jse.2015.10.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/05/2015] [Accepted: 10/18/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Arthroscopic needling of a rotator cuff calcification is a highly reliable operation in terms of pain relief and return of function. However, during the needling process, a cuff defect is created. Little is known about the evolution of this defect. METHODS We conducted a prospective, randomized controlled clinical trial to investigate the evolution of the aforementioned defect and the role of platelet-rich plasma (PRP) augmentation in this healing process. Patients were randomized to either group 1 (PRP, n = 20) or group 2 (no PRP [control group], n = 20). Patients in group 1 received a perioperative PRP infiltration at the rotator cuff defect, whereas the control group did not. Patients were assessed clinically preoperatively and postoperatively at 6 weeks, 3 and 6 months, and 1 year. The Constant score, Simple Shoulder Test, and QuickDASH (short version of Disabilities of the Arm, Shoulder and Hand questionnaire) were used as outcome measures. The evolution of the cuff defect was evaluated on sonography at 3 and 6 months and with magnetic resonance imaging after 1 year. RESULTS All patients improved significantly after surgery (P < .05). There was no difference in clinical outcome or rotator cuff healing between groups. We observed a high rate of persistent rotator cuff defects after 1 year in both groups. The presence of residual cuff defects did not influence the clinical outcome. CONCLUSION Arthroscopic needling is an operation with a predictive, good clinical outcome. We found a high rate of persistent rotator cuff defects after 1 year. This study could not identify any beneficial effect of the addition of PRP on rotator cuff healing. LEVEL OF EVIDENCE Level II; Randomized Controlled Trial; Treatment Study.
Collapse
Affiliation(s)
- Filip Verhaegen
- Department of Development and Regeneration, KU Leuven, Division of Orthopaedics, University Hospitals Leuven, Pellenberg, Belgium.
| | - Peter Brys
- Department of Radiology, University Hospitals Leuven, Pellenberg, Belgium
| | - Philippe Debeer
- Department of Development and Regeneration, KU Leuven, Division of Orthopaedics, University Hospitals Leuven, Pellenberg, Belgium
| |
Collapse
|
33
|
Burnouf T, Strunk D, Koh MBC, Schallmoser K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2015; 76:371-87. [PMID: 26561934 DOI: 10.1016/j.biomaterials.2015.10.065] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023]
Abstract
The essential physiological role of platelets in wound healing and tissue repair builds the rationale for the use of human platelet derivatives in regenerative medicine. Abundant growth factors and cytokines stored in platelet granules can be naturally released by thrombin activation and clotting or artificially by freeze/thaw-mediated platelet lysis, sonication or chemical treatment. Human platelet lysate prepared by the various release strategies has been established as a suitable alternative to fetal bovine serum as culture medium supplement, enabling efficient propagation of human cells under animal serum-free conditions for a multiplicity of applications in advanced somatic cell therapy and tissue engineering. The rapidly increasing number of studies using platelet derived products for inducing human cell proliferation and differentiation has also uncovered a considerable variability of human platelet lysate preparations which limits comparability of results. The main variations discussed herein encompass aspects of donor selection, preparation of the starting material, the possibility for pooling in plasma or additive solution, the implementation of pathogen inactivation and consideration of ABO blood groups, all of which can influence applicability. This review outlines the current knowledge about human platelet lysate as a powerful additive for human cell propagation and highlights its role as a prevailing supplement for human cell culture capable to replace animal serum in a growing spectrum of applications.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Dirk Strunk
- Experimental & Clinical Cell Therapy Institute, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Mickey B C Koh
- Blood Services Group, Health Sciences Authority, Singapore; Department for Hematology, St George's Hospital and Medical School, London, UK
| | - Katharina Schallmoser
- Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Department for Blood Group Serology and Transfusion Medicine, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
34
|
Kaux JF, Drion P, Croisier JL, Crielaard JM. Tendinopathies and platelet-rich plasma (PRP): from pre-clinical experiments to therapeutic use. J Stem Cells Regen Med 2015. [PMID: 26195890 PMCID: PMC4498322 DOI: 10.46582/jsrm.1101003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The restorative properties of platelets, through the local release of growth factors, are used in various medical areas. This article reviews fundamental and clinical research relating to platelet-rich plasma applied to tendinous lesions. MATERIALS AND METHOD Articles in French and English, published between 1 January 2012 and 31 December 2014. dealing with PRP and tendons were searched for using the Medline and Scopus data bases. RESULTS Forty-seven articles were identified which addressed pre-clinical and clinical studies: 27 relating to in vitro and in vivo animal studies and 20 relating to human studies. Of these, five addressed lateral epicondylitis, two addressed rotator cuff tendinopathies, ten dealt with patellar tendinopathies and three looked at Achilles tendinopathies. CONCLUSIONS The majority of pre-clinical studies show that PRP stimulates the tendon's healing process. However, clinical series remain more controversial and level 1, controlled, randomised studies are still needed.
Collapse
Affiliation(s)
- Jean-François Kaux
- Physical Medicine and Sports Traumatology Department, University and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- ULg-GIGA-R, Experimental Surgery, University of Liège, Belgium
| | - Jean-Louis Croisier
- Physiotherapy Service, Department of Motility Sciences, University of Liège, Liège, Belgium
| | - Jean-Michel Crielaard
- Physical Medicine and Sports Traumatology Department, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
35
|
New and emerging strategies in platelet-rich plasma application in musculoskeletal regenerative procedures: general overview on still open questions and outlook. BIOMED RESEARCH INTERNATIONAL 2015; 2015:846045. [PMID: 26075269 PMCID: PMC4436449 DOI: 10.1155/2015/846045] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023]
Abstract
Despite its pervasive use, the clinical efficacy of platelet-rich plasma (PRP) therapy and the different mechanisms of action have yet to be established. This overview of the literature is focused on the role of PRP in bone, tendon, cartilage, and ligament tissue regeneration considering basic science literature deriving from in vitro and in vivo studies. Although this work provides evidence that numerous preclinical studies published within the last 10 years showed promising results concerning the application of PRP, many key questions remain unanswered and controversial results have arisen. Additional preclinical studies are needed to define the dosing, timing, and frequency of PRP injections, different techniques for delivery and location of delivery, optimal physiologic conditions for injections, and the concomitant use of recombinant proteins, cytokines, additional growth factors, biological scaffolds, and stems cells to develop optimal treatment protocols that can effectively treat various musculoskeletal conditions.
Collapse
|
36
|
Brossi PM, Moreira JJ, Machado TSL, Baccarin RYA. Platelet-rich plasma in orthopedic therapy: a comparative systematic review of clinical and experimental data in equine and human musculoskeletal lesions. BMC Vet Res 2015; 11:98. [PMID: 25896610 PMCID: PMC4449579 DOI: 10.1186/s12917-015-0403-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/20/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND This systematic review aimed to present and critically appraise the available information on the efficacy of platelet rich plasma (PRP) in equine and human orthopedic therapeutics and to verify the influence of study design and methodology on the assumption of PRP's efficacy. We searched Medline, PubMed, Embase, Bireme and Google Scholar without restrictions until July 2013. Randomized trials, human cohort clinical studies or case series with a control group on the use of PRP in tendons, ligaments or articular lesions were included. Equine clinical studies on the same topics were included independently of their design. Experimental studies relevant to the clarification of PRP's effects and mechanisms of action in tissues of interest, conducted in any animal species, were selected. RESULTS This review included 123 studies. PRP's beneficial effects were observed in 46.7% of the clinical studies, while the absence of positive effects was observed in 43.3%. Among experimental studies, 73% yielded positive results, and 7.9% yielded negative results. The most frequent flaws in the clinical trials' designs were the lack of a true placebo group, poor product characterization, insufficient blinding, small sampling, short follow-up periods, and adoption of poor outcome measures. The methods employed for PRP preparation and administration and the selected outcome measures varied greatly. Poor study design was a common feature of equine clinical trials. From studies in which PRP had beneficial effects, 67.8% had an overall high risk of bias. From the studies in which PRP failed to exhibit beneficial effects, 67.8% had an overall low risk of bias. CONCLUSIONS Most experimental studies revealed positive effects of PRP. Although the majority of equine clinical studies yielded positive results, the human clinical trials' results failed to corroborate these findings. In both species, beneficial results were more frequently observed in studies with a high risk of bias. The use of PRP in musculoskeletal lesions, although safe and promising, has still not shown strong evidence in clinical scenarios.
Collapse
Affiliation(s)
- Patrícia M Brossi
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Juliana J Moreira
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Thaís S L Machado
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Raquel Y A Baccarin
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
37
|
Gaspar D, Spanoudes K, Holladay C, Pandit A, Zeugolis D. Progress in cell-based therapies for tendon repair. Adv Drug Deliv Rev 2015; 84:240-56. [PMID: 25543005 DOI: 10.1016/j.addr.2014.11.023] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 11/08/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
The last decade has seen significant developments in cell therapies, based on permanently differentiated, reprogrammed or engineered stem cells, for tendon injuries and degenerative conditions. In vitro studies assess the influence of biophysical, biochemical and biological signals on tenogenic phenotype maintenance and/or differentiation towards tenogenic lineage. However, the ideal culture environment has yet to be identified due to the lack of standardised experimental setup and readout system. Bone marrow mesenchymal stem cells and tenocytes/dermal fibroblasts appear to be the cell populations of choice for clinical translation in equine and human patients respectively based on circumstantial, rather than on hard evidence. Collaborative, inter- and multi-disciplinary efforts are expected to provide clinically relevant and commercially viable cell-based therapies for tendon repair and regeneration in the years to come.
Collapse
Affiliation(s)
- Diana Gaspar
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Kyriakos Spanoudes
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Carolyn Holladay
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland
| | - Dimitrios Zeugolis
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
38
|
Kim SJ, Lee SM, Kim JE, Kim SH, Jung Y. Effect of platelet-rich plasma with self-assembled peptide on the rotator cuff tear model in rat. J Tissue Eng Regen Med 2015; 11:77-85. [PMID: 25643855 DOI: 10.1002/term.1984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/13/2014] [Accepted: 12/09/2014] [Indexed: 12/31/2022]
Abstract
Several trials have been carried out to improve the healing of rotator cuff tear, but their effects remain controversial. In this study, we examined the therapeutic effect of platelet-rich plasma (PRP) in combination with self-assembled peptide (SAP) on the healing of rotator cuff tear in the rat. Twenty-seven Sprague-Dawley rats, aged 15 weeks, were used for the rotator cuff tear model. The supraspinatus muscle at the insertion site was dissected and truncated, leaving the cut edge free. A week after the surgery, the rats were randomly divided into SAP, PRP, SAP-PRP and control groups and 0.2 ml SAP, PRP, SAP-PRP and saline were injected, respectively. Bonar scores and synovial inflammation grade were checked 5 weeks after the injection. Immunofluorescence staining for heat shock protein (HSP)-70 and caspase-3 was conducted. Furthermore, maximum stride length was measured before and at 2 and 4 weeks after the injection. The Bonar scores were 6.4 ± 1.8 in the SAP group, 5.9 ± 2.0 in the PRP group, 4.7 ± 1.1 in the SAP-PRP group and 8.3 ± 2.3 in the control group. There was significant difference between the SAP-PRP and control groups in post hoc multiple comparison analysis. Among four categories of Bonar scores, collagen arrangement and vascular infiltration showed improvement after SAP-PRP injection. Immunofluorescence images showed that HSP-70 and caspase-3 were much less expressed in the SAP-PRP group than in the other groups. In conclusion, SAP-PRP can be effective in healing a rotator cuff tear by enhancing the collagen arrangement and inhibiting inflammatory changes and apoptosis. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sang Jun Kim
- Department of Physical and Rehabilitation Medicine, Samsung Medical Centre, Seoul, Republic of Korea
| | - Sang Mok Lee
- Department of Physical and Rehabilitation Medicine, Samsung Medical Centre, Seoul, Republic of Korea
| | - Ji Eun Kim
- Centre for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea.,NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | - Soo Hyun Kim
- Centre for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea.,NBIT, KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea.,Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Youngmee Jung
- Centre for Biomaterials, Korea Institute of Science and Technology, Seoul, Republic of Korea.,Department of Biomedical Engineering, Korea University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
39
|
Platelet rich concentrate promotes early cellular proliferation and multiple lineage differentiation of human mesenchymal stromal cells in vitro. ScientificWorldJournal 2014; 2014:845293. [PMID: 25436230 PMCID: PMC4243129 DOI: 10.1155/2014/845293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/15/2014] [Indexed: 01/17/2023] Open
Abstract
Platelet rich concentrate (PRC) is a natural adjuvant that aids in human mesenchymal stromal cell (hMSC) proliferation in vitro; however, its role requires further exploration. This study was conducted to determine the optimal concentration of PRC required for achieving the maximal proliferation, and the need for activating the platelets to achieve this effect, and if PRC could independently induce early differentiation of hMSC. The gene expression of markers for osteocytes (ALP, RUNX2), chondrocytes (SOX9, COL2A1), and adipocytes (PPAR-γ) was determined at each time point in hMSC treated with 15% activated and nonactivated PRC since maximal proliferative effect was achieved at this concentration. The isolated PRC had approximately fourfold higher platelet count than whole blood. There was no significant difference in hMSC proliferation between the activated and nonactivated PRC. Only RUNX2 and SOX9 genes were upregulated throughout the 8 days. However, protein expression study showed formation of oil globules from day 4, significant increase in ALP at days 6 and 8 (P ≤ 0.05), and increased glycosaminoglycan levels at all time points (P < 0.05), suggesting the early differentiation of hMSC into osteogenic and adipogenic lineages. This study demonstrates that the use of PRC increased hMSC proliferation and induced early differentiation of hMSC into multiple mesenchymal lineages, without preactivation or addition of differentiation medium.
Collapse
|
40
|
Platelet concentration in platelet-rich plasma affects tenocyte behavior in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:630870. [PMID: 25147809 PMCID: PMC4132404 DOI: 10.1155/2014/630870] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/03/2014] [Indexed: 01/08/2023]
Abstract
Since tendon injuries and tendinopathy are a growing problem, sometimes requiring surgery, new strategies that improve conservative therapies are needed. Platelet-rich plasma (PRP) seems to be a good candidate by virtue of its high content of growth factors, most of which are involved in tendon healing. This study aimed to evaluate if different concentrations of platelets in PRP have different effects on the biological features of normal human tenocytes that are usually required during tendon healing. The different platelet concentrations tested (up to 5 × 10(6) plt/µL) stimulated differently tenocytes behavior; intermediate concentrations (0.5 × 10(6), 1 × 10(6) plt/µL) strongly induced all tested processes (proliferation, migration, collagen, and MMPs production) if compared to untreated cells; on the contrary, the highest concentration had inhibitory effects on proliferation and strongly reduced migration abilities and overall collagen production but, at the same time, induced increasing MMP production, which could be counterproductive because excessive proteolysis could impair tendon mechanical stability. Thus, these in vitro data strongly suggest the need for a compromise between extremely high and low platelet concentrations to obtain an optimal global effect when inducing in vivo tendon healing.
Collapse
|
41
|
Andia I, Latorre PM, Gomez MC, Burgos-Alonso N, Abate M, Maffulli N. Platelet-rich plasma in the conservative treatment of painful tendinopathy: a systematic review and meta-analysis of controlled studies. Br Med Bull 2014; 110:99-115. [PMID: 24795364 DOI: 10.1093/bmb/ldu007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Platelet-rich plasma (PRP) seeks to meet the multifaceted demand of degenerated tendons providing several molecules capable of boosting healing. AREAS TIMELY FOR DEVELOPING RESEARCH PRP is used for managing tendinopathy, but its efficacy is controversial. SOURCES OF DATA Electronic databases were searched for clinical studies assessing PRP efficacy. Methodological quality was evaluated using the methods described in the Cochrane Handbook for systematic reviews. AREAS OF AGREEMENT Thirteen prospective controlled studies, comprising 886 patients and diverse tendons were included; 53.8% of studies used identical PRP protocol. AREAS OF CONTROVERSY Sources of heterogeneity included different comparators, outcome scores, follow-up periods and diverse injection protocols, but not PRP formulation per se. GROWING POINTS Pooling pain outcomes over time and across different tendons showed that L-PRP injections ameliorated pain in the intermediate-long term compared with control interventions, weighted mean difference (95% CI): 3 months, -0.61 (-0.97, -0.25); 1 year, -1.56 (-2.27, -0.83). However, these findings cannot be applied to the management of individual patients given low power and precision. RESEARCH Further studies circumventing heterogeneity are needed to reach firm conclusions. Available evidence can help to overcome hurdles to future clinical research and bring forward PRP therapies.
Collapse
Affiliation(s)
- I Andia
- Regenerative Medicine Laboratory, BioCruces Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - P M Latorre
- Primary Care Research Unit of Bizkaia, BioCruces Health Research Institute, Bilbao, Spain
| | - M C Gomez
- Primary Care Research Unit of Bizkaia, BioCruces Health Research Institute, Bilbao, Spain
| | - N Burgos-Alonso
- Primary Care Research Unit of Bizkaia, BioCruces Health Research Institute, Bilbao, Spain
| | - M Abate
- Department of Medicine and Science of Aging, University G. d'Annunzio, Chieti-Pescara, Chieti Scalo, Italy
| | - N Maffulli
- Center for Sports and Exercise Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK
| |
Collapse
|
42
|
Mishra AK, Skrepnik NV, Edwards SG, Jones GL, Sampson S, Vermillion DA, Ramsey ML, Karli DC, Rettig AC. Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med 2014; 42:463-71. [PMID: 23825183 DOI: 10.1177/0363546513494359] [Citation(s) in RCA: 244] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Elbow tenderness and pain with resisted wrist extension are common manifestations of lateral epicondylar tendinopathy, also known as tennis elbow. Previous studies have suggested platelet-rich plasma (PRP) to be a safe and effective therapy for tennis elbow. PURPOSE To evaluate the clinical value of tendon needling with PRP in patients with chronic tennis elbow compared with an active control group. STUDY DESIGN Randomized controlled trial; Level of evidence, 2. METHODS A total of 230 patients with chronic lateral epicondylar tendinopathy were treated at 12 centers over 5 years. All patients had at least 3 months of symptoms and had failed conventional therapy. There were no differences in patients randomized to receive PRP (n = 116) or active controls (n = 114). The PRP was prepared from venous whole blood at the point of care and contained both concentrated platelets and leukocytes. After receiving a local anesthetic, all patients had their extensor tendons needled with or without PRP. Patients and investigators remained blinded to the treatment group throughout the study. A successful outcome was defined as 25% or greater improvement on the visual analog scale for pain. RESULTS Patient outcomes were followed for up to 24 weeks. At 12 weeks (n = 192), the PRP-treated patients reported an improvement of 55.1% in their pain scores compared with 47.4% in the active control group (P = .163). At 24 weeks (n = 119), the PRP-treated patients reported an improvement of 71.5% in their pain scores compared with 56.1% in the control group (P = .019). The percentage of patients reporting significant elbow tenderness at 12 weeks was 37.4% in the PRP group versus 48.4% in the control group (P = .143). Success rates for patients at 12 weeks were 75.2% in the PRP group versus 65.9% in the control group (P = .104). At 24 weeks, 29.1% of the PRP-treated patients reported significant elbow tenderness versus 54.0% in the control group (P = .009). Success rates for patients with 24 weeks of follow-up were 83.9% in the PRP group compared with 68.3% in the control group (P = .037). No significant complications occurred in either group. CONCLUSION No significant differences were found at 12 weeks in this study. At 24 weeks, however, clinically meaningful improvements were found in patients treated with leukocyte-enriched PRP compared with an active control group.
Collapse
Affiliation(s)
- Allan K Mishra
- Allan K. Mishra, Department of Orthopedic Surgery, Menlo Medical Clinic, Stanford University Medical Center, 1300 Crane Street, Menlo Park, CA 94025.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
PRP: review of the current evidence for musculoskeletal conditions. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2014. [DOI: 10.1007/s40141-013-0039-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
|
45
|
Campbell KJ, Boykin RE, Wijdicks CA, Erik Giphart J, LaPrade RF, Philippon MJ. Treatment of a hip capsular injury in a professional soccer player with platelet-rich plasma and bone marrow aspirate concentrate therapy. Knee Surg Sports Traumatol Arthrosc 2013; 21:1684-8. [PMID: 23052123 DOI: 10.1007/s00167-012-2232-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/24/2012] [Indexed: 12/13/2022]
Abstract
This report presents a 27-year-old male professional soccer player who developed heterotopic ossification of his hip capsule and gluteus minimus tendon after an arthroscopic hip procedure. After removal of the heterotopic bone, the patient had a symptomatic deficiency of his hip capsule and gluteus minimus tendon. A series of orthobiologic treatments with platelet-rich plasma and bone marrow aspirate concentrate improved the patient's pain and strength as well as the morphologic appearance of the hip capsule and gluteus minimus tendon on magnetic resonance imaging. A series of motion analyses demonstrated significant improvement in his stance-leg ground reaction force and hip abduction, as well as linear foot velocity at ball strike and maximum hip flexion following ball strike in his kicking leg. Level of evidence IV.
Collapse
Affiliation(s)
- Kevin J Campbell
- Department of Biomedical Engineering, Steadman Philippon Research Institute, 181 W. Meadow Drive, Suite 1000, Vail, CO 81657, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kelc R, Trapecar M, Vogrin M, Cencic A. Skeletal muscle-derived cell cultures as potent models in regenerative medicine research. Muscle Nerve 2013; 47:477-82. [PMID: 23460453 DOI: 10.1002/mus.23688] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 11/08/2022]
Abstract
Cell cultures have been used extensively by many scientists in recent decades to study various cell and tissue mechanisms. The use of cell cultures has many advantages over use of in vivo experimental models, but there are also limitations. As skeletal muscle-derived cell cultures become more commonly utilized in studies of muscle regeneration processes the question of their relevance in experimentation is highlighted with regard to in vivo experimental models. This article reviews studies that have been performed simultaneously in in vivo and in vitro experiments on skeletal muscle and assesses the correlation of results. Although they seem to correlate, no such studies on humans have been performed so far.
Collapse
Affiliation(s)
- Robi Kelc
- Department of Orthopaedic Surgery, University Medical Center Maribor, Ljubljanska Ulica 5, Maribor, SI-2000, Slovenia.
| | | | | | | |
Collapse
|
47
|
Baksh N, Hannon CP, Murawski CD, Smyth NA, Kennedy JG. Platelet-rich plasma in tendon models: a systematic review of basic science literature. Arthroscopy 2013; 29:596-607. [PMID: 23352397 DOI: 10.1016/j.arthro.2012.10.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/30/2012] [Accepted: 10/17/2012] [Indexed: 02/02/2023]
Abstract
PURPOSE To perform a systematic review of the basic science literature on the use of platelet-rich plasma (PRP) in tendon models. METHODS We searched the PubMed/Medline and Embase databases in June 2012 using the following parameters: ((tenocytes OR tendon OR tendinitis OR tendinosis OR tendinopathy) AND (platelet rich plasma OR PRP OR autologous conditioned plasma OR ACP)). The inclusion criteria for full-text review were in vivo and in vitro studies examining the effects of PRP on tendons and/or tenocytes. Clinical studies were excluded. Only studies published in peer-reviewed journals that compared PRP directly with a control were included. Data were extracted based on a predefined data sheet, which included information on PRP preparation, study methods, and results. Studies were analyzed for trends, comparing and contrasting the reported effects of PRP. RESULTS The search yielded 31 articles for inclusion in our review. Of the studies, 22 (71%) reported platelet concentrations in the PRP; 6 (19%) reported cytology. Eight in vivo studies found decreased tendon repair time, increased fiber organization, or both with PRP treatment. Eight in vitro studies reported that PRP treatment increased cell proliferation; 7 reported an increase in growth factor expression. Three in vivo studies found increased vascularity, and 4 found increased tensile strength with PRP treatment. CONCLUSIONS In the basic science studies evaluated, it appears that PRP confers several potential effects on tendon models compared with a control. However, the literature is inconsistent with regard to reporting the methods of preparation of PRP and in reporting platelet concentrations and cytology. CLINICAL RELEVANCE Establishing proof of concept for PRP may lead to further high-quality clinical studies in which the appropriate indications can be defined.
Collapse
Affiliation(s)
- Nikolas Baksh
- Hospital for Special Surgery, New York, New York, USA
| | | | | | | | | |
Collapse
|
48
|
Low-level laser therapy combined with platelet-rich plasma on the healing calcaneal tendon: a histological study in a rat model. Lasers Med Sci 2013; 28:1489-94. [PMID: 23307438 DOI: 10.1007/s10103-012-1241-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/18/2012] [Indexed: 10/27/2022]
Abstract
The objective of this study was to investigate the effects of low-level laser therapy (LLLT) treatment alone (λ = 660 nm and λ = 830 nm) or associated with platelet-rich plasma (PRP). We used 54 male rats divided into six groups, with nine animals each: group 1, partial tenotomy; group 2 (GII), PRP; group 3 (GIII): λ660 nm; group 4 (GIV), λ830 nm; group 5 (GV), PRP + λ660 nm; and group 6 (GVI), PRP + λ830 nm. The protocol used was power density 0.35 W/cm(2), energy 0.2 J, energy density 7.0 J/cm(2), time 20 s per irradiated point, and number of points 3. Animals in groups GII, GV, and GVI received treatment with PRP, consisting of a single dose of 0.2 mL directly into the surgical site, on top of the tenotomy. Animals were killed on the 13th day post-tenotomy and their tendons were surgically removed for a quantitative analysis using polarization microscopy. The percentages of collagen fibers of types I and III were expressed as mean ± SD. Higher values of collagen fibers type I were obtained for groups GV and GVI when compared with all other groups (p < 0.05), whereas groups GIII and GIV showed no significant difference between them (p > 0.05). For collagen type III, a significant difference was observed between GII and all other groups (p < 0.5), but no significant difference was found between GIII and GIV and between GV and GVI. Results showed that the deposition of collagen type I was higher when treatment with PRP and LLLT was combined, suggesting a faster regeneration of the tendon.
Collapse
|
49
|
Leone L, Vetrano M, Ranieri D, Raffa S, Vulpiani MC, Ferretti A, Torrisi MR, Visco V. Extracorporeal Shock Wave Treatment (ESWT) improves in vitro functional activities of ruptured human tendon-derived tenocytes. PLoS One 2012. [PMID: 23189160 PMCID: PMC3506633 DOI: 10.1371/journal.pone.0049759] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In vitro models of human tenocytes derived from healthy as well as from ruptured tendons were established, characterized and used at very early passage (P1) to evaluate the effects of Extracorporeal Shock Wave Treatment (ESWT). The molecular analysis of traditional tenocytic markers, including Scleraxis (Scx), Tenomodulin (Tnm), Tenascin-C (Tn-C) and Type I and III Collagens (Col I and Col III), permitted us to detect in our samples the simultaneous expression of all these genes and allowed us to compare their levels of expression in relationship to the source of the cells and treatments. In untreated conditions, higher molecular levels of Scx and Col I in tenocytes from pathological compared to healthy samples have been detected, suggesting – in the cells from injured tendon – the natural trigger of an early differentiation and repairing program, which depends by Scx and requires an increase in collagen expression. When ESWT (at the dose of 0.14 mJ/mm2) was applied to cultured tenocytes explanted from injured source, Scx and Col I were significantly diminished compared to healthy counterpart, indicating that such natural trigger maybe delayed by the treatment, in order to promote cellular repair. Herein, we show for the first time that ESWT enhances in vitro functional activities of ruptured tendon-derived tenocytes, such as proliferation and migration, which could probably contributes to tendon healing in vivo.
Collapse
Affiliation(s)
- Laura Leone
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Mario Vetrano
- Department of Ortophaedics and Traumatology, Sapienza University of Rome, Rome, Italy
- Sant’Andrea Hospital, Rome, Italy
| | - Danilo Ranieri
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Salvatore Raffa
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Chiara Vulpiani
- Department of Ortophaedics and Traumatology, Sapienza University of Rome, Rome, Italy
- Sant’Andrea Hospital, Rome, Italy
| | - Andrea Ferretti
- Department of Ortophaedics and Traumatology, Sapienza University of Rome, Rome, Italy
- Sant’Andrea Hospital, Rome, Italy
| | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Sant’Andrea Hospital, Rome, Italy
| | - Vincenzo Visco
- Department of Clinical and Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
- Sant’Andrea Hospital, Rome, Italy
- * E-mail:
| |
Collapse
|
50
|
Abstract
Platelet-rich plasma (PRP) is a fraction of whole blood containing powerful growth factors and cytokines. Preclinical studies suggest PRP may be useful for tendon repair or regeneration. Clinical investigations have focused on the treatment of chronic lateral epicondylar tendinopathy and rotator cuff pathology. Multiple controlled studies support the use of PRP for chronic tennis elbow. Rotator cuff studies, however, have produced conflicting results based on PRP formulation, surgical technique, and size of tendon tear. This article explores the scientific rational for using PRP, its various formulations, and the emerging clinical data. Future potential applications are also explored.
Collapse
Affiliation(s)
- Allan Mishra
- Department of Orthopaedic Surgery, Menlo Medical Clinic, Stanford University Medical Center, 1300 Crane Street, Menlo Park, CA 94025, USA.
| | | | | | | | | | | |
Collapse
|