1
|
Gao J, Jin J, Huang R, Wang S, Song S, Zhang Y, Li Y, Lin J, Chang Z, Huang Z, Sun W, Yin H, Song D, Xiao J, Wang P, Meng T. RAB3B Dictates mTORC1/S6 Signaling in Chordoma and Predicts Response to mTORC1-Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415384. [PMID: 40135815 DOI: 10.1002/advs.202415384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/18/2025] [Indexed: 03/27/2025]
Abstract
Chordoma, a rare mesenchymal malignancy, exhibits a high tendency to postoperative recurrence and poor prognosis. To date, its tumorigenic regulatory mechanisms remain elusive, leading to a lack of effective therapeutic targets and drug sensitivity indicators. Here, via transcriptome and proteome analyses, RAB3B is unveiled as a prominent oncogenic regulator in chordoma, with high expression and enhancer-associated transcriptional activity. Notably, RAB3B ablation attenuated the chordoma cell stemness and malignant biological properties in vivo and in vitro. Through determining the RAB3B-mediated program in chordoma, it is identified that it enhanced the phosphorylation of S6 specifically at S235/236 and directly bound to S6. Mechanistically, RAB3B physically interacted with phosphorylase DUSP12, and blocked the DUSP12-mediated dephosphorylation of p-S6 (S235/236). Pharmacological targeting mTORC1 pathway dramatically impeded the RAB3B-induced stemness regulation, protein translation, and chordoma tumorigenicity, while RAB3B knockdown desensitized mTORC1 inhibition. In clinic, the combination of RAB3B and p-S6 suggested a good prognostic value and predicted mTORC1 inhibitors response for chordoma patients. Altogether, this work uncovers RAB3B/DUSP12 as the novel regulators of S6 phosphorylation (S235/236), and suggests the oncogenic and predictive roles of RAB3B/p-S6 in chordoma, indicating therapeutic potentials of mTORC1-targeted therapy for advanced chordoma patients with aberrant RAB3B/p-S6 hyperactivation.
Collapse
Affiliation(s)
- Jianxuan Gao
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Runzhi Huang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Siqiao Wang
- Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, P. R. China
| | - Sihui Song
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yu Zhang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yongai Li
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Wei Sun
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
| | - Huabin Yin
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
| | - Dianwen Song
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
| | - Jianru Xiao
- Department of Orthopedics Oncology, Changzheng Hospital, Navy Medical University, Shanghai, 200003, P. R. China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Tong Meng
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201620, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| |
Collapse
|
2
|
Wang K, Osei-Hwedieh DO, Walhart TA, Hung YP, Wang Y, Cattaneo G, Ma T, Dotti G, Wang X, Ferrone S, Schwab JH. B7-H3 CAR-T cell therapy combined with irradiation is effective in targeting bulk and radiation-resistant chordoma cancer cells. J Immunother Cancer 2025; 13:e009544. [PMID: 39848690 PMCID: PMC11784168 DOI: 10.1136/jitc-2024-009544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Chordoma is a slow-growing, primary malignant bone tumor that arises from notochordal tissue in the midline of the axial skeleton. Surgical excision with negative margins is the mainstay of treatment, but high local recurrence rates are reported even with negative margins. High-dose radiation therapy (RT), such as with proton or carbon ions, has been used as an alternative to surgery, but late local failure remains a problem. B7-H3 is an immune checkpoint, transmembrane protein that is dysregulated in many cancers, including chordoma. This study explores the efficacy of B7-H3 chimeric antigen receptor T (CAR-T) therapy in vitro and in vivo. METHODS Chordoma cancer stem cells (CCSCs) were identified using flow cytometry, sphere formation, and western blot analysis. The expression of B7-H3 in paraffin-embedded chordoma tissue was determined by immunohistochemical staining, and the expression of B7-H3 in chordoma cells was measured by flow cytometry. Retroviral particles containing either B7-H3 or CD19 CAR-expressing virus were transduced into T cells derived from peripheral blood mononuclear cells isolated from healthy human donor blood to prepare CAR-T cells. Animal bioluminescent imaging was used to evaluate the killing effect of CAR-T cells on chordoma cells in vivo. An irradiator was used for all irradiation (IR) experiments. RESULTS The combination of B7-H3 CAR-T cell therapy and IR has a greater killing effect on killing radiation-resistant CCSCs and bulk chordoma cells compared with CAR-T cell or IR monotherapy. Additionally, increased expression of B7-H3 antigens on CCSCs and bulk tumor cells is associated with enhanced CAR-T cell killing in vitro and in vivo xenograft mouse models. Upregulation of B7-H3 expression by IR increases CCSCs sensitivity to B7-H3 CAR-T cell-mediated killing. CONCLUSIONS Our preliminary data show that IR and B7-H3 CAR-T cell therapy is synergistically more effective than either IR or CAR-T cell monotherapy in killing chordoma cells in vitro and in a xenograft mouse model. These results provide preclinical evidence for further developing this combinatorial RT and B7-H3 CAR-T cell therapy model in chordoma.
Collapse
Affiliation(s)
- Kun Wang
- Department of Orthopedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Spine Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - David O Osei-Hwedieh
- Department of Orthopedic Surgery, Orthopedic Oncology Service, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tara A Walhart
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yufeng Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giulia Cattaneo
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tao Ma
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Xinhui Wang
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Soldano Ferrone
- Division of Gastrointestinal and Oncologic Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph H Schwab
- Department of Orthopedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
3
|
Yin H, Hu J, Gao J, Su T, Jin J, Jiang C, Yin W, Xu X, Chang Z, Sun W, Cai Z, Zhou W, Wang P, Lin J, Song D, Meng T. Clinical-proteomic classification and precision treatment strategy of chordoma. Cell Rep Med 2024; 5:101757. [PMID: 39368483 PMCID: PMC11513834 DOI: 10.1016/j.xcrm.2024.101757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Chordoma is a rare and heterogeneous mesenchymal malignancy, with distinct clinical and biological behaviors. Till now, its comprehensive clinical-molecular characteristics and accurate molecular classification remain obscure. In this research, we enroll 102 patients with chordoma and describe their clinical, imageological, and histopathological features. Through tandem mass tag-based proteomic analysis and nonnegative matrix factorization clustering, we classify chordoma into three molecular subtypes: bone microenvironment-dominant, mesenchymal-derived, and mesenchymal-to-epithelial transition-mediated pattern. The three subtypes exhibit discrete clinical prognosis and distinct biological attributes of osteoclastogenesis and immunogenicity, oxidative phosphorylation, and receptor tyrosine kinase activation, suggesting targeted therapeutic strategies of denosumab, S-Gboxin, and anlotinib, respectively. Notably, these approaches demonstrate positive treatment outcomes for each subtype in vitro and in vivo. Altogether, this work sheds light on the clinical-proteomic characteristics of chordoma and provides a candidate precision treatment strategy for chordoma according to molecular classification, underscoring their potential for clinical application.
Collapse
Affiliation(s)
- Huabin Yin
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jinbo Hu
- Spinal Tumor Center, Department of Orthopaedic Oncology, No.905 Hospital of PLA Navy, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianxuan Gao
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tong Su
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cong Jiang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxuan Yin
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaowen Xu
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200092, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Dianwen Song
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Tong Meng
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Sharifnia T, Wawer MJ, Goodale A, Lee Y, Kazachkova M, Dempster JM, Muller S, Levy J, Freed DM, Sommer J, Kalfon J, Vazquez F, Hahn WC, Root DE, Clemons PA, Schreiber SL. Mapping the landscape of genetic dependencies in chordoma. Nat Commun 2023; 14:1933. [PMID: 37024492 PMCID: PMC10079670 DOI: 10.1038/s41467-023-37593-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Identifying the spectrum of genes required for cancer cell survival can reveal essential cancer circuitry and therapeutic targets, but such a map remains incomplete for many cancer types. We apply genome-scale CRISPR-Cas9 loss-of-function screens to map the landscape of selectively essential genes in chordoma, a bone cancer with few validated targets. This approach confirms a known chordoma dependency, TBXT (T; brachyury), and identifies a range of additional dependencies, including PTPN11, ADAR, PRKRA, LUC7L2, SRRM2, SLC2A1, SLC7A5, FANCM, and THAP1. CDK6, SOX9, and EGFR, genes previously implicated in chordoma biology, are also recovered. We find genomic and transcriptomic features that predict specific dependencies, including interferon-stimulated gene expression, which correlates with ADAR dependence and is elevated in chordoma. Validating the therapeutic relevance of dependencies, small-molecule inhibitors of SHP2, encoded by PTPN11, have potent preclinical efficacy against chordoma. Our results generate an emerging map of chordoma dependencies to enable biological and therapeutic hypotheses.
Collapse
Affiliation(s)
- Tanaz Sharifnia
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Mathias J Wawer
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Kojin Therapeutics, Boston, MA, 02210, USA
| | - Amy Goodale
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Yenarae Lee
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Mariya Kazachkova
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Sandrine Muller
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Joan Levy
- Chordoma Foundation, Durham, NC, 27702, USA
- Melanoma Research Alliance, Washington, D.C., 20005, USA
| | | | | | - Jérémie Kalfon
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - William C Hahn
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Paul A Clemons
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Stuart L Schreiber
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Passeri T, Dahmani A, Masliah-Planchon J, El Botty R, Courtois L, Vacher S, Marangoni E, Nemati F, Roman-Roman S, Adle-Biassette H, Mammar H, Froelich S, Bièche I, Decaudin D. In vivo efficacy assessment of the CDK4/6 inhibitor palbociclib and the PLK1 inhibitor volasertib in human chordoma xenografts. Front Oncol 2022; 12:960720. [PMID: 36505864 PMCID: PMC9732546 DOI: 10.3389/fonc.2022.960720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
Background Management of advanced chordomas remains delicate considering their insensitivity to chemotherapy. Homozygous deletion of the regulatory gene CDKN2A has been described as the most frequent genetic alteration in chordomas and may be considered as a potential theranostic marker. Here, we evaluated the tumor efficacy of the CDK4/6 inhibitor palbociclib, as well as the PLK1 inhibitor volasertib, in three chordoma patient-derived xenograft (PDX) models to validate and identify novel therapeutic approaches. Methods From our chordoma xenograft panel, we selected three models, two of them harboring a homozygous deletion of CDKN2A/2B genes, and the last one a PBRM1 pathogenic variant (as control). For each model, we tested the palbociclib and volasertib drugs with pharmacodynamic studies together with RT-PCR and RNAseq analyses. Results For palbociclib, we observed a significant tumor response for one of two models harboring the deletion of CDKN2A/2B (p = 0.02), and no significant tumor response in the PBRM1-mutated PDX; for volasertib, we did not observe any response in the three tested models. RT-PCR and RNAseq analyses showed a correlation between cell cycle markers and responses to palbociclib; finally, RNAseq analyses showed a natural enrichment of the oxidative phosphorylation genes (OxPhos) in the palbociclib-resistant PDX (p = 0.02). Conclusion CDK4/6 inhibition appears as a promising strategy to manage advanced chordomas harboring a loss of CDKN2A/2B. However, further preclinical studies are strongly requested to confirm it and to understand acquired or de novo resistance to palbociclib, in the peculiar view of a targeting of the oxidative phosphorylation genes.
Collapse
Affiliation(s)
- Thibault Passeri
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | | | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Laura Courtois
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Fariba Nemati
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
| | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, University of Paris Saclay, Paris, France
| | - Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Hamid Mammar
- Department of Radiotherapy - Proton Therapy Center, Institut Curie, Paris-Saclay University, Orsay, France
| | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, Paris, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, University of Paris Saclay, Paris, France
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
| |
Collapse
|
6
|
Advances in the development of chordoma models for drug discovery and precision medicine. Biochim Biophys Acta Rev Cancer 2022; 1877:188812. [DOI: 10.1016/j.bbcan.2022.188812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022]
|
7
|
Karele EN, Paze AN. Chordoma: To know means to recognize. Biochim Biophys Acta Rev Cancer 2022; 1877:188796. [PMID: 36089204 DOI: 10.1016/j.bbcan.2022.188796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/13/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
Abstract
Chordoma is a rare type of bone cancer characterized by its locally aggressive and destructive behavior. Chordoma is located in one of the three primary regions: skull base/clivus, sacrum or mobile spine. Chordoma grows slowly, therefore its insidious onset leads to delayed diagnosis, accounting for the low survival rates. Treatment centers around successful en bloc resection with negative margins, though, considering the anatomically constrained site of growth, it frequently requires adjuvant radiotherapy. This article analyzes the existing literature with the aim to provide a better insight in the current state of research in chordoma classification, characteristics, and management.
Collapse
Affiliation(s)
- Emija Nikola Karele
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, Riga LV-1007, Latvia.
| | - Anda Nikola Paze
- Faculty of Medicine, Riga Stradins University, 16 Dzirciema Street, Riga LV-1007, Latvia.
| |
Collapse
|
8
|
Passeri T, Dahmani A, Masliah-Planchon J, Naguez A, Michou M, El Botty R, Vacher S, Bouarich R, Nicolas A, Polivka M, Franck C, Schnitzler A, Némati F, Roman-Roman S, Bourdeaut F, Adle-Biassette H, Mammar H, Froelich S, Bièche I, Decaudin D. Dramatic In Vivo Efficacy of the EZH2-Inhibitor Tazemetostat in PBRM1-Mutated Human Chordoma Xenograft. Cancers (Basel) 2022; 14:cancers14061486. [PMID: 35326637 PMCID: PMC8946089 DOI: 10.3390/cancers14061486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Chordomas are rare bone tumors characterized by a high recurrence rate. Presently, no medical treatment is available for advanced diseases due to the lack of molecular data and preclinical models. The current study showed the establishment and characterization of the largest panel chordoma xenografts, allowing pharmacological studies. In one PBRM1-mutated model, we demonstrated a strong therapeutic efficacy of the EZH2-inhibitor tazemetostat, encouraging further research on EZH2-inhibitors in chordomas. Abstract Chordomas are rare neoplasms characterized by a high recurrence rate and a poor long-term prognosis. Considering their chemo-/radio-resistance, alternative treatment strategies are strongly required, but their development is limited by the paucity of relevant preclinical models. Mutations affecting genes of the SWI/SNF complexes are frequently found in chordomas, suggesting a potential therapeutic effect of epigenetic regulators in this pathology. Twelve PDX models were established and characterized on histological and biomolecular features. Patients whose tumors were able to grow into mice had a statistically significant lower progression-free survival than those whose tumors did not grow after in vivo transplantation (p = 0.007). All PDXs maintained the same histopathological features as patients’ tumors. Homozygous deletions of CDKN2A/2B (58.3%) and PBRM1 (25%) variants were the most common genomic alterations found. In the tazemetostat treated PDX model harboring a PBRM1 variant, an overall survival of 100% was observed. Our panel of chordoma PDXs represents a useful preclinical tool for both pharmacologic and biological assessments. The first demonstration of a high antitumor activity of tazemetostat in a PDX model harboring a PBRM1 variant supports further evaluation for EZH2-inhibitors in this subgroup of chordomas.
Collapse
Affiliation(s)
- Thibault Passeri
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, 75010 Paris, France;
| | - Ahmed Dahmani
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Julien Masliah-Planchon
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Adnan Naguez
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Marine Michou
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Sophie Vacher
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Rachida Bouarich
- Integrated Cancer Research Site, Institut Curie, 75005 Paris, France; (R.B.); (F.B.)
| | - André Nicolas
- Department of Tumor Biology, Institut Curie, 75005 Paris, France;
| | - Marc Polivka
- Department of Pathology, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, UMR 1141 Inserm, 75010 Paris, France; (M.P.); (H.A.-B.)
| | - Coralie Franck
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Anne Schnitzler
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Fariba Némati
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
| | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, University of Paris Saclay, 75005 Paris, France;
| | - Franck Bourdeaut
- Integrated Cancer Research Site, Institut Curie, 75005 Paris, France; (R.B.); (F.B.)
| | - Homa Adle-Biassette
- Department of Pathology, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, UMR 1141 Inserm, 75010 Paris, France; (M.P.); (H.A.-B.)
| | - Hamid Mammar
- Proton Therapy Center, Institut Curie, 91400 Orsay, France;
| | - Sébastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, University of Paris, 75010 Paris, France;
| | - Ivan Bièche
- Department of Genetics, Institut Curie, University of Paris Saclay, 75005 Paris, France; (J.M.-P.); (S.V.); (C.F.); (A.S.); (I.B.)
| | - Didier Decaudin
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, University of Paris Saclay, 75005 Paris, France; (T.P.); (A.D.); (A.N.); (M.M.); (R.E.B.); (F.N.)
- Department of Medical Oncology, Institut Curie, 75005 Paris, France
- Correspondence: ; Tel.: +33-1-56-24-62-40
| |
Collapse
|
9
|
Inducing substances for chondrogenic differentiation of dental pulp stem cells in the conditioned medium of a novel chordoma cell line. Hum Cell 2022; 35:745-755. [DOI: 10.1007/s13577-021-00662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/11/2021] [Indexed: 01/14/2023]
|
10
|
Li X, Dean DC, Ferreira A, Nelson SD, Hornicek FJ, Yu S, Duan Z. Establishment and Characterization of a Novel Dedifferentiated Chondrosarcoma Cell Line DDCS2. Cancer Control 2021; 28:10732748211045274. [PMID: 34767468 PMCID: PMC8645311 DOI: 10.1177/10732748211045274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The dedifferentiated variant of chondrosarcoma is highly aggressive and carries an especially grim prognosis. While chemotherapeutics has failed to benefit patients with dedifferentiated chondrosarcoma significantly, preclinical chemosensitivity studies have been limited by a scarcity of available cell lines. There is, therefore, an urgent need to expand the pool of available cell lines. Methods We report the establishment of a novel dedifferentiated chondrosarcoma cell line DDCS2, which we isolated from the primary tumor specimen of a 60-year-old male patient. We characterized its short tandem repeat (STR) DNA profile, growth potential, antigenic markers, chemosensitivity, and oncogenic spheroid and colony-forming capacity. Results DDCS2 showed a spindle to polygonal shape and an approximate 60-hour doubling time. STR DNA profiling revealed a unique genomic identity not matching any existing cancer cell lines within the ATCC, JCRB, or DSMZ databases. There was no detectable contamination with another cell type. Western blot and immunofluorescence assays were consistent with a mesenchymal origin, and our MTT assay revealed relative resistance to conventional chemotherapeutics, which is typical of a dedifferentiated chondrosarcoma. Under ex vivo three-dimensional (3D) culture conditions, the DDCS2 cells produced spheroid patterns similar to the well-established CS-1 and SW1353 chondrosarcoma cell lines. Conclusion Our findings confirm DDCS2 is a novel model for dedifferentiated chondrosarcoma and therefore adds to the limited pool of current cell lines urgently needed to investigate the chemoresistance within this deadly cancer.
Collapse
Affiliation(s)
- Xiaoyang Li
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, 71041Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.,Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL 33136
| | - Dylan C Dean
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL 33136
| | - Al Ferreira
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL 33136
| | - Scott D Nelson
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL 33136
| | - Shengji Yu
- Department of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, 71041Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedics, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
11
|
Meng T, Huang R, Jin J, Gao J, Liu F, Wei Z, Xu X, Chang Z, Lin J, Ta N, Huang Z, Yin H, Zhou W, Song D. The comparative integrated multi-omics analysis identifies CA2 as a novel target for chordoma. Neuro Oncol 2021; 23:1709-1722. [PMID: 34214167 DOI: 10.1093/neuonc/noab156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chordoma is a rare mesenchymal malignancy, with a high recurrence rate and unclear tumorigenic mechanism. Genetic alterations, epigenetic regulators, and chromatin spatial organization play crucial roles in the initiation and progression of chordoma. In the current study, we aim to uncover the novel therapeutical targets for chordoma via using integrated multi-omics analysis. METHODS The RNA-sequencing (RNA-seq), assay for transposable accessible chromatin by high throughput sequencing (ATAC-seq) and Hi-C were performed between chordoma and human nucleus pulposus (HNP), along with imageological examination and clinical information. The expressions of identified targets were validated by clinical samples and their function were further evaluated by cell and animal experiments via gene knockdown and inhibitors. RESULTS The integrated multi-omics analysis revealed the important roles of bone microenvironment in chordoma tumorigenesis. By comparing the hierarchical structures, CA2 and THNSL2 were identified in the switched compartments, cell-specific boundaries and loops. Additionally, CA2 was highly expressed in chordoma, but barely found in HNP. The cell growth and migration of chordoma cells were dramatically suppressed via inhibition of CA2 either with genetic deletion or pharmaceutical treatment with Dorzolamide HCl. Furthermore, Dorzolamide HCl also regulated the bone microenvironment by blocking the osteoclast differentiation of bone marrow monocytes. CONCLUSION This study uncovers the roles of bone microenvironment in the chordoma tumorigenesis and identifies CA2 as a novel therapeutic target for chordoma. Besides, our findings suggest Dorzolamide HCl as a promising therapeutic option for chordoma.
Collapse
Affiliation(s)
- Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Runzhi Huang
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China.,Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiali Jin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianxuan Gao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fuyan Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Ziheng Wei
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaowen Xu
- Department of Medical Imaging, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Na Ta
- Department of Pathology, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wang Zhou
- Departments of Neurovascular Center, Shanghai Changhai Hospital, Navy Medical University, Shanghai, China.,The Musculoskeletal laboratory, Institute of Biotechnology, University of Shanghai for Science and Technology, Shanghai, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
12
|
Traylor JI, Sheppard HE, Ravikumar V, Breshears J, Raza SM, Lin CY, Patel SR, DeMonte F. Computational Drug Repositioning Identifies Potentially Active Therapies for Chordoma. Neurosurgery 2021; 88:428-436. [PMID: 33017025 PMCID: PMC7803434 DOI: 10.1093/neuros/nyaa398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Chordomas are aggressive bone tumors that often recur despite maximal resection and adjuvant radiation. To date there are no Food and Drug Administration (FDA)-approved chemotherapies. Computational drug repositioning is an expanding approach to identify pharmacotherapies for clinical trials. OBJECTIVE To identify FDA-approved compounds for repurposing in chordoma. METHODS Previously identified highly differentially expressed genes from chordoma tissue samples at our institution were compared with pharmacogenomic interactions in the Comparative Toxicogenomics Database (CTD) using ksRepo, a drug-repositioning platform. Compounds selected by ksRepo were then validated in CH22 and UM-Chor1 human chordoma cells in Vitro. RESULTS A total of 13 chemical compounds were identified in silico from the CTD, and 6 were selected for preclinical validation in human chordoma cell lines based on their clinical relevance. Of these, 3 identified drugs are FDA-approved chemotherapies for other malignancies (cisplatin, cytarabine, and lucanthone). Cytarabine, a deoxyribonucleic acid polymerase inhibitor approved for the treatment of various leukemias, exhibited a significant concentration-dependent effect against CH22 and UM-Chor1 cells when compared to positive (THZ1) and negative (venetoclax) controls. Tretinoin exhibited a significant concentration-dependent cytotoxic effect in CH22, sacral chordoma-derived cell lines but to a much lesser extent in UM-Chor1, a cell line derived from skull base chordoma. CONCLUSION Cytarabine administration reduces the viability of human chordoma cells. The equally effective reduction in viability seen with tretinoin seems to be cell line dependent. Based on our findings, we recommend the evaluation of cytarabine and tretinoin in an expanded set of human chordoma cell lines and animal models.
Collapse
Affiliation(s)
- Jeffrey I Traylor
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hadley E Sheppard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Visweswaran Ravikumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan Breshears
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaan M Raza
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Kronos Bio, Cambridge, Massachusetts
| | - Shreyaskumar R Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Franco DeMonte
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
13
|
Wei R, Dean DC, Thanindratarn P, Hornicek FJ, Guo W, Duan Z. Prognostic Significance of Cyclin E1 Expression in Patients With Chordoma: A Clinicopathological and Immunohistochemical Study. Front Oncol 2020; 10:596330. [PMID: 33282745 PMCID: PMC7705258 DOI: 10.3389/fonc.2020.596330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Chordomas are rare, slow-growing sarcomas without any accepted prognostic biomarkers. Owing to their proximity to critical neurovascular structures, discovering predictive biomarkers in chordoma has been a significant research effort because it may potentially reduce risky therapies in patients with less aggressive tumors. In response, because cyclin E1 overexpression correlates with patient prognosis in several malignancies, we investigated its expression in chordoma and whether it informs patient prognosis. METHODS Seventy-five chordoma patient specimens were enrolled in a tissue microarray (TMA) to evaluate cyclin E1 expression via immunohistochemical staining. Western blot was used to assess cyclin E1 expression in chordoma cell lines and fresh tissues. We then correlated cyclin E1 staining intensity in the TMA to clinicopathological features and chordoma patient outcomes. RESULTS Sixty-three percent of the chordoma patient specimens in the TMA, fifty-six percent of the fresh chordoma tissues, and all chordoma cell lines showed high cyclin E1 expression. In TMA analysis, cyclin E1 expression positively correlated to chordoma patient disease status. By survival analysis, high cyclin E1 expression was an independent prognostic risk factor for chordoma patients along with advanced disease status and positive surgical margin. CONCLUSION Cyclin E1 is a promising biomarker predicting chordoma patient prognosis.
Collapse
Affiliation(s)
- Ran Wei
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Dylan C. Dean
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Pichaya Thanindratarn
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Orthopedic Surgery, Chulabhorn Hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Wei Guo
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
14
|
Thanindratarn P, Dean DC, Nelson SD, Hornicek FJ, Duan Z. T-LAK cell-originated protein kinase (TOPK) is a Novel Prognostic and Therapeutic Target in Chordoma. Cell Prolif 2020; 53:e12901. [PMID: 32960500 PMCID: PMC7574876 DOI: 10.1111/cpr.12901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives To assess the expression, prognostic value, and functionality of T‐lymphokine‐activated killer (T‐LAK) cell‐originated protein kinase (TOPK) in chordoma pathogenesis. Materials and Methods TOPK expression in chordoma was assessed via immunohistochemical staining of a tissue microarray (TMA) and correlated with patient clinicopathology. TOPK expression in chordoma cell lines and fresh patient tissues was then evaluated by Western blot. TOPK small interfering RNA (siRNA) and the specific inhibitor OTS514 were applied to determine the roles of TOPK in chordoma pathogenicity. The effect of TOPK expression on chordoma cell clonogenicity was also investigated using clonogenic assays. A 3D cell culture model was utilized to mimic in vivo environment to validate the effect of TOPK inhibition on chordoma cells. Results TOPK was highly expressed in 78.2% of the chordoma specimens in the TMA and all chordoma cell lines. High TOPK expression significantly correlated with metastasis, recurrence, disease status and shorter overall survival. Knockdown of TOPK with specific siRNA resulted in significantly decrease chordoma cell viability. Inhibition of TOPK with OTS514 significantly inhibited chordoma cell growth and proliferation, colony‐forming capacity and ex vivo spheroid growth. Conclusions High expression of TOPK is an important predictor of poor prognosis in chordoma. Inhibition of TOPK resulted in significantly decrease chordoma cell proliferation and increase apoptosis. Our results indicate TOPK as a novel prognostic biomarker and therapeutic target for chordoma.
Collapse
Affiliation(s)
- Pichaya Thanindratarn
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Dylan C Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Salle H, Pocard M, Lehmann-Che J, Bourthoumieu S, Labrousse F, Pimpie C, Lemnos L, Guichard JP, Froelich S, Adle-Biassette H. Development of a Novel Orthotopic Primary Human Chordoma Xenograft Model: A Relevant Support for Future Research on Chordoma. J Neuropathol Exp Neurol 2020; 79:314-324. [PMID: 31841164 DOI: 10.1093/jnen/nlz121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/18/2019] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
Abstract
Chordomas are slow-growing rare malignant neoplasms. The aim of this study was to establish a primary model of chordoma in the lumbosacral orthotopic area, to compare the growth rate to the subcutaneous site, and to show that this new graft site optimizes tumor growth and bony invasion. Eleven chordoma samples were transplanted subcutaneously in the flank and/or in contact with the lumbosacral region and grown into nude mice. Engraftment rate was significantly more successful in the lumbosacral environment compared with the flank at P0. Two xenografts from 2 patients showed bone invasion. One tumor was maintained through multiple rounds of serial transplantation, creating a model for study. Histological and immunostaining analysis confirmed that tumor grafts recapitulated the primary tumor from which they were derived, consisting of a myxoid chordoma expressing brachyury, cytokeratin AE1, EMA, and VEGF. Clear destruction of the bone by the tumor cells could be demonstrated. Molecular studies revealed PIK3CA and PTEN mutations involved in PI3K signaling pathway and most of the frequently reported chromosomal alterations. We present a novel orthotopic primary xenograft model of chordoma implanted for the first time in the lumbosacral area showing bone invasion, PIK3CA, and PTEN mutations that will facilitate preclinical studies.
Collapse
Affiliation(s)
- Henri Salle
- From the Université Paris-Diderot, Unité INSERM U965-Paris 7, Paris, France.,Service Neurochirurgie, Hôpital Lariboisière - AP-HP, Paris, France.,Hôpital Dupuytren, CHU Limoges, Université de Limoges, Limoges, France.,Hôpital Dupuytren, CHU Limoges, Service Neurochirurgie, Limoges, France
| | - Marc Pocard
- From the Université Paris-Diderot, Unité INSERM U965-Paris 7, Paris, France.,Service Neurochirurgie, Hôpital Lariboisière - AP-HP, Paris, France
| | - Jacqueline Lehmann-Che
- Université de Paris, HIPI INSERM U976, Paris, France.,Molecular Oncology Unit, AP-HP, Hôpital Saint Louis, Paris, France
| | - Sylvie Bourthoumieu
- Université de Limoges, EA6309 Maintenance myélinique et neuropathie périphérique, Limoges, France
| | | | - Cynthia Pimpie
- From the Université Paris-Diderot, Unité INSERM U965-Paris 7, Paris, France
| | - Leslie Lemnos
- Hôpital Dupuytren, CHU Limoges, Service Neurochirurgie, Limoges, France
| | | | - Sebastien Froelich
- From the Université Paris-Diderot, Unité INSERM U965-Paris 7, Paris, France
| | - Homa Adle-Biassette
- Service d'Anatomie et de Cytologie Pathologiques, Hôpital Lariboisère - AP-HP, Paris, France.,Plateforme de Bio-Pathologie et de Technologies Innovantes en Santé, Centre de Ressources Biologiques BB-0033-00064, Hôpital Lariboisière-APHP, Paris, France.,Université Paris, NeuroDiderot, Inserm, Paris, France
| |
Collapse
|
16
|
Thanindratarn P, Dean DC, Feng W, Wei R, Nelson SD, Hornicek FJ, Duan Z. Cyclin-dependent kinase 12 (CDK12) in chordoma: prognostic and therapeutic value. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:3214-3228. [PMID: 32691223 DOI: 10.1007/s00586-020-06543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE To determine the cyclin-dependent kinase 12 (CDK12) expression in chordoma patient tissues and cell lines, its correlation with oncologic outcomes, and its function in chordoma cell proliferation. METHODS A chordoma tissue microarray was constructed from fifty-six patient specimens and examined by immunohistochemistry to measure CDK12 expression and its correlation to patient clinical characteristics and survival. CDK12 expression in chordoma cell lines and patient tissues was evaluated via western blot. CDK12 specific small interfering RNA (siRNA) was applied to determine whether its inhibition attenuated chordoma cell growth and proliferation. RESULTS CDK12 was expressed in the majority of chordoma specimens, with notably higher expression in patients with recurrent or metastatic disease. High CDK12 expression was an independent prognostic predictor for shorter overall and progression-free survival in chordoma by univariate and multivariate analysis. Western blot analysis revealed that CDK12 was also highly expressed in chordoma cell lines, with CDK12 specific small interfering RNA (siRNA) mediated knockdown decreasing proliferation and inducing apoptosis. Mechanistically, inhibition of CDK12 decreased phosphorylation of RNA polymerase II (RNAP II) and the anti-apoptotic proteins Survivin and Mcl-1. CONCLUSION High expression of CDK12 is an independent predictor of poor prognosis in chordoma. Inhibition of CDK12 significantly decreased chordoma cell proliferation and induced apoptosis. Our results support CDK12 as a novel prognostic biomarker and therapeutic target in chordoma.
Collapse
Affiliation(s)
- Pichaya Thanindratarn
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young. Dr. South, Los Angeles, CA, 90095, USA.,Department of Orthopedic Surgery, Chulabhorn Hospital, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Dylan C Dean
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young. Dr. South, Los Angeles, CA, 90095, USA
| | - Wenlong Feng
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young. Dr. South, Los Angeles, CA, 90095, USA.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ran Wei
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young. Dr. South, Los Angeles, CA, 90095, USA.,Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young. Dr. South, Los Angeles, CA, 90095, USA
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young. Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Yu P, Wen J, Wang J, Liang J, Shen Y, Zhang W. Establishment and characterization of a novel human osteosarcoma cell line for spontaneous pulmonary metastasis research in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:573. [PMID: 31807554 DOI: 10.21037/atm.2019.09.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background A large number of osteosarcoma patients are dying of pulmonary metastasis in spite of the recent progress achieved in treatment research. Therefore, there is an urgent need for an in vivo experiment, whose purpose is to investigate the growth and metastasis of human osteosarcoma tumor. In this study, a novel human osteosarcoma cell line was established and characterized for osteosarcoma metastatic research in vivo. Methods Small pieces of parental primary osteosarcoma samples from a 16-year-old boy were xeno-transplanted into NOD/SCID mice. Then, osteosarcoma cells from the xeno-grafts were isolated and further passaged in vitro. Expression profiling was confirmed using HE staining and immunohistochemistry. The tumorigenic and metastatic ability of the established cell line was analyzed by cell scratch and CCK8 assay in vitro, and tumor transplantation in NOD/SCID mice. Results Parental cells were pleomorphic and positive with ALP, SSEA-4, and CD44. Osteosarcoma cells, named Well5 cells, were successfully isolated and had the ability of adipogenesis and osteogenesis. Well5 cells were mostly positive for SSEA-4 protein, and possessed morphological characteristics such as osteoblastic nature during the cultivation and hetero transplantation. Cell scratch and CCK8 assay indicated Well5 cells obtained a better capacity for migration and proliferation than the MG63 cell line. In NOD/SCID mice, orthotopic tumors were established at the primary site, and spontaneous pulmonary metastases were developed. Conclusions A novel human osteosarcoma cell line was successfully established, which may be helpful for spontaneous pulmonary metastasis research in vivo.
Collapse
Affiliation(s)
- Pei Yu
- Department of Orthopedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junxiang Wen
- Department of Orthopedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Wang
- Shanghai Institute of Traumatology and Orthopedics, Shanghai 200025, China
| | - Jing Liang
- Shanghai Institute of Traumatology and Orthopedics, Shanghai 200025, China
| | - Yuhui Shen
- Department of Orthopedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weibin Zhang
- Department of Orthopedics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
18
|
Cao X, Lu Y, Liu Y, Zhou Y, Song H, Zhang W, Davis D, Cui J, Hao S, Jung J, Wu Q, Park DM, Yang C. Combination of PARP inhibitor and temozolomide to suppress chordoma progression. J Mol Med (Berl) 2019; 97:1183-1193. [PMID: 31201471 DOI: 10.1007/s00109-019-01802-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 01/22/2023]
Abstract
Chordoma, a malignant bone cancer, is highly resistant to conventional therapeutic approaches; this greatly limits radio- and chemotherapeutic options and disease management. In the present study, we investigated three patient-derived chordoma cell lines to elucidate the molecular mechanism of resistance to therapeutics. An in vitro high-throughput chemical screening assay and an in vivo xenograft model were used to identify novel chemosensitizers for chordoma. We found that patient-derived chordoma cell lines recapitulated disease phenotypes, which were highlighted by robust resistance to medical therapy manifested as lack of DNA damage accumulation. Mechanistically, the PARP DNA repair pathway was found to play a central role in this resistance. Chemical screening confirmed that PARP inhibitors could strikingly enhance temozolomide (TMZ) therapy in chordoma cells. Combining the FDA-approved PARP inhibitor, olaparib, with chemotherapeutics not only potentiated DNA damage accumulation, cell cycle arrest, and apoptosis in vitro but also suppressed chordoma xenograft expansion in vivo. We conclude that combining PARP inhibition with TMZ could be an effective therapeutic approach for the clinical management of chordoma. KEY MESSAGES: The PARP DNA repair pathway enhances chemoresistance in chordoma cells. Combining PARP inhibitors with genotoxic agents induces chordoma cell cytotoxicity. PARP inhibitor combining with temozolomide suppresses growth of chordoma in vivo.
Collapse
Affiliation(s)
- Xiaoyu Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA
| | - Yanxin Lu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA.,Basic Medical Science Department, Zunyi Medical College-Zhuhai Campus, Zhuhai, Guangdong, 519041, People's Republic of China.,Shenzhen Key Laboratory of Genitourinary Tumor, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, 518000, Guangdong, China
| | - Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA
| | - Yiqiang Zhou
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA
| | - Hua Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA
| | - Wei Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA
| | - Dionne Davis
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA
| | - Jing Cui
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA
| | - Shuyu Hao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Jinkyu Jung
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA
| | - Qixin Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA
| | - Deric M Park
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA. .,Department of Neurology and the Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL, 60637, USA.
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 1142E, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Sharifnia T, Wawer MJ, Chen T, Huang QY, Weir BA, Sizemore A, Lawlor MA, Goodale A, Cowley GS, Vazquez F, Ott CJ, Francis JM, Sassi S, Cogswell P, Sheppard HE, Zhang T, Gray NS, Clarke PA, Blagg J, Workman P, Sommer J, Hornicek F, Root DE, Hahn WC, Bradner JE, Wong KK, Clemons PA, Lin CY, Kotz JD, Schreiber SL. Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat Med 2019; 25:292-300. [PMID: 30664779 PMCID: PMC6633917 DOI: 10.1038/s41591-018-0312-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Chordoma is a primary bone cancer with no approved therapy1. The identification of therapeutic targets in this disease has been challenging due to the infrequent occurrence of clinically actionable somatic mutations in chordoma tumors2,3. Here we describe the discovery of therapeutically targetable chordoma dependencies via genome-scale CRISPR-Cas9 screening and focused small-molecule sensitivity profiling. These systematic approaches reveal that the developmental transcription factor T (brachyury; TBXT) is the top selectively essential gene in chordoma, and that transcriptional cyclin-dependent kinase (CDK) inhibitors targeting CDK7/12/13 and CDK9 potently suppress chordoma cell proliferation. In other cancer types, transcriptional CDK inhibitors have been observed to downregulate highly expressed, enhancer-associated oncogenic transcription factors4,5. In chordoma, we find that T is associated with a 1.5-Mb region containing 'super-enhancers' and is the most highly expressed super-enhancer-associated transcription factor. Notably, transcriptional CDK inhibition leads to preferential and concentration-dependent downregulation of cellular brachyury protein levels in all models tested. In vivo, CDK7/12/13-inhibitor treatment substantially reduces tumor growth. Together, these data demonstrate small-molecule targeting of brachyury transcription factor addiction in chordoma, identify a mechanism of T gene regulation that underlies this therapeutic strategy, and provide a blueprint for applying systematic genetic and chemical screening approaches to discover vulnerabilities in genomically quiet cancers.
Collapse
Affiliation(s)
| | | | - Ting Chen
- New York University Langone Medical Center, New York, NY, USA
| | - Qing-Yuan Huang
- New York University Langone Medical Center, New York, NY, USA
- Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Barbara A Weir
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Janssen R&D, Cambridge, MA, USA
| | - Ann Sizemore
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew A Lawlor
- Dana-Farber Cancer Institute, Boston, MA, USA
- Massachusetts General Hospital, Charlestown, MA, USA
| | - Amy Goodale
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Glenn S Cowley
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Janssen R&D, Spring House, PA, USA
| | | | - Christopher J Ott
- Dana-Farber Cancer Institute, Boston, MA, USA
- Massachusetts General Hospital, Charlestown, MA, USA
| | - Joshua M Francis
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Gritstone Oncology, Cambridge, MA, USA
| | - Slim Sassi
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Paul A Clarke
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | | | - Francis Hornicek
- Massachusetts General Hospital, Boston, MA, USA
- UCLA Medical Center, Santa Monica, CA, USA
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - William C Hahn
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - James E Bradner
- Dana-Farber Cancer Institute, Boston, MA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Kwok K Wong
- New York University Langone Medical Center, New York, NY, USA
| | | | | | - Joanne D Kotz
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Jnana Therapeutics, Boston, MA, USA.
| | - Stuart L Schreiber
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
20
|
Characterization of a Clival Chordoma Xenograft Model Reveals Tumor Genomic Instability. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2902-2911. [DOI: 10.1016/j.ajpath.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
|
21
|
Liu T, Shen JK, Choy E, Zhang Y, Mankin HJ, Hornicek FJ, Duan Z. CDK4 expression in chordoma: A potential therapeutic target. J Orthop Res 2018; 36:1581-1589. [PMID: 29194728 DOI: 10.1002/jor.23819] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/27/2017] [Indexed: 02/04/2023]
Abstract
Chordomas are rare bone tumors and treatment is commonly based on a combination of surgery and radiotherapy. There is no standard chemotherapy treatment for chordoma. The aim of this study was to determine the expression of cyclin-dependent kinase 4 (CDK4) in chordoma and its therapeutic implications. We evaluated CDK4 expression both in chordoma cell lines and in chordoma tissues. Also, we investigated the functional roles of CDK4 in chordoma cell growth and proliferation. Furthermore, the therapeutic implications of targeting CDK4 in chordoma were evaluated. We found CDK4 highly expressed in chordoma cell lines and in a majority (97.7%) of chordoma tissues. Higher CDK4 expression correlated with metastasis and recurrence of chordoma. Treatment of chordoma cells using CDK4 inhibitor palbociclib could efficiently inhibit chordoma cells growth and proliferation. These data demonstrate that targeting CDK4 may be useful as a novel strategy in the treatment of chordoma. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1581-1589, 2018.
Collapse
Affiliation(s)
- Tang Liu
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095.,Department of Orthopaedics, the 2nd Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, Hunan 410011, P.R. China
| | - Jacson K Shen
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095
| | - Edwin Choy
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095
| | - Yu Zhang
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095.,Department of Orthopedic Surgery, Liu Hua Qiao Hospital, Guangzhou 510010, P.R. China
| | - Henry J Mankin
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095
| | - Francis J Hornicek
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095
| | - Zhenfeng Duan
- UCLA Orthopaedic Surgery, Sarcoma Biology Laboratory, 615 Charles E Young Dr. South, Biomedical Sciences Research Building, Room 410, Los Angeles, CA 90095
| |
Collapse
|
22
|
Chen H, Garbutt CC, Spentzos D, Choy E, Hornicek FJ, Duan Z. Expression and Therapeutic Potential of SOX9 in Chordoma. Clin Cancer Res 2017; 23:5176-5186. [PMID: 28606919 DOI: 10.1158/1078-0432.ccr-17-0177] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Conventional chemotherapeutic agents are ineffective in the treatment of chordoma. We investigated the functional roles and therapeutic relevance of the sex-determining region Y (SRY)-box 9 (SOX9) in chordoma.Experimental Design: SOX9 expression was examined by immunohistochemistry (IHC) using 50 chordoma tissue samples. SOX9 expression in chordoma cell lines was examined by Western blot and immunofluorescent assays. We used synthetic human SOX9 siRNA to inhibit the expression of SOX9. Cell proliferation ability and cytotoxicity of inhibiting SOX9 were assessed by 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) and clonogenic assays. The effect of SOX9 knockdown on chordoma cell motility was evaluated by a wound-healing assay and a Transwell invasion chamber assay. Knockdown of SOX9 induced apoptosis, cell-cycle arrest, as well as decreased expression of cancer stem cell markers were determined by Western blot and flow cytometric assays. The effect of the combination of SOX9 siRNA and the chemotherapeutic drug doxorubicin/cisplatin on chordoma cells was assessed by an MTT assay.Results: Tissue microarray and IHC analysis showed that SOX9 is broadly expressed in chordomas and that higher expression levels of SOX9 correlated with a poor prognosis. RNA interference (RNAi)-mediated knockdown of SOX9 inhibited chordoma cell growth, decreased cell motility, and induced apoptosis as well as cell-cycle arrest. Moreover, the combination of SOX9 inhibition and chemotherapeutic drugs had an enhanced anti-cancer effect on chordoma cells.Conclusions: Our results demonstrate that SOX9 plays a crucial role in chordoma. Targeting SOX9 provides a new rationale for treatment of chordoma. Clin Cancer Res; 23(17); 5176-86. ©2017 AACR.
Collapse
Affiliation(s)
- Hua Chen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Emergency Surgery, ShenZhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China
| | - Cassandra C Garbutt
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dimitrios Spentzos
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
23
|
Sarabia-Estrada R, Ruiz-Valls A, Shah SR, Ahmed AK, Ordonez AA, Rodriguez FJ, Guerrero-Cazares H, Jimenez-Estrada I, Velarde E, Tyler B, Li Y, Phillips NA, Goodwin CR, Petteys RJ, Jain SK, Gallia GL, Gokaslan ZL, Quinones-Hinojosa A, Sciubba DM. Effects of primary and recurrent sacral chordoma on the motor and nociceptive function of hindlimbs in rats: an orthotopic spine model. J Neurosurg Spine 2017; 27:215-226. [PMID: 28598292 DOI: 10.3171/2016.12.spine16917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Chordoma is a slow-growing, locally aggressive cancer that is minimally responsive to conventional chemotherapy and radiotherapy and has high local recurrence rates after resection. Currently, there are no rodent models of spinal chordoma. In the present study, the authors sought to develop and characterize an orthotopic model of human chordoma in an immunocompromised rat. METHODS Thirty-four immunocompromised rats were randomly allocated to 4 study groups; 22 of the 34 rats were engrafted in the lumbar spine with human chordoma. The groups were as follows: UCH1 tumor-engrafted (n = 11), JHC7 tumor-engrafted (n = 11), sham surgery (n = 6), and intact control (n = 6) rats. Neurological impairment of rats due to tumor growth was evaluated using open field and locomotion gait analysis; pain response was evaluated using mechanical or thermal paw stimulation. Cone beam CT (CBCT), MRI, and nanoScan PET/CT were performed to evaluate bony changes due to tumor growth. On Day 550, rats were killed and spines were processed for H & E-based histological examination and immunohistochemistry for brachyury, S100β, and cytokeratin. RESULTS The spine tumors displayed typical chordoma morphology, that is, physaliferous cells filled with vacuolated cytoplasm of mucoid matrix. Brachyury immunoreactivity was confirmed by immunostaining, in which samples from tumor-engrafted rats showed a strong nuclear signal. Sclerotic lesions in the vertebral body of rats in the UCH1 and JHC7 groups were observed on CBCT. Tumor growth was confirmed using contrast-enhanced MRI. In UCH1 rats, large tumors were observed growing from the vertebral body. JHC7 chordoma-engrafted rats showed smaller tumors confined to the bone periphery compared with UCH1 chordoma-engrafted rats. Locomotion analysis showed a disruption in the normal gait pattern, with an increase in the step length and duration of the gait in tumor-engrafted rats. The distance traveled and the speed of rats in the open field test was significantly reduced in the UCH1 and JHC7 tumor-engrafted rats compared with controls. Nociceptive response to a mechanical stimulus showed a significant (p < 0.001) increase in the paw withdrawal threshold (mechanical hypalgesia). In contrast, the paw withdrawal response to a thermal stimulus decreased significantly (p < 0.05) in tumor-engrafted rats. CONCLUSIONS The authors developed an orthotopic human chordoma model in rats. Rats were followed for 550 days using imaging techniques, including MRI, CBCT, and nanoScan PET/CT, to evaluate lesion progression and bony integrity. Nociceptive evaluations and locomotion analysis were performed during follow-up. This model reproduces cardinal signs, such as locomotor and sensory deficits, similar to those observed clinically in human patients. To the authors' knowledge, this is the first spine rodent model of human chordoma. Its use and further study will be essential for pathophysiology research and the development of new therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Sagar R Shah
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, Florida.,Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Alvaro A Ordonez
- Pediatrics, Center for Infection and Inflammation Imaging Research
| | | | | | - Ismael Jimenez-Estrada
- Department of Physiology, Biophysics, and Neurosciences, Research Center for Advanced Studies IPN, Mexico City, Mexico
| | | | | | - Yuxin Li
- Department of Neurosurgery, Jinan General Hospital of PLA, Jinan, China
| | | | | | | | - Sanjay K Jain
- Pediatrics, Center for Infection and Inflammation Imaging Research
| | | | - Ziya L Gokaslan
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island; and
| | | | | |
Collapse
|
24
|
Liu Y, Feng X, Zhang Y, Jiang H, Cai X, Yan X, Huang Z, Mo F, Yang W, Yang C, Yang S, Liu X. Establishment and characterization of a novel osteosarcoma cell line: CHOS. J Orthop Res 2016; 34:2116-2125. [PMID: 27017908 DOI: 10.1002/jor.23245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/23/2016] [Indexed: 02/04/2023]
Abstract
Osteosarcoma has a well-recognized bimodal distribution, with the first peak in adolescence and another in the elderly age-group. The elderly patients have different clinical features and a poorer prognosis as compared to adolescents. To better understand the biological features of osteosarcoma in the elderly population, we established a new human osteosarcoma cell line from a 58-year-old man with primary chondroblastic osteosarcoma. After 6 months of continuous culture in vitro for over 50 passages, an immortalized cell line CHOS was established. The cell line was well-characterized by cytogenetic, biomarker, functional, and histological analyses. The CHOS cells exhibited a spindle-shaped morphology and a doubling time of 36 h. Cytogenetic analysis of CHOS cells revealed the loss of chromosome Y and the gain of chromosome 12. Quantitative real-time polymerase chain reaction (RT-PCR), Western blotting and/or immunofluorescence revealed the expression of chondroblastic, mesenchymal and tumor metastasis markers in the CHOS cells. Compared with the osteosarcoma cell line, the CHOS cells were found to be more sensitive to cisplatin and doxorubicin, but were resistant to methotrexate. The cell line was highly tumorigenic and maintained the histological characteristics and invasive nature of the original tumor. Furthermore, on immunohistochemical analysis, the xenografts and metastases were found to co-express collagen II, aggrecan, vimentin and S100A4 that resembled the original tumor cells. Our results indicate, the potential of CHOS cell line to serve as a useful tool for further studies on the molecular biology of osteosarcoma, especially in the elderly patients. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2116-2125, 2016.
Collapse
Affiliation(s)
- Yunlu Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Xianyi Cai
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Xinxin Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Zengfa Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Fengbo Mo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Wen Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Shuhua Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| | - Xianzhe Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China
| |
Collapse
|
25
|
Kim JY, Lee J, Koh JS, Park MJ, Chang UK. Establishment and characterization of a chordoma cell line from the tissue of a patient with dedifferentiated-type chordoma. J Neurosurg Spine 2016; 25:626-635. [DOI: 10.3171/2016.3.spine151077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Chordoma is a rare bone tumor of the axial skeleton believed to originate from the remnants of the embryonic notochord. The available tumor cells are characteristically physaliferous and express brachyury, a transcription factor critical for mesoderm specification. Although chordomas are histologically not malignant, treatments remain challenging because they are resistant to radiation therapy and because wide resection is impossible in most cases. Therefore, a better understanding of the biology of chordomas using established cell lines may lead to the advancement of effective treatment strategies. The authors undertook a study to obtain this insight.
METHODS
Chordoma cells were isolated from the tissue of a patient with dedifferentiated-type chordoma (DTC) that had recurred. Cells were cultured with DMEM/F12 containing 10% fetal bovine serum and antibiotics (penicillin and streptomycin). Cell proliferation rate was measured by MTS assay. Cell-cycle distribution and cell surface expression of proteins were analyzed by fluorescence-activated cell sorting (FACS) analysis. Expression of proteins was analyzed by Western blot and immunocytochemistry. Radiation resistance was measured by clonogenic survival assay. Tumor formation was examined by injection of chordoma cells at hindlimb of nude mice.
RESULTS
The putative (DTC) cells were polygonal and did not have the conventional physaliferous characteristic seen in the U-CH1 cell line. The DTC cells exhibited similar growth rate and cell-cycle distribution, but they exhibited higher clonogenic activity in soft agar than U-CH1 cells. The DTC cells expressed high levels of platelet-derived growth factor receptor–β and a low level of brachyury and cytokeratins; they showed higher expression of stemness-related and epithelial to mesenchymal transition–related proteins than the U-CH1 cells. Intriguingly, FACS analysis revealed that DTC cells exhibited marginal surface expression of CD24 and CD44 and high surface expression of CXCR4 in comparison to U-CH1 cells. In addition, blockade of CXCR4 with its antagonist AMD3100 effectively suppressed the growth of both cell lines. The DTC cells were more resistant to paclitaxel, cisplatin, etoposide, and ionizing radiation than the U-CH1 cells. Injection of DTC cells into the hindlimb region of nude mice resulted in the efficient formation of tumors, and the histology of xenograft tumors was very similar to that of the original patient tumor.
CONCLUSIONS
The use of the established DTC cells along with preestablished cell lines of chordoma may help bring about greater understanding of the mechanisms underlying the chordoma that will lead to therapeutic strategies targeting chordomas.
Collapse
Affiliation(s)
- Jeong-Yub Kim
- 1Division of Radiation Cancer Research, Research Center for Radio-Senescence,
- 4Department of Pathology, College of Medicine, Korea University, Seoul, South Korea
| | - Jongsun Lee
- 1Division of Radiation Cancer Research, Research Center for Radio-Senescence,
| | | | - Myung-Jin Park
- 1Division of Radiation Cancer Research, Research Center for Radio-Senescence,
| | - Ung-Kyu Chang
- 3Department of Neurosurgery, Korea Institute of Radiological and Medical Sciences; and
| |
Collapse
|
26
|
Expression of programmed cell death ligand 1 (PD-L1) and prevalence of tumor-infiltrating lymphocytes (TILs) in chordoma. Oncotarget 2016; 6:11139-49. [PMID: 25871477 PMCID: PMC4484445 DOI: 10.18632/oncotarget.3576] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/21/2015] [Indexed: 12/31/2022] Open
Abstract
Chordomas are primary malignant tumors of the notochord that are resistant to conventional chemotherapy. Expression of programmed cell death ligand 1 (PD-L1), prevalence of tumor-infiltrating lymphocytes (TILs), and their clinical relevance in chordoma remain unknown. We evaluated PD-L1 expression in three chordoma cell lines and nine chordoma tissue samples by western blot. Immunohistochemical staining was performed on a chordoma tissue microarray (TMA) that contained 78 tissue specimens. We also correlated the expression of PD-L1 and TILs with clinical outcomes. PD-L1 protein expression was demonstrated to be induced by IFN-γ in both UCH1 and UCH2 cell lines. Across nine human chordoma tissue samples, PD-L1 protein was differentially expressed. 94.9% of chordoma samples showed positive PD-L1 expression in the TMA. The expression score of PD-L1 for metastatic chordoma tumors was significant higher as compared with non-metastatic chordoma tumors. Expression of PD-L1 protein significantly correlates with the presence of elevated TILs, which correlates with metastasis. In summary, our study showed high levels of PD-L1 are expressed in chordoma, which is correlated with the prevalence of TILs. The current study suggests targeting PD-L1 may be a novel immunotherapeutic strategy for chordoma clinical trials.
Collapse
|
27
|
Osaka E, Yang X, Shen JK, Yang P, Feng Y, Mankin HJ, Hornicek FJ, Duan Z. MicroRNA-1 (miR-1) inhibits chordoma cell migration and invasion by targeting slug. J Orthop Res 2014; 32:1075-82. [PMID: 24760686 PMCID: PMC4123853 DOI: 10.1002/jor.22632] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/27/2014] [Indexed: 02/04/2023]
Abstract
Recent studies have revealed that expression of miRNA-1 (miR-1) is frequently down-regulated in several cancer types including chordoma. Identifying and validating novel targets of miR-1 is useful for understanding the roles of miR-1 in chordoma. We aimed to further investigate the functions of miR-1 in chordoma. Specifically, we assessed whether restoration of miR-1 affects cell migration and invasion in chordoma, and focused on the miR-1 potential target Slug gene. Migratory and invasive activities were assessed by wound healing and Matrigel invasion assays, respectively. Cell proliferation was determined by MTT assay. Slug expression was evaluated by Western blot, immunofluorescence, and immunohistochemistry. Restoration of miR-1 expression suppressed the migratory and invasive activities of chordoma cells. Transfection of miR-1 inhibited cell proliferation both time- and dose-dependently in chordoma. MiR-1 transfected cells showed inhibited Slug expression. Slug was over-expressed in chordoma cell lines and advanced chordoma tissues. In conclusion, we have shown that miR-1 directly targets the Slug gene in chordoma. Restoration of miR-1 suppressed not only proliferation, but also migratory and invasive activities, and reduced the Slug expression in chordoma cells. These results collectively indicate that miR-1/Slug pathway is a potential therapeutic target because of its crucial roles in chordoma cell growth and migration.
Collapse
Affiliation(s)
- Eiji Osaka
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, 50 Fruit Street, Jackson 1115, Boston, Massachusetts 02114, USA,Department of Orthopaedic Surgery, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Xiaoqian Yang
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, 50 Fruit Street, Jackson 1115, Boston, Massachusetts 02114, USA
| | - Jacson K. Shen
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, 50 Fruit Street, Jackson 1115, Boston, Massachusetts 02114, USA
| | - Pei Yang
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, 50 Fruit Street, Jackson 1115, Boston, Massachusetts 02114, USA
| | - Yong Feng
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, 50 Fruit Street, Jackson 1115, Boston, Massachusetts 02114, USA
| | - Henry J. Mankin
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, 50 Fruit Street, Jackson 1115, Boston, Massachusetts 02114, USA
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, 50 Fruit Street, Jackson 1115, Boston, Massachusetts 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, 50 Fruit Street, Jackson 1115, Boston, Massachusetts 02114, USA
| |
Collapse
|
28
|
Karikari IO, Gilchrist CL, Jing L, Alcorta DA, Chen J, Richardson WJ, Gabr MA, Bell RD, Kelley MJ, Bagley CA, Setton LA. Molecular characterization of chordoma xenografts generated from a novel primary chordoma cell source and two chordoma cell lines. J Neurosurg Spine 2014; 21:386-93. [PMID: 24905390 DOI: 10.3171/2014.4.spine13262] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECT Chordoma cells can generate solid-like tumors in xenograft models that express some molecular characteristics of the parent tumor, including positivity for brachyury and cytokeratins. However, there is a dearth of molecular markers that relate to chordoma tumor growth, as well as the cell lines needed to advance treatment. The objective in this study was to isolate a novel primary chordoma cell source and analyze the characteristics of tumor growth in a mouse xenograft model for comparison with the established U-CH1 and U-CH2b cell lines. METHODS Primary cells from a sacral chordoma, called "DVC-4," were cultured alongside U-CH1 and U-CH2b cells for more than 20 passages and characterized for expression of CD24 and brachyury. While brachyury is believed essential for driving tumor formation, CD24 is associated with healthy nucleus pulposus cells. Each cell type was subcutaneously implanted in NOD/SCID/IL2Rγ(null) mice. The percentage of solid tumors formed, time to maximum tumor size, and immunostaining scores for CD24 and brachyury (intensity scores of 0-3, heterogeneity scores of 0-1) were reported and evaluated to test differences across groups. RESULTS The DVC-4 cells retained chordoma-like morphology in culture and exhibited CD24 and brachyury expression profiles in vitro that were similar to those for U-CH1 and U-CH2b. Both U-CH1 and DVC-4 cells grew tumors at rates that were faster than those for U-CH2b cells. Gross tumor developed at nearly every site (95%) injected with U-CH1 and at most sites (75%) injected with DVC-4. In contrast, U-CH2b cells produced grossly visible tumors in less than 50% of injected sites. Brachyury staining was similar among tumors derived from all 3 cell types and was intensely positive (scores of 2-3) in a majority of tissue sections. In contrast, differences in the pattern and intensity of staining for CD24 were noted among the 3 types of cell-derived tumors (p < 0.05, chi-square test), with evidence of intense and uniform staining in a majority of U-CH1 tumor sections (score of 3) and more than half of the DVC-4 tumor sections (scores of 2-3). In contrast, a majority of sections from U-CH2b cells stained modestly for CD24 (scores of 1-2) with a predominantly heterogeneous staining pattern. CONCLUSIONS This is the first report on xenografts generated from U-CH2b cells in which a low tumorigenicity was discovered despite evidence of chordoma-like characteristics in vitro. For tumors derived from a primary chordoma cell and U-CH1 cell line, similarly intense staining for CD24 was observed, which may correspond to their similar potential to grow tumors. In contrast, U-CH2b tumors stained less intensely for CD24. These results emphasize that many markers, including CD24, may be useful in distinguishing among chordoma cell types and their tumorigenicity in vivo.
Collapse
|
29
|
Duan Z, Shen J, Yang X, Yang P, Osaka E, Choy E, Cote G, Harmon D, Zhang Y, Nielsen GP, Spentzos D, Mankin H, Hornicek F. Prognostic significance of miRNA-1 (miR-1) expression in patients with chordoma. J Orthop Res 2014; 32:695-701. [PMID: 24501096 PMCID: PMC4049352 DOI: 10.1002/jor.22589] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/13/2014] [Indexed: 02/04/2023]
Abstract
Reliable prognostic biomarkers for chordoma have not yet been established. Recent studies revealed that expression of miRNA-1 (miR-1) is frequently downregulated in several cancer types including chordoma. The goal of this follow-up study is to investigate the expression of miR-1 as a prognostic biomarker and further confirm the functional role of miR-1 in chordoma cell growth and proliferation. We determined the relative expression levels of miR-1 and Met in chordoma tissue samples and correlated those to clinical variables. The results showed that miR-1 was downregulated in 93.7% of chordoma tissues and expression was inversely correlated with Met expression. miR-1 expression levels also correlated with clinical prognosis. To characterize and confirm the functional role of miR-1 in the growth and proliferation of chordoma cells, miR-1 precursors were stably transfected into chordoma cell lines UCH-1 and CH-22. Cell Proliferation Assay and MTT were used to evaluate cell growth and proliferation. Restoring expression of miR-1 precursor decreased cell growth and proliferation in UCH-1 and CH-22 cells. These results indicate that suppressed miR-1 expression in chordoma may in part be a driver for tumor growth, and that miR-1 has potential to serve as prognostic biomarker and therapeutic target for chordoma patients.
Collapse
Affiliation(s)
- Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - Jacson Shen
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - Xiaoqian Yang
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - Pei Yang
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - Eiji Osaka
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - Gregory Cote
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - David Harmon
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - Yu Zhang
- Department of Orthopedic Surgery, Liu Hua Qiao Hospital, Guangzhou, 510010, China
| | - G. Petur Nielsen
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114
| | - Dimitrios Spentzos
- Division of Hematology/Oncology, Sarcoma Program, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Henry Mankin
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA 02114
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
30
|
Davies JM, Robinson AE, Cowdrey C, Mummaneni PV, Ducker GS, Shokat KM, Bollen A, Hann B, Phillips JJ. Generation of a patient-derived chordoma xenograft and characterization of the phosphoproteome in a recurrent chordoma. J Neurosurg 2013; 120:331-6. [PMID: 24286145 DOI: 10.3171/2013.10.jns13598] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECT The management of patients with locally recurrent or metastatic chordoma is a challenge. Preclinical disease models would greatly accelerate the development of novel therapeutic options for chordoma. The authors sought to establish and characterize a primary xenograft model for chordoma that faithfully recapitulates the molecular features of human chordoma. METHODS Chordoma tissue from a recurrent clival tumor was obtained at the time of surgery and implanted subcutaneously into NOD-SCID interleukin-2 receptor gamma (IL-2Rγ) null (NSG) mouse hosts. Successful xenografts were established and passaged in the NSG mice. The recurrent chordoma and the derived human chordoma xenograft were compared by histology, immunohistochemistry, and phospho-specific immunohistochemistry. Based on these results, mice harboring subcutaneous chordoma xenografts were treated with the mTOR inhibitor MLN0128, and tumors were subjected to phosphoproteome profiling using Luminex technology and immunohistochemistry. RESULTS SF8894 is a novel chordoma xenograft established from a recurrent clival chordoma that faithfully recapitulates the histopathological, immunohistological, and phosphoproteomic features of the human tumor. The PI3K/Akt/mTOR pathway was activated, as evidenced by diffuse immunopositivity for phospho-epitopes, in the recurrent chordoma and in the established xenograft. Treatment of mice harboring chordoma xenografts with MLN0128 resulted in decreased activity of the PI3K/Akt/mTOR signaling pathway as indicated by decreased phospho-mTOR levels (p = 0.019, n = 3 tumors per group). CONCLUSIONS The authors report the establishment of SF8894, a recurrent clival chordoma xenograft that mimics many of the features of the original tumor and that should be a useful preclinical model for recurrent chordoma.
Collapse
|
31
|
Trucco MM, Awad O, Wilky BA, Goldstein SD, Huang R, Walker RL, Shah P, Katuri V, Gul N, Zhu YJ, McCarthy EF, Paz-Priel I, Meltzer PS, Austin CP, Xia M, Loeb DM. A novel chordoma xenograft allows in vivo drug testing and reveals the importance of NF-κB signaling in chordoma biology. PLoS One 2013; 8:e79950. [PMID: 24223206 PMCID: PMC3819300 DOI: 10.1371/journal.pone.0079950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/27/2013] [Indexed: 01/10/2023] Open
Abstract
Chordoma is a rare primary bone malignancy that arises in the skull base, spine and sacrum and originates from remnants of the notochord. These tumors are typically resistant to conventional chemotherapy, and to date there are no FDA-approved agents to treat chordoma. The lack of in vivo models of chordoma has impeded the development of new therapies for this tumor. Primary tumor from a sacral chordoma was xenografted into NOD/SCID/IL-2R γ-null mice. The xenograft is serially transplantable and was characterized by both gene expression analysis and whole genome SNP genotyping. The NIH Chemical Genomics Center performed high-throughput screening of 2,816 compounds using two established chordoma cell lines, U-CH1 and U-CH2B. The screen yielded several compounds that showed activity and two, sunitinib and bortezomib, were tested in the xenograft. Both agents slowed the growth of the xenograft tumor. Sensitivity to an inhibitor of IκB, as well as inhibition of an NF-κB gene expression signature demonstrated the importance of NF-κB signaling for chordoma growth. This serially transplantable chordoma xenograft is thus a practical model to study chordomas and perform in vivo preclinical drug testing.
Collapse
Affiliation(s)
- Matteo M. Trucco
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ola Awad
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Breelyn A. Wilky
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Seth D. Goldstein
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ruili Huang
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, United States of America
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Preeti Shah
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Varalakshmi Katuri
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Naheed Gul
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yuelin J. Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Edward F. McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ido Paz-Priel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Christopher P. Austin
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, United States of America
| | - Menghang Xia
- National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, United States of America
| | - David M. Loeb
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
32
|
Di Maio S, Kong E, Yip S, Rostomily R. Converging paths to progress for skull base chordoma: Review of current therapy and future molecular targets. Surg Neurol Int 2013; 4:72. [PMID: 23776758 PMCID: PMC3683175 DOI: 10.4103/2152-7806.112822] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/12/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chordomas of the skull base are rare locally aggressive neoplasms with a predilection for encapsulating critical neurovascular structures, bony destruction and irregular growth patterns, and from which patients succumb to recurrence and treatment failures. METHODS A review of the medical literature is performed, using standard search engines and identifying articles related to skull base chordomas, surgery, radiation therapy, chemotherapy, molecular genetics, and prospective trials. RESULTS A synthesis of the literature is presented, including sections on pathology, treatment, molecular genetics, challenges, and future directions. CONCLUSION Beyond an understanding of the current treatment paradigms for skull base chordomas, the reader gains insight into the collaborative approach applied to orphan diseases, of which chordomas is a prime exemplar.
Collapse
Affiliation(s)
- Salvatore Di Maio
- Division of Neurosurgery, McGill University, Jewish General Hospital, Montreal, QC, Canada
| | | | | | | |
Collapse
|
33
|
From notochord formation to hereditary chordoma: the many roles of Brachyury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:826435. [PMID: 23662285 PMCID: PMC3626178 DOI: 10.1155/2013/826435] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/22/2013] [Indexed: 12/25/2022]
Abstract
Chordoma is a rare, but often malignant, bone cancer that preferentially affects the axial skeleton and the skull base. These tumors are both sporadic and hereditary and appear to occur more frequently after the fourth decade of life; however, modern technologies have increased the detection of pediatric chordomas. Chordomas originate from remnants of the notochord, the main embryonic axial structure that precedes the backbone, and share with notochord cells both histological features and the expression of characteristic genes. One such gene is Brachyury, which encodes for a sequence-specific transcription factor. Known for decades as a main regulator of notochord formation, Brachyury has recently gained interest as a biomarker and causative agent of chordoma, and therefore as a promising therapeutic target. Here, we review the main characteristics of chordoma, the molecular markers, and the clinical approaches currently available for the early detection and possible treatment of this cancer. In particular, we report on the current knowledge of the role of Brachyury and of its possible mechanisms of action in both notochord formation and chordoma etiogenesis.
Collapse
|