1
|
Ouyang J, Chai H, Sun C, Wang S, She C, Geng D, Xu W. Titanium Particles Activate Osteocytic Connexin 43 to Induce Oxidative Stress and Osteoclastogenesis Through the JAK-STAT Pathway. Antioxid Redox Signal 2025. [PMID: 40207369 DOI: 10.1089/ars.2024.0894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Aims: Periprosthetic osteolysis (PPO), a leading cause of aseptic loosening in joint replacement, arose from complex interactions among osteoblasts, osteoclasts, and osteocytes. Given the pivotal role of connexin 43 (Cx43) in osteocyte communication and bone remodeling, investigating its function was essential for understanding the mechanisms of osteolysis. Our previous studies showed that titanium (Ti) particles increased Cx43 expression in osteocytes. However, the role of Cx43 in osteolysis remained unclear. This study investigated the role of Cx43-mediated regulation of osteocytes on osteoclastogenesis in wear debris-induced osteolysis. Results: Using Dmp1-cre conditional Cx43 knockout mice and the MLO-Y4 osteocyte cell line, we demonstrated that Cx43 deficiency reduced bone resorption and osteoclastogenesis, thereby improving bone remodeling in a Ti particle-induced osteolysis model. Sequencing analysis revealed that Cx43 gene expression changes might be linked to oxidative stress and the Janus Kinase (JAK)-STAT pathway. Elevated Cx43 expression in osteocytes stimulated by Ti particles increased STAT1 protein phosphorylation, induced oxidative stress, elevated the Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL)/Osteoprotegerin (OPG) ratio, and promoted osteoclast activation and bone resorption. Conversely, Cx43 gene knockout decreased STAT1 protein phosphorylation and enhanced Nuclear Factor Erythroid 2-Related Factor 2 (NrF2) protein expression. Blocking the JAK-STAT signaling pathway activated by Cx43 increased NrF2 expression, reduced reactive oxygen species levels, and subsequently decreased the RANKL/OPG ratio. Innovation and Conclusions: This study identified a novel mechanism where Cx43 in osteocytes promoted osteoclastogenesis through JAK-STAT pathway activation and oxidative stress in wear debris-induced osteolysis. These findings highlighted the critical role of Cx43 in bone resorption and suggested targeting Cx43 or the JAK-STAT pathway as potential therapeutic strategies to mitigate osteolysis and improve implant longevity. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Jiawei Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Chunguang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shendong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang She
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Lu ZJ, Gu HY, Li ZQ, Lin FX. Low frequency‑pulsed electromagnetic fields promote osteogenic differentiation of bone marrow‑derived mesenchymal stem cells by regulating connexin 43 expression. Exp Ther Med 2024; 28:446. [PMID: 39386938 PMCID: PMC11462399 DOI: 10.3892/etm.2024.12736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/22/2024] [Indexed: 10/12/2024] Open
Abstract
The present study investigated the effect of connexin 43 (Cx43) on the regulation of osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) using low-frequency-pulsed electromagnetic fields (LPEMF). The BMSCs were isolated and cultured in vitro using adherent whole-bone marrow cultures. CCK-8 assay was used to detect the effects of LPEMF on the proliferation ability of BMSCs and alkaline phosphatase (ALP) activity and the levels of osteogenic marker genes were detected to evaluate the osteogenic ability change following LPEMF treatment. Lentiviral vector-mediated RNA interference was transfected into BMSCs to inhibit the expression of Cx43 and western blotting was used to detect Cx43 expression. The BMSCs showed the highest proliferation following LPEMF treatment at 80 Hz for 1 h. The results of ALP activity, osteogenic marker genes and Alizarin Red S staining showed that the osteogenic ability was notably increased following LPEMF treatment at 80 Hz for 1 h. Cx43 expression increased during the osteogenic differentiation of BMSCs following LPEMF treatment at 80 Hz. The enhanced osteogenic differentiation of the LPEMF-treated BMSCs were partially reversed when Cx43 expression was inhibited. LPEMF may promote the osteogenic differentiation of BMSCs by regulating Cx43 expression and enhancing osteogenic ability.
Collapse
Affiliation(s)
- Zhi-Jun Lu
- Department of Spine Surgery, Ganzhou People's Hospital (The Affiliated Ganzhou Hospital of Jiangxi Medical College of Nanchang University, Ganzhou Hospital-Nanfang Hospital of Southern Medical University), Ganzhou, Jiangxi 341000, P.R. China
| | - Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital (The Affiliated Ganzhou Hospital of Jiangxi Medical College of Nanchang University, Ganzhou Hospital-Nanfang Hospital of Southern Medical University), Ganzhou, Jiangxi 341000, P.R. China
| | - Zhi-Qiang Li
- Department of Spine Surgery, Ganzhou People's Hospital (The Affiliated Ganzhou Hospital of Jiangxi Medical College of Nanchang University, Ganzhou Hospital-Nanfang Hospital of Southern Medical University), Ganzhou, Jiangxi 341000, P.R. China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital (The Affiliated Ganzhou Hospital of Jiangxi Medical College of Nanchang University, Ganzhou Hospital-Nanfang Hospital of Southern Medical University), Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
3
|
Della Morte E, Giannasi C, Valenza A, Cadelano F, Aldegheri A, Zagra L, Niada S, Brini AT. Connexin 43 Modulation in Human Chondrocytes, Osteoblasts and Cartilage Explants: Implications for Inflammatory Joint Disorders. Int J Mol Sci 2024; 25:8547. [PMID: 39126115 PMCID: PMC11313680 DOI: 10.3390/ijms25158547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 ng/mL Tumor Necrosis Factor alpha (TNFα) and/or 1 ng/mL Interleukin-1 beta (IL-1β), in primary chondrocytes (CH) and osteoblasts (OB). Additionally, we explored the impact of synovial fluids from osteoarthritis patients in CH and cartilage explants, providing a more physio-pathological context. The effect of TNFα on Cx43 expression in cartilage explants was also assessed. TNFα downregulated Cx43 levels both in CH and OB (-73% and -32%, respectively), while IL-1β showed inconclusive effects. The reduction in Cx43 levels was associated with a significant downregulation of the coding gene GJA1 expression in OB only (-65%). The engagement of proteasome in TNFα-induced effects, already known in CH, was also observed in OB. TNFα treatment significantly decreased Cx43 expression also in cartilage explants. Of note, Cx43 expression was halved by synovial fluid in both CH and cartilage explants. This study unveils the regulation of Cx43 in diverse musculoskeletal cell types under various stimuli and in different contexts, providing insights into its modulation in inflammatory joint disorders.
Collapse
Affiliation(s)
- Elena Della Morte
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Chiara Giannasi
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| | - Alice Valenza
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Francesca Cadelano
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| | - Alessandro Aldegheri
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (A.A.); (L.Z.)
| | - Luigi Zagra
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (A.A.); (L.Z.)
| | - Stefania Niada
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Anna Teresa Brini
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| |
Collapse
|
4
|
Gauttam VK, Munjal K, Chopra H, Ahmad A, Rana MK, Kamal MA. A Mechanistic Review on Therapeutic Potential of Medicinal Plants and their Pharmacologically Active Molecules for Targeting Metabolic Syndrome. Curr Pharm Des 2024; 30:10-30. [PMID: 38155468 DOI: 10.2174/0113816128274446231220113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.
Collapse
Affiliation(s)
- Vinod Kumar Gauttam
- Department of Pharmacognosy, Shiva Institute of Pharmacy, Bilaspur, Hmachal Pradesh, India
| | - Kavita Munjal
- Department of Pharmacognosy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Aftab Ahmad
- Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahesh Kumar Rana
- Department of Agriculture, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
5
|
Ma L, Wang W, Xu G, Li H, Liu F, Shao H, Zhang X, Ma Y, Li G, Li H, Gao S, Ling P. Connexin 43 in the function and homeostasis of osteocytes: a narrative review. ANNALS OF JOINT 2023; 9:10. [PMID: 38529291 PMCID: PMC10929443 DOI: 10.21037/aoj-23-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/29/2023] [Indexed: 03/27/2024]
Abstract
Background and Objective Connexin 43 (Cx43) is the main gap junction (GJ) protein and hemichannel protein in bone tissue. It is involved in the formation of hemichannels and GJs and establishes channels that can communicate directly to exchange substances and signals, affecting the structure and function of osteocytes. CX43 is very important for the normal development of bone tissue and the establishment and balance of bone reconstruction. However, the molecular mechanisms by which CX43 regulates osteoblast function and homeostasis have been less well studied, and this article provides a review of research in this area. Methods We searched the PubMed, EMBASE, Cochrane Library, and Web of Science databases for studies published up to June 2023 using the keywords Connexin 43/Cx43 and Osteocytes. Screening of literatures according to inclusion and exclusion guidelines and summarized the results. Key Content and Findings Osteocytes, osteoblasts, and osteoclasts all express Cx43 and form an overall network through the interaction between GJs. Cx43 is not only involved in the mechanical response of bone tissue but also in the regulation of signal transduction, which could provide new molecular markers and novel targets for the treatment of certain bone diseases. Conclusions Cx43 is expressed in osteoblasts, osteoclasts, and osteoclasts and plays an important role in regulating the function, signal transduction, and mechanotransduction of osteocytes. This review offers a new contribution to the literature by summarizing the relationship between Cx43, a key protein of bone tissue, and osteoblasts.
Collapse
Affiliation(s)
- Liang Ma
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenzhao Wang
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guixuan Xu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Joint Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Fei Liu
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Huarong Shao
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Xiuhua Zhang
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yuxia Ma
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gang Li
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Li
- Department of Operating Room, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuzhong Gao
- Post-doctoral Station of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peixue Ling
- Post-doctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, China
| |
Collapse
|
6
|
Scott MC, Bourgeois A, Yu Y, Burk DH, Smith BJ, Floyd ZE. Extract of Artemisia dracunculus L. Modulates Osteoblast Proliferation and Mineralization. Int J Mol Sci 2023; 24:13423. [PMID: 37686232 PMCID: PMC10487575 DOI: 10.3390/ijms241713423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Thiazolidinediones (TZD) significantly improve insulin sensitivity via action on adipocytes. Unfortunately, TZDs also degrade bone by inhibiting osteoblasts. An extract of Artemisia dracunculus L., termed PMI5011, improves blood glucose and insulin sensitivity via skeletal muscle, rather than fat, and may therefore spare bone. Here, we examine the effects of PMI5011 and an identified active compound within PMI5011 (2',4'-dihydroxy-4-methoxydihydrochalcone, DMC-2) on pre-osteoblasts. We hypothesized that PMI5011 and DMC-2 will not inhibit osteogenesis. To test our hypothesis, MC3T3-E1 cells were induced in osteogenic media with and without PMI5011 or DMC-2. Cell lysates were probed for osteogenic gene expression and protein content and were stained for osteogenic endpoints. Neither compound had an effect on early stain outcomes for alkaline phosphatase or collagen. Contrary to our hypothesis, PMI5011 at 30 µg/mL significantly increases osteogenic gene expression as early as day 1. Further, osteogenic proteins and cell culture mineralization trend higher for PMI5011-treated wells. Treatment with DMC-2 at 1 µg/mL similarly increased osteogenic gene expression and significantly increased mineralization, although protein content did not trend higher. Our data suggest that PMI5011 and DMC-2 have the potential to promote bone health via improved osteoblast maturation and activity.
Collapse
Affiliation(s)
- Matthew C. Scott
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - Aleah Bourgeois
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - Yongmei Yu
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - David H. Burk
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| | - Brenda J. Smith
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Z. Elizabeth Floyd
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; (M.C.S.); (Y.Y.); (D.H.B.)
| |
Collapse
|
7
|
Buettmann EG, DeNapoli RC, Abraham LB, Denisco JA, Lorenz MR, Friedman MA, Donahue HJ. Reambulation following hindlimb unloading attenuates disuse-induced changes in murine fracture healing. Bone 2023; 172:116748. [PMID: 37001629 DOI: 10.1016/j.bone.2023.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Patients with bone and muscle loss from prolonged disuse have higher risk of falls and subsequent fragility fractures. In addition, fracture patients with continued disuse and/or delayed physical rehabilitation have worse clinical outcomes compared to individuals with immediate weight-bearing activity following diaphyseal fracture. However, the effects of prior disuse followed by physical reambulation on fracture healing cellular processes and adjacent bone and skeletal muscle recovery post-injury remains poorly defined. To bridge this knowledge gap and inform future treatment and rehabilitation strategies for fractures, a preclinical model of fracture healing with a history of prior unloading with and without reambulation was employed. First, skeletally mature male and female C57BL/6J mice (18 weeks) underwent hindlimb unloading by tail suspension (HLU) for 3 weeks to induce significant bone and muscle loss modeling enhanced bone fragility. Next, mice had their right femur fractured by open surgical dissection (stabilized with 24-gauge pin). The, mice were randomly assigned to continued HLU or allowed normal weight-bearing reambulation (HLU + R). Mice given normal cage activity throughout the experiment served as healthy age-matched controls. All mice were sacrificed 4-days (DPF4) or 14-days (DPF14) following fracture to assess healing and uninjured hindlimb musculoskeletal properties (6-10 mice per treatment/biological sex). We found that continued disuse following fracture lead to severely diminished uninjured hindlimb skeletal muscle mass (gastrocnemius and soleus) and femoral bone volume adjacent to the fracture site compared to healthy age-matched controls across mouse sexes. Furthermore, HLU led to significantly decreased periosteal expansion (DPF4) and osteochondral tissue formation by DPF14, and trends in increased osteoclastogenesis (DPF14) and decreased woven bone vascular area (DPF14). In contrast, immediate reambulation for 2 weeks after fracture, even following a period of prolonged disuse, was able to increase hindlimb skeletal tissue mass and increase osteochondral tissue formation, albeit not to healthy control levels, in both mouse sexes. Furthermore, reambulation attenuated osteoclast formation seen in woven bone tissue undergoing disuse. Our results suggest that weight-bearing skeletal loading in both sexes immediately following fracture may improve callus healing and prevent further fall risk by stimulating skeletal muscle anabolism and decreasing callus resorption compared to minimal or delayed rehabilitation regimens.
Collapse
Affiliation(s)
- Evan G Buettmann
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Rachel C DeNapoli
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Lovell B Abraham
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Joe A Denisco
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Madelyn R Lorenz
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Michael A Friedman
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America
| | - Henry J Donahue
- Virginia Commonwealth University, Biomedical Engineering, Richmond, VA, United States of America.
| |
Collapse
|
8
|
Zappalà A, Romano IR, D’Angeli F, Musumeci G, Lo Furno D, Giuffrida R, Mannino G. Functional Roles of Connexins and Gap Junctions in Osteo-Chondral Cellular Components. Int J Mol Sci 2023; 24:4156. [PMID: 36835567 PMCID: PMC9967557 DOI: 10.3390/ijms24044156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Gap junctions (GJs) formed by connexins (Cxs) play an important role in the intercellular communication within most body tissues. In this paper, we focus on GJs and Cxs present in skeletal tissues. Cx43 is the most expressed connexin, participating in the formation of both GJs for intercellular communication and hemichannels (HCs) for communication with the external environment. Through GJs in long dendritic-like cytoplasmic processes, osteocytes embedded in deep lacunae are able to form a functional syncytium not only with neighboring osteocytes but also with bone cells located at the bone surface, despite the surrounding mineralized matrix. The functional syncytium allows a coordinated cell activity through the wide propagation of calcium waves, nutrients and anabolic and/or catabolic factors. Acting as mechanosensors, osteocytes are able to transduce mechanical stimuli into biological signals that spread through the syncytium to orchestrate bone remodeling. The fundamental role of Cxs and GJs is confirmed by a plethora of investigations that have highlighted how up- and downregulation of Cxs and GJs critically influence skeletal development and cartilage functions. A better knowledge of GJ and Cx mechanisms in physiological and pathological conditions might help in developing therapeutic approaches aimed at the treatment of human skeletal system disorders.
Collapse
Affiliation(s)
- Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Ivana Roberta Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy
| |
Collapse
|
9
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
10
|
Reyes Fernandez PC, Wright CS, Masterson AN, Yi X, Tellman TV, Bonteanu A, Rust K, Noonan ML, White KE, Lewis KJ, Sankar U, Hum JM, Bix G, Wu D, Robling AG, Sardar R, Farach-Carson MC, Thompson WR. Gabapentin Disrupts Binding of Perlecan to the α 2δ 1 Voltage Sensitive Calcium Channel Subunit and Impairs Skeletal Mechanosensation. Biomolecules 2022; 12:biom12121857. [PMID: 36551284 PMCID: PMC9776037 DOI: 10.3390/biom12121857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Our understanding of how osteocytes, the principal mechanosensors within bone, sense and perceive force remains unclear. Previous work identified "tethering elements" (TEs) spanning the pericellular space of osteocytes and transmitting mechanical information into biochemical signals. While we identified the heparan sulfate proteoglycan perlecan (PLN) as a component of these TEs, PLN must attach to the cell surface to induce biochemical responses. As voltage-sensitive calcium channels (VSCCs) are critical for bone mechanotransduction, we hypothesized that PLN binds the extracellular α2δ1 subunit of VSCCs to couple the bone matrix to the osteocyte membrane. Here, we showed co-localization of PLN and α2δ1 along osteocyte dendritic processes. Additionally, we quantified the molecular interactions between α2δ1 and PLN domains and demonstrated for the first time that α2δ1 strongly associates with PLN via its domain III. Furthermore, α2δ1 is the binding site for the commonly used pain drug, gabapentin (GBP), which is associated with adverse skeletal effects when used chronically. We found that GBP disrupts PLN::α2δ1 binding in vitro, and GBP treatment in vivo results in impaired bone mechanosensation. Our work identified a novel mechanosensory complex within osteocytes composed of PLN and α2δ1, necessary for bone force transmission and sensitive to the drug GBP.
Collapse
Affiliation(s)
- Perla C. Reyes Fernandez
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Christian S. Wright
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Adrianna N. Masterson
- Department of Chemistry and Chemical Biology, School of Science, Indiana University, Indianapolis, IN 46202, USA
| | - Xin Yi
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Tristen V. Tellman
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Andrei Bonteanu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Katie Rust
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Karl J. Lewis
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Uma Sankar
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Julia M. Hum
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
| | - Gregory Bix
- Departments of Neurosurgery and Neurology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - Alexander G. Robling
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, School of Science, Indiana University, Indianapolis, IN 46202, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
- Department of Bioengineering, George R. Brown School of Engineering, Rice University, Houston, TX 77005, USA
| | - William R. Thompson
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
- Division of Biomedical Science, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
- Correspondence:
| |
Collapse
|
11
|
Lin CY, Song X, Seaman K, You L. Microfluidic Co-culture Platforms for Studying Osteocyte Regulation of Other Cell Types under Dynamic Mechanical Stimulation. Curr Osteoporos Rep 2022; 20:478-492. [PMID: 36149593 DOI: 10.1007/s11914-022-00748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Osteocytes are the most abundant cell type in bone. These unique cells act primarily as mechanosensors and play crucial roles in the functional adaptation of bone tissue. This review aims to summarize the recent microfluidic studies on mechanically stimulated osteocytes in regulating other cell types. RECENT FINDINGS Microfluidics is a powerful technology that has been widely employed in recent years. With the advantages of microfluidic platforms, researchers can mimic multicellular environments and integrate dynamic systems to study osteocyte regulation under mechanical stimulation. Microfluidic platforms have been developed to investigate mechanically stimulated osteocytes in the direct regulation of multiple cell types, including osteoclasts, osteoblasts, and cancer cells, and in the indirect regulation of cancer cells via endothelial cells. Overall, these microfluidic studies foster the development of treatment approaches targeting osteocytes under mechanical stimulation.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xin Song
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly Seaman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lidan You
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Saul D, Khosla S. Fracture Healing in the Setting of Endocrine Diseases, Aging, and Cellular Senescence. Endocr Rev 2022; 43:984-1002. [PMID: 35182420 PMCID: PMC9695115 DOI: 10.1210/endrev/bnac008] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/19/2022]
Abstract
More than 2.1 million age-related fractures occur in the United States annually, resulting in an immense socioeconomic burden. Importantly, the age-related deterioration of bone structure is associated with impaired bone healing. Fracture healing is a dynamic process which can be divided into four stages. While the initial hematoma generates an inflammatory environment in which mesenchymal stem cells and macrophages orchestrate the framework for repair, angiogenesis and cartilage formation mark the second healing period. In the central region, endochondral ossification favors soft callus development while next to the fractured bony ends, intramembranous ossification directly forms woven bone. The third stage is characterized by removal and calcification of the endochondral cartilage. Finally, the chronic remodeling phase concludes the healing process. Impaired fracture healing due to aging is related to detrimental changes at the cellular level. Macrophages, osteocytes, and chondrocytes express markers of senescence, leading to reduced self-renewal and proliferative capacity. A prolonged phase of "inflammaging" results in an extended remodeling phase, characterized by a senescent microenvironment and deteriorating healing capacity. Although there is evidence that in the setting of injury, at least in some tissues, senescent cells may play a beneficial role in facilitating tissue repair, recent data demonstrate that clearing senescent cells enhances fracture repair. In this review, we summarize the physiological as well as pathological processes during fracture healing in endocrine disease and aging in order to establish a broad understanding of the biomechanical as well as molecular mechanisms involved in bone repair.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37073 Goettingen, Germany
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
13
|
Tucker J, McCullen A, Kennedy P, Koroneos Z, Wee HB, Dhawan A, Atkins H, Lewis GS, Garner MR. The effect of cigarette smoke versus vaporized nicotine on healing of a rat femur. Injury 2022; 53:3102-3108. [PMID: 36030094 DOI: 10.1016/j.injury.2022.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Little data exists regarding the effects of vaporized nicotine on healing. Our goal was to compare vaporized nicotine, combusted nicotine and control with respect to bone healing in a rat femur fracture model. MATERIALS AND METHODS Forty-five male Sprague Dawley rats were divided into three equal cohorts. Rats were exposed to two cigarettes daily, an equivalent dose of vaporized nicotine, or control, six days a week. Exposures occurred for 4 weeks prior to iatrogenic femur fracture and intramedullary repair. Four additional weeks of exposure occurred prior to sacrifice. Radiographic, biomechanical and histologic analysis was conducted. RESULTS No significant difference between the three groups was identified for total mineralized bone volume (p = 0.14), total volume of mature bone (p = 0.12) or immature bone (p = 0.15). Importantly, less total mineralized bone volume and immature bone volume was seen in the vaporized nicotine group compared to combusted tobacco, but results were not significant. Biomechanical testing revealed no significant difference in group torsional stiffness (p = 0.92) or maximum torque (p = 0.31) between the three groups. On histologic analysis, chi-square testing showed no significant difference in any category. CONCLUSIONS This exploratory study compared combusted nicotine, vaporized nicotine and a control on rat femur fractures. While no statistically significant differences were identified, there were trends showing less total mineralized bone volume and immature bone volume in the vaporized nicotine group compared to the other groups. Additional study is warranted based on our findings.
Collapse
Affiliation(s)
| | | | - Patrick Kennedy
- HCA Virginia Health System, Lewisgale Medical Center, Salem, VA, USA
| | | | - Hwa Bok Wee
- Penn State College of Medicine, Hershey, PA, USA
| | - Aman Dhawan
- Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | - Matthew R Garner
- Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
14
|
Fauzi A, Alvarino A, Yanwirasti Y, Sahputra RE, Suharmanto S. Effects of Amnion Lyophilization Sterile Radiation against the Number of Osteoblasts and Osteocytes in Nonunion Fractures: An Experimental Research Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: This study used an experimental posttest-only control group design that involved white rats of the Sprague Dawley strain.
Methods: The samples used were 8-week-old rats, weighing 250–350 grams of the male sex. The study was conducted on five groups of rats with a total of seven rats per group.
Results: The mean value of osteocytes in the control group was 00.00 ± 00.00 and in the ALSR group it was 87.14 ± 44.85. The mean value of osteoblasts in the control group was 50.06 ± 5.76 and in the ALSR group it was 283.63 ± 22.86. This study showed that there were differences in the number of osteocytes and osteoblasts in the two groups.
Conclusion: The study reported that the ALSR group had significantly different numbers of osteoblasts and osteocytes than the control group.
Collapse
|
15
|
Liu Y, Duan M, Guo D, Kan S, Zhang L, Aili M, Zhang D, Du W, Xie J. PDGF-AA promotes cell-to-cell communication in osteocytes through PI3K/Akt signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1640-1649. [PMID: 34586354 DOI: 10.1093/abbs/gmab136] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/24/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Osteocytes are the main sensitive cells in bone remodeling due to their potent functional cell processes from the mineralized bone matrix to the bone surface and the bone marrow. Neighboring osteocytes communicate with each other by these cell processes to achieve molecular exchange through gap junction channels. Platelet-derived growth factor-AA (PDGF-AA) has been reported to enhance bone tissue remodeling by promoting cell proliferation, migration, and autocrine secretion in osteoid cell linage. However, the effect of PDGF-AA on intercellular communication between osteocytes is still unclear. In the present study, we elucidated that PDGF-AA could enhance the formation of dendritic processes of osteocytes and the gap junctional intercellular communication by promoting the expression of connexin43 (Cx43). This modulation process was mainly dependent on the activation of phosphorylation of Akt protein by phosphatidylinositol 3-kinase (PI3K)/Akt (also known as protein kinase B, PKB) signaling. Inhibition of PI3K/Akt signaling decreased the Cx43 expression induced by PDGF-AA. These results establish a bridge between PDGF-AA and cell-cell communication in osteocytes, which could help us understand the molecular exchange between bone cells and fracture healing.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Shiyi Kan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Munire Aili
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Juhl OJ, Buettmann EG, Friedman MA, DeNapoli RC, Hoppock GA, Donahue HJ. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 2021; 7:28. [PMID: 34301942 PMCID: PMC8302614 DOI: 10.1038/s41526-021-00158-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
With the reignited push for manned spaceflight and the development of companies focused on commercializing spaceflight, increased human ventures into space are inevitable. However, this venture would not be without risk. The lower gravitational force, known as microgravity, that would be experienced during spaceflight significantly disrupts many physiological systems. One of the most notably affected systems is the musculoskeletal system, where exposure to microgravity causes both bone and skeletal muscle loss, both of which have significant clinical implications. In this review, we focus on recent advancements in our understanding of how exposure to microgravity affects the musculoskeletal system. We will focus on the catabolic effects microgravity exposure has on both bone and skeletal muscle cells, as well as their respective progenitor stem cells. Additionally, we report on the mechanisms that underlie bone and muscle tissue loss resulting from exposure to microgravity and then discuss current countermeasures being evaluated. We reveal the gaps in the current knowledge and expound upon how current research is filling these gaps while also identifying new avenues of study as we continue to pursue manned spaceflight.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rachel C DeNapoli
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
17
|
Chen JH, Shen C, Oh H, Park JH. Exendin-4, a glucagon-like peptide receptor agonist, facilitates osteoblast differentiation via connexin43. Endocrine 2021; 72:672-680. [PMID: 33641073 DOI: 10.1007/s12020-021-02664-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/17/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE To investigate whether exendin-4 (Ex-4), a glucagon-like peptide 1 receptor (GLP-1R) agonist, affects connexin 43 (Cx43) expression in osteoblasts, and determine the specific mechanism underlying Cx43 modulation by Ex-4. METHODS Osteoblast-like MC3T3-E1 cells were treated with Ex-4 with or without GLP-1R antagonist. We assessed Cx43 expression using RT-PCR, western blotting, and confocal microscopy; visualized intercellular communication using Lucifer yellow dye transfer assay; evaluated osteoblast differentiation using alkaline phosphatase and Alizarin red S (ARS) staining. Cx43 silencing or overexpression was investigated via RNA-interference or adenovirus infection. The mechanism underlying Cx43 regulation by Ex-4 was determined via treatment with either Src kinase inhibitor, KX2-391, Akt activator, sc79, or inhibitor, LY294002. RESULTS Ex-4 treatment enhanced Cx43 expression and gap junctional intercellular communication in MC3T3-E1 cells. GLP-1R antagonist pretreatment abrogated the induction of Cx43 expression. Cx43 silencing significantly decreased ARS staining intensity in Ex-4-treated cells, whereas overexpression enhanced cell differentiation. Treatment with KX2-391 reduced both the Ex-4-induced increase of Cx43 expression and p-Akt protein levels. sc79 upregulated Cx43 expression, while LY294002 attenuated Cx43 upregulation by Ex-4. CONCLUSIONS Induced Cx43 expression in osteoblasts via the Src-Akt signaling pathway illustrates the underlying mechanism for promoting osteoblast differentiation by Ex-4.
Collapse
Affiliation(s)
- Jin Hong Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Chen Shen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Haram Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Ji Hyun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
18
|
Preidl RHM, Amann K, Weber M, Schiller M, Ringler M, Ries J, Neukam FW, Kesting M, Geppert CI, Wehrhan F. Lineage-associated connexin 43 expression in bisphosphonate-exposed rat bones. J Craniomaxillofac Surg 2021; 49:738-747. [PMID: 33642117 DOI: 10.1016/j.jcms.2021.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/19/2020] [Accepted: 02/14/2021] [Indexed: 10/22/2022] Open
Abstract
Expression of signaling proteins in bone cells depends on their embryological mesoderm-derived (e.g. tibia) or cranial neural crest (CNC)-derived (e.g. jaw) origin. Connexin 43 (Cx43) is a gap junction protein that plays an essential role in the mode of action of bisphosphonates (BP). This study aimed to investigate Cx43 expression and the influence of BP application on mesoderm- and CNC-derived bone. Using a rat model, molar extraction and tibia osteotomy with (Group 4) or without (Group 3) previous BP application was performed. Untreated (Group 1) and animals selectively treated with BPs (Group 2) served as controls. Cx43 expression was immunohistochemically determined 12 and 16 weeks postoperatively via a labeling index. Cx43 expression in CNC-derived bone was significantly higher compared with mesodermal bone. BP application decreased Cx43 expression; however, detected expression levels were still higher in jawbone (Group 2 tibia vs jaw: 5.83 ± 5.06 vs 23.52 ± 6.42; p = 0.007). During bone healing after surgical intervention (Group 3) there were no expression differences between tibia and jawbone. BP treatment prior to surgery resulted in significantly lower Cx43 expression in CNC-derived compared with tibia bone (Group 4 tibia vs jaw: 56.84 ± 15.57 vs 16.40 ± 5.66; p < 0.01). Increased Cx43 expression in jaw compared with tibia bone is in line with their embryological origins. A significant Cx43 suppression in jawbone after BP application and surgery might contribute to the selectively altered osseous turnover and development of MRONJ in CNC-derived bone.
Collapse
Affiliation(s)
- Raimund H M Preidl
- Resident, Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany.
| | - Kerstin Amann
- Head of Nephropathology, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Manuel Weber
- Resident, Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Martin Schiller
- Doctoral Students, Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Manuela Ringler
- Doctoral Students, Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Friedrich W Neukam
- Former Head of Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Marco Kesting
- Head of Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Carol-Immanuel Geppert
- Specialist in Pathology, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| | - Falk Wehrhan
- Specialist in Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, University of Erlangen-Nuremberg, Glückstraße 11, 91056, Erlangen, Germany
| |
Collapse
|
19
|
Schupbach D, Comeau-Gauthier M, Harvey E, Merle G. Wnt modulation in bone healing. Bone 2020; 138:115491. [PMID: 32569871 DOI: 10.1016/j.bone.2020.115491] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
Abstract
Genetic studies have been instrumental in the field of orthopaedics for finding tools to improve the standard management of fractures and delayed unions. The Wnt signaling pathway that is crucial for development and maintenance of many organs also has a very promising pathway for enhancement of bone regeneration. The Wnt pathway has been shown to have a direct effect on stem cells during bone regeneration, making Wnt a potential target to stimulate bone repair after trauma. A more complete view of how Wnt influences animal bone regeneration has slowly come to light. This review article provides an overview of studies done investigating the modulation of the canonical Wnt pathway in animal bone regeneration models. This not only includes a summary of the recent work done elucidating the roles of Wnt and β-catenin in fracture healing, but also the results of thirty transgenic studies, and thirty-eight pharmacological studies. Finally, we discuss the discontinuation of sclerostin clinical trials, ongoing clinical trials with lithium, the results of Dkk antibody clinical trials, the shift into combination therapies and the future opportunities to enhance bone repair and regeneration through the modulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Drew Schupbach
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Marianne Comeau-Gauthier
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A7-117, Montreal, Québec H3G 1A4, Canada.
| | - Edward Harvey
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada.
| | - Geraldine Merle
- Department of Surgery, Division of Orthopedic Surgery, McGill University, Montreal General Hospital, 1650 Cedar Avenue, Room A10-110, Montreal, Québec H3G 1A4, Canada; Department of Chemical Engineering, Polytechnique Montreal, 2500, chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
20
|
Singh AK, Cancelas JA. Gap Junctions in the Bone Marrow Lympho-Hematopoietic Stem Cell Niche, Leukemia Progression, and Chemoresistance. Int J Mol Sci 2020; 21:E796. [PMID: 31991829 PMCID: PMC7038046 DOI: 10.3390/ijms21030796] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract: The crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM) microenvironment is critical for homeostasis and hematopoietic regeneration in response to blood formation emergencies after injury, and has been associated with leukemia transformation and progression. Intercellular signals by the BM stromal cells in the form of cell-bound or secreted factors, or by physical interaction, regulate HSC localization, maintenance, and differentiation within increasingly defined BM HSC niches. Gap junctions (GJ) are comprised of arrays of membrane embedded channels formed by connexin proteins, and control crucial signaling functions, including the transfer of ions, small metabolites, and organelles to adjacent cells which affect intracellular mechanisms of signaling and autophagy. This review will discuss the role of GJ in both normal and leukemic hematopoiesis, and highlight some of the most novel approaches that may improve the efficacy of cytotoxic drugs. Connexin GJ channels exert both cell-intrinsic and cell-extrinsic effects on HSC and BM stromal cells, involved in regenerative hematopoiesis after myelosuppression, and represent an alternative system of cell communication through a combination of electrical and metabolic coupling as well as organelle transfer in the HSC niche. GJ intercellular communication (GJIC) in the HSC niche improves cellular bioenergetics, and rejuvenates damaged recipient cells. Unfortunately, they can also support leukemia proliferation and survival by creating leukemic niches that provide GJIC dependent energy sources and facilitate chemoresistance and relapse. The emergence of new strategies to disrupt self-reinforcing malignant niches and intercellular organelle exchange in leukemic niches, while at the same time conserving normal hematopoietic GJIC function, could synergize the effect of chemotherapy drugs in eradicating minimal residual disease. An improved understanding of the molecular basis of connexin regulation in normal and leukemic hematopoiesis is warranted for the re-establishment of normal hematopoiesis after chemotherapy.
Collapse
Affiliation(s)
- Abhishek K. Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA;
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | - Jose A. Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA;
- Hoxworth Blood Center, University of Cincinnati Academic Health Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| |
Collapse
|
21
|
Choy MHV, Wong RMY, Chow SKH, Li MC, Chim YN, Li TK, Ho WT, Cheng JCY, Cheung WH. How much do we know about the role of osteocytes in different phases of fracture healing? A systematic review. J Orthop Translat 2019; 21:111-121. [PMID: 32309136 PMCID: PMC7152791 DOI: 10.1016/j.jot.2019.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/22/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Although emerging studies have provided evidence that osteocytes are actively involved in fracture healing, there is a general lack of a detailed understanding of the mechanistic pathway, cellular events and expression of markers at different phases of healing. Methods This systematic review describes the role of osteocytes in fracture healing from early to late phase. Literature search was performed in PubMed and Embase. Original animal and clinical studies with available English full-text were included. Information was retrieved from the selected studies. Results A total of 23 articles were selected in this systematic review. Most of the studies investigated changes of various genes and proteins expression patterns related to osteocytes. Several studies have described a constant expression of osteocyte-specific marker genes throughout the fracture healing cascade followed by decline phase with the progress of healing, denoting the important physiological role of the osteocyte and the osteocyte lacuno-canalicular network in fracture healing. The reports of various markers suggested that osteocytes could trigger coordinated bone healing responses from cell death and expression of proinflammatory markers cyclooxygenase-2 and interleukin 6 at early phase of fracture healing. This is followed by the expression of growth factors bone morphogenetic protein-2 and cysteine-rich angiogenic inducer 61 that matched with the neo-angiogenesis, chondrogenesis and callus formation during the intermediate phase. Tightly controlled regulation of osteocyte-specific markers E11/Podoplanin (E11), dentin matrix protein 1 and sclerostin modulate and promote osteogenesis, mineralisation and remodelling across different phases of fracture healing. Stabilised fixation was associated with the finding of higher number of osteocytes with little detectable bone morphogenetic proteins expressions in osteocytes. Sclerostin-antibody treatment was found to result in improvement in bone mass, bone strength and mineralisation. Conclusion To further illustrate the function of osteocytes, additional longitudinal studies with appropriate clinically relevant model to study osteoporotic fractures are crucial. Future investigations on the morphological changes of osteocyte lacuno-canalicular network during healing, osteocyte-mediated signalling molecules in the transforming growth factor-beta-Smad3 pathway, perilacunar remodelling, type of fixation and putative biomarkers to monitor fracture healing are highly desirable to bridge the current gaps of knowledge.The translational potential of this article: This systematic review provides an up-to-date chronological overview and highlights the osteocyte-regulated events at gene, protein, cellular and tissue levels throughout the fracture healing cascade, with the hope of informing and developing potential new therapeutic strategies that could improve the timing and quality of fracture healing in the future.
Collapse
Affiliation(s)
- Man Huen Victoria Choy
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Ronald Man Yeung Wong
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Meng Chen Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Yu Ning Chim
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Tsz Kiu Li
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Wing Tung Ho
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Jack Chun Yiu Cheng
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
| | - Wing Ho Cheung
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, PR China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
- Corresponding author. Department of Orthopaedics and Traumatology, 5/F, Lui Che Woo Clinical Sciences Building, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, PR China.
| |
Collapse
|
22
|
Chen Y, Chen M, Xue T, Li G, Wang D, Shang P, Jiang JX, Xu H. Osteocytic connexin 43 channels affect fracture healing. J Cell Physiol 2019; 234:19824-19832. [PMID: 30980397 DOI: 10.1002/jcp.28581] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/27/2022]
Abstract
The cross-talk between cells is very critical for moving forward fracture healing in an orderly manner. Connexin (Cx) 43-formed gap junctions and hemichannels mediate the communication between adjacent cells and cells and extracellular environment. Loss of Cx43 in osteoblasts/osteocytes results in delayed fracture healing. For investigating the role of two channels in osteocytes in bone repair, two transgenic mouse models with Cx43 dominant negative mutants driven by a 10 kb-DMP1 promoter were generated: R76W (gap junctions are blocked, whereas hemichannels are promoted) and Δ130-136 (both gap junctions and hemichannels are blocked). R76W mice (promotion of hemichannels) showed a significant increase of new bone formation, whereas delayed osteoclastogenesis and healing was observed in Δ130-136 (impairment of gap junctions), but not in R76W mice (hemichannel promotion may recover the delay). These results suggest that gap junctions and hemichannels play some similar and cooperative roles in bone repair.
Collapse
Affiliation(s)
- Yunhe Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Meng Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Tong Xue
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Guobin Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dongen Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Research & Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen, Shenzhen, Guangdong, China
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Laboratory for Space Bioscience and Biotechnology, Research & Development Institute in Shenzhen, Northwestern Polytechnical UniversityShenzhen, Shenzhen, Guangdong, China.,Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Transforming growth factor-β1 up-regulates connexin43 expression in osteocytes via canonical Smad-dependent signaling pathway. Biosci Rep 2018; 38:BSR20181678. [PMID: 30482881 PMCID: PMC6294634 DOI: 10.1042/bsr20181678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 02/05/2023] Open
Abstract
Connexin 43 (Cx43)-mediated gap junctional intercellular communication (GJIC) has been shown to be important in regulating multiple functions of bone cells. Transforming growth factor-β1 (TGF-β1) exhibited controversial effects on the expression of Cx43 in different cell types. To date, the effect of TGF-β1 on the Cx43 expression of osteocytes is still unknown. In the present study, we detected the expression of TGF-β1 in osteocytes and bone tissue, and then used recombinant mouse TGF-β1 to elucidate its effect on gap junctions (GJs) of osteocytes. Our data indicated that TGF-β1 up-regulated both mRNA and protein expression of Cx43 in osteocytes. Together with down-regulation of Cx43 expression after being treated with TGF-β type I receptor inhibitor Repsox, we deduced that TGF-β1 can positively regulate Cx43 expression in osteocytes. Thus we next focussed on the downstream signals of TGF-β and found that TGF-β1-mediated smads, Smad3 and Smad4, to translocate into nucleus. These translocated signal proteins bind to the promoter of Gja1 which was responsible for the changed expression of Cx43. The present study provides evidence that TGF-β1 can enhance GJIC between osteocytes through up-regulating Cx43 expression and the underlying mechanism involved in the activation of Smad-dependent pathway.
Collapse
|
24
|
Liu XY, Li X, Bai MR, Chen X, Wang CL, Xie J, Ye L. FGF-7 Dictates Osteocyte Cell Processes Through Beta-Catenin Transduction. Sci Rep 2018; 8:14792. [PMID: 30287900 PMCID: PMC6172271 DOI: 10.1038/s41598-018-33247-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/26/2018] [Indexed: 02/05/2023] Open
Abstract
It is well recognized that osteocytes communicate with each other via gap junctions and that connxin43 (Cx43) shows its great potential in gap junction for the contribution enabling transmission of small molecules and operating in an autocrine/a paracrine manner. Fibroblast growth factors (FGFs) play significant roles in new bone formation and adult bone remodeling, and FGF signaling is regulated by the precise spatiotemporal approaches. However, the influence of FGF7 on osteocyte cell processes is not well elucidated. In this study, we aimed to examine the impact of FGF7 on osteocyte cell processes by characterizing the expression of Cx43 and to reveal the underlying mechanism regulating this cell process. We first found that the mRNA level of FGF7 was higher relative to other FGF family members both in osteocytes cell line (MLO-Y4) and bone tissue. We then demonstrated that FGF7 could increase the expression of Cx43 in osteocytes and promote the cell processes in the form of gap junctions between osteocytes. This modulation was due to the FGF7-induced cytoplasmic accumulation and resultant nuclear translocation of β-catenin. Our results could help us to further understand the importance of FGF7 on bone cell behavior and bone physiology and even pathology.
Collapse
Affiliation(s)
- Xiao-Yu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ming-Ru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xia Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng-Lin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Marrella A, Lee TY, Lee DH, Karuthedom S, Syla D, Chawla A, Khademhosseini A, Jang HL. Engineering vascularized and innervated bone biomaterials for improved skeletal tissue regeneration. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2018; 21:362-376. [PMID: 30100812 PMCID: PMC6082025 DOI: 10.1016/j.mattod.2017.10.005] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Blood vessels and nerve fibers are distributed throughout the entirety of skeletal tissue, and play important roles during bone development and fracture healing by supplying oxygen, nutrients, and cells. However, despite the successful development of bone mimetic materials that can replace damaged bone from a structural point of view, most of the available bone biomaterials often do not induce sufficient formation of blood vessels and nerves. In part, this is due to the difficulty of integrating and regulating multiple tissue types within artificial materials, which causes a gap between native skeletal tissue. Therefore, understanding the anatomy and underlying interaction mechanisms of blood vessels and nerve fibers in skeletal tissue is important to develop biomaterials that can recapitulate its complex microenvironment. In this perspective, we highlight the structure and osteogenic functions of the vascular and nervous system in bone, in a coupled manner. In addition, we discuss important design criteria for engineering vascularized, innervated, and neurovascularized bone implant materials, as well as recent advances in the development of such biomaterials. We expect that bone implant materials with neurovascularized networks can more accurately mimic native skeletal tissue and improve the regeneration of bone tissue.
Collapse
Affiliation(s)
- Alessandra Marrella
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Tae Yong Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dong Hoon Lee
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Sobha Karuthedom
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Denata Syla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
| | - Aditya Chawla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139. USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
26
|
Sun YX, Zhang JF, Xu J, Xu LL, Wu TY, Wang B, Pan XH, Li G. MicroRNA-144-3p inhibits bone formation in distraction osteogenesis through targeting Connexin 43. Oncotarget 2017; 8:89913-89922. [PMID: 29163798 PMCID: PMC5685719 DOI: 10.18632/oncotarget.20984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022] Open
Abstract
Distraction osteogenesis (DO), one of effective therapies for bone regeneration, has been received more attention in recent years. However, the underlying mechanism remains elusive. Recently, microRNAs (miRNAs) have been reported to play important roles in regulating osteogenesis and bone formation. We therefore provided the hypothesis that miRNAs could involve in the DO-mediated bone regeneration. After successfully established the DO model of rats, a miRNA microarray was performed to find the differently expressed miRNAs in DO and control groups in this study. As one of the most downregulated miRNAs, miR-144-3p was found to be decreased during osteogenic differentiation in mesenchymal stem cells of rats (rBMSCs) and DO model. And miR-144-3p overexpression suppressed the osteogenesis while its inhibitor promoted osteogenesis. Furthermore, Connexin-43, an essential regulator for osteogenesis, was validated to be a novel target for miR-144-3p. Finally, miR-144-3p inhibitor modified MSCs promoted mineralization of distracted bone in rat DO model. In conclusion, miR-144-3p was found to regulate osteogenesis and inhibition of miR-144-3p resulted in acceleration of mineralization of DO, which not only give clues to understanding the mechanism of DO but also provide a potential therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Yu-Xin Sun
- Department of Orthopaedics and Traumatology, Bao-An District People's Hospital, Shenzhen, PR China.,Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Jin-Fang Zhang
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China
| | - Jia Xu
- Department of Orthopaedics Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, PR China
| | - Liang-Liang Xu
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Tian-Yi Wu
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Bin Wang
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China
| | - Xiao-Hua Pan
- Department of Orthopaedics and Traumatology, Bao-An District People's Hospital, Shenzhen, PR China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Bao-An District People's Hospital, Shenzhen, PR China.,Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, PR China.,Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW To discuss current knowledge on the role of connexins and pannexins in the musculoskeletal system. RECENT FINDINGS Connexins and pannexins are crucial for the development and maintenance of both bone and skeletal muscle. In bone, the presence of connexin and more recently of pannexin channels in osteoblasts, osteoclasts, and osteocytes has been described and shown to be essential for normal skeletal development and bone adaptation. In skeletal muscles, connexins and pannexins play important roles during development and regeneration through coordinated regulation of metabolic functions via cell-to-cell communication. Further, under pathological conditions, altered expression of these proteins can promote muscle atrophy and degeneration by stimulating inflammasome activity. In this review, we highlight the important roles of connexins and pannexins in the development, maintenance, and regeneration of musculoskeletal tissues, with emphasis on the mechanisms by which these molecules mediate chemical (e.g., ATP and prostaglandin E2) and physical (e.g., mechanical stimulation) stimuli that target the musculoskeletal system and their involvement in the pathophysiological changes in both genetic and acquired diseases.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.
| | - Hannah M Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA
| | - Bruno A Cisterna
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
28
|
Guo Y, Wang Y, Liu Y, Wang H, Guo C, Zhang X, Bei C. Effect of the same mechanical loading on osteogenesis and osteoclastogenesis in vitro. Chin J Traumatol 2017; 18:150-6. [PMID: 26643241 DOI: 10.1016/j.cjtee.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To investigate the influence of the same mechanical loading on osteogenesis and osteoclastogenesis in vitro. METHODS Primary osteoblasts, bone marrow-derived mesenchymal stem cells (BMSCs, cultured in osteoinductive medium) and RAW264.7 cells cultured in osteoclast inductive medium were all subjected to a 1000 μstrain (μs) at 1 Hz cyclic mechanical stretch for 30 min (twice a day). RESULTS After mechanical stimulation, the alkaline phosphatase (ALP) activity, osteocalcin protein level of the osteoblasts and BMSCs were all enhanced, and the mRNA levels of ALP and collagen type I increased. Additionally, extracellular-deposited calcium of both osteoblasts and BMSCs increased. At the same time, the activity of secreted tartrate-resistant acid phosphatase, the number of tartrate-resistant acid phosphatase-positive multinucleated cells, matrix metalloproteinase-9 protein levels of RAW264.7 cells and the extracellular calcium solvency all decreased. CONCLUSION The results demonstrated that 1000 μs cyclic mechanical loading enhanced osteoblasts activity, promoted osteoblastic differentiation of BMSCs and restrained osteoclastogenesis of RAW264.7 cells in vitro.
Collapse
Affiliation(s)
- Yong Guo
- College of Biotechnology, Guilin Medical University, Guilin 541004, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Inhibition of connexin 43 prevents trauma-induced heterotopic ossification. Sci Rep 2016; 6:37184. [PMID: 27849058 PMCID: PMC5111117 DOI: 10.1038/srep37184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022] Open
Abstract
Heterotopic ossification (HO) can result from traumatic injury, surgery or genetic diseases. Here, we demonstrate that overexpression of connexin 43 (Cx43) is critical for the development and recurrence of traumatic HO in patients. Inhibition of Cx43 by shRNA substantially suppressed the osteogenic differentiation of MC-3T3 cells and the expression of osteogenic genes. We employed a tenotomy mouse model to explore the hypothesis that Cx43 is vital to the development of HO. Inhibition of Cx43 by a specific shRNA decreased extraskeletal bone formation in vivo. In addition, we demonstrated that ERK signaling activated by Cx43 plays an important role in promoting HO. ERK signaling was highly activated in HO tissue collected from patient and mouse models. Importantly, de novo soft tissue HO was significantly attenuated in mice treated with U0126. Inhibition of Cx43 and ERK led to decreased expressions of Runx2, BSP and Col-1 in vivo and in vitro. Moreover, HO patients with low Cx43 expression or ERK activation had a lower risk of recurrence after the lesions were surgically removed. Our findings indicate that Cx43 promotes trauma-induced HO formation by activating the ERK pathway and enhances the expression of osteogenic markers.
Collapse
|
30
|
Lau KHW, Rundle CH, Zhou XD, Baylink DJ, Sheng MHC. Conditional deletion of IGF-I in osteocytes unexpectedly accelerates bony union of the fracture gap in mice. Bone 2016; 92:18-28. [PMID: 27519969 DOI: 10.1016/j.bone.2016.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/03/2016] [Accepted: 08/08/2016] [Indexed: 01/14/2023]
Abstract
This study evaluated the effects of deficient IGF-I expression in osteocytes on fracture healing. Transgenic mice with conditional knockout (cKO) of Igf1 in osteocytes were generated by crossing Dmp1-Cre mice with Igf1 flox mice. Fractures were created on the mid-shaft of tibia of 12-week-old male cKO mice and wild-type (WT) littermates by three-point bending. At 21 and 28days post-fracture healing, the increases in cortical bone mineral density, mineral content, bone area, and thickness, as well as sub-cortical bone mineral content at the fracture site were each greater in cKO calluses than in WT calluses. There were 85% decrease in the cartilage area and >2-fold increase in the number of osteoclasts in cKO calluses at 14days post-fracture, suggesting a more rapid remodeling of endochondral bone. The upregulation of mRNA levels of osteoblast marker genes (cbfa1, alp, Opn, and Ocn) was greater in cKO calluses than in WT calluses. μ-CT analysis suggested an accelerated bony union of the fracture gap in cKO mice. The Sost mRNA level was reduced by 50% and the Bmp2 mRNA level was increased 3-fold in cKO fractures at 14days post-fracture, but the levels of these two mRNAs in WT fractures were unchanged, suggesting that the accelerated fracture repair may in part act through the Wnt and/or BMP signaling. In conclusion, conditional deletion of Igf1 in osteocytes not only did not impair, but unexpectedly enhanced, bony union of the fracture gap. The accelerated bony union was due in part to upregulation of the Wnt and BMP2 signaling in response to deficient osteocyte-derived IGF-I expression, which in turn favors intramembranous over endochondral bone repair.
Collapse
Affiliation(s)
- Kin-Hing W Lau
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA; Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - Charles H Rundle
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | - Xiao-Dong Zhou
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Matilda H-C Sheng
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
31
|
Zhou YY, Huang RY, Lin JH, Xu YY, He XH, He YT. Bushen-Qiangdu-Zhilv decoction inhibits osteogenic differentiation of rat fibroblasts by regulating connexin 43. Exp Ther Med 2016; 12:347-353. [PMID: 27347061 DOI: 10.3892/etm.2016.3292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 03/07/2016] [Indexed: 01/17/2023] Open
Abstract
Bushen-Qiangdu-Zhilv (BQZ) decoction is a traditional Chinese medicinal compound widely used for treating ankylosing spondylitis (AS). However, the mechanisms underlying effects of BQZ remain largely unknown. Osteoblast differentiation of fibroblasts plays an important role in heterotopic ossification (HO) of AS, and connexin 43 (Cx43) is crucially involved in the osteoblast differentiation of fibroblasts. The aim of the present study was to evaluate the effects of BQZ on the osteogenic differentiation of fibroblasts by regulating Cx43. Rat fibroblasts were treated with freeze-dried powder of BQZ, in the presence or absence of recombinant human bone morphogenetic protein-2 (rhBMP-2). MTS assays were performed to examine the inhibitory effects of BQZ on fibroblast proliferation. Western blot assays were conducted to detect the protein expression of core-binding factor alpha 1 (Cbfα1), Cx43 and phosphorylated Cx43 (pCx43). BQZ appeared to inhibit fibroblast proliferation in a dose-dependent manner. Furthermore, the expression of Cbfα1 and Cx43/pCx43 was significantly suppressed by BQZ, with or without rhBMP-2 stimulation. Therefore, the present results indicate that BQZ may exert an anti-AS effect by suppressing the osteogenic differentiation of fibroblasts via Cx43 regulation.
Collapse
Affiliation(s)
- Ying-Yan Zhou
- Department of Rheumatology, College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Run-Yue Huang
- Department of Rheumatology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jie-Hua Lin
- Department of Rheumatology, College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yong-Yue Xu
- Department of Rheumatology, College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Xiao-Hong He
- Department of Rheumatology, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yi-Ting He
- Department of New Drug Development, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
32
|
Plotkin LI, Laird DW, Amedee J. Role of connexins and pannexins during ontogeny, regeneration, and pathologies of bone. BMC Cell Biol 2016; 17 Suppl 1:19. [PMID: 27230612 PMCID: PMC4896274 DOI: 10.1186/s12860-016-0088-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Electron micrographs revealed the presence of gap junctions in osteoblastic cells over 40 years ago. These intercellular channels formed from connexins are present in bone forming osteoblasts, bone resorbing osteoclasts, and osteocytes (mature osteoblasts embedded in the mineralized bone matrix). More recently, genetic and pharmacologic studies revealed the role of connexins, and in particular Cx43, in the differentiation and function of all bone types. Furthermore, mutations in the gene encoding Cx43 were found to be causally linked to oculodentodigital dysplasia, a condition that results in an abnormal skeleton. Pannexins, molecules with similar structure and single-membrane channel forming potential as connexins when organized as hemichannels, are also expressed in osteoblastic cells. The function of pannexins in bone and cartilage is beginning to be uncovered, but more research is needed to determine the role of pannexins in bone development, adult bone mass and skeletal homeostasis. We describe here the current knowledge on the role of connexins and pannexins on skeletal health and disease.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Roudebush Veterans Administration Medical Center Indiana, Indianapolis, IN, 46202, USA.
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A-5C1, Canada
| | - Joelle Amedee
- INSERM U1026, Tissue Bioengineering, Université Bordeaux, Bordeaux, F-33076, France
| |
Collapse
|
33
|
Osteocytic connexin hemichannels suppress breast cancer growth and bone metastasis. Oncogene 2016; 35:5597-5607. [PMID: 27041582 PMCID: PMC5050050 DOI: 10.1038/onc.2016.101] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/13/2016] [Accepted: 01/25/2016] [Indexed: 12/15/2022]
Abstract
Although the skeleton is one of predominant sites for breast cancer metastasis, why breast cancer cells often become dormant after homing to bone is not well understood. Here, we reported an intrinsic self-defense mechanism of bone cells against breast cancer cells: a critical role of connexin (Cx) 43 hemichannels in osteocytes in the suppression of breast cancer bone metastasis. Cx43 hemichannels allow passage of small molecules between the intracellular and extracellular environments. The treatment of bisphosphonate drugs, either alendronate (ALN) or zoledronic acid (ZOL), opened Cx43 hemichannels in osteocytes. Conditioned media (CM) collected from MLO-Y4 osteocyte cells treated with bisphosphonates inhibited the anchorage-independent growth, migration and invasion of MDA-MB-231 human breast cancer cells and Py8119 mouse mammary carcinoma cells and this inhibitory effect was attenuated with Cx43(E2), a specific hemichannel blocking antibody. The opening of osteocytic Cx43 hemichannels by mechanical stimulation had similar inhibitory effects on breast cancer cells and this inhibition was attenuated by Cx43(E2) antibody as well. These inhibitory effects on cancer cells were mediated by ATP released from osteocyte Cx43 hemichannels. Furthermore, both Cx43 osteocyte-specific knockout mice and osteocyte-specific Δ130–136 transgenic mice with impaired Cx43 gap junctions and hemichannels showed significantly increased tumor growth and attenuated the inhibitory effect of ZOL. However, R76W transgenic mice with functional hemichannels but not gap junctions in osteocytes did not display a significant difference. Together, our studies establish the specific inhibitory role of osteocytic Cx43 hemichannels, and exploiting the activity of this channel could serve as a de novo therapeutic strategy.
Collapse
|
34
|
Xu H, Duan J, Ning D, Li J, Liu R, Yang R, Jiang JX, Shang P. Role of Wnt signaling in fracture healing. BMB Rep 2015; 47:666-72. [PMID: 25301020 PMCID: PMC4345510 DOI: 10.5483/bmbrep.2014.47.12.193] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 01/08/2023] Open
Abstract
The Wnt signaling pathway is well known to play major roles in skeletal development and homeostasis. In certain aspects, fracture repair mimics the process of bone embryonic development. Thus, the importance of Wnt signaling in fracture healing has become more apparent in recent years. Here, we summarize recent research progress in the area, which may be conducive to the development of Wnt-based therapeutic strategies for bone repair. [BMB Reports 2014; 47(12): 666-672]
Collapse
Affiliation(s)
- Huiyun Xu
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Jing Duan
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Dandan Ning
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Jingbao Li
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Ruofei Liu
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Ruixin Yang
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, Texas 78229, the United States
| | - Peng Shang
- Key Laboratory for Space Biosciences & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, People's Republic of China
| |
Collapse
|
35
|
Plotkin LI, Stains JP. Connexins and pannexins in the skeleton: gap junctions, hemichannels and more. Cell Mol Life Sci 2015; 72:2853-67. [PMID: 26091748 PMCID: PMC4503509 DOI: 10.1007/s00018-015-1963-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Regulation of bone homeostasis depends on the concerted actions of bone-forming osteoblasts and bone-resorbing osteoclasts, controlled by osteocytes, cells derived from osteoblasts surrounded by bone matrix. The control of differentiation, viability and function of bone cells relies on the presence of connexins. Connexin43 regulates the expression of genes required for osteoblast and osteoclast differentiation directly or by changing the levels of osteocytic genes, and connexin45 may oppose connexin43 actions in osteoblastic cells. Connexin37 is required for osteoclast differentiation and its deletion results in increased bone mass. Less is known on the role of connexins in cartilage, ligaments and tendons. Connexin43, connexin45, connexin32, connexin46 and connexin29 are expressed in chondrocytes, while connexin43 and connexin32 are expressed in ligaments and tendons. Similarly, although the expression of pannexin1, pannexin2 and pannexin3 has been demonstrated in bone and cartilage cells, their function in these tissues is not fully understood.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5035, Indianapolis, IN, 46202, USA,
| | | |
Collapse
|
36
|
Abstract
Skeletal loading is an important physiological regulator of bone mass. Theoretically, mechanical forces or administration of drugs that activate bone mechanosensors would be a novel treatment for osteoporotic disorders, particularly age-related osteoporosis and other bone loss caused by skeletal unloading. Uncertainty regarding the identity of the molecular targets that sense and transduce mechanical forces in bone, however, has limited the therapeutic exploitation of mechanosesning pathways to control bone mass. Recently, two evolutionally conserved mechanosensing pathways have been shown to function as "physical environment" sensors in cells of the osteoblasts lineage. Indeed, polycystin-1 (Pkd1, or PC1) and polycystin-2 (Pkd2, or PC2' or TRPP2), which form a flow sensing receptor channel complex, and TAZ (transcriptional coactivator with PDZ-binding motif, or WWTR1), which responds to the extracellular matrix microenvironment act in concert to reciprocally regulate osteoblastogenesis and adipogenesis through co-activating Runx2 and a co-repressing PPARγ activities. Interactions of polycystins and TAZ with other putative mechanosensing mechanism, such as primary cilia, integrins and hemichannels, may create multifaceted mechanosensing networks in bone. Moreover, modulation of polycystins and TAZ interactions identify novel molecular targets to develop small molecules that mimic the effects of mechanical loading on bone.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38165, USA
- Coleman College of Medicine Building, Suite B216, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN 38163, USA
| |
Collapse
|
37
|
Zappitelli T, Aubin JE. The "connexin" between bone cells and skeletal functions. J Cell Biochem 2015; 115:1646-58. [PMID: 24818806 DOI: 10.1002/jcb.24836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 11/11/2022]
Abstract
The processes of bone modeling and remodeling are crucial in the skeleton's functions as a supportive and protective structure, a mineral reservoir, and an endocrine organ. The coordination between bone cell activities (bone formation and bone resorption), necessary to maintain the integrity of the skeleton during these processes, is mediated at least in part by cell-cell and cell-environment interactions across gap junctions and hemichannels. The increasing number of genetically engineered Connexin 43 (Cx43) knockout and missense mouse models have provided insight into the complex and critical roles of Cx43-containing gap junctions and hemichannels in the development and turnover of the skeleton, in differentiation, activity and survival of the bone cell lineages, and in the cellular and molecular mechanisms by which Cx43 functions and assists in mediating cellular responses to stimuli in bone. Cx43 may be an important potential therapeutic target, making it crucial that we continue to gain understanding of the multiple and complex roles of Cx43 in bone.
Collapse
Affiliation(s)
- Tanya Zappitelli
- Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | | |
Collapse
|
38
|
Axial strain enhances osteotomy repair with a concomitant increase in connexin43 expression. Bone Res 2015; 3:15007. [PMID: 26273538 PMCID: PMC4411567 DOI: 10.1038/boneres.2015.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 11/09/2022] Open
Abstract
The mechanical environment is known to influence fracture healing. We speculated that connexin43 (Cx43) gap junctions, which impact skeletal homeostasis, fracture healing and the osteogenic response to mechanical load, may play a role in mediating the response of the healing bone to mechanical strain. Here, we used an established rat fracture model, which uses a 2 mm osteotomy gap stabilized by an external fixator, to examine the impact of various cyclical axial loading protocols (2%, 10%, and 30% strain) on osteotomy healing. We examined the presence of Cx43 in the osteotomy-healing environment and assessed how mechanical strain modulates Cx43 expression patterns in the callus. We demonstrated that increased cyclical axial strain results in increased radiographic and histologic bone formation. In addition, we show by immunohistochemistry that Cx43 is abundantly expressed in the healing callus, with the expression most robust in samples exposed to increased cyclical axial strain. These data are consistent with the concept that an increase in Cx43 expression by mechanical load may be part of the mechanisms by which mechanical forces enhances fracture healing.
Collapse
|
39
|
Zappitelli T, Chen F, Aubin JE. Up-regulation of BMP2/4 signaling increases both osteoblast-specific marker expression and bone marrow adipogenesis in Gja1Jrt/+ stromal cell cultures. Mol Biol Cell 2015; 26:832-42. [PMID: 25568340 PMCID: PMC4342021 DOI: 10.1091/mbc.e14-06-1136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Up-regulation of BMP2/4 signaling in trabecular bone and/or stromal cells increases osteoblast-specific marker expression in hyperactive Gja1Jrt/+ osteoblasts and may also increase bone marrow adipogenesis by up-regulation of Pparg2 in the Cx43-deficient Gja1Jrt/+ mouse model. Gja1Jrt/+ mice carry a mutation in one allele of the gap junction protein α1 gene (Gja1), resulting in a G60S connexin 43 (Cx43) mutant protein that is dominant negative for Cx43 protein production of <50% of wild-type (WT) levels and significantly reduced gap junction formation and function in osteoblasts and other Cx43-expressing cells. Previously we reported that Gja1Jrt/+ mice exhibited early-onset osteopenia caused by activation of osteoclasts secondary to activation of osteoblast lineage cells, which expressed increased RANKL and produced an abnormal resorption-stimulating bone matrix high in BSP content. Gja1Jrt/+ mice also displayed early and progressive bone marrow atrophy, with a significant increase in bone marrow adiposity versus WT littermates but no increase in adipose tissues elsewhere in the body. BMP2/4 production and signaling were increased in Gja1Jrt/+ trabecular bone and osteogenic stromal cell cultures, which contributed to the up-regulated expression of osteoblast-specific markers (e.g., Bsp and Ocn) in Gja1Jrt/+ osteoblasts and increased Pparg2 expression in bone marrow–derived adipoprogenitors in vitro. The elevated levels of BMP2/4 signaling in G60S Cx43-containing cells resulted at least in part from elevated levels of cAMP. We conclude that up-regulation of BMP2/4 signaling in trabecular bone and/or stromal cells increases osteoblast-specific marker expression in hyperactive Gja1Jrt/+ osteoblasts and may also increase bone marrow adipogenesis by up-regulation of Pparg2 in the Cx43-deficient Gja1Jrt/+ mouse model.
Collapse
Affiliation(s)
- Tanya Zappitelli
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Frieda Chen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jane E Aubin
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada Centre For Modeling Human Disease, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
40
|
Abou-Khalil R, Colnot C. Cellular and molecular bases of skeletal regeneration: what can we learn from genetic mouse models? Bone 2014; 64:211-21. [PMID: 24709685 DOI: 10.1016/j.bone.2014.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Although bone repairs through a very efficient regenerative process in 90% of the patients, many factors can cause delayed or impaired healing. To date, there are no reliable biological parameters to predict or diagnose bone repair defects. Orthopedic surgeons mostly base their diagnoses on radiographic analyses. With the recent progress in our understanding of the bone repair process, new methods may be envisioned. Animal models have allowed us to define the key steps of bone regeneration and the biological and mechanical factors that may influence bone healing in positive or negative ways. Most importantly, small animal models such as mice have provided powerful tools to apprehend the genetic bases of normal and impaired bone healing. The current review presents a state of the art of the genetically modified mouse models that have advanced our understanding of the cellular and molecular components of bone regeneration and repair. The review illustrates the use of these models to define the role of inflammation, skeletal cell lineages, signaling pathways, the extracellular matrix, osteoclasts and angiogenesis. These genetic mouse models promise to change the field of orthopedic surgery to help establish genetic predispositions for delayed repair, develop models of non-union that mimic the human conditions and elaborate new therapeutic approaches to enhance bone regeneration.
Collapse
Affiliation(s)
- Rana Abou-Khalil
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Céline Colnot
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France.
| |
Collapse
|
41
|
Marie PJ. Bone cell senescence: mechanisms and perspectives. J Bone Miner Res 2014; 29:1311-21. [PMID: 24496911 DOI: 10.1002/jbmr.2190] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Age-related bone loss is in large part the consequence of senescence mechanisms that impact bone cell number and function. In recent years, progress has been made in the understanding of the molecular mechanisms underlying bone cell senescence that contributes to the alteration of skeletal integrity during aging. These mechanisms can be classified as intrinsic senescence processes, alterations in endogenous anabolic factors, and changes in local support. Intrinsic senescence mechanisms cause cellular dysfunctions that are not tissue specific and include telomere shortening, accumulation of oxidative damage, impaired DNA repair, and altered epigenetic mechanisms regulating gene transcription. Aging mechanisms that are more relevant to the bone microenvironment include alterations in the expression and signaling of local growth factors and altered intercellular communications. This review provides an integrated overview of the current concepts and interacting mechanisms underlying bone cell senescence during aging and how they could be targeted to reduce the negative impact of senescence in the aging skeleton.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
42
|
Dyce PW, Li D, Barr KJ, Kidder GM. Connexin43 is required for the maintenance of multipotency in skin-derived stem cells. Stem Cells Dev 2014; 23:1636-46. [PMID: 24694074 DOI: 10.1089/scd.2013.0459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expression of the gap junction protein, connexin43 (Cx43), begins early during embryogenesis and is maintained in many different cell types. Several stem cell populations have been shown to express Cx43 and to form functional gap junctions. While it is clear that Cx43 is critical to the function of many organs, whether the same is true for stem cells has not been clearly demonstrated. Recently, stem cells isolated from newborn mouse skin were shown to form oocyte-like cells (OLCs) in vitro, hence the present study focussed on the role Cx43 plays in the proliferation and differentiation of these cells. The stem cells express Cx43 and those from knockout mice (Cx43 KO) exhibited significantly reduced cell-cell coupling. Loss of Cx43 reduced the rate of cellular migration [Cx43 KO, 1.57±0.65 radial cell units (RCU); wildtype (WT), 5.57±0.37 RCU] but increased the proliferation rate of the stem cells (Cx43 KO, 29.40%±2.02%; WT, 12.76%±1.50%). The expression of the pluripotency markers OCT4 and Nanog were found to be reduced in the Cx43 KO population, suggesting an inhibition of differentiation potential. To test the differentiation ability, the stem cells were induced to form neuronal cell types in vitro. While both the WT and KO cells were able to form GFAP-positive astrocytic cells, only WT stem cells were able to form βIII tubulin-positive neurons. Similarly, the ability of the stem cells to form OLCs was ablated by the loss of Cx43. These data reveal a role for Cx43 in maintaining multipotency within the skin-derived stem cell population.
Collapse
Affiliation(s)
- Paul W Dyce
- 1 Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario , London, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Uzer G, Pongkitwitoon S, Ian C, Thompson WR, Rubin J, Chan ME, Judex S. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro. PLoS One 2014; 9:e90840. [PMID: 24614887 PMCID: PMC3948700 DOI: 10.1371/journal.pone.0090840] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/05/2014] [Indexed: 11/21/2022] Open
Abstract
The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite element (FE) model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear. Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of 30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC) in response to these four individual vibration regimes was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%. Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration induced increases in GJIC were not associated with altered connexin 43 (Cx43) mRNA or protein levels, but were dependent on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear motions and that large differences in fluid shear did not influence nuclear motion (<1%) or GJIC, perhaps indicating that vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined.
Collapse
Affiliation(s)
- Gunes Uzer
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Suphannee Pongkitwitoon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Cheng Ian
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - William R. Thompson
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Janet Rubin
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Meilin E. Chan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Meng R, Xie L. Gap junction mediated regulation of osteocytes to osteoblastic alkaline phosphatase activity is independent of microgravity. Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2013.870092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
45
|
Lloyd SA, Loiselle AE, Zhang Y, Donahue HJ. Shifting paradigms on the role of connexin43 in the skeletal response to mechanical load. J Bone Miner Res 2014; 29:275-86. [PMID: 24588015 PMCID: PMC5949871 DOI: 10.1002/jbmr.2165] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gap junctions (GJs) are membrane-spanning channels that allow for the movement of small molecules across cell membranes. Connexin43 (Cx43) is the predominant GJ protein in bone. In vitro studies suggest that gap junctional intercellular communication (GJIC) sensitizes bone cells to mechanical signals. Additionally, mechanical signals detected by osteocytes are communicated to osteoblasts via GJIC, and osteocytic Cx43 hemichannels release anabolic factors, such as PGE2 and ATP, in response to mechanical load. These findings and others have led to near consensus among researchers in the field that GJIC, hemichannels or connexins facilitate the anabolic response of bone to mechanical load and, in their absence, bone would be less sensitive to load. However, recent in vivo evidence suggests the opposite is true. Studies from our laboratory and others demonstrate that Cx43-deficient mice have an increased anabolic response to mechanical load and are protected against the catabolic effects of mechanical unloading. These developments suggest a paradigm shift in our understanding of connexins, GJIC, and mechanotransduction in bone. That is, inhibiting bone cell Cx43 expression or GJIC has a beneficial effect on bone's response to its mechanical environment, preserving bone during unloading and enhancing its formation during loading. Here, we review literature in support of this hypothesis and suggest a mechanism by which Cx43, through interaction with WNT/β-catenin signaling, moderates both arms of bone remodeling.
Collapse
Affiliation(s)
- Shane A Lloyd
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation; Penn State College of Medicine; Hershey PA USA
| | - Alayna E Loiselle
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation; Penn State College of Medicine; Hershey PA USA
| | - Yue Zhang
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation; Penn State College of Medicine; Hershey PA USA
| | - Henry J Donahue
- Division of Musculoskeletal Sciences, Department of Orthopaedics and Rehabilitation; Penn State College of Medicine; Hershey PA USA
| |
Collapse
|
46
|
Buo AM, Stains JP. Gap junctional regulation of signal transduction in bone cells. FEBS Lett 2014; 588:1315-21. [PMID: 24486014 DOI: 10.1016/j.febslet.2014.01.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 11/30/2022]
Abstract
The role of gap junctions, particularly that of connexin43 (Cx43), has become an area of increasing interest in bone physiology. An abundance of studies have shown that Cx43 influences the function of osteoblasts and osteocytes, which ultimately impacts bone mass acquisition and skeletal homeostasis. However, the molecular details underlying how Cx43 regulates bone are only coming into focus and have proven to be more complex than originally thought. In this review, we focus on the diverse molecular mechanisms by which Cx43 gap junctions and hemichannels regulate cell signaling pathways, gene expression, mechanotransduction and cell survival in bone cells. This review will highlight key signaling factors that have been identified as downstream effectors of Cx43 and the impact of these pathways on distinct osteoblast and osteocyte functions.
Collapse
Affiliation(s)
- Atum M Buo
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
47
|
Inhibition of GSK-3β rescues the impairments in bone formation and mechanical properties associated with fracture healing in osteoblast selective connexin 43 deficient mice. PLoS One 2013; 8:e81399. [PMID: 24260576 PMCID: PMC3832658 DOI: 10.1371/journal.pone.0081399] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022] Open
Abstract
Connexin 43 (Cx43) is the most abundant gap junction protein in bone and is required for osteoblastic differentiation and bone homeostasis. During fracture healing, Cx43 is abundantly expressed in osteoblasts and osteocytes, while Cx43 deficiency impairs bone formation and healing. In the present study we selectively deleted Cx43 in the osteoblastic lineage from immature osteoblasts through osteocytes and tested the hypothesis that Cx43 deficiency results in delayed osteoblastic differentiation and impaired restoration of biomechanical properties due to attenuated β-catenin expression relative to wild type littermates. Here we show that Cx43 deficiency results in alterations in the mineralization and remodeling phases of healing. In Cx43 deficient fractures the mineralization phase is marked by delayed expression of osteogenic genes. Additionally, the decrease in the RankL/ Opg ratio, osteoclast number and osteoclast size suggest decreased osteoclast bone resorption and remodeling. These changes in healing result in functional deficits as shown by a decrease in ultimate torque at failure. Consistent with these impairments in healing, β-catenin expression is attenuated in Cx43 deficient fractures at 14 and 21 days, while Sclerostin (Sost) expression, a negative regulator of bone formation is increased in Cx43cKO fractures at 21 days, as is GSK-3β, a key component of the β-catenin proteasomal degradation complex. Furthermore, we show that alterations in healing in Cx43 deficient fractures can be rescued by inhibiting GSK-3β activity using Lithium Chloride (LiCl). Treatment of Cx43 deficient mice with LiCl restores both normal bone formation and mechanical properties relative to LiCl treated WT fractures. This study suggests that Cx43 is a potential therapeutic target to enhance fracture healing and identifies a previously unknown role for Cx43 in regulating β-catenin expression and thus bone formation during fracture repair.
Collapse
|
48
|
Lloyd SA, Loiselle AE, Zhang Y, Donahue HJ. Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling. Bone 2013; 57:76-83. [PMID: 23891909 PMCID: PMC4480865 DOI: 10.1016/j.bone.2013.07.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/17/2013] [Accepted: 07/17/2013] [Indexed: 11/26/2022]
Abstract
Connexin 43 (Cx43) is a gap junction protein that plays an integral role in the skeletal response to mechanical loading and unloading. In a previous study, we demonstrated preservation of trabecular bone mass and cortical bone formation rate in mice with an osteoblast/osteocyte-selective deficiency of Cx43 (cKO) following mechanical unloading via hindlimb suspension (HLS). In the present study, we sought to define the potential mechanisms underlying this response. Following three weeks of HLS, mRNA levels of Sost were significantly greater in wild-type (WT)-Suspended mice vs. WT-Control, while there was no difference between cKO control and cKO-Suspended. Unloading-induced decreases in P1NP, a serum marker of bone formation, were also attenuated in cKO-Suspended. The proportion of sclerostin-positive osteocytes was significantly lower in cKO-Control vs. WT-Control (-72%, p<0.05), a difference accounted for by the presence of numerous empty lacunae in the cortical bone of cKO vs. WT. Abundant TUNEL staining was present throughout the cortical bone of the tibia and femur, suggesting an apoptotic process. There was no difference in empty lacunae in the trabecular bone of the tibia or femur. Trabecular and cortical osteoclast indices were lower in cKO-Suspended vs. WT-Suspended; however, mRNA levels of the gene encoding RANKL increased similarly in both genotypes. Connexin 43 deficient mice experience attenuated sclerostin-mediated suppression of cortical bone formation and lower cortical osteoclast activity during unloading. Preservation of trabecular bone mass and attenuated osteoclast activity during unloading, despite an apparent lack of effect on osteocyte viability at this site, suggests that an additional mechanism independent of osteocyte apoptosis may also be important. These findings indicate that Cx43 is able to modulate both arms of bone remodeling during unloading.
Collapse
|
49
|
Chang JC, Fujita S, Tonami H, Kato K, Iwata H, Hsu SH. Cell orientation and regulation of cell–cell communication in human mesenchymal stem cells on different patterns of electrospun fibers. Biomed Mater 2013; 8:055002. [DOI: 10.1088/1748-6041/8/5/055002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Hu Y, Chen IP, de Almeida S, Tiziani V, Do Amaral CMR, Gowrishankar K, Passos-Bueno MR, Reichenberger EJ. A novel autosomal recessive GJA1 missense mutation linked to Craniometaphyseal dysplasia. PLoS One 2013; 8:e73576. [PMID: 23951358 PMCID: PMC3741164 DOI: 10.1371/journal.pone.0073576] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
Craniometaphyseal dysplasia (CMD) is a rare sclerosing skeletal disorder with progressive hyperostosis of craniofacial bones. CMD can be inherited in an autosomal dominant (AD) trait or occur after de novo mutations in the pyrophosphate transporter ANKH. Although the autosomal recessive (AR) form of CMD had been mapped to 6q21-22 the mutation has been elusive. In this study, we performed whole-exome sequencing for one subject with AR CMD and identified a novel missense mutation (c.716G>A, p.Arg239Gln) in the C-terminus of the gap junction protein alpha-1 (GJA1) coding for connexin 43 (Cx43). We confirmed this mutation in 6 individuals from 3 additional families. The homozygous mutation cosegregated only with affected family members. Connexin 43 is a major component of gap junctions in osteoblasts, osteocytes, osteoclasts and chondrocytes. Gap junctions are responsible for the diffusion of low molecular weight molecules between cells. Mutations in Cx43 cause several dominant and recessive disorders involving developmental abnormalities of bone such as dominant and recessive oculodentodigital dysplasia (ODDD; MIM #164200, 257850) and isolated syndactyly type III (MIM #186100), the characteristic digital anomaly in ODDD. However, characteristic ocular and dental features of ODDD as well as syndactyly are absent in patients with the recessive Arg239Gln Cx43 mutation. Bone remodeling mechanisms disrupted by this novel Cx43 mutation remain to be elucidated.
Collapse
Affiliation(s)
- Ying Hu
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - I-Ping Chen
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Salome de Almeida
- Medical Genetics Service, Centro Hospitalar de Lisboa, Central, Portugal
| | | | | | - Kalpana Gowrishankar
- Department of Medical Genetics, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India
| | | | - Ernst J. Reichenberger
- Department of Reconstructive Sciences, Center for Regenerative Medicine and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|