1
|
Quam V. Evidence Related to the Effects of Intralesional/Intrasynovial Corticosteroids on Tendon/Ligament Homeostasis and Healing. Vet Clin North Am Equine Pract 2025:S0749-0739(25)00024-0. [PMID: 40425387 DOI: 10.1016/j.cveq.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025] Open
Abstract
Inflammation plays a role in acute and chronic equine tendon/ligament injury; anti-inflammatories are often indicated. Local corticosteroids provide consistent and profound short-term effects on pain and inflammation across species. However, there is no demonstrated benefit in the long term, and complications can occur. Alternative biologic anti-inflammatory treatments are available and should be used in horses at risk of complications. Nonetheless, corticosteroids remain an affordable and effective anti-inflammatory that, with continued research, may be indicated on a case-by-case basis as part of a multimodal treatment plan.
Collapse
Affiliation(s)
- Vivian Quam
- Littleton Equine Medical Center, 8025 South Santa Fe Drive, Littleton, CO 80120, USA.
| |
Collapse
|
2
|
Hart DA. Regulation of Joint Tissues and Joint Function: Is There Potential for Lessons to Be Learned Regarding Regulatory Control from Joint Hypermobility Syndromes? Int J Mol Sci 2025; 26:1256. [PMID: 39941023 PMCID: PMC11818925 DOI: 10.3390/ijms26031256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Normal development of joints starts in utero with the establishment of a cellular and extracellular matrix template. Following birth, individual joint tissues grow and mature in response to biochemical and mechanical signals, leading to a coordinated pattern of further maturation resulting in a joint that functions as an organ system. Each joint develops and matures as an organ system defined by the biomechanical environment in which it will function. For those with joint hypermobility syndromes, either defined by specific genetic mutations or not (i.e., Ehlers-Danlos syndrome, Marfan syndrome, Loey-Dietz syndrome, hypermobility-type Ehlers-Danlos syndrome), this process is partially compromised, but many aspects of joint tissue maturation and resulting joint function is retained such that the organs form and retain partial function, but it is compromised. Comparing the characteristics of what is known regarding development, growth, maturation, and response to stressors such as puberty, pregnancy, and aging in joints of those without and with joint hypermobility leads to the conclusion that in those that have hypermobility syndromes, the joint systems may be compromised via a failure to undergo mechanical maturation, possibly via defective mechanotransduction. Given the breadth of the mutations involved in such hypermobility syndromes, further characterization of this concept may reveal commonalities in their impact on tissue maturation, which will further inform regulatory aspects of normal tissue and functional integrity. This review/perspective piece will attempt to detail such comparisons and summarize how further study will aid in further understanding.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology and the McCaig Institute for Bone & Joint Research, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
3
|
Peng BG, Li YC, Yang L. Role of neurogenic inflammation in intervertebral disc degeneration. World J Orthop 2025; 16:102120. [PMID: 39850033 PMCID: PMC11752484 DOI: 10.5312/wjo.v16.i1.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
In healthy intervertebral discs (IVDs), nerves and blood vessels are present only in the outer annulus fibrosus, while in degenerative IVDs, a large amount of nerve and blood vessel tissue grows inward. Evidence supports that neurogenic inflammation produced by neuropeptides such as substance P and calcitonin gene related peptide released by the nociceptive nerve fibers innervating the IVDs plays a crucial role in the process of IVD degeneration. Recently, non-neuronal cells, including IVD cells and infiltrating immune cells, have emerged as important players in neurogenic inflammation. IVD cells and infiltrating immune cells express functional receptors for neuropeptides through which they receive signals from the nervous system. In return, IVD cells and immune cells produce neuropeptides and nerve growth factor, which stimulate nerve fibers. This communication generates a positive bidirectional feedback loop that can enhance the inflammatory response of the IVD. Recently emerging transient receptor potential channels have been recognized as contributors to neurogenic inflammation in the degenerative IVDs. These findings suggest that neurogenic inflammation involves complex pathophysiological interactions between sensory nerves and multiple cell types in the degenerative IVDs. Clarifying the mechanism of neurogenic inflammation in IVD degeneration may provide in-depth understanding of the pathology of discogenic low back pain.
Collapse
Affiliation(s)
- Bao-Gan Peng
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| | - Yong-Chao Li
- Department of Orthopaedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| | - Liang Yang
- Department of Orthopeadics, Featured Medical Center of Chinese People’s Armed Police Forces, Tianjin 300000, China
| |
Collapse
|
4
|
Najafi Z, Rahmanian-Devin P, Baradaran Rahimi V, Nokhodchi A, Askari VR. Challenges and opportunities of medicines for treating tendon inflammation and fibrosis: A comprehensive and mechanistic review. Fundam Clin Pharmacol 2024; 38:802-841. [PMID: 38468183 DOI: 10.1111/fcp.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/20/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Tendinopathy refers to conditions characterized by collagen degeneration within tendon tissue, accompanied by the proliferation of capillaries and arteries, resulting in reduced mechanical function, pain, and swelling. While inflammation in tendinopathy can play a role in preventing infection, uncontrolled inflammation can hinder tissue regeneration and lead to fibrosis and impaired movement. OBJECTIVES The inability to regulate inflammation poses a significant limitation in tendinopathy treatment. Therefore, an ideal treatment strategy should involve modulation of the inflammatory process while promoting tissue regeneration. METHODS The current review article was prepared by searching PubMed, Scopus, Web of Science, and Google Scholar databases. Several treatment approaches based on biomaterials have been developed. RESULTS This review examines various treatment methods utilizing small molecules, biological compounds, herbal medicine-inspired approaches, immunotherapy, gene therapy, cell-based therapy, tissue engineering, nanotechnology, and phototherapy. CONCLUSION These treatments work through mechanisms of action involving signaling pathways such as transforming growth factor-beta (TGF-β), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), all of which contribute to the repair of injured tendons.
Collapse
Affiliation(s)
- Zohreh Najafi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Lupin Pharmaceutical Research Center, 4006 NW 124th Ave., Coral Springs, Florida, Florida, 33065, USA
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, BN1 9QJ, UK
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Faydaver M, Festinese V, Di Giacinto O, El Khatib M, Raspa M, Scavizzi F, Bonaventura F, Mastrorilli V, Berardinelli P, Barboni B, Russo V. Predictive Neuromarker Patterns for Calcification Metaplasia in Early Tendon Healing. Vet Sci 2024; 11:441. [PMID: 39330820 PMCID: PMC11435825 DOI: 10.3390/vetsci11090441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Unsuccessful tendon healing leads to fibrosis and occasionally calcification. In these metaplastic drifts, the mouse AT preclinical injury model represents a robust experimental setting for studying tendon calcifications. Previously, calcium deposits were found in about 30% of tendons after 28 days post-injury. Although a neuromediated healing process has previously been documented, the expression patterns of NF200, NGF, NPY, GAL, and CGRP in mouse AT and their roles in metaplastic calcific repair remain to be explored. This study included a spatiotemporal analysis of these neuromarkers during the inflammatory phase (7 days p.i.) and the proliferative/early-remodelling phase (28 days p.i.). While the inflammatory phase is characterised by NF200 and CGRP upregulation, in the 28 days p.i., the non-calcified tendons (n = 16/24) showed overall NGF, NPY, GAL, and CGRP upregulation (compared to 7 days post-injury) and a return of NF200 expression to values similar to pre-injury. Presenting a different picture, in calcified tendons (n = 8), NF200 persisted at high levels, while NGF and NPY significantly increased, resulting in a higher NPY/CGRP ratio. Therefore, high levels of NF200 and imbalance between vasoconstrictive (NPY) and vasodilatory (CGRP) neuromarkers may be indicative of calcification. Tendon cells contributed to the synthesis of neuromarkers, suggesting that their neuro-autocrine/paracrine role is exerted by coordinating growth factors, cytokines, and neuropeptides. These findings offer insights into the neurobiological mechanisms of early tendon healing and identify new neuromarker profiles predictive of tendon healing outcomes.
Collapse
Affiliation(s)
- Melisa Faydaver
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valeria Festinese
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | | | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
6
|
Squier K, Mousavizadeh R, Damji F, Beck C, Hunt M, Scott A. In vitro collagen biomarkers in mechanically stimulated human tendon cells: a systematic review. Connect Tissue Res 2024; 65:89-101. [PMID: 38375562 DOI: 10.1080/03008207.2024.2313582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE The aim of this study was to comprehensively examine and summarize the available in vitro evidence regarding the relationship between mechanical stimulation and biomarkers of collagen synthesis in human-derived tendon cells. METHODS Systematic review with narrative analyses and risk of bias assessment guided by the Health Assessment and Translation tool. The electronic databases MEDLINE (Ovid), EMBASE (Ovid), CENTRAL (Ovid) and COMPENDEX (Engineering Village) were systematically searched from inception to 3 August 2023. Inclusion criteria encompassed English language, original experimental, or quasi-experimental in vitro publications that subjected human tendon cells to mechanical stimulation, with collagen synthesis (total collagen, type I, III, V, XI, XII, and XIV) and related biomarkers (matrix metalloproteinases, transforming growth factor β, scleraxis, basic fibroblast growth factor) as outcomes. RESULTS Twenty-one publications were included. A pervasive definite high risk of bias was evident in all included studies. Owing to incomplete outcome reporting and heterogeneity in mechanical stimulation protocols, planned meta-analyses were unfeasible. Reviewed data suggested that human tendon cells respond to mechanical stimulation with increased synthesis of collagen (e.g., COL1A1, procollagen, total soluble collagen, etc.), scleraxis and several matrix metalloproteinases. Results also indicate that mechanical stimulation dose magnitude may influence synthesis in several biomarkers. CONCLUSIONS A limited number of studies, unfortunately characterized by a definite high risk of bias, suggest that in vitro mechanical stimulation primarily increases type I collagen synthesis by human tendon cells. Findings from this systematic review provide researchers and clinicians with biological evidence concerning the possible beneficial influence of exercise and loading on cellular-level tendon adaptation.
Collapse
Affiliation(s)
- Kipling Squier
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Rouhollah Mousavizadeh
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
| | - Faraz Damji
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Charlotte Beck
- Woodward Library, University of British Columbia, Vancouver, Canada
| | - Michael Hunt
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Alexander Scott
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
- Centre for Aging SMART at VCH, Vancouver Coastal Health Research Institute, Vancouver, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Hilliard BA, Amin M, Popoff SN, Barbe MF. Potentiation of Collagen Deposition by the Combination of Substance P with Transforming Growth Factor Beta in Rat Skin Fibroblasts. Int J Mol Sci 2024; 25:1862. [PMID: 38339140 PMCID: PMC10855312 DOI: 10.3390/ijms25031862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
A role for substance P has been proposed in musculoskeletal fibrosis, with effects mediated through transforming growth factor beta (TGFβ). We examined the in vitro effects of substance P on proliferation, collagen secretion, and collagen deposition in rat primary dermal fibroblasts cultured in medium containing 10% fetal bovine serum, with or without TGFβ. In six-day cultures, substance P increased cell proliferation at concentrations from 0.0002 to 100 nM. TGFβ increased proliferation at concentrations from 0.0002 to 2 pg/mL, although higher concentrations inhibited proliferation. Substance P treatment alone at concentrations of 100, 0.2, and 0.00002 nM did not increase collagen deposition per cell, yet when combined with TGFβ (5 ng/mL), increased collagen deposition compared to TGFβ treatment alone. Substance P treatment (100 nM) also increased smooth muscle actin (SMA) expression at 72 h of culture at a level similar to 5 ng/mL of TGFβ; only TGFβ increased SMA at 48 h of culture. Thus, substance P may play a role in potentiating matrix deposition in vivo when combined with TGFβ, although this potentiation may be dependent on the concentration of each factor. Treatments targeting substance P may be a viable strategy for treating fibrosis where both substance P and TGFβ play roles.
Collapse
Affiliation(s)
- Brendan A. Hilliard
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (M.A.); (M.F.B.)
| | - Mamta Amin
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (M.A.); (M.F.B.)
| | - Steven N. Popoff
- Department of Biomedical Education, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| | - Mary F. Barbe
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (M.A.); (M.F.B.)
| |
Collapse
|
8
|
Ko KR, Lee H, Han SH, Ahn W, Kim DK, Kim IS, Jung BS, Lee S. Substance P, A Promising Therapeutic Target in Musculoskeletal Disorders. Int J Mol Sci 2022; 23:ijms23052583. [PMID: 35269726 PMCID: PMC8910130 DOI: 10.3390/ijms23052583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
A large number of studies have focused on the role of substance P (SP) and the neurokinin-1 receptor (NK1R) in the pathogenesis of a variety of medical conditions. This review provides an overview of the role of the SP-NK1R pathway in the pathogenesis of musculoskeletal disorders and the evidence for its role as a therapeutic target for these disorders, which are major public health problems in most countries. To summarize, the brief involvement of SP may affect tendon healing in an acute injury setting. SP combined with an adequate conjugate can be a regenerative therapeutic option in osteoarthritis. The NK1R antagonist is a promising agent for tendinopathy, rheumatoid arthritis, and osteoarthritis. Research on the SP-NK1R pathway will be helpful for developing novel drugs for osteoporosis.
Collapse
Affiliation(s)
- Kyung Rae Ko
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (K.R.K.); (I.-S.K.)
| | - Hyunil Lee
- Department of Orthopedic Surgery, Ilsan Paik Hospital, Inje University, 170 Juhwa-ro, Ilsanseo-gu, Goyang-si 10380, Gyeonggi-do, Korea;
| | - Soo-Hong Han
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Wooyeol Ahn
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Do Kyung Kim
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Il-Su Kim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (K.R.K.); (I.-S.K.)
| | - Bo Sung Jung
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
- Correspondence: (B.S.J.); (S.L.); Tel.: +82-31-780-5289 (B.S.J. & S.L.); Fax: +82-31-881-7114 (B.S.J. & S.L.)
| | - Soonchul Lee
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
- Correspondence: (B.S.J.); (S.L.); Tel.: +82-31-780-5289 (B.S.J. & S.L.); Fax: +82-31-881-7114 (B.S.J. & S.L.)
| |
Collapse
|
9
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
10
|
The expression of substance P and calcitonin gene-related peptide is associated with the severity of tendon degeneration in lateral epicondylitis. BMC Musculoskelet Disord 2021; 22:210. [PMID: 33612098 PMCID: PMC7898744 DOI: 10.1186/s12891-021-04067-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In this study, we investigated whether substance P (SP) or calcitonin gene-related peptide (CGRP) expression is associated with tendon degeneration in patients with lateral epicondylitis. METHODS Twenty-nine patients who underwent surgical treatment for lateral epicondylitis were enrolled in the final analyses. Extensor carpi radialis brevis tendon origins were harvested for histological analysis. RESULTS SP and CGRP immunostaining were negative in healthy tendons but positive in degenerative tendons; moreover, their immunoreactivity increased with degeneration severity. Univariate analysis indicated that variables such as the preoperative visual analog scale (VAS) score or SP or CGRP expression levels were significantly associated with the Movin score. However, multivariate analysis revealed that only higher SP and/or CGRP signals were associated with higher Movin scores. Elevations in SP or CGRP expression were also linked with significantly severe preoperative VAS scores. CONCLUSION We demonstrated that tendon degeneration severity is associated with increased SP and CGRP expression in the biopsy samples of lateral epicondylitis.
Collapse
|
11
|
Campbell A, Taylor SA, O’Dea E, Shorey M, Warren RF, O’Brien SJ. A molecular characterization of inflammation in the bicipital tunnel. TRANSLATIONAL SPORTS MEDICINE 2021. [DOI: 10.1002/tsm2.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abigail Campbell
- Columbia University College of Physicians & Surgeons New York NY USA
| | | | | | - Mary Shorey
- Sidney Kimmel Medical College at Thomas Jefferson University Philadelphia PA USA
| | | | | |
Collapse
|
12
|
Sustained Exposure of Substance P Causes Tendinopathy. Int J Mol Sci 2020; 21:ijms21228633. [PMID: 33207770 PMCID: PMC7709031 DOI: 10.3390/ijms21228633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 01/09/2023] Open
Abstract
Recently, neuromediators such as substance P (SP) have been found to be important factors in tendon homeostasis. Some studies have found SP to be the cause of inflammation and tendinopathy, whereas others have determined it to be a critical component of tendon healing. As demonstrated by these conflicting findings, the effects of SP on tendinopathy remain unclear. In this study, we hypothesized that the duration of SP exposure determines its effect on the tendons, with repetitive long-term exposure leading to the development of tendinopathy. First, we verified the changes in gene and protein expression using in vitro tenocytes with 10-day exposure to SP. SP and SP + Run groups were injected with SP in their Achilles tendon every other day for 14 days. Achilles tendons were then harvested for biomechanical testing and histological processing. Notably, tendinopathic changes with decreased tensile strength, as observed in the Positive Control, were observed in the Achilles in the SP group compared to the Negative Control. Subsequent histological analysis, including Alcian blue staining, also revealed alterations in the Achilles tendon, which were generally consistent with the findings of tendinopathy in SP and SP + Run groups. Immunohistochemical analysis revealed increased expression of SP in the SP group, similar to the Positive Control. In general, the SP + Run group showed worse tendinopathic changes. These results suggest that sustained exposure to SP may be involved in the development of tendinopathy. Future research on inhibiting SP is warranted to target SP in the treatment of tendinopathy and may be beneficial to patients with tendinopathy.
Collapse
|
13
|
Barbe MF, Hilliard B, Fisher PW, White AR, Delany SP, Iannarone VJ, Harris MY, Amin M, Cruz GE, Popoff SN. Blocking substance P signaling reduces musculotendinous and dermal fibrosis and sensorimotor declines in a rat model of overuse injury. Connect Tissue Res 2020; 61:604-619. [PMID: 31443618 PMCID: PMC7036028 DOI: 10.1080/03008207.2019.1653289] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: Substance P-NK-1R signaling has been implicated in fibrotic tendinopathies and myositis. Blocking this signaling with a neurokinin 1 receptor antagonist (NK1RA) has been proposed as a therapeutic target for their treatment.Materials and Methods: Using a rodent model of overuse injury, we pharmacologically blocked Substance P using a specific NK1RA with the hopes of reducing forelimb tendon, muscle and dermal fibrogenic changes and associated pain-related behaviors. Young adult rats learned to pull at high force levels across a 5-week period, before performing a high repetition high force (HRHF) task for 3 weeks (2 h/day, 3 days/week). HRHF rats were untreated or treated in task weeks 2 and 3 with the NK1RA, i.p. Control rats received vehicle or NK1RA treatments.Results: Grip strength declined in untreated HRHF rats, and mechanical sensitivity and temperature aversion increased compared to controls; these changes were improved by NK1RA treatment (L-732,138). NK1RA treatment also reduced HRHF-induced thickening in flexor digitorum epitendons, and HRHF-induced increases of TGFbeta1, CCN2/CTGF, and collagen type 1 in flexor digitorum muscles. In the forepaw upper dermis, task-induced increases in collagen deposition were reduced by NK1RA treatment.Conclusions: Our findings indicate that Substance P plays a role in the development of fibrogenic responses and subsequent discomfort in forelimb tissues involved in performing a high demand repetitive forceful task.
Collapse
Affiliation(s)
- MF Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - B Hilliard
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - PW Fisher
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - AR White
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - SP Delany
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - VJ Iannarone
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - MY Harris
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - M Amin
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - GE Cruz
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| | - SN Popoff
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, United States
| |
Collapse
|
14
|
Diverse Role of Biological Plasticity in Low Back Pain and Its Impact on Sensorimotor Control of the Spine. J Orthop Sports Phys Ther 2019; 49:389-401. [PMID: 31151376 DOI: 10.2519/jospt.2019.8716] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pain is complex. It is no longer acceptable to consider pain solely as a peripheral phenomenon involving activation of nociceptive neurons. The contemporary understanding of pain involves consideration of different underlying pain mechanisms and an increasing awareness of plasticity in all of the biological systems. Of note, recent advances in technology and understanding have highlighted the critical importance of neuroimmune interactions, both in the peripheral and central nervous systems, and the interaction between the nervous system and body tissues in the development and maintenance of pain, including low back pain (LBP). Further, the biology of many tissues changes when challenged by pain and injury, as reported in a growing body of literature on the biology of muscle, fat, and connective tissue. These advances in understanding of the complexity of LBP have implications for our understanding of pain and its interaction with the motor system, and may change how we consider motor control in the rehabilitation of LBP. This commentary provides a state-of-the-art overview of plasticity of biology in LBP. The paper is divided into 4 parts that address (1) biology of pain mechanisms, (2) neuroimmune interaction in the central nervous system, (3) neuroimmune interaction in the periphery, and (4) brain and peripheral tissue interaction. Each section considers the implications for clinical management of LBP. J Orthop Sports Phys Ther 2019;49(6):389-401. doi:10.2519/jospt.2019.8716.
Collapse
|
15
|
Kiya K, Kubo T. Neurovascular interactions in skin wound healing. Neurochem Int 2019; 125:144-150. [DOI: 10.1016/j.neuint.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/09/2019] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
|
16
|
Benditz A, Sprenger S, Rauch L, Weber M, Grifka J, Straub RH. Increased pain and sensory hyperinnervation of the ligamentum flavum in patients with lumbar spinal stenosis. J Orthop Res 2019; 37:737-743. [PMID: 30747438 DOI: 10.1002/jor.24251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/05/2019] [Indexed: 02/04/2023]
Abstract
Nociceptive sensory nerve fibers have never been investigated in the ligamentum flavum (LF) of patients with LSS. The aim was to analyze nociceptive sensory nerve fibers in the ligamentum flavum (LF) of patients with LSS. A prospective study in patients with lumbar spinal stenosis (LSS) undergoing invasive surgical treatment for lumbar spinal stenosis (LSS) with flavectomy was performed. Patients with LSS were subjected to flavectomy and density of sensory and sympathetic nerve fibers, macrophages, vessels, activated fibroblasts, and cells were investigated by immunostaining techniques. A group of patients with acute disc herniation served as control group. We found a higher density of sensory nerve fibers in LSS patients versus controls. These findings support the role of LF in associated low back pain. Density of sensory nerve fibers in LSS, was positively correlated with typical markers of clinical pain and functional disability, but not with LF density of activated fibroblasts. Inflammation as estimated by macrophage infiltration and higher vascularity does not play a marked role in LF in our LSS patients. In the present study, compared to men with LSS, women with LSS demonstrate more pain and depression, and show a higher density of sensory nerve fibers in LF. This study shed new light on nociceptive nerve fibers, which are increased in LSS compared to controls. The findings speak against a strong inflammatory component in LSS. A higher pain levels in women compared to men can be explained by a higher density of nociceptive nerve fibers. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-7, 2019.
Collapse
Affiliation(s)
- Achim Benditz
- Department of Orthopedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V. Allee 3, 93077, Bad Abbach, Germany
| | - Svenja Sprenger
- Department of Orthopedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V. Allee 3, 93077, Bad Abbach, Germany.,Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Bayern, Germany
| | - Luise Rauch
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Bayern, Germany
| | - Markus Weber
- Department of Orthopedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V. Allee 3, 93077, Bad Abbach, Germany
| | - Joachim Grifka
- Department of Orthopedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V. Allee 3, 93077, Bad Abbach, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Bayern, Germany
| |
Collapse
|
17
|
NF-κB-Associated Pain-Related Neuropeptide Expression in Patients with Degenerative Disc Disease. Int J Mol Sci 2019; 20:ijms20030658. [PMID: 30717434 PMCID: PMC6386867 DOI: 10.3390/ijms20030658] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The role of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) has been highlighted in mechanisms underlying inflammatory and neuropathic pain processes. The present study was designed to investigate whether NF-κB signaling is associated with pain-related neuropeptide expression in patients with chronic back pain related to degenerative disc disease (DDD). Intervertebral disc (IVD) tissues were collected from forty DDD patients undergoing disc replacement or fusion surgery, and from eighteen postmortem (PM) control subjects. RELA, NFKB1, CGRP, TAC1, TRPV1, and MMP-3 gene expression were analyzed by RT-qPCR, while NF-κB subunit RelA and NF-κB1⁻DNA binding in nuclear extracts and calcitonin gene related peptide (CGRP), substance P (SP), and transient receptor potential, subfamily V, member 1 (TRPV1) protein levels in cytosolic extracts of tissues were assessed by enzyme-linked immunosorbent assay (ELISA). An upregulated NF-κB1⁻DNA binding, and higher CGRP and TRPV1 protein levels were observed in DDD patients compared to PM controls. In DDD patients, NF-κB1⁻DNA binding was positively correlated with nuclear RelA levels. Moreover, NF-κB1⁻DNA binding was positively associated with TRPV1 and MMP-3 gene and SP and TRPV1 protein expression in DDD patients. Our results indicate that the expression of SP and TRPV1 in IVD tissues was associated with NF-κB activation. Moreover, NF-κB may be involved in the generation or maintenance of peripheral pain mechanisms by the regulation of pain-related neuropeptide expression in DDD patients.
Collapse
|
18
|
Barbe MF, White AR, Hilliard BA, Salvadeo DM, Amin M, Harris MY, Cruz GE, Hobson L, Popoff SN. Comparing effects of rest with or without a NK1RA on fibrosis and sensorimotor declines induced by a voluntary moderate demand task. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2019; 19:396-411. [PMID: 31789291 PMCID: PMC6944794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Fibrosis is one contributing factor in motor dysfunction and discomfort in patients with overuse musculoskeletal disorders. We pharmacologically targeted the primary receptor for Substance P, neurokinin-1, using a specific antagonist (NK1RA) in a rat model of overuse with the goal of improving tissue fibrosis and discomfort. METHODS Female rats performed a low repetition, high force (LRHF) grasping task for 12 weeks, or performed the task for 12 weeks before being placed on a four week rest break, with or without simultaneous NK1RA treatment. Results were compared to control rats (untreated, or treated 4 weeks with NK1RA or vehicle). RESULTS Rest improved LRHF-induced declines in grip strength, although rest plus NK1RA treatment (Rest/NK1RA) rescued it. Both treatments improved LRHF-induced increases in muscle TGFβ1 and collagen type 1 levels, forepaw mechanical hypersensitivity (Rest/NK1RA more effectively), macrophage influx into median nerves, and enhanced collagen deposition in forepaw dermis. Only Rest/NK1RA reduced muscle hypercellularity. However, LRHF+4wk Rest /NK1RA rats showed hyposensitivity to noxious hot temperatures. CONCLUSIONS While the NK1RA induced hot temperature hyposensitivity should be taken into consideration if this or related drug were used long-term, the NK1RA more effectively reduced muscle hypercellularity and improved grip strength and forepaw mechanical hypersensitivity.
Collapse
Affiliation(s)
- Mary F. Barbe
- Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA,Corresponding author: Mary F. Barbe, Ph.D., Professor of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA E-mail:
| | - Amanda R. White
- Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Brendan A. Hilliard
- Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Danielle M. Salvadeo
- Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Mamta Amin
- Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Michele Y. Harris
- Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Geneva E. Cruz
- Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Lucas Hobson
- Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Steven N. Popoff
- Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| |
Collapse
|
19
|
Tuzmen C, Campbell PG. Crosstalk between neuropeptides SP and CGRP in regulation of BMP2-induced bone differentiation. Connect Tissue Res 2018; 59:81-90. [PMID: 29745819 PMCID: PMC6448777 DOI: 10.1080/03008207.2017.1408604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE STUDY The peripheral nervous system is involved in regulation of bone metabolism via sensory and sympathetic innervation. Substance P (SP) and calcitonin gene-related peptide (CGRP) are two sensory neuropeptides that have been associated with regulation of osteogenic differentiation. However, the interaction between SP and CGRP both with each other and the bone morphogenetic protein 2 (BMP2) in regulation of osteogenic differentiation has not been studied. Therefore, the aim of this study was to investigate the interaction between SP and CGRP on BMP2-induced bone differentiation using model progenitor cells. MATERIALS AND METHODS C2C12 myoblasts and MC3T3 pre-osteoblasts were treated with SP and CGRP, both individually and in combination, in the presence of BMP2. The effects of the neuropeptides on BMP2-induced osteogenic differentiation were assessed by measuring alkaline phosphatase (ALP) activity, mineralization, and expression of osteogenic markers. RESULTS Both SP and CGRP enhanced BMP2 signaling, Runx2 mRNA expression, as well as mineralization in vitro. Co-stimulation with SP and CGRP resulted in down-regulation of BMP2-induced bone differentiation, suggesting potential crosstalk between the two neuropeptides in regulation of BMP2 signaling. CONCLUSIONS Based on the results shown here, CGRP can mitigate augmenting effects of SP on BMP2 signaling and the three pathways potentially converge on Runx2 to regulate BMP2-induced bone differentiation.
Collapse
Affiliation(s)
- Ceren Tuzmen
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Phil G. Campbell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA,Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA 15213, USA,Corresponding Author: Phil Campbell, Ph.D., Engineering Research Accelerator, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall, Pittsburgh, PA 15213, USA,
| |
Collapse
|
20
|
Wang T, Chen P, Zheng M, Wang A, Lloyd D, Leys T, Zheng Q, Zheng MH. In vitro loading models for tendon mechanobiology. J Orthop Res 2018; 36:566-575. [PMID: 28960468 DOI: 10.1002/jor.23752] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 02/04/2023]
Abstract
Tendons are the connective tissue responsible for transferring force from muscles to bones. A key factor in tendon development, maturation, repair, and degradation is its biomechanical environment. Understanding tendon mechanobiology is essential for the development of injury prevention strategies, rehabilitation protocols and potentially novel treatments in tendon injury and degeneration. Despite the simple overall loading on tendon tissue, cells within the tissue in vivo experience a much more complex mechanical environment including tension, compression and shear forces. This creates a substantial challenge in the establishment of in vitro loading models of the tendon. This article reviews multiple loading models used for the study of tendon mechanobiology and summarizes the main findings. Although impressive progress has been achieved in the functionality and mimicry of in vitro loading models, an ideal platform is yet to be developed. Multidisciplinary approaches and collaborations will be the key to unveiling the tendon mechanobiology. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:566-575, 2018.
Collapse
Affiliation(s)
- Tao Wang
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Centre for Orthopaedic Translational Research, School of Biomedical Science, University of Western Australia, Nedlands, Australia
| | - Peilin Chen
- Centre for Orthopaedic Translational Research, School of Biomedical Science, University of Western Australia, Nedlands, Australia
| | | | - Allan Wang
- Centre for Orthopaedic Translational Research, School of Biomedical Science, University of Western Australia, Nedlands, Australia.,Sir Charles Gairdner Hospital, Perth, Australia
| | - David Lloyd
- School of Sport Science, Exercise and Health, University of Western Australia, Crawley, Australia.,Centre for Musculoskeletal Research, Griffith Health Institute, Griffith University, Gold Coast, Australia
| | - Toby Leys
- Sir Charles Gairdner Hospital, Perth, Australia
| | - Qiujian Zheng
- Division of Orthopaedic Surgery, Department of Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ming H Zheng
- Centre for Orthopaedic Translational Research, School of Biomedical Science, University of Western Australia, Nedlands, Australia
| |
Collapse
|
21
|
Chen J, Zhang W, Kelk P, Backman LJ, Danielson P. Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model. Stem Cell Res Ther 2017; 8:260. [PMID: 29132420 PMCID: PMC5683543 DOI: 10.1186/s13287-017-0715-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background We aimed to generate a bioengineered multi-lamellar human corneal stroma tissue in vitro by differentiating periodontal ligament stem cells (PDLSCs) towards keratocytes on an aligned silk membrane. Methods Human PDLSCs were isolated and identified. The neuropeptide substance P (SP) was added in keratocyte differentiation medium (KDM) to evaluate its effect on keratocyte differentiation of PDLSCs. PDLSCs were then seeded on patterned silk membrane and cultured with KDM and SP. Cell alignment was evaluated and the expression of extracellular matrix (ECM) components of corneal stroma was detected. Finally, multi-lamellar tissue was constructed in vitro by PDLSCs seeded on patterned silk membranes, which were stacked orthogonally and stimulated by KDM supplemented with SP for 18 days. Sections were prepared and subsequently stained with hematoxylin and eosin or antibodies for immunofluorescence observation of human corneal stroma-related proteins. Results SP promoted the expression of corneal stroma-related collagens (collagen types I, III, V, and VI) during the differentiation induced by KDM. Patterned silk membrane guided cell alignment of PDLSCs, and important ECM components of the corneal stroma were shown to be deposited by the cells. The constructed multi-lamellar tissue was found to support cells growing between every two layers and expressing the main type of collagens (collagen types I and V) and proteoglycans (lumican and keratocan) of normal human corneal stroma. Conclusions Multi-lamellar human corneal stroma-like tissue can be constructed successfully in vitro by PDLSCs seeded on orthogonally aligned, multi-layered silk membranes with SP supplementation, which shows potential for future corneal tissue engineering. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0715-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jialin Chen
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| | - Wei Zhang
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| | - Peyman Kelk
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Patrik Danielson
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden. .,Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden.
| |
Collapse
|
22
|
Thankam FG, Boosani CS, Dilisio MF, Agrawal DK. MicroRNAs associated with inflammation in shoulder tendinopathy and glenohumeral arthritis. Mol Cell Biochem 2017. [PMID: 28634854 DOI: 10.1007/s11010-017-3097-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inflammation is associated with glenohumeral arthritis and rotator cuff tendon tears. Epigenetically, miRNAs tightly regulate various genes involved in the inflammatory response. Alterations in the expression profile of miRNAs and the elucidation of their target genes with respect to the pathophysiology could improve the understanding of their regulatory role and therapeutic potential. Here, we screened key miRNAs that mediate inflammation and linked with JAK2/STAT3 pathway with respect to the coincidence of glenohumeral arthritis in patients suffering from rotator cuff injury (RCI). Human resected long head of the biceps tendons were examined for miRNA profile from two groups of patients: Group 1 included the patients with glenohumeral arthritis and massive rotator cuff tears and the Group 2 patients did not have arthritis or rotator cuff tears. The miRNA profiling revealed that 235 miRNAs were highly altered (fold change less than -3 and greater than +2 were considered). Data from the NetworkAnalyst program revealed the involvement and interaction between 3,430 different genes associated with inflammation out of which 284 genes were associated with JAK2/STAT3 pathway and interconnect 120 different pathways of inflammation. Around 1,500 miRNAs were found to play regulatory role associated with these genes of inflammatory responses and 77 miRNAs were found to regulate more than 10 genes. Among them, 25 genes with less than tenfold change were taken to consideration which altogether constitute for the regulation of 102 genes. Targeting these miRNAs and the underlying regulatory mechanisms may advance our knowledge to develop promising therapies in the management of shoulder tendon pathology.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Chandra S Boosani
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Matthew F Dilisio
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA.,Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE, USA. .,The Peekie Nash Carpenter Endowed Chair in Medicine, Department of Clinical & Translational Science, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
23
|
The Implication of Substance P in the Development of Tendinopathy: A Case Control Study. Int J Mol Sci 2017; 18:ijms18061241. [PMID: 28598390 PMCID: PMC5486064 DOI: 10.3390/ijms18061241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/25/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023] Open
Abstract
It was reported that substance P had beneficial effects in the healing of acute tendon injury. However, the relationship between substance P and degenerative tendinopathy development remains unclear. The purpose of this study was to determine the role of substance P in the pathogenesis of tendinopathy. Healthy and tendinopathy tendon were harvested from human and tenocytes were cultured individually. The expression levels of genes associated with tendinopathy were compared. Next, substance P was exogenously administered to the healthy tenocyte and the effect was evaluated. The results showed that tendinopathy tenocytes had higher levels of COL3A1, MMP1, COX2, SCX, ACTA2, and substance P gene expression compared to healthy tenocytes. Next, substance P treatment on the healthy tenocyte displayed similar changes to that of the tendinopathy tenocytes. These differences between the two groups were also determined by Western blot. Additionally, cells with substance P had the tendinopathy change morphologically although cellular proliferation was significantly higher compared to that of the control group. In conclusion, substance P enhanced cellular proliferation, but concomitantly increased immature collagen (type 3 collagen). Substance P plays a crucial role in tendinopathy development and could be a future therapeutic target for treatment.
Collapse
|
24
|
Fong G, Backman LJ, Alfredson H, Scott A, Danielson P. The effects of substance P and acetylcholine on human tenocyte proliferation converge mechanistically via TGF-β1. PLoS One 2017; 12:e0174101. [PMID: 28301610 PMCID: PMC5354451 DOI: 10.1371/journal.pone.0174101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/04/2017] [Indexed: 01/10/2023] Open
Abstract
Previous in vitro studies on human tendon cells (tenocytes) have demonstrated that the exogenous administration of substance P (SP) and acetylcholine (ACh) independently result in tenocyte proliferation, which is a prominent feature of tendinosis. Interestingly, the possible link between SP and ACh has not yet been explored in human tenocytes. Recent studies in other cell types demonstrate that both SP and ACh independently upregulate TGF-β1 expression via their respective receptors, the neurokinin 1 receptor (NK-1R) and muscarinic ACh receptors (mAChRs). Furthermore, TGF-β1 has been shown to downregulate NK-1R expression in human keratocytes. The aim of this study was to examine if TGF-β1 is the intermediary player involved in mediating the proliferative pathway shared by SP and ACh in human tenocytes. The results showed that exogenous administration of SP and ACh both caused significant upregulation of TGF-β1 at the mRNA and protein levels. Exposing cells to TGF-β1 resulted in increased cell viability of tenocytes, which was blocked in the presence of the TGFβRI/II kinase inhibitor. In addition, the proliferative effects of SP and ACh on tenocytes were reduced by the TGFβRI/II kinase inhibitor; this supports the hypothesis that the proliferative effects of these signal substances are mediated via the TGF-β axis. Furthermore, exogenous TGF-β1 downregulated NK-1R and mAChRs expression at both the mRNA and protein levels, and these effects were negated by simultaneous exposure to the TGFβRI/II kinase inhibitor, suggesting a negative feedback loop. In conclusion, the results indicate that TGF-β1 is the intermediary player through which the proliferative actions of both SP and ACh converge mechanistically.
Collapse
Affiliation(s)
- Gloria Fong
- Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Ludvig J. Backman
- Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Håkan Alfredson
- Dept. of Community Medicine and Rehabilitation, Sports Medicine, Umeå University, Umeå, Sweden
| | - Alex Scott
- Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Patrik Danielson
- Dept. of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
- Dept. of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
25
|
TREM-1, HMGB1 and RAGE in the Shoulder Tendon: Dual Mechanisms for Inflammation Based on the Coincidence of Glenohumeral Arthritis. PLoS One 2016; 11:e0165492. [PMID: 27792788 PMCID: PMC5085056 DOI: 10.1371/journal.pone.0165492] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023] Open
Abstract
Rotator cuff injury (RCI) is a major musculoskeletal disorder in the adult population where inflammation and pain are major contributing factors. Coincidence of other clinical conditions like glenohumeral arthritis aggravates inflammation and delays the healing response. The mechanism and signaling factors underlying the sustenance of inflammation in the rotator cuff joint are largely unknown. The present article aims to elucidate the involvement of inflammatory molecule, TREM-1 (Triggering Receptors Expressed on Myeloid cells-1), and danger-associated molecular patterns (DAMPs), including high mobility group protein 1 (HMGB-1) and RAGE (receptor for advanced glycation end products), in the setting of RCI with respect to the severity of glenohumeral arthritis. Biceps tendons (15 specimens) from the shoulder and blood (11 samples) from patients with glenohumeral arthritis (Group-1, n = 4) and without glenohumeral arthritis (Group-2, n = 11) after RCI surgery were obtained for the study. Molecular and morphological alterations between the groups were compared using histology, immunofluorescence, RT-PCR and flow cytometry. MRI and histomorphology assessment revealed severe inflammation in Group-1 patients while in Group-2 ECM disorganization was prominent without any hallmarks of inflammation. A significant increase in TREM-1 expression in circulating neutrophils and monocytes was observed. Elevated levels of TREM-1, HMGB-1 and RAGE in Group-1 patients along with CD68+ and CD16+ cells confirmed DAMP-mediated inflammation. Expression of TREM-1 in the tendon of Group-2 patients even in the absence of immune cells presented a new population of TREM-expressing cells that were confirmed by real-time PCR analysis and immunofluorescence. Expression of HMGB-1 and RAGE in the biceps tendon from the shoulder of patients without glenohumeral arthritis implied TREM-1-mediated inflammation without involving immune cells, whereas in patients with glenohumeral arthritis, infiltration and the activation of the immune cells, primarily macrophages, release mediators to induce inflammation. This could be the reason for ECM disorganization without the classical signs of inflammation in patients without glenohumeral arthritis.
Collapse
|
26
|
Chiang RS, Borovikova AA, King K, Banyard DA, Lalezari S, Toranto JD, Paydar KZ, Wirth GA, Evans GRD, Widgerow AD. Current concepts related to hypertrophic scarring in burn injuries. Wound Repair Regen 2016; 24:466-77. [PMID: 27027596 DOI: 10.1111/wrr.12432] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/18/2016] [Indexed: 12/20/2022]
Abstract
Scarring following burn injury and its accompanying aesthetic and functional sequelae still pose major challenges. Hypertrophic scarring (HTS) can greatly impact patients' quality of life related to appearance, pain, pruritus and even loss of function of the injured body region. The identification of molecular events occurring in the evolution of the burn scar has increased our knowledge; however, this information has not yet translated into effective treatment modalities. Although many of the pathophysiologic pathways that bring about exaggerated scarring have been identified, certain nuances in burn scar formation are starting to be recognized. These include the effects of neurogenic inflammation, mechanotransduction, and the unique interactions of burn wound fluid with fat tissue in the deeper dermal layers, all of which may influence scarring outcome. Tension on the healing scar, pruritus, and pain all induce signaling pathways that ultimately result in increased collagen formation and myofibroblast phenotypic changes. Exposure of the fat domes in the deep dermis is associated with increased HTS, possibly on the basis of altered interaction of adipose-derived stem cells and the deep burn exudate. These pathophysiologic patterns related to stem cell-cytokine interactions, mechanotransduction, and neurogenic inflammation can provide new avenues of exploration for possible therapeutic interventions.
Collapse
Affiliation(s)
- Ryan S Chiang
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Anna A Borovikova
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Kassandra King
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Derek A Banyard
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Shadi Lalezari
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Jason D Toranto
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Keyianoosh Z Paydar
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Garrett A Wirth
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA
| | - Gregory R D Evans
- Chairman Plastic Surgery Department, University of California, Irvine, California, USA
| | - Alan D Widgerow
- Center for Tissue Engineering, Plastic Surgery Department, University of California, Irvine, California, USA.,Director Center for Tissue Engineering, University of California, Irvine, California, USA
| |
Collapse
|
27
|
Docking SI, Rosengarten SD, Daffy J, Cook J. Structural integrity is decreased in both Achilles tendons in people with unilateral Achilles tendinopathy. J Sci Med Sport 2015; 18:383-7. [DOI: 10.1016/j.jsams.2014.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 06/02/2014] [Accepted: 06/07/2014] [Indexed: 10/25/2022]
|
28
|
Zhou Y, Zhou B, Tang K. The effects of substance p on tendinopathy are dose-dependent: an in vitro and in vivo model study. J Nutr Health Aging 2015; 19:555-61. [PMID: 25923486 DOI: 10.1007/s12603-014-0576-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Substance P (SP) is known to be involved in neuropathic pain, chronic inflammation, and tendinopathy. The present study evaluated the effects of different doses of SP on tendon-derived stem cells (TDSCs) in vitro and tendons in vivo. METHODS For the in vitro study, TDSCs cultured in growth medium with different concentrations of SP (negative control, 0.1 nM, and 1.0 nM). The effects of SP on TDSCs were examined with respect to their ability to proliferate and differentiate. For the in vivo study, we injected different doses of SP (saline control, 0.5 nmol, and 5.0 nmol) into rat patella tendons to investigate the effects of SP on tendons. RESULTS Low and high doses SP significantly enhanced the proliferation ability of TDSCs. Low-dose of SP induced the expression of tenocyte-related genes; however, high-dose of SP induced the expression of non-tenocyte genes, which was evident by the high expression of PPARγ and collagen type II. In the in vivo study, only high-doses of SP (5.0 nmol) induced the tendinosis-like changes in the patella tendon injection model. Low doses of SP (0.5 nmol) enhanced the tenogenesis compared with saline injection and the high-dose SP group. CONCLUSIONS SP enhances the proliferation of TDSCs in vitro and the effects of SP on tendinopathy are dose-dependent in vivo.
Collapse
Affiliation(s)
- Y Zhou
- Kanglai Tang, Department of Orthopedic Surgery, Third Military Medical University Affiliated Southwest Hospital, Gaotanyan Str. 30, Chongqing 400038, People's Republic of China, Telephone number: 86-23-68765289; Fax number: 86-23-65656500. E-mail:
| | | | | |
Collapse
|
29
|
Meléndez GC, Manteufel EJ, Dehlin HM, Register TC, Levick SP. Non-human primate and rat cardiac fibroblasts show similar extracellular matrix-related and cellular adhesion gene responses to substance P. Heart Lung Circ 2015; 24:395-403. [PMID: 25550118 PMCID: PMC4492475 DOI: 10.1016/j.hlc.2014.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 11/12/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND The sensory nerve neuropeptide substance P (SP) regulates cardiac fibrosis in rodents under pressure overload conditions. Interestingly, SP induces transient increased expression of specific genes in isolated rat cardiac fibroblasts, without resultant changes in cell function. This suggests that SP 'primes' fibroblasts, but does not directly activate them. We investigated whether these unusual findings are specific to rodent fibroblasts or are translatable to a larger animal model more closely related to humans. METHODS We compared the effects of SP on genes associated with extracellular matrix (ECM) regulation, cell-cell adhesion, cell-matrix adhesion and ECM in cardiac fibroblasts isolated from a non-human primate and Sprague-Dawley rats. RESULTS We found that rodent and non-human primate cardiac fibroblasts showed similar responses in genes that relate to ECM regulation and cell adhesion in response to SP. There were large discrepancies in ECM component genes, however, this did not result in collagen or laminin synthesis in rat or non-human primate fibroblasts in response to SP. CONCLUSIONS This study further supports the notion that SP serves as a 'primer' for fibroblasts rather than initiating direct effects and suggests that rodent fibroblasts are a suitable model for studying gene and functional responses to SP in the absence of human or non-human primate fibroblasts.
Collapse
Affiliation(s)
- Giselle C Meléndez
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC; Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Edward J Manteufel
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Heather M Dehlin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Scott P Levick
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI.
| |
Collapse
|
30
|
Increased CCN2, substance P and tissue fibrosis are associated with sensorimotor declines in a rat model of repetitive overuse injury. J Cell Commun Signal 2015; 9:37-54. [PMID: 25617052 DOI: 10.1007/s12079-015-0263-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/14/2015] [Indexed: 01/24/2023] Open
Abstract
Key clinical features of cumulative trauma disorders include pain, muscle weakness, and tissue fibrosis, although the etiology is still under investigation. Here, we characterized the temporal pattern of altered sensorimotor behaviors and inflammatory and fibrogenic processes occurring in forearm muscles and serum of young adult, female rats performing an operant, high repetition high force (HRHF) reaching and grasping task for 6, 12, or 18 weeks. Palmar mechanical sensitivity, cold temperature avoidance and spontaneous behavioral changes increased, while grip strength declined, in 18-week HRHF rats, compared to controls. Flexor digitorum muscles had increased MCP-1 levels after training and increased TNFalpha in 6-week HRHF rats. Serum had increased IL-1beta, IL-10 and IP-10 after training. Yet both muscle and serum inflammation resolved by week 18. In contrast, IFNγ increased at week 18 in both muscle and serum. Given the anti-fibrotic role of IFNγ, and to identify a mechanism for the continued grip strength losses and behavioral sensitivities, we evaluated the fibrogenic proteins CCN2, collagen type I and TGFB1, as well as the nociceptive/fibrogenic peptide substance P. Each increased in and around flexor digitorum muscles and extracellular matrix in the mid-forearm, and in nerves of the forepaw at 18 weeks. CCN2 was also increased in serum at week 18. At a time when inflammation had subsided, increases in fibrogenic proteins correlated with sensorimotor declines. Thus, muscle and nerve fibrosis may be critical components of chronic work-related musculoskeletal disorders. CCN2 and substance P may serve as potential targets for therapeutic intervention, and CCN2 as a serum biomarker of fibrosis progression.
Collapse
|
31
|
Chéret J, Lebonvallet N, Buhé V, Carre JL, Misery L, Le Gall-Ianotto C. Influence of sensory neuropeptides on human cutaneous wound healing process. J Dermatol Sci 2014; 74:193-203. [PMID: 24630238 DOI: 10.1016/j.jdermsci.2014.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/15/2014] [Accepted: 02/05/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Close interactions exist between primary sensory neurons of the peripheral nervous system (PNS) and skin cells. The PNS may be implicated in the modulation of different skin functions as wound healing. OBJECTIVE Study the influence of sensory neurons in human cutaneous wound healing. METHODS We incubated injured human skin explants either with rat primary sensory neurons from dorsal root ganglia (DRG) or different neuropeptides (vasoactive intestinal peptide or VIP, calcitonin gene-related peptide or CGRP, substance P or SP) at various concentrations. Then we evaluated their effects on the proliferative and extracellular matrix (ECM) remodeling phases, dermal fibroblasts adhesion and differentiation into myofibroblasts. RESULTS Thus, DRG and all studied neuromediators increased fibroblasts and keratinocytes proliferation and act on the expression ratio between collagen type I and type III in favor of collagen I, particularly between the 3rd and 7th day of culture. Furthermore, the enzymatic activities of matrix metalloprotesases (MMP-2 and MMP-9) were increased in the first days of wound healing process. Finally, the adhesion of human dermal fibroblasts and their differentiation into myofibroblasts were promoted after incubation with neuromediators. Interestingly, the most potent concentrations for each tested molecules, were the lowest concentrations, corresponding to physiological concentrations. CONCLUSION Sensory neurons and their derived-neuropeptides are able to promote skin wound healing.
Collapse
Affiliation(s)
- J Chéret
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | - N Lebonvallet
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | - V Buhé
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | - J L Carre
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | - L Misery
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France; Department of Dermatology, University Hospital of Brest, Brest, France.
| | - C Le Gall-Ianotto
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France; Department of Dermatology, University Hospital of Brest, Brest, France
| |
Collapse
|
32
|
Ackermann PW, Hart DA. Influence of Comorbidities: Neuropathy, Vasculopathy, and Diabetes on Healing Response Quality. Adv Wound Care (New Rochelle) 2013; 2:410-421. [PMID: 24688829 DOI: 10.1089/wound.2012.0437] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Indexed: 12/13/2022] Open
Abstract
SIGNIFICANCE Prolonged and nonhealing connective tissue injuries are often seen associated with common diseases, such as metabolic disorders, obesity, hypertension, arteriosclerosis, neuropathy, and diabetes mellitus and these influences result in considerable burden on society via the health care system, the economy, and quality of life for patients. RECENT ADVANCES Emerging findings have established important new links in our understanding of effective connective tissue healing. Thereby, the function of the nervous system, vascular supply, and metabolic state of the patient can be directly linked to the quality of the connective tissue healing process. CRITICAL ISSUES As some of these conditions are also more common in individuals as they age, and aging can also impact healing effectiveness, such complications will have an emerging significant impact as the demographics of many societies change with expanding percentages of the populations >60-65 years of age. FUTURE DIRECTIONS Comorbidities have to be early identified in patients with acute wounds or planned surgery. Necessary interactions between physicians with different subspecialties have to be initiated to optimize wound healing potentials.
Collapse
Affiliation(s)
- Paul W. Ackermann
- Section of Orthopedics, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Solna, Sweden
| | - David A. Hart
- Department of Surgery, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| |
Collapse
|
33
|
Dehlin HM, Manteufel EJ, Monroe AL, Reimer MH, Levick SP. Substance P acting via the neurokinin-1 receptor regulates adverse myocardial remodeling in a rat model of hypertension. Int J Cardiol 2013; 168:4643-51. [PMID: 23962787 DOI: 10.1016/j.ijcard.2013.07.190] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 07/20/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Substance P is a sensory nerve neuropeptide located near coronary vessels in the heart. Therefore, substance P may be one of the first mediators released in the heart in response to hypertension, and can contribute to adverse myocardial remodeling via interactions with the neurokinin-1 receptor. We asked: 1) whether substance P promoted cardiac hypertrophy, including the expression of fetal genes known to be re-expressed during pathological hypertrophy; and 2) the extent to which substance P regulated collagen production and fibrosis. METHODS AND RESULTS Spontaneously hypertensive rats (SHR) were treated with the neurokinin-1 receptor antagonist L732138 (5mg/kg/d) from 8 to 24 weeks of age. Age-matched WKY served as controls. The gene encoding substance P, TAC1, was up-regulated as blood pressure increased in SHR. Fetal gene expression by cardiomyocytes was increased in SHR and was prevented by L732138. Cardiac fibrosis also occurred in the SHR and was prevented by L732138. Endothelin-1 was up-regulated in the SHR and this was prevented by L732138. In isolated cardiac fibroblasts, substance P transiently up-regulated several genes related to cell-cell adhesion, cell-matrix adhesion, and extracellular matrix regulation, however, no changes in fibroblast function were observed. CONCLUSIONS Substance P activation of the neurokinin-1 receptor induced expression of fetal genes related to pathological hypertrophy in the hypertensive heart. Additionally, activation of the neurokinin-1 receptor was critical to the development of cardiac fibrosis. Since no functional changes were induced in isolated cardiac fibroblasts by substance P, we conclude that substance P mediates fibrosis via up-regulation of endothelin-1.
Collapse
Affiliation(s)
- Heather M Dehlin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | | | | | | | | |
Collapse
|
34
|
Scott A, Docking S, Vicenzino B, Alfredson H, Murphy RJ, Carr AJ, Zwerver J, Lundgreen K, Finlay O, Pollock N, Cook JL, Fearon A, Purdam CR, Hoens A, Rees JD, Goetz TJ, Danielson P. Sports and exercise-related tendinopathies: a review of selected topical issues by participants of the second International Scientific Tendinopathy Symposium (ISTS) Vancouver 2012. Br J Sports Med 2013; 47:536-44. [PMID: 23584762 PMCID: PMC3664390 DOI: 10.1136/bjsports-2013-092329] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In September 2010, the first International Scientific Tendinopathy Symposium (ISTS) was held in Umeå, Sweden, to establish a forum for original scientific and clinical insights in this growing field of clinical research and practice. The second ISTS was organised by the same group and held in Vancouver, Canada, in September 2012. This symposium was preceded by a round-table meeting in which the participants engaged in focused discussions, resulting in the following overview of tendinopathy clinical and research issues. This paper is a narrative review and summary developed during and after the second ISTS. The document is designed to highlight some key issues raised at ISTS 2012, and to integrate them into a shared conceptual framework. It should be considered an update and a signposting document rather than a comprehensive review. The document is developed for use by physiotherapists, physicians, athletic trainers, massage therapists and other health professionals as well as team coaches and strength/conditioning managers involved in care of sportspeople or workers with tendinopathy.
Collapse
Affiliation(s)
- Alex Scott
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
It is currently widely accepted among clinicians that chronic tendinopathy is caused by a degenerative process devoid of inflammation. Current treatment strategies are focused on physical treatments, peritendinous or intratendinous injections of blood or blood products and interruption of painful stimuli. Results have been at best, moderately good and at worst a failure. The evidence for non-infammatory degenerative processes alone as the cause of tendinopathy is surprisingly weak. There is convincing evidence that the inflammatory response is a key component of chronic tendinopathy. Newer anti-inflammatory modalities may provide alternative potential opportunities in treating chronic tendinopathies and should be explored further.
Collapse
Affiliation(s)
- Jonathan D Rees
- Department of Rheumatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthew Stride
- Isokinetic Medical Group, FIFA Medical Centre of Excellence, London, UK
| | - Alex Scott
- Department of Physical Therapy, University of British Columbia, Vancouver, Canada
| |
Collapse
|