1
|
Rahaman SN, Lishadevi M, Anandasadagopan SK. Unraveling the Molecular Mechanisms of Osteoarthritis: The Potential of Polyphenols as Therapeutic Agents. Phytother Res 2025; 39:2038-2071. [PMID: 40044420 DOI: 10.1002/ptr.8455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 05/21/2025]
Abstract
The complex nature of osteoarthritis (OA), driven by the intricate interplay of genetic, environmental, and lifestyle factors, necessitates the development of a single treatment method, which is highly challenging. The long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids often leads to adverse side effects like kidney damage and stomach ulcers. Major health threats like obesity and aging create a milieu of chronic low-grade inflammation and increased mechanical stress on the joints resulting in cartilage deterioration. Additionally, postmenopausal women with lower circulating 17β-estradiol levels experience accelerated joint deterioration due to increased immune activity resulting in the increased production of pro-inflammatory cytokines, with elevated MMP expression and decreased type II collagen synthesis. Polyphenols are nature's gifted magic molecules, which possess diverse biological properties like anti-oxidant, anti-bacterial, anti-inflammatory, estrogenic, and insulin-sensitizing effects, which can manage and treat all the multi-factorial contributing factors of OA effectively. Certain polyphenols can act as phytoestrogens and mimic the effects of natural estrogen by binding to ERα and ERβ and can act as SERMs and prevent degradation of the articular cartilage thereby alleviating osteoarthritic conditions. These molecules downregulate the expression of various pro-inflammatory cytokines, apoptotic genes, and matrix-degrading proteases (MMPs) while upregulating major ECM proteins like type II collagen, aggrecan, and proteoglycans in various osteoarthritic animal models. This review provides a comprehensive overview of the molecular mechanisms involved in OA development and also explores the therapeutic potential of different polyphenols in mitigating joint inflammation and their protective effect in inhibiting the degradation of cartilage extracellular matrix (ECM) and enhancing joint homeostasis.
Collapse
Affiliation(s)
- Syed Nasar Rahaman
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Murugesan Lishadevi
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suresh Kumar Anandasadagopan
- Biochemistry and Biotechnology Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research (CSIR), Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Hu K, Song M, Song T, Jia X, Song Y. Osteoimmunology in Osteoarthritis: Unraveling the Interplay of Immunity, Inflammation, and Joint Degeneration. J Inflamm Res 2025; 18:4121-4142. [PMID: 40125089 PMCID: PMC11930281 DOI: 10.2147/jir.s514002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease influenced by multiple factors, with its etiology arising from intricate interactions among mechanical stress, inflammatory processes, and disruptions in bone metabolism. Recent research in bone immunology indicates that immune-mediated mechanisms significantly contribute to the progression of OA, highlighting the interactions among immune cells, cytokine networks, and bone components. Immune cells interact with osteoclasts, osteoblasts, and chondrocytes in a variety of ways. These interactions foster a pro-inflammatory microenvironment, contributing to cartilage breakdown, synovial inflammation, and the sclerosis of subchondral bone. In this article, we present a comprehensive review of bone immunology in OA, focusing on the critical role of immune cells and their cytokine-mediated feedback loops in the pathophysiology of OA. In addition, we are exploring novel therapeutic strategies targeting bone immune pathways, including macrophage polarization, T-cell differentiation, and stem cell therapy to restore the metabolic balance between immunity and bone. By integrating cutting-edge research in bone immunology, this review integrates the latest advancements in bone immunology to construct a comprehensive framework for unraveling the pathogenesis of OA, laying a theoretical foundation for the development of innovative precision therapies.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Min Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Ting Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Xiao Jia
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjia Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
3
|
Maniglio M, Loisay L, de Haro D, Antoniadis A, Hügle T, Geurts J. Subchondral bone marrow adipose tissue lipolysis regulates bone formation in hand osteoarthritis. Osteoarthritis Cartilage 2025; 33:322-329. [PMID: 39725154 DOI: 10.1016/j.joca.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE Bone marrow adipose tissue (BMAT) is emerging as an important regulator of bone formation and energy metabolism. Lipolysis of BMAT releases glycerol and fatty acid substrates that are catabolized by osteoblasts. Here, we investigated whether BMAT lipolysis is involved in subchondral bone formation in hand osteoarthritis (OA). METHODS Subchondral BMAT lipolysis and bone marrow adipocyte (BMAd) morphology were studied in clinical specimens of carpometacarpal (CMC-1) and distal interphalangeal joint OA. BMAd size, osteoblast numbers and expression of lipolysis enzymes (ATGL, phospho-HSL, MGLL) were compared between regions of low and high bone formation. Free fatty acids, glycerol and bone biomarkers were measured in osteochondral explants. RESULTS Subchondral BMAd size was positively correlated with BMI (r = 0.60, [0.082,0.87]) and reduced in regions of high bone formation (-1149 µm2, [-1977,-726.2]). Osteoblast numbers were negatively correlated with BMAd size (r = -0.48, [-0.73,-0.12]). All lipolysis enzymes were expressed in both in BMAds and activated osteoblasts and the area percentages of ATGL (+2.26% [0.19,3.47]), phospho-HSL (+1.57% [0.31,6.48]) and MGLL (+4.04% [1.09,5.69]) were increased in regions of high bone formation. Secreted glycerol levels, but not free fatty acids, were correlated with bone formation markers pro-collagen type I (rho = 0.90) and alkaline phosphatase (rho = 0.78). CONCLUSION Our findings reveal a previously unrecognized role of BMAT lipolysis in regulating bone formation in hand OA, which may be modulated by BMI.
Collapse
Affiliation(s)
- Mauro Maniglio
- Plastic and Hand Surgery, Department of Musculoskeletal Medicine, University Hospital Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland; Department of Hand Surgery, Balgrist University Clinic, Zürich, Switzerland
| | - Léa Loisay
- Rheumatology, Department of Musculoskeletal Medicine, University Hospital Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Diego de Haro
- Rheumatology, Department of Musculoskeletal Medicine, University Hospital Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Alexander Antoniadis
- Orthopaedics, Department of Musculoskeletal Medicine, University Hospital Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Thomas Hügle
- Rheumatology, Department of Musculoskeletal Medicine, University Hospital Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, University Hospital Lausanne and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Hao G, Han S, Xiao Z, Shen J, Zhao Y, Hao Q. Synovial mast cells and osteoarthritis: Current understandings and future perspectives. Heliyon 2024; 10:e41003. [PMID: 39720069 PMCID: PMC11665477 DOI: 10.1016/j.heliyon.2024.e41003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent joint disease worldwide that significantly impacts the quality of life of individuals, particularly those in middle-aged and elderly populations. OA was initially considered as non-inflammatory arthritis, but recent studies have identified a substantial number of immune responses in OA, leading to the recognition of inflammation as a key factor in its pathogenesis. An increasing number of studies have found that mast cell (MC) and MC-secreted inflammatory mediators and cytokines are notably increased in the synovial fluid of OA patients, indicating a potential association between MCs and the onset and progression of synovial inflammation. The present review aims to summarize the significance and mechanism of MCs in the pathogenesis of OA. Meanwhile, we also discuss the clinical potential of using MCs as therapeutic target for OA therapy. Modulating the activities of MCs or the mediators of MCs in the synovial fluid inflammatory microenvironment will be promising new options for the treatment of OA.
Collapse
Affiliation(s)
- Guanghui Hao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shanqian Han
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Qi Hao
- Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- The Third People's Hospital of Longmatan District, Luzhou, Sichuan, China
| |
Collapse
|
5
|
Yin X, Wang Q, Tang Y, Wang T, Zhang Y, Yu T. Research progress on macrophage polarization during osteoarthritis disease progression: a review. J Orthop Surg Res 2024; 19:584. [PMID: 39342341 PMCID: PMC11437810 DOI: 10.1186/s13018-024-05052-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
Primary osteoarthritis (OA) is a prevalent degenerative joint disease that mostly affects the knee joint. It is a condition that occurs around the world. Because of the aging population and the increase in obesity prevalence, the incidence of primary OA is increasing each year. Joint replacement can completely subside the pain and minimize movement disorders caused by advanced OA, while nonsteroidal drugs and injection of sodium hyaluronate into the joint cavity can only partially relieve the pain; hence, it is critical to search for new methods to treat OA. Increasing lines of evidence show that primary OA is a chronic inflammatory disorder, with synovial inflammation as the main characteristic. Macrophages, as one of the immune cells, can be polarized to produce M1 (proinflammatory) and M2 (anti-inflammatory) types during synovial inflammation in OA. Following polarization, macrophages do not come in direct contact with chondrocytes; however, they affect chondrocyte metabolism through paracrine production of a significant quantity of inflammatory cytokines, matrix metalloproteinases, and growth factors and thus participate in inducing joint pain, cartilage injury, angiogenesis, and osteophyte formation. The main pathways that influence the polarization of macrophages are the Toll-like receptor and NF-κB pathways. The study of how macrophage polarization affects OA disease progression has gradually become one of the approaches to prevent and treat OA. Experimental studies have found that the treatment of macrophage polarization in primary OA can effectively relieve synovial inflammation and reduce cartilage damage. The present article summarizes the influence of inflammatory factors secreted by macrophages after polarization on OA disease progression, the main signaling pathways that induce macrophage differentiation, and the role of different polarized types of macrophages in OA; thus, providing a reference for preventing and treating primary OA.
Collapse
Affiliation(s)
- Xiangzhi Yin
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Department of Orthopaedics, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Quan Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266005, China
| | - Yijie Tang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tianrui Wang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yingze Zhang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Tengbo Yu
- Department of Orthopaedics, Qingdao Municipal Hospital, Qingdao, 266011, China.
| |
Collapse
|
6
|
Zhu X, Cao M, Li K, Chan YT, Chan HF, Mak YW, Yao H, Sun J, Ong MTY, Ho KKW, Lee CW, Lee OKS, Yung PSH, Jiang Y. Intra-articular sustained-release of pirfenidone as a disease-modifying treatment for early osteoarthritis. Bioact Mater 2024; 39:255-272. [PMID: 38832304 PMCID: PMC11145079 DOI: 10.1016/j.bioactmat.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Osteoarthritis (OA) is a major clinical challenge, and effective disease-modifying drugs for OA are still lacking due to the complicated pathology and scattered treatment targets. Effective early treatments are urgently needed to prevent OA progression. The excessive amount of transforming growth factor β (TGFβ) is one of the major causes of synovial fibrosis and subchondral bone sclerosis, and such pathogenic changes in early OA precede cartilage damage. Herein we report a novel strategy of intra-articular sustained-release of pirfenidone (PFD), a clinically-approved TGFβ inhibitor, to achieve disease-modifying effects on early OA joints. We found that PFD effectively restored the mineralization in the presence of excessive amount of TGFβ1 (as those levels found in patients' synovial fluid). A monthly injection strategy was then designed of using poly lactic-co-glycolic acid (PLGA) microparticles and hyaluronic acid (HA) solution to enable a sustained release of PFD (the "PLGA-PFD + HA" strategy). This strategy effectively regulated OA progression in destabilization of the medial meniscus (DMM)- induced OA mice model, including preventing subchondral bone loss in early OA and subchondral bone sclerosis in late OA, and reduced synovitis and pain with cartilage preservation effects. This finding suggests the promising clinical application of PFD as a novel disease-modifying OA drug.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Mingde Cao
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Kejia Li
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Yau-Tsz Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Hon-Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Yi-Wah Mak
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Hao Yao
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Jing Sun
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Michael Tim-Yun Ong
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Kevin Ki-Wai Ho
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
| | - Chien-Wei Lee
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
| | - Oscar Kuang-Sheng Lee
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
| | - Patrick Shu-Hang Yung
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region of China
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region of China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Special Administrative Region of China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
7
|
Meng F, Zhu P, Ren X, Wang L, Ding D, Yan J, Zhang Y, Yang SY, Ning B. Cardamonin inhibits osteogenic differentiation by downregulating Wnt/beta-catenin signaling and alleviates subchondral osteosclerosis in osteoarthritic mice. J Orthop Res 2024; 42:1933-1942. [PMID: 38520666 DOI: 10.1002/jor.25842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease, and subchondral osteosclerosis is an important pathological change that occurs in its late stages. Cardamonin (CD) is a natural flavonoid isolated from Alpinia katsumadai that has anti-inflammatory activity. The objectives of this study were to investigate the therapeutic effects and potential mechanism of CD in regulating OA subchondral osteosclerosis at in vivo and in vitro settings. Eight-week-old male C57BL/6J mice were randomly divided into four groups: sham operation, anterior cruciate ligament transection (ACLT)-induced OA model, low-dose and high-dose CD treated ACLT-OA model groups. Histological assessment and immunohistochemical examinations for chondrocyte metabolism-related markers metalloproteinase-13, ADAMTS-4, Col II, and Sox-9 were performed. Microcomputed tomography was used to assess the sclerosis indicators in subchondral bone. Further, MC3T3-E1 (a mouse calvarial preosteoblast cell line) cells were treated with various concentrations of CD to reveal the influence and potential molecular pathways of CD in osteogenic differentiations. Animal studies suggested that CD alleviated the pathological changes in OA mice such as maintaining integrity and increasing the thickness of hyaline cartilage, decreasing the thickness of calcified cartilage, decreasing the Osteoarthritis Research Society International score, regulating articular cartilage metabolism, and inhibiting subchondral osteosclerosis. In vitro investigation indicated that CD inhibited alkaline phosphatase expression and production of calcium nodules during osteogenic differentiation of MC3T3-E1 cells. In addition, CD inhibited the expression of osteogenic differentiation-related indicators and Wnt/β-catenin pathway-related proteins. In conclusion, CD inhibits osteogenic differentiation by downregulating Wnt/β-catenin signaling and alleviating subchondral osteosclerosis in a mouse model of OA.
Collapse
Affiliation(s)
- Fanding Meng
- Department of Hand and Foot Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Pengchong Zhu
- Department of Orthopedic Surgery, Jinan Central Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoli Ren
- Department of Orthopedic Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Limei Wang
- Faculty of Preclinical Medicine, Cheeloo Medical College, Shandong University, Jinan, Shandong, China
| | - Dong Ding
- Department of Orthopedic Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Jiangbo Yan
- The 3rd Orthopedic Ward, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ying Zhang
- Department of Orthopedic Surgery, Jinan Central Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shang-You Yang
- Department of Orthopaedic Surgery, University of Kansas School of Medicine Wichita, Wichita, Kansas, USA
| | - Bin Ning
- Department of Orthopedic Surgery, Jinan Central Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
8
|
Abbasifard M, Khorramdelazad H. Harmonizing hope: navigating the osteoarthritis melody through the CCL2/CCR2 axis for innovative therapeutic avenues. Front Immunol 2024; 15:1387651. [PMID: 39076996 PMCID: PMC11284107 DOI: 10.3389/fimmu.2024.1387651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Osteoarthritis (OA) is characterized by a complex interplay of molecular signals orchestrated by the CCL2/CCR2 axis. The pathogenesis of OA has been revealed to be influenced by a multifaceted effect of CCL2/CCR2 signaling on inflammation, cartilage degradation, and joint homeostasis. The CCL2/CCR2 axis promotes immune cell recruitment and tips the balance toward degeneration by influencing chondrocyte behavior. Insights into these intricate pathways will offer novel therapeutic approaches, paving the way for targeted interventions that may redefine OA management in the future. This review article explores the molecular symphony through the lens of the CCL2/CCR2 axis, providing a harmonious blend of current knowledge and future directions on OA treatment. Furthermore, in this study, through a meticulous review of recent research, the key players and molecular mechanisms that amplify the catabolic cascade within the joint microenvironment are identified, and therapeutic approaches to targeting the CCL2/CCR axis are discussed.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
9
|
Rai MF, Collins KH, Lang A, Maerz T, Geurts J, Ruiz-Romero C, June RK, Ramos Y, Rice SJ, Ali SA, Pastrello C, Jurisica I, Thomas Appleton C, Rockel JS, Kapoor M. Three decades of advancements in osteoarthritis research: insights from transcriptomic, proteomic, and metabolomic studies. Osteoarthritis Cartilage 2024; 32:385-397. [PMID: 38049029 DOI: 10.1016/j.joca.2023.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a complex disease involving contributions from both local joint tissues and systemic sources. Patient characteristics, encompassing sociodemographic and clinical variables, are intricately linked with OA rendering its understanding challenging. Technological advancements have allowed for a comprehensive analysis of transcripts, proteomes and metabolomes in OA tissues/fluids through omic analyses. The objective of this review is to highlight the advancements achieved by omic studies in enhancing our understanding of OA pathogenesis over the last three decades. DESIGN We conducted an extensive literature search focusing on transcriptomics, proteomics and metabolomics within the context of OA. Specifically, we explore how these technologies have identified individual transcripts, proteins, and metabolites, as well as distinctive endotype signatures from various body tissues or fluids of OA patients, including insights at the single-cell level, to advance our understanding of this highly complex disease. RESULTS Omic studies reveal the description of numerous individual molecules and molecular patterns within OA-associated tissues and fluids. This includes the identification of specific cell (sub)types and associated pathways that contribute to disease mechanisms. However, there remains a necessity to further advance these technologies to delineate the spatial organization of cellular subtypes and molecular patterns within OA-afflicted tissues. CONCLUSIONS Leveraging a multi-omics approach that integrates datasets from diverse molecular detection technologies, combined with patients' clinical and sociodemographic features, and molecular and regulatory networks, holds promise for identifying unique patient endophenotypes. This holistic approach can illuminate the heterogeneity among OA patients and, in turn, facilitate the development of tailored therapeutic interventions.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC -Hospital Universitario A Coruña, SERGAS, Spain
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Yolande Ramos
- Dept. Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Sarah J Rice
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada
| | - C Thomas Appleton
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Jason S Rockel
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, ON, Canada.
| |
Collapse
|
10
|
Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X, Zeng Y. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg 2024; 16:532-550. [PMID: 38296798 PMCID: PMC10925521 DOI: 10.1111/os.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease in middle-aged and elderly people, characterized by joint pain and dysfunction. Macrophages are key players in OA pathology, and their activation state has been studied extensively. Various studies have suggested that macrophages might respond to stimuli in their microenvironment by changing their phenotypes to pro-inflammatory or anti-inflammatory phenotypes, which is called macrophage polarization. Macrophages accumulate and become polarized (M1 or M2) in many tissues, such as synovium, adipose tissue, bone marrow, and bone mesenchymal tissues in joints, while resident macrophages as well as other stromal cells, including fibroblasts, chondrocytes, and osteoblasts, form the joint and function as an integrated unit. In this study, we focus exclusively on synovial macrophages, adipose tissue macrophages, and osteoclasts, to investigate their roles in the development of OA. We review recent key findings related to macrophage polarization and OA, including pathogenesis, molecular pathways, and therapeutics. We summarize several signaling pathways in macrophage reprogramming related to OA, including NF-κB, MAPK, TGF-β, JAK/STAT, PI3K/Akt/mTOR, and NLRP3. Of note, despite the increasing availability of treatments for osteoarthritis, like intra-articular injections, surgery, and cellular therapy, the demand for more effective clinical therapies has remained steady. Therefore, we also describe the current prospective therapeutic methods that deem macrophage polarization to be a therapeutic target, including physical stimulus, chemical compounds, and biological molecules, to enhance cartilage repair and alleviate the progression of OA.
Collapse
Affiliation(s)
- Zimu Yuan
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Decheng Jiang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Mengzhu Yang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Jie Tao
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Xin Hu
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Yi Zeng
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
11
|
Zappia J, Tong Q, Van der Cruyssen R, Cornelis FMF, Lambert C, Pinto Coelho T, Grisart J, Kague E, Lories RJ, Muller M, Elewaut D, Hammond CL, Sanchez C, Henrotin Y. Osteomodulin downregulation is associated with osteoarthritis development. Bone Res 2023; 11:49. [PMID: 37730805 PMCID: PMC10511717 DOI: 10.1038/s41413-023-00286-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 09/22/2023] Open
Abstract
Abnormal subchondral bone remodeling leading to sclerosis is a main feature of osteoarthritis (OA), and osteomodulin (OMD), a proteoglycan involved in extracellular matrix mineralization, is associated with the sclerotic phenotype. However, the functions of OMD remain poorly understood, specifically in vivo. We used Omd knockout and overexpressing male mice and mutant zebrafish to study its roles in bone and cartilage metabolism and in the development of OA. The expression of Omd is deeply correlated with bone and cartilage microarchitectures affecting the bone volume and the onset of subchondral bone sclerosis and spontaneous cartilage lesions. Mechanistically, OMD binds to RANKL and inhibits osteoclastogenesis, thus controlling the balance of bone remodeling. In conclusion, OMD is a key factor in subchondral bone sclerosis associated with OA. It participates in bone and cartilage homeostasis by acting on the regulation of osteoclastogenesis. Targeting OMD may be a promising new and personalized approach for OA.
Collapse
Affiliation(s)
- Jérémie Zappia
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium.
| | - Qiao Tong
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Renée Van der Cruyssen
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Frederique M F Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Cécile Lambert
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium
| | - Tiago Pinto Coelho
- Cardiovascular Sciences, Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgium
- Division of Nephrology, CHU of Liège, Université de Liège, Liège, Belgium
| | | | - Erika Kague
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Rik J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Marc Muller
- Laboratoire d'Organogenèse et Régénération, Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgium
| | - Dirk Elewaut
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Chrissy L Hammond
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Christelle Sanchez
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, Université de Liège, Liège, Belgium
- Artialis SA, Tour GIGA, CHU Sart-Tilman, Liège, Belgium
- Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
12
|
Kim SJ, Kim JE, Choe G, Song DH, Kim SJ, Kim TH, Yoo J, Kim SH, Jung Y. Self-assembled peptide-substance P hydrogels alleviate inflammation and ameliorate the cartilage regeneration in knee osteoarthritis. Biomater Res 2023; 27:40. [PMID: 37143133 PMCID: PMC10161637 DOI: 10.1186/s40824-023-00387-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Self-assembled peptide (SAP)-substance P (SP) hydrogels can be retained in the joint cavity longer than SP alone, and they can alleviate inflammation and ameliorate cartilage regeneration in knee osteoarthritis (OA). We conducted a preclinical study using diverse animal models of OA and an in vitro study using human synoviocytes and patient-derived synovial fluids to demonstrate the effect of SAP-SP complex on the inflammation and cartilage regeneration. METHODS Surgical induction OA model was prepared with New Zealand white female rabbits and chemical induction, and naturally occurring OA models were prepared using Dunkin Hartely female guinea pigs. The SAP-SP complex or control (SAP, SP, or saline) was injected into the joint cavities in each model. We performed micro-computed tomography (Micro-CT) analysis, histological evaluation, immunofluorescent analysis, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling (TUNEL) assay and analyzed the recruitment of intrinsic mesenchymal stem cells (MSCs), macrophage activity, and inflammatory cytokine in each OA model. Human synoviocytes were cultured in synovial fluid extracted from human OA knee joints injected with SAP-SP complexes or other controls. Proliferative capacity and inflammatory cytokine levels were analyzed. RESULTS Alleviation of inflammation, inhibition of apoptosis, and enhancement of intrinsic MSCs have been established in the SAP-SP group in diverse animal models. Furthermore, the inflammatory effects on human samples were examined in synoviocytes and synovial fluid from patients with OA. In this study, we observed that SAP-SP showed anti-inflammatory action in OA conditions and increased cartilage regeneration by recruiting intrinsic MSCs, inhibiting progression of OA. CONCLUSIONS These therapeutic effects have been validated in diverse OA models, including rabbits, Dunkin Hartley guinea pigs, and human synoviocytes. Therefore, we propose that SAP-SP may be an effective injectable therapeutic agent for treating OA. In this manuscript, we report a preclinical study of novel self-assembled peptide (SAP)-substance P (SP) hydrogels with diverse animal models and human synoviocytes and it displays anti-inflammatory effects, apoptosis inhibition, intrinsic mesenchymal stem cells recruitments and cartilage regeneration.
Collapse
Affiliation(s)
- Sang Jun Kim
- Department of Physical and Rehabilitation Medicine, Seoul Jun Rehabilitation Clinic and Research Center, Seoul, Republic of Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Eun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Goeun Choe
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Da Hyun Song
- Department of Physical and Rehabilitation Medicine, Seoul Jun Rehabilitation Clinic and Research Center, Seoul, Republic of Korea
| | - Sun Jeong Kim
- Stem Cell Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Tae Hee Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jin Yoo
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Zhao H, Li H, Xie X, Tang HY, Liu XX, Wen Y, Xiao X, Ye L, Tang YW, Dai GY, He JN, Chen L, Wang Q, Tang DQ, Pan SN. Dual-energy CT virtual non-calcium: an accurate method for detection of knee osteoarthritis-related edema-like marrow signal intensity. Insights Imaging 2023; 14:74. [PMID: 37121955 PMCID: PMC10149542 DOI: 10.1186/s13244-023-01407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/11/2023] [Indexed: 05/02/2023] Open
Abstract
OBJECTIVES To evaluate the performance of a dual-energy computed tomography (DECT) virtual non-calcium (VNCa) technique in the detection of edema-like marrow signal intensity (ELMSI) in patients with knee joint osteoarthritis (OA) compared to magnetic resonance imaging (MRI). METHODS The study received local ethics board approval, and written informed consent was obtained. DECT and MRI were used to examine 28 knees in 24 patients with OA. VNCa images were generated by dual-energy subtraction of calcium. The knee joint was divided into 15 regions for ELMSI grading, performed independently by two musculoskeletal radiologists, with MRI as the reference standard. We also analyzed CT numbers through receiver operating characteristics and calculated cut-off values. RESULTS For the qualitative analysis, we obtained CT sensitivity (Readers 1, 2 = 83.7%, 89.8%), specificity (Readers 1, 2 = 99.5%, 99.5%), positive predictive value (Readers 1, 2 = 95.3%, 95.7%), and negative predictive value (Readers 1, 2 = 97.9%, 98.7%) for ELMSI. The interobserver agreement was excellent (κ = 0.92). The area under the curve for Reader 1 and Reader 2 was 0.961 (95% CI 0.93, 0.99) and 0.992 (95% CI 0.98, 1.00), respectively. CT numbers obtained from the VNCa images were significantly different between regions with and without ELMSI (p < .001). CONCLUSIONS VNCa images have good diagnostic performance for the qualitative and quantitative analysis of knee osteoarthritis-related ELMSI.
Collapse
Affiliation(s)
- Heng Zhao
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, Liaoning, China
| | - Hui Li
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Radiology, The First People's Hospital of Zhaoqing City, Zhaoqing, China
| | - Xia Xie
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hai-Yan Tang
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiao-Xin Liu
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yi Wen
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xin Xiao
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lu Ye
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - You-Wei Tang
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Gao-Yue Dai
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jia-Ni He
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Li Chen
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qian Wang
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - De-Qiu Tang
- The First Affiliated Hospital, Department of Radiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Shi-Nong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Sanhao Street No. 36, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
14
|
Xue HY, Liu MW, Yang G. Resveratrol suppresses lipopolysaccharide-mediated activation of osteoclast precursor RAW 264.7 cells by increasing miR-181a-5p expression. Int J Immunopathol Pharmacol 2023; 37:3946320231154995. [PMID: 36723677 PMCID: PMC9900163 DOI: 10.1177/03946320231154995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Resveratrol (Res) has anti-inflammation and antiosteoporosis functions. We evaluated the effect of Res on osteoclast differentiation by releasing inflammatory cytokines from osteoclast precursor RAW 264.7 cells stimulated by lipopolysaccharide (LPS). In the study, LPS (1 ng/L) was used to induce the Raw 264.7 inflammatory injury model in vitro. A total of 25 ng/mL M-CSF + 30 ng/mL RANKL or plus 1 μg/L LPS was used to induce osteoclastogenesis in the experiments. We utilized the Cell Counting Kit-8 assay to measure the relative cell survival of RAW 264.7 cells. Then, enzyme-linked immunosorbent assays were utilized to measure the abundance of inflammatory markers, such as interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and IL-6. Subsequently, Western blot analysis was applied to assess the abundance of phosphorylated transforming growth factor beta-activated kinase 1 (P-TAK1) protein, TNF receptor-associated factor 6 (TRAF6), nuclear factor-κB inhibitor protein (IκB), phosphorylated IκB-α (P-IκB-α), and nuclear factor κB65 (NF-κB65). mRNA expression levels of miR-181a-5p, TRAF6, specific gene calcitonin receptor (CTR), activated T nuclear factor 1 (NFATC1), cathepsin K (CTSK), and matrix metalloproteinase (MMP)-9 were determined via a real-time polymerase chain reaction. Osteoclast bone resorption function was determined. Finally, tartrate-resistant acid phosphatase (TRAP) staining was performed.The results found that Compared with the model group, the degrees of expressions of supernatant inflammatory factors TNF-α, IL-1β, and IL-6 were substantially attenuated in the Res treatment group (p < 0.05). Furthermore, the extent of miR-181a-5p expression in the RAW 264.7 cells significantly increased, whereas P-IκB-α, P-TAK1, NF-κB65, and TRAF6 expressions significantly decreased in the Res treatment group as opposed to the model group (p < 0.05). The CTR, NFATC1, MMP-9, CTSK, and TRAP mRNA expression levels were substantially reduced during osteoclast differentiation and bone resorption in the Res treatment group.The results suggest that Res can reduce the RAW 264.7 cell differentiation into osteoclasts and relieve LPS-stimulated osteoporosis, and the underlying mechanism may be associated with the Res-inhibited activity of the TRAF6/TAK1 pathway through the increased miR-181a-5p expression.
Collapse
Affiliation(s)
- Hai-Yan Xue
- Trauma center,
The First
Hospital Affiliated of Kunming Medical
University, Kunming, China
| | - Ming-Wei Liu
- Department of Emergency,
The First
Hospital Affiliated of Kunming Medical
University, Kunming, China
| | - Guang Yang
- Trauma center,
The First
Hospital Affiliated of Kunming Medical
University, Kunming, China,Guang Yang, Trauma center, The First
Hospital Affiliated of Kunming Medical University, 295 Xichang Road, Wu Hua
District, Kunming 650032, China.
| |
Collapse
|
15
|
Yang R, Guo Y, Zong S, Ma Z, Wang Z, Zhao J, Yang J, Li L, Chen C, Wang S. Bardoxolone methyl ameliorates osteoarthritis by inhibiting osteoclastogenesis and protecting the extracellular matrix against degradation. Heliyon 2023; 9:e13080. [PMID: 36798782 PMCID: PMC9925876 DOI: 10.1016/j.heliyon.2023.e13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Inflammation and oxidative damage are closely related to the development of osteoarthritis. Bardoxolone methyl (CDDO-Me), a semisynthetic oleanane triterpenoid, plays a strong anti-inflammatory and antioxidant role. The purpose of our research was to explore fundamental mechanisms of CDDO-Me in orthopaedics development. The results showed that CDDO-Me inhibited nuclear factor-κB ligand (RANKL)-induced osteoclast formation and extracellular matrix (ECM) degradation by activating the Nrf2/HO-1 signaling pathways and inhibiting NF-κB pathway activation and excess ROS production. In vivo, CDDO-Me significantly attenuated articular cartilage proteoglycan loss and the number of TRAP-positive osteoclasts in a destabilized medial meniscus (DMM) mouse model of OA. Taken together, these data demonstrate that CDDO-Me inhibits osteoclastogenesis and ECM degradation, underscoring its potential therapeutic value in treating OA.
Collapse
Affiliation(s)
- Ruijia Yang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China,Department of Laboratory Medicine, Southern Central Hospital of Yunnan Province (The First People's Hospital of Honghe State), Mengzi, China
| | - Yanjing Guo
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China,Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Sujing Zong
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China,Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhou Ma
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhenyu Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiyu Zhao
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinmei Yang
- Department of Pediatrics, Southern Central Hospital of Yunnan Province (The First People's Hospital of Honghe State), Mengzi, China
| | - Liping Li
- Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Chongwei Chen
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China,Corresponding authors. Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Shaowei Wang
- Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China,Department of Biochemistry, Basic Medical College, Shanxi Medical University, Taiyuan, China,Corresponding authors. Shanxi Key Lab of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
16
|
Trivanovic D, Harder J, Leucht M, Kreuzahler T, Schlierf B, Holzapfel BM, Rudert M, Jakob F, Herrmann M. Immune and stem cell compartments of acetabular and femoral bone marrow in hip osteoarthritis patients. Osteoarthritis Cartilage 2022; 30:1116-1129. [PMID: 35569800 DOI: 10.1016/j.joca.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Hip osteoarthritis (OA) affects all components of the osteochondral unit, leading to bone marrow (BM) lesions, and unknown consequences on BM cell functionality. We analyzed the cellular composition in OA-affected acetabula compared to proximal femur shafts obtained of hip OA patients to reveal yet not explored immune and stem cell compartments. DESIGN Combining flow cytometry, cellular assays and transcription analyses, we performed extensive ex vivo phenotyping of acetabular BM cells from 18 hip OA patients, comparing them with their counterparts from patient-matched femoral shaft BM samples. Findings were related to differences in skeletal sites and age. RESULTS Acetabular BM had a greater frequency of T-lymphocytes, non-hematopoietic cells and colony-forming units fibroblastic potential than femoral BM. The incidence of acetabular CD45+CD3+ T-lymphocytes increased (95% CI: 0.1770 to 0.0.8416), while clonogenic hematopoietic progenitors declined (95% CI: -0.9023 to -0.2399) with age of patients. On the other side, in femoral BM, we observed higher B-lymphocyte, myeloid and erythroid cell frequencies. Acetabular mesenchymal stromal cells (MSCs) showed a senescent profile associated with the expression of survival and inflammation-related genes. Efficient osteogenic and chondrogenic differentiation was detected in acetabular MSCs, while adipogenesis was more pronounced in their femoral counterparts. CONCLUSION Our results suggest that distinctions in BM cellular compartments and MSCs may be due to the influence of the OA-stressed microenvironment, but also acetabular vs femoral shaft-specific peculiarities cannot be excluded. These results bring new knowledge on acetabular BM cell populations and may be addressed as novel pathogenic mechanisms and therapeutic targets in OA.
Collapse
Affiliation(s)
- D Trivanovic
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - J Harder
- Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - M Leucht
- Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - T Kreuzahler
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - B Schlierf
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - B M Holzapfel
- Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Department of Orthopaedic Surgery, University Clinics, Ludwig-Maximilians University Munich, Munich, 81377, Germany
| | - M Rudert
- Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - F Jakob
- Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - M Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany.
| |
Collapse
|
17
|
Ding DF, Xue Y, Wu XC, Zhu ZH, Ding JY, Song YJ, Xu XL, Xu JG. Recent Advances in Reactive Oxygen Species (ROS)-Responsive Polyfunctional Nanosystems 3.0 for the Treatment of Osteoarthritis. J Inflamm Res 2022; 15:5009-5026. [PMID: 36072777 PMCID: PMC9443071 DOI: 10.2147/jir.s373898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is an inflammatory and degenerative joint disease with severe effects on individuals, society, and the economy that affects millions of elderly people around the world. To date, there are no effective treatments for OA; however, there are some treatments that slow or prevent its progression. Polyfunctional nanosystems have many advantages, such as controlled release, targeted therapy and high loading rate, and have been widely used in OA treatment. Previous mechanistic studies have revealed that inflammation and ROS are interrelated, and a large number of studies have demonstrated that ROS play an important role in different types of OA development. In this review article, we summarize third-generation ROS-sensitive nanomaterials that scavenge excessive ROS from chondrocytes and osteoclasts in vivo. We only focus on polymer-based nanoparticles (NPs) and do not review the effects of drug-loaded or heavy metal NPs. Mounting evidence suggests that polyfunctional nanosystems will be a promising therapeutic strategy in OA therapy due to their unique characteristics of being sensitive to changes in the internal environment.
Collapse
Affiliation(s)
- Dao-Fang Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yan Xue
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Tongji University, Shanghai, People’s Republic of China
| | - Xi-Chen Wu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Zhi-Heng Zhu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia-Ying Ding
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yong-Jia Song
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China
- Correspondence: Xiao-Ling Xu, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, People’s Republic of China, Email
| | - Jian-Guang Xu
- Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Jian-Guang Xu, Center of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 200000, People’s Republic of China, Email
| |
Collapse
|
18
|
Yan J, Feng G, Ma L, Chen Z, Jin Q. Metformin alleviates osteoarthritis in mice by inhibiting chondrocyte ferroptosis and improving subchondral osteosclerosis and angiogenesis. J Orthop Surg Res 2022; 17:333. [PMID: 35765024 PMCID: PMC9238069 DOI: 10.1186/s13018-022-03225-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most common musculoskeletal disease, and it has a complex pathology and unknown pathogenesis. Chondrocyte ferroptosis is closely associated with the development of OA. As a common drug administered for the treatment of type 2 diabetes, metformin (Met) is known to inhibit the development of ferroptosis. However, its therapeutic effect in OA remains unknown. The present study aimed to explore the effects of Met on cartilage and subchondral bone in a mouse OA model and to explore the potential underlying mechanisms. METHODS A mouse OA model was induced using destabilization of the medial meniscus (DMM) surgery, chondrocyte ferroptosis was induced using an intra-articular injection of Erastin, and Met (200 mg/kg/day) was intragastrically administered for 8 weeks after surgery. H&E and Safranin O‑fast green staining were used to evaluate cartilage degeneration, and μ‑computed tomography was used to evaluate changes in subchondral bone microarchitecture. Moreover, immunohistochemical staining was performed to detect mechanistic metalloproteinases 13, type II collagen, glutathione peroxidase 4, acyl-CoA synthetase long-chain family member 4, solute carrier family 7 member 11 and p53. Runt-associated transcription factor 2 and CD31 were detected using immunofluorescent staining. RESULTS Met protected articular cartilage and reversed the abnormal expression of ferroptosis-related proteins in the chondrocytes of DMM mice. Moreover, intra-articular injection of Erastin induced ferroptosis in mouse chondrocytes, and Met eliminated the ferroptosis effects induced by Erastin and protected articular cartilage. In addition, the results of the present study demonstrated that Met alleviated the microstructural changes of subchondral osteosclerosis and reduced heterotypic angiogenesis in DMM mice. CONCLUSION Met alleviates the pathological changes of OA by inhibiting ferroptosis in OA chondrocytes, alleviating subchondral sclerosis and reducing abnormal angiogenesis in subchondral bone in advanced OA.
Collapse
Affiliation(s)
- Jiangbo Yan
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.,Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Gangning Feng
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhirong Chen
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China. .,Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Qunhua Jin
- Ningxia Medical University, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China. .,Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
19
|
Yang X, Liang X, Guo H, Ma L, Jian L, Zhao X, Wang J, Yang L, Meng Z, Jin Q. β2-Adrenergic receptor expression in subchondral bone of patients with varus knee osteoarthritis. Open Med (Wars) 2022; 17:1031-1044. [PMID: 35794997 PMCID: PMC9175016 DOI: 10.1515/med-2022-0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
An important causative factor in osteoarthritis (OA) is the abnormal mechanical stress-induced bone remodeling of the subchondral bone. β2-adrenergic receptor (Adrb2) plays a major role in mechanical stresses that induce bone remodeling. The medial tibial plateau (MTP) and lateral tibial plateau (LTP) of patients with varus Knee osteoarthritis (KO) bear different mechanical stresses. The present study aimed to investigate the expression of Adrb2 in medial tibial plateau subchondral bone (MTPSB) and lateral tibial plateau subchondral bone (LTPSB) in patients with varus KO. A total of 30 tibial plateau samples from patients undergoing total knee arthroplasty for varus KO and MTPSB and LTPSB were studied. Statistical analysis was performed using paired sample t-tests. Safranin O-Fast Green staining and Micro-computed tomography showed significant differences in the bone structure between MTPSB and LTPSB. Tartrate-resistant acid phosphatase (TRAP)-positive cell density in MTPSB was higher than that in LTPSB. Immunohistochemistry, reverse transcription-quantitative polymerase chain reaction, and Western blot analysis revealed that compared to LTPSB, the levels of Adrb2, tyrosine hydroxylase (TH), and osteocalcin increased significantly in MTPSB. Double-labeling immunofluorescence showed Adrb2 was present in the majority of TRAP-positive multinuclear cells of the MTPSB. The expression of Adrb2 and TH was significantly higher in MTPSB than in LTPSB, confirming the involvement of these molecules in the development of OA.
Collapse
Affiliation(s)
- Xiaochun Yang
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Xuegang Liang
- Department of The General Hospital of Ningxia Medical University, Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Haohui Guo
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Long Ma
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Li Jian
- Department of Pathology, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Xin Zhao
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Jian Wang
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Lvlin Yang
- Department of The General Hospital of Ningxia Medical University, Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Zhiqiang Meng
- Department of The General Hospital of Ningxia Medical University, Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| | - Qunhua Jin
- Department of Orthopedics Ward 3, The General Hospital of Ningxia Medical University , Yinchuan , 750004, Ningxia , China
| |
Collapse
|
20
|
Connection between Mesenchymal Stem Cells Therapy and Osteoclasts in Osteoarthritis. Int J Mol Sci 2022; 23:ijms23094693. [PMID: 35563083 PMCID: PMC9102843 DOI: 10.3390/ijms23094693] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
The use of mesenchymal stem cells constitutes a promising therapeutic approach, as it has shown beneficial effects in different pathologies. Numerous in vitro, pre-clinical, and, to a lesser extent, clinical trials have been published for osteoarthritis. Osteoarthritis is a type of arthritis that affects diarthritic joints in which the most common and studied effect is cartilage degradation. Nowadays, it is known that osteoarthritis is a disease with a very powerful inflammatory component that affects the subchondral bone and the rest of the tissues that make up the joint. This inflammatory component may induce the differentiation of osteoclasts, the bone-resorbing cells. Subchondral bone degradation has been suggested as a key process in the pathogenesis of osteoarthritis. However, very few published studies directly focus on the activity of mesenchymal stem cells on osteoclasts, contrary to what happens with other cell types of the joint, such as chondrocytes, synoviocytes, and osteoblasts. In this review, we try to gather the published bibliography in relation to the effects of mesenchymal stem cells on osteoclastogenesis. Although we find promising results, we point out the need for further studies that can support mesenchymal stem cells as a therapeutic tool for osteoclasts and their consequences on the osteoarthritic joint.
Collapse
|
21
|
Gardner JE, Williams CW, Bowers RL. Subchondral versus intra-articular orthobiologic injections for the treatment of knee osteoarthritis: a review. Regen Med 2022; 17:389-400. [PMID: 35410486 DOI: 10.2217/rme-2021-0174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent perspectives suggest that osteoarthritis (OA) is a disease involving not only the articular cartilage but also the osteochondral unit, including the synovium, supportive cartilage and subchondral bone. Current conservative treatments for OA are symptomatic and do not prevent progression or reverse the disease process. Compelling data show that intra-articular orthobiologic injections, such as platelet-rich plasma and mesenchymal stromal cells, are effective in providing relief of OA symptoms. However, recent data suggest that injections of orthobiologics into the subchondral bone may be superior to intra-articular injections for the management of OA. This review highlights the rationale and current evidence for intra-articular and subchondral bone injections of orthobiologics for the treatment of OA.
Collapse
Affiliation(s)
- James E Gardner
- Department of Physical Medicine & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Christopher W Williams
- Department of Physical Medicine & Rehabilitation, Emory University, Atlanta, GA 30322, USA.,Interventional Orthopedics of Atlanta, Atlanta, GA 30305, USA
| | - Robert L Bowers
- Department of Orthopaedics, Emory University, Atlanta, GA 30322, USA.,Department of Physical Medicine & Rehabilitation, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
Fokter SK, Gubeljak N, Punzón-Quijorna E, Pelicon P, Kelemen M, Vavpetič P, Predan J, Ferlič L, Novak I. Total Knee Replacement with an Uncemented Porous Tantalum Tibia Component: A Failure Analysis. MATERIALS 2022; 15:ma15072575. [PMID: 35407908 PMCID: PMC8999729 DOI: 10.3390/ma15072575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Porous tantalum has been extensively used in orthopaedic surgery, including uncemented total knee arthroplasty (TKA). Favourable results were reported with earlier monobloc tibial components and the design evolved to modular implants. We aimed to analyse possible causes for extensive medial tibia bone loss, resulting in modular porous tantalum tibia baseplate fracture after primary TKA. Retrieved tissue samples were scanned with 3 MeV focused proton beam for Proton-Induced X-ray Emission (micro-PIXE) elemental analysis. Fractographic and microstructural analysis were performed by stereomicroscopy. A full 3D finite-element model was made for numerical analysis of stress-strain conditions of the tibial baseplate. Histological examination of tissue underneath the broken part of the tibial baseplate revealed dark-stained metal debris, which was confirmed by micro-PIXE to consist of tantalum and titanium. Fractographic analysis and tensile testing showed that the failure of the tibial baseplate fulfilled the criteria of a typical fatigue fracture. Microstructural analysis of the contact surface revealed signs of bone ingrowth in 22.5% of the surface only and was even less pronounced in the medial half of the tibial baseplate. Further studies are needed to confirm the responsibility of metal debris for an increased bone absorption leading to catastrophic tibial tray failure.
Collapse
Affiliation(s)
- Samo K. Fokter
- Department of Orthopaedics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia;
- Correspondence: ; Tel.: +386-41-772102
| | - Nenad Gubeljak
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.G.); (J.P.); (L.F.)
| | - Esther Punzón-Quijorna
- Department of Low and Medium Energy Physics F2, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (E.P.-Q.); (P.P.); (M.K.); (P.V.)
| | - Primož Pelicon
- Department of Low and Medium Energy Physics F2, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (E.P.-Q.); (P.P.); (M.K.); (P.V.)
| | - Mitja Kelemen
- Department of Low and Medium Energy Physics F2, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (E.P.-Q.); (P.P.); (M.K.); (P.V.)
| | - Primož Vavpetič
- Department of Low and Medium Energy Physics F2, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (E.P.-Q.); (P.P.); (M.K.); (P.V.)
| | - Jožef Predan
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.G.); (J.P.); (L.F.)
| | - Luka Ferlič
- Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (N.G.); (J.P.); (L.F.)
| | - Igor Novak
- Department of Orthopaedics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia;
| |
Collapse
|
23
|
Lin C, Chen Z, Guo D, Zhou L, Lin S, Li C, Li S, Wang X, Lin B, Ding Y. Increased expression of osteopontin in subchondral bone promotes bone turnover and remodeling, and accelerates the progression of OA in a mouse model. Aging (Albany NY) 2022; 14:253-271. [PMID: 34982732 PMCID: PMC8791213 DOI: 10.18632/aging.203707] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023]
Abstract
Osteopontin (OPN) has been proved to be closely related to the pathogenesis of osteoarthritis (OA), but the role of OPN in the pathogenesis of OA has not been fully clarified. Current studies on OPN in OA mostly focus on articular cartilage, synovial membrane and articular fluid, while ignoring its role in OA subchondral bone turnover and remodeling. In this study, we used a destabilization OA mouse model to investigate the role of OPN in OA subchondral bone changes. Our results indicate that increased expression of OPN accelerates the turnover and remodeling of OA subchondral bone, promotes the formation of h-type vessels in subchondral bone, and mediates articular cartilage degeneration induced by subchondral bone metabolism. In addition, our results confirmed that inhibition of PI3K/AKT signaling pathway inhibits OPN-mediated OA subchondral bone remodeling and cartilage degeneration. This study revealed the role and mechanism of OPN in OA subchondral bone, which is of great significance for exploring specific biological indicators for early diagnosis of OA and monitoring disease progression, as well as for developing drugs to regulate the metabolism and turnover of subchondral bone and alleviate the subchondral bone sclerosis of OA.
Collapse
Affiliation(s)
- Chuangxin Lin
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou 515000, P.R. China
| | - Zhong Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Dong Guo
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, P.R China
| | - Laixi Zhou
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou 515000, P.R. China
| | - Sipeng Lin
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Changchuan Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Shixun Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Xinjia Wang
- Department of Orthopedic, Affiliated Cancer Hospital, Shantou University Medical College, Shantou 515041, P.R. China
| | - Bendan Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou 515000, P.R. China
| | - Yue Ding
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| |
Collapse
|
24
|
Sanchez C, Lambert C, Dubuc JE, Bertrand J, Pap T, Henrotin Y. Syndecan-4 Is Increased in Osteoarthritic Knee, but Not Hip or Shoulder, Articular Hypertrophic Chondrocytes. Cartilage 2021; 13:862S-871S. [PMID: 31455087 PMCID: PMC8804772 DOI: 10.1177/1947603519870855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Syndecan-4 plays a critical role in cartilage degradation during osteoarthritis (OA). The aim of this study was to investigate the expression and localization of syndecan-4 in different OA joint tissues. DESIGN Syndecan-4 mRNA levels were quantified by reverse transcription-polymerase chain reaction in human OA primary cells. Syndecan-4 was localized by immunohistochemistry in knee, hip, or shoulder OA bone/cartilage biopsies. Syndecan-4 was quantified by immunoassay in chondrocytes culture supernatant and cell fraction. RESULTS Using immunochemistry, syndecan-4 was observed in chondrocytes clusters in the superficial zone of OA knee, but not in OA hip or shoulder cartilage. No significant difference was detected in syndecan-4 expression level in sclerotic compared with nonsclerotic osteoblasts or in inflamed synoviocytes compared to normal/reactive ones. Differentiated hypertrophic chondrocytes from knee, but not from hip cartilage, expressed more syndecan-4 than nonhypertrophic cells. Using an immunoassay for the extracellular domain of syndecan-4, we found 68% of the syndecan-4 in the culture supernatant of OA chondrocytes culture, suggesting that a large majority of the syndecan-4 is shed and released in the extracellular medium. The shedding rate was not affected by hypertrophic differentiation state of the chondrocytes or their joint origin. CONCLUSIONS Even if chondrocytes clusters are seen in OA knee, hip and shoulder cartilage and hypertrophic differentiation appears in knee and hip OA articular chondrocytes, syndecan-4 synthesis only increased in knee. These findings suggest the presence of biochemical difference between articular cartilage according to their location and that syndecan-4 could be a biochemical marker specific for knee OA.
Collapse
Affiliation(s)
- Christelle Sanchez
- Bone and Cartilage Research Unit,
Arthropôle Liège, University of Liège, Liège, Belgium,Christelle Sanchez, Institute of Pathology
+5, Bone and Cartilage Research Unit, CHU-Sart-Tilman, Liège, 4000, Belgium.
| | - Cécile Lambert
- Bone and Cartilage Research Unit,
Arthropôle Liège, University of Liège, Liège, Belgium
| | - Jean-Emile Dubuc
- Orthopedic Department, Cliniques
Universitaires Saint-Luc, Brussels, Belgium
| | - Jessica Bertrand
- Experimental Orthopedics, University
Hospital Magdeburg, Magdeburg, Germany
| | - Thomas Pap
- Institute of Experimental
Musculoskeletal Medicine, University Hospital Munster, Munster, Germany
| | - Yves Henrotin
- Bone and Cartilage Research Unit,
Arthropôle Liège, University of Liège, Liège, Belgium
| |
Collapse
|
25
|
Jiang A, Xu P, Sun S, Zhao Z, Tan Q, Li W, Song C, Leng H. Cellular alterations and crosstalk in the osteochondral joint in osteoarthritis and promising therapeutic strategies. Connect Tissue Res 2021; 62:709-719. [PMID: 33397157 DOI: 10.1080/03008207.2020.1870969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/28/2020] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA) is a joint disorder involving cartilage degeneration and subchondral bone sclerosis. The bone-cartilage interface is implicated in OA pathogenesis due to its susceptibility to mechanical and biological factors. The crosstalk between cartilage and the underlying subchondral bone is elevated in OA due to multiple factors, such as increased vascularization, porosity, microcracks and fissures. Changes in the osteochondral joint are traceable to alterations in chondrocytes and bone cells (osteoblasts, osteocytes and osteoclasts). The phenotypes of these cells can change with the progression of OA. Aberrant intercellular communications among bone cell-bone cell and bone cell-chondrocyte are of great importance and might be the factors promoting OA development. An appreciation of cellular phenotypic changes in OA and the mechanisms by which these cells communicate would be expected to lead to the development of targeted drugs with fewer side effects.
Collapse
Affiliation(s)
- Ai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Peng Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shang Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhenda Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Qizhao Tan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education Lisbon Portugal
| | - Chunli Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Lab of Spine Diseases, Beijing, China
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
26
|
Yajun W, Jin C, Zhengrong G, Chao F, Yan H, Weizong W, Xiaoqun L, Qirong Z, Huiwen C, Hao Z, Jiawei G, Xinchen Z, Shihao S, Sicheng W, Xiao C, Jiacan S. Betaine Attenuates Osteoarthritis by Inhibiting Osteoclastogenesis and Angiogenesis in Subchondral Bone. Front Pharmacol 2021; 12:723988. [PMID: 34658862 PMCID: PMC8511433 DOI: 10.3389/fphar.2021.723988] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis with no effective therapy. Subchondral bone and overlying articular cartilage are closely associated and function as “osteo-chondral unit” in the joint. Abnormal mechanical load leads to activated osteoclast activity and increased bone resorption in the subchondral bone, which is implicated in the onset of OA pathogenesis. Thus, inhibiting subchondral bone osteoclast activation could prevent OA onset. Betaine, isolated from the Lycii Radicis Cortex (LRC), has been demonstrated to exert anti-inflammatory, antifibrotic and antiangiogenic properties. Here, we evaluated the effects of betaine on anterior cruciate ligament transection (ACLT)-induced OA mice. We observed that betaine decreased the number of matrix metalloproteinase 13 (MMP-13)-positive and collagen X (Col X)-positive cells, prevented articular cartilage proteoglycan loss and lowered the OARSI score. Betaine decreased the thickness of calcified cartilage and increased the expression level of lubricin. Moreover, betaine normalized uncoupled subchondral bone remodeling as defined by lowered trabecular pattern factor (Tb.pf) and increased subchondral bone plate thickness (SBP). Additionally, aberrant angiogenesis in subchondral bone was blunted by betaine treatment. Mechanistically, we demonstrated that betaine suppressed osteoclastogenesis in vitro by inhibiting reactive oxygen species (ROS) production and subsequent mitogen-activated protein kinase (MAPK) signaling. These data demonstrated that betaine attenuated OA progression by inhibiting hyperactivated osteoclastogenesis and maintaining microarchitecture in subchondral bone.
Collapse
Affiliation(s)
- Wang Yajun
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Cui Jin
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Gu Zhengrong
- Department of Orthopedics, Luodian Hospital, Shanghai, China
| | - Fang Chao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hu Yan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Weng Weizong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Li Xiaoqun
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhou Qirong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen Huiwen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhang Hao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guo Jiawei
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhuang Xinchen
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng Shihao
- Graduate Management Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wang Sicheng
- Institute of Translational Medicine, Shanghai University, Shanghai, China.,Department of Orthopedics, Zhongye Hospital, Shanghai, China
| | - Chen Xiao
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Su Jiacan
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China.,Institute of Translational Medicine, Shanghai University, Shanghai, China.,Shanghai Clinical Research Center for Aging and Medicine, Shanghai, China
| |
Collapse
|
27
|
Immunofluorescence Analysis of NF-kB and iNOS Expression in Different Cell Populations during Early and Advanced Knee Osteoarthritis. Int J Mol Sci 2021; 22:ijms22126461. [PMID: 34208719 PMCID: PMC8233870 DOI: 10.3390/ijms22126461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023] Open
Abstract
Synovitis of the knee synovium is proven to be a precursor of knee osteoarthritis (OA), leading to a radiologically advanced stage of the disease. This study was conducted to elucidate the expression pattern of different inflammatory factors—NF-kB, iNOS, and MMP-9 in a subpopulation of synovial cells. Thirty synovial membrane intra-operative biopsies of patients (ten controls, ten with early OA, and ten with advanced OA, according to the Kellgren–Lawrence radiological score) were immunohistochemically stained for NF-kB, iNOS, and MMP9, and for different cell markers for macrophages, fibroblasts, leukocytes, lymphocytes, blood vessel endothelial cells, and blood vessel smooth muscle cells. The total number of CD68+/NF-kB+ cells/mm2 in the intima of early OA patients (median = 2359) was significantly higher compared to the total number of vimentin+/Nf-kB+ cells/mm2 (median = 1321) and LCA+/NF-kB+ cells/mm2 (median = 64) (p < 0.001 and p < 0.0001, respectively). The total number of LCA+/NF-kB+ cells/mm2 in the subintima of advanced OA patients (median = 2123) was significantly higher compared to the total number of vimentin+/NF-kB+ cells/mm2 (median = 14) and CD68+/NF-kB+ cells/mm2 (median = 29) (p < 0.0001). The total number of CD68+/iNOS+ cells/mm2 in the intima of both early and advanced OA patients was significantly higher compared to the total number of vimentin+/iNOS+ cells/mm2 and LCA+/iNOS+ cells/mm2 (p < 0.0001 and p < 0.001, respectively). The total number of CD68+/MMP-9+ cells/mm2 in the intima of both early and advanced OA patients was significantly higher compared to the total number of vimentin+/MMP-9+ cells/mm2 and CD5+/MMP-9+ cells/mm2 (p < 0.0001). Macrophages may have a leading role in OA progression through the NF-kB production of inflammatory factors (iNOS and MMP-9) in the intima, except in advanced OA, where leukocytes could have a dominant role through NF-kB production in subintima. The blocking of macrophageal and leukocyte NF-kB expression is a possible therapeutic target as a disease modifying drug.
Collapse
|
28
|
Pang C, Wen L, Lu X, Luo S, Qin H, Zhang X, Zhu B, Luo S. Ruboxistaurin maintains the bone mass of subchondral bone for blunting osteoarthritis progression by inhibition of osteoclastogenesis and bone resorption activity. Biomed Pharmacother 2020; 131:110650. [PMID: 32882584 DOI: 10.1016/j.biopha.2020.110650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is a common degenerative disease with a series of changes occurring in aging cartilage, such as increased oxidative stress, decreased markers of healthy cartilage and alterations in the autophagy pathway. And increasing evidence indicates that osteoarthritis affects the whole joint, including both cartilage and subchondral bone. The agents that can effectively suppress chondrocyte degradation and subchondral bone deterioration are crucial for the prevention and treatment of OA. Ruboxistaurin (RU), an orally active protein kinase C inhibitor, can reduce macrophage adhesion to endothelial cells and relieve the local inflammation when applicating in diabetes and kinds of aging-related vasculopathy, which were realized by its effects on decreasing inflammatory cytokines' expression and increasing cell anti-oxidative stress ability. However, whether ruboxistaurin protects against OA remains unknown. In this study, we investigated the therapeutic effects of ruboxistaurin in an anterior cruciate ligament transection (ACLT)-induced OA model by preventing the bone mass loss of subchondral bone. We found that ruboxistaurin can effectively alleviate ACLT-induced osteoarthritis, as demonstrated by the phenomenon of correcting pathological bone loss caused by osteoclasts overactivated in the early stage of osteoarthritis and protecting against articular cartilage degeneration. Moreover, we found that ruboxistaurin inhibited osteoclast formation and resorption activity by suppressing the expressions of osteoclast-related genes and (PKCδ/MAPKs) signaling cascade. Taken together, these results show that ruboxistaurin may be a potential therapeutic agent for rescuing abnormal subchondral bone deterioration and cartilage degradation in OA and reverses the vicious cycle related to osteoarthritis.
Collapse
Affiliation(s)
- Cong Pang
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China; Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Liangbao Wen
- Department of Neurosurgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xuanyuan Lu
- Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, Zhejiang, China
| | - Shanchao Luo
- Guangxi Postdoctoral Innovation Practice Base, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Haikuo Qin
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Xuehui Zhang
- Department of Nuclear Medicine, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Bikang Zhu
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China
| | - Shixing Luo
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Beihai, Guangxi, China.
| |
Collapse
|
29
|
Wu CL, Harasymowicz NS, Klimak MA, Collins KH, Guilak F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage 2020; 28:544-554. [PMID: 31926267 PMCID: PMC7214213 DOI: 10.1016/j.joca.2019.12.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/15/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a family of degenerative diseases affecting multiple joint tissues. Despite the diverse etiology and pathogenesis of OA, increasing evidence suggests that macrophages can play a significant role in modulating joint inflammation, and thus OA severity, via various secreted mediators. Recent advances in next-generation sequencing technologies coupled with proteomic and epigenetic tools have greatly facilitated research to elucidate the embryonic origin of macrophages in various tissues including joint synovium. Furthermore, scientists have now begun to appreciate that macrophage polarization can span beyond the conventionally recognized binary states (i.e., pro-inflammatory M1-like vs anti-inflammatory M2-like) and may encompass a broad spectrum of phenotypes. Although the presence of these cells has been shown in multiple joint tissues, additional mechanistic studies are required to provide a comprehensive understanding of the precise role of these diverse macrophage populations in OA onset and progression. New approaches that can modulate macrophages into desired functional phenotypes may provide novel therapeutic strategies for preventing OA or enhancing cartilage repair and regeneration.
Collapse
Affiliation(s)
- C-L Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - N S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - M A Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - K H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - F Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
30
|
Cai W, Li H, Zhang Y, Han G. Identification of key biomarkers and immune infiltration in the synovial tissue of osteoarthritis by bioinformatics analysis. PeerJ 2020; 8:e8390. [PMID: 31988808 PMCID: PMC6970550 DOI: 10.7717/peerj.8390] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/13/2019] [Indexed: 01/15/2023] Open
Abstract
Background Osteoarthritis (OA) is the most common chronic degenerative joint disease and is mainly characterized by cartilage degeneration, subcartilage bone hyperplasia, osteophyte formation and joint space stenosis. Recent studies showed that synovitis might also be an important pathological change of OA. However, the molecular mechanisms of synovitis in OA are still not well understood. Objective This study was designed to identify key biomarkers and immune infiltration in the synovial tissue of osteoarthritis by bioinformatics analysis. Materials and Methods The gene expression profiles of GSE12021, GSE55235 and GSE55457 were downloaded from the GEO database. The differentially expressed genes (DEGs) were identified by the LIMMA package in Bioconductor, and functional enrichment analyses were performed. A protein-protein interaction network (PPI) was constructed, and module analysis was performed using STRING and Cytoscape. The CIBERSORT algorithm was used to analyze the immune infiltration of synovial tissue between OA and normal controls. Results A total of 106 differentially expressed genes, including 68 downregulated genes and 38 upregulated genes, were detected. The PPI network was assessed, and the most significant module containing 14 hub genes was identified. Gene Ontology analysis revealed that the hub genes were significantly enriched in immune cell chemotaxis and cytokine activity. KEGG pathway analysis showed that the hub genes were significantly enriched in the rheumatoid arthritis signaling pathway, IL-17 signaling pathway and cytokine-cytokine receptor interaction signaling pathway. The immune infiltration profiles varied significantly between osteoarthritis and normal controls. Compared with normal tissue, OA synovial tissue contained a higher proportion of memory B cells, naive CD4+ T cells, regulatory T cells, resting dendritic cells and resting mast cells, while naive CD4+ T cells, activated NK cells, activated mast cells and eosinophils contributed to a relatively lower portion (P > 0.05). Finally, the expression levels of 11 hub genes were confirmed by RT-PCR. Conclusion The hub genes and the difference in immune infiltration in synovial tissue between osteoarthritis and normal controls might provide new insight for understanding OA development.
Collapse
Affiliation(s)
- Weisong Cai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guangtao Han
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Gene Expression Profiles of Peripheral Blood Monocytes in Osteoarthritis and Analysis of Differentially Expressed Genes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4291689. [PMID: 31886215 PMCID: PMC6899270 DOI: 10.1155/2019/4291689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/27/2019] [Accepted: 10/22/2019] [Indexed: 01/19/2023]
Abstract
Background There is little understanding of the molecular processes involved in the pathogenesis of osteoarthritis, limiting early diagnosis and effective treatment of OA. Use of genechips can provide insights into the molecular pathogenesis of diseases. In this study, determination of gene expression profiles of osteoarthritis peripheral blood mononuclear cells will allow exploration of the molecular pathogenesis of OA and find out more candidate biomarkers and potential drug targets of OA. Result A total of 1231 DEGs were screened out including 791 upregulated DEGs and 440 downregulated DEGs. The most significant upregulated DEG was RPL38, which may inhibit chondrocyte differentiation and synthesis of the extracellular matrix. PIK3CA, PIK3CB, PIK3CD, PIK3R1, MAPK14, IL1A, JUND, FOSL2, and PPP3CA were the gene symbols of the osteoclast differentiation pathway which was the most significant pathway enriched by DEGs. However, the MAPK signaling pathway occupied the core position of all the pathways which can regulate apoptosis, cell cycle, wnt signaling pathway, p53 signaling pathway, and phosphatidylinositol signaling system. Furthermore, PI3Ks may regulate IL1A, JUND, FOSL2 and PPP3CA through the MAPK signaling pathway. Conclusion These identified DEGs and pathways may be novel biomarkers to monitor the changes of OA and can be a potential drug target for the treatment of OA.
Collapse
|
32
|
Kabalyk MA, Nevzorova VA, Kovalenko TS, Sukhanova GI. Endothelium-dependent molecular mechanisms of articular cartilage and subchondral bone remodeling in conditions of cardiovascular comorbidity. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2019. [DOI: 10.15829/1728-8800-2019-5-102-107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
33
|
Kovács B, Vajda E, Nagy EE. Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int J Mol Sci 2019; 20:ijms20184653. [PMID: 31546898 PMCID: PMC6769977 DOI: 10.3390/ijms20184653] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Cartilage and the bordering subchondral bone form a functionally active regulatory interface with a prominent role in osteoarthritis pathways. The Wnt and the OPG-RANKL-RANK signaling systems, as key mediators, interact in subchondral bone remodeling. Osteoarthritic osteoblasts polarize into two distinct phenotypes: a low secretory and an activated, pro-inflammatory and anti-resorptive subclass producing high quantities of IL-6, PGE2, and osteoprotegerin, but low levels of RANKL, thus acting as putative effectors of subchondral bone sclerosis. Wnt agonists, Wnt5a, Wisp-1 initiate excessive bone remodeling, while Wnt3a and 5a simultaneously cause loss of proteoglycans and phenotype shift in chondrocytes, with decreased expression of COL2A, aggrecan, and Sox-9. Sclerostin, a Wnt antagonist possesses a protective effect for the cartilage, while DKK-1 inhibits VEGF, suspending neoangiogenesis in the subchondral bone. Experimental conditions mimicking abnormal mechanical load, the pro-inflammatory milieu, but also a decreased OPG/RANKL ratio in the cartilage, trigger chondrocyte apoptosis and loss of the matrix via degradative matrix metalloproteinases, like MMP-13 or MMP-9. Hypoxia, an important cofactor exerts a dual role, promoting matrix synthesis via HIF-1α, a Wnt silencer, but turning on HIF-2α that enhances VEGF and MMP-13, along with aberrant collagen expression and extracellular matrix deterioration in the presence of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Béla Kovács
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Enikő Vajda
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| |
Collapse
|
34
|
Abstract
Subchondral bone remodelling is an integral part of osteoarthritis and involves the development of subchondral sclerosis seen on plain imaging, along with osteophyte formation. The development of these changes is due to persistent abnormal mechanical stresses which create a cellular and biomolecular response to microfractures in the subchondral bone and osteochondral junction. An early sign is bone marrow lesions seen on MRI scanning. Healing can occur at this stage by correcting the abnormal loads. Persistence leads to what is thought to be a delayed union or nonunion response by the bone. Microfractures of the osteochondral junction, coupled with articular cartilage fissuring and loss, allows synovial fluid to penetrate the subchondral bone along with cytokines and other molecules reacting with the bone cells to increase the pathological effects. This review gives an overview of the current thoughts on subchondral bone remodelling in osteoarthritis that is aimed at orthopaedic surgeons to help in the understanding of the pathogenesis of osteoarthritis and the role of surgical management.
Cite this article: EFORT Open Rev 2019;4 DOI: 10.1302/2058-5241.4.180102
Collapse
Affiliation(s)
- Simon Donell
- University of East Anglia, Faculty of Medicine and Health Sciences - Norwich Medical School, UK
| |
Collapse
|
35
|
Aso K, Shahtaheri SM, Hill R, Wilson D, McWilliams DF, Walsh DA. Associations of Symptomatic Knee Osteoarthritis With Histopathologic Features in Subchondral Bone. Arthritis Rheumatol 2019; 71:916-924. [DOI: 10.1002/art.40820] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Koji Aso
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham, Nottingham, UK, and Kochi Medical School, Kochi University Nankoku Japan
| | - S. Mohsen Shahtaheri
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham Nottingham UK
| | - Roger Hill
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham, Nottingham, UK, and Sherwood Forest Hospitals NHS Foundation Trust Sutton‐in‐Ashfield UK
| | - Deborah Wilson
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham, Nottingham, UK, and Sherwood Forest Hospitals NHS Foundation Trust Sutton‐in‐Ashfield UK
| | - Daniel F. McWilliams
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham Nottingham UK
| | - David A. Walsh
- Arthritis Research UK Pain Centre, NIHR Nottingham Biomedical Research CentreUniversity of Nottingham, Nottingham, UK, and Sherwood Forest Hospitals NHS Foundation Trust Sutton‐in‐Ashfield UK
| |
Collapse
|
36
|
Han W, Aitken D, Zheng S, Wluka AE, Zhu Z, Blizzard L, Winzenberg T, Cicuttini F, Jones G, Ding C. Association Between Quantitatively Measured Infrapatellar Fat Pad High Signal‐Intensity Alteration and Magnetic Resonance Imaging–Assessed Progression of Knee Osteoarthritis. Arthritis Care Res (Hoboken) 2019; 71:638-646. [DOI: 10.1002/acr.23713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
Abstract
ObjectiveTo describe the cross‐sectional and longitudinal associations between quantitative measures of infrapatellar fat pad (IPFP) signal‐intensity alteration and knee structural abnormalities in patients with symptomatic knee osteoarthritis (OA).MethodsA total of 261 patients (mean ± SD age 63.0 ± 7.2 years) with symptomatic knee OA were selected from a randomized controlled trial with a follow‐up of 2 years. IPFP signal‐intensity alterations at baseline were quantitatively measured on T2‐weighted fat‐saturated magnetic resonance imaging using MATLAB. These quantitative measures included the SD of whole IPFP signal intensity measurement, the upper quartile value of high signal intensity (UQH), the ratio of volume of high signal‐intensity alteration to volume of whole IPFP (percentageH), and the clustering effect of high signal intensity (clustering‐factorH). Cartilage volume and defects and bone marrow lesions (BMLs) were assessed using validated measures.ResultsHigher baseline SD of the IPFP, UQH, and clustering‐factorH were associated with greater loss of tibial cartilage volume and larger increases in tibiofemoral cartilage defects over 2 years. Patients with high and medium tertiles of clustering‐factorH had greater loss of cartilage volume per annum compared with those with a low tertile (for high 4.9%, for medium 4.6%, and for low 3.3% annually). Baseline percentageH and clustering‐factorH were positively and significantly associated with increases in tibiofemoral BMLs over 2 years. Cross‐sectional associations between IPFP measures and knee structures were similar but more consistent.ConclusionQuantitative measures of increased signal intensity in the IPFP were associated with knee structural abnormalities in the tibiofemoral compartment, suggesting that these measurements could be used as an additional entry criterion to enrich studies for faster progressors of knee OA.
Collapse
Affiliation(s)
- Weiyu Han
- University of Tasmania Hobart, Tasmania, Australia, and Zhujiang Hospital, Southern Medical University Guangzhou China
| | - Dawn Aitken
- University of Tasmania Hobart Tasmania Australia
| | - Shuang Zheng
- University of Tasmania Hobart Tasmania Australia
| | | | - Zhaohua Zhu
- University of Tasmania Hobart Tasmania Australia
| | | | | | | | - Graeme Jones
- University of Tasmania Hobart Tasmania Australia
| | - Changhai Ding
- University of Tasmania Hobart, Tasmania, and Monash University, Melbourne, Victoria, Australia, and Zhujiang Hospital, Southern Medical University Guangzhou China
| |
Collapse
|
37
|
Xie J, Huang Z, Yu X, Zhou L, Pei F. Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine Growth Factor Rev 2019; 46:36-44. [PMID: 30910350 DOI: 10.1016/j.cytogfr.2019.03.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritic disease, leading to disability and impaired quality of life and no curative treatments exist. Increasing evidence indicates that low-grade inflammation plays a pivotal role in the onset and progression of OA. In this review, we summarize emerging findings on the pathological roles of synovial macrophages, adipose tissue macrophages, and osteoclasts in OA and their potential clinical implications from cell biology to preclinical and preliminary clinical trials. The failure of synovial macrophages to transition from pro-inflammatory M1 to anti-inflammatory M2 subtypes may contribute to the initiation and maintenance of synovitis in OA. M1 macrophages promote the inflammatory microenvironment and progression of OA through interactions with synovial fibroblasts and chondrocytes, thus increasing the secretion of matrix metalloproteinases. Direct inhibition of M1 or promotion of M2 polarization may be useful therapeutic interventions. Adipose tissue macrophages present in the infrapatella fat pad (IPFP) were involved in the progression of obesity-induced OA, which contributed to changes in the integrity of the IPFP. Furthermore, macrophages and osteoclasts in the subchondral bone were involved in bone remodeling and pain through uncoupled osteoclast/osteoblast activity and increased nociceptive signaling. Growing evidence has indicated an important role for macrophage-mediated low-grade inflammation in OA. Fully understanding the link between macrophages and other cells in joints will provide new insights into OA disease modification.
Collapse
Affiliation(s)
- Jinwei Xie
- Department of Orthopaedics Surgery, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zeyu Huang
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Li Zhou
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fuxing Pei
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
38
|
Yang J, Tang R, Yi J, Chen Y, Li X, Yu T, Fei J. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway. FASEB J 2019; 33:7261-7273. [PMID: 30857415 PMCID: PMC6554198 DOI: 10.1096/fj.201802172r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal homeostasis is closely effectuated by the regulation of bone formation and bone resorption. Osteoclasts are multinuclear giant cells responsible for bone resorption. Overactivated osteoclasts and excessive bone resorption result in various lytic bone diseases, such as osteoporosis, osteoarthritis, periprosthetic infection, and inflammatory aseptic loosening of orthopedic implants. In consideration of the severe side effects caused by the currently available drugs, exploitation of novel drugs has gradually attracted attention. Because of its anti-inflammatory, antioxidant, and antitumor capacities, diallyl disulfide (DADS), a major oil-soluble organosulfur ingredient compound derived from garlic, has been widely researched. However, the effects of DADS on osteoclasts and lytic bone diseases are still unknown. In this study, we investigated the effects of DADS on receptor activator of NF-κB ligand (RANKL)- and LPS-mediated osteoclastogenesis, LPS-stimulated proinflammatory cytokines related to osteoclasts, and LPS-induced inflammatory osteolysis. The results showed that DADS significantly inhibited RANKL-mediated osteoclast formation, fusion, and bone resorption in a dose-dependent manner via inhibiting the NF-κB and signal transducer and activator of transcription 3 signaling and restraining the interaction of NF-κB p65 with nuclear factor of activated T cells cytoplasmic 1. Furthermore, DADS also markedly suppressed LPS-induced osteoclastogenesis and reduced the production of proinflammatory cytokines with LPS stimulation to indirectly mediate osteoclast formation. Consistent with the in vitro results, DADS prevented the LPS-induced severe bone loss by blocking the osteoclastogenesis. All of the results indicate that DADS may be a potential and exploitable drug used for preventing and impeding osteolytic lesions.-Yang, J., Tang, R., Yi, J., Chen, Y., Li, X., Yu, T., Fei, J. Diallyl disulfide alleviates inflammatory osteolysis by suppressing osteoclastogenesis via NF-κB-NFATc1 signal pathway.
Collapse
Affiliation(s)
- Jing Yang
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Ruohui Tang
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jin Yi
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; and
| | - Xianghe Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guizhou Medical University, Guiyang, China
| | - Tao Yu
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; and
| | - Jun Fei
- Center of Trauma, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
39
|
Weber A, Mak SH, Berenbaum F, Sellam J, Zheng YP, Han Y, Wen C. Association between osteoarthritis and increased risk of dementia: A systemic review and meta-analysis. Medicine (Baltimore) 2019; 98:e14355. [PMID: 30855434 PMCID: PMC6417538 DOI: 10.1097/md.0000000000014355] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To investigate the possible association between osteoarthritis (OA) and the risk of dementia. METHODS Cohort, case-control, and cross-sectional studies were obtained from wide literature search up to 20 April 2018 from following electronic databases: PubMed, Embase, Cochrane, using the MeSH terms: "osteoarthritis" AND "dementia". The literature search was then expanded to congress abstracts. After screening and selection of relevant studies by two investigators, data was extracted. Estimates were then calculated using a random-effect size model. Sensitivity-analysis was conducted for gender and age adjusted studies and pooled for studies with STROBE quality assessment score ≥75%. Publication bias was assessed by Funnel plot. Analyses were performed using Data Analysis and Statistical Software Version 14.2. RESULTS Nearly 1549 publication references were initially retrieved. Twenty-six publications were checked with full-text. Six observational studies with 388,252 individuals were included. OA was associated with a significantly increased risk for dementia (OR = 1.20; 95% confidence interval (CI), 1.03-1.39, I = 95.6%, P < .05). After pooling the studies with adjustment of age and gender, the risk increased (OR 1.36; 95% CI, 1.22-1.51, I = 75.6%, P < .0001). After pooling the study with a STROBE Quality score ≥75% the risk for dementia was slightly increased (OR 1.33; 95% CI, 1.17-1.5, I = 93.5%, p < 0.0001). CONCLUSIONS There is an association between osteoarthritis and the risk of dementia. This meta-analysis does not provide causality. Further prospective cohort studies are needed to clarify, if knee-, hip-, or hand-OA are independent risk factors for Alzheimer's disease and vascular dementia.
Collapse
Affiliation(s)
- Adrian Weber
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Shing hung Mak
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Francis Berenbaum
- Department of Rheumatology, Sorbonne University, Saint-Antoine Hospital, Paris, France
| | - Jérémie Sellam
- Department of Rheumatology, Sorbonne University, Saint-Antoine Hospital, Paris, France
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Yifan Han
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
40
|
Novel Ex Vivo Human Osteochondral Explant Model of Knee and Spine Osteoarthritis Enables Assessment of Inflammatory and Drug Treatment Responses. Int J Mol Sci 2018; 19:ijms19051314. [PMID: 29710775 PMCID: PMC5983625 DOI: 10.3390/ijms19051314] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/20/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis of the knee and spine is highly prevalent in modern society, yet a disease-modifying pharmacological treatment remains an unmet clinical need. A major challenge for drug development includes selection of appropriate preclinical models that accurately reflect clinical phenotypes of human disease. The aim of this study was to establish an ex vivo explant model of human knee and spine osteoarthritis that enables assessment of osteochondral tissue responses to inflammation and drug treatment. Equal-sized osteochondral fragments from knee and facet joints (both n = 6) were subjected to explant culture for 7 days in the presence of a toll-like receptor 4 (TLR4) agonist and an inhibitor of transforming growth factor-beta (TGF-β) receptor type I signaling. Markers of inflammation, interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1), but not bone metabolism (pro-collagen-I) were significantly increased by treatment with TLR4 agonist. Targeting of TGF-β signaling resulted in a strong reduction of pro-collagen-I and significantly decreased IL-6 levels. MCP-1 secretion was increased, revealing a regulatory feedback mechanism between TGF-β and MCP-1 in joint tissues. These findings demonstrate proof-of-concept and feasibility of explant culture of human osteochondral specimens as a preclinical disease model, which might aid in definition and validation of disease-modifying drug targets.
Collapse
|
41
|
Comparison of secretome from osteoblasts derived from sclerotic versus non-sclerotic subchondral bone in OA: A pilot study. PLoS One 2018; 13:e0194591. [PMID: 29547667 PMCID: PMC5856400 DOI: 10.1371/journal.pone.0194591] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/06/2018] [Indexed: 01/24/2023] Open
Abstract
Objective Osteoarthritis (OA) is characterized by cartilage degradation but also by other joint tissues modifications like subchondral bone sclerosis. In this study, we used a proteomic approach to compare secretome of osteoblast isolated from sclerotic (SC) or non sclerotic (NSC) area of OA subchondral bone. Design Secretome was analyzed using differential quantitative and relative label free analysis on nanoUPLC G2 HDMS system. mRNA of the more differentially secreted proteins were quantified by RT-PCR in cell culture from 5 other patients. Finally, osteomodulin and fibulin-3 sequences were quantified by western blot and immunoassays in serum and culture supernatants. Results 175 proteins were identified in NSC osteoblast secretome. Data are available via ProteomeXchange with identifier PXD008494. Compared to NSC osteoblast secretome, 12 proteins were significantly less secreted (Osteomodulin, IGFBP5, VCAM-1, IGF2, 78 kDa glucose-regulated protein, versican, calumenin, IGFBP2, thrombospondin-4, periostin, reticulocalbin 1 and osteonectin), and 13 proteins were significantly more secreted by SC osteoblasts (CHI3L1, fibulin-3, SERPINE2, IGFBP6, SH3BGRL3, SERPINE1, reticulocalbin3, alpha-2-HS-glycoprotein, TIMP-2, IGFBP3, TIMP-1, SERPINF1, CSF-1). Similar changes in osteomodulin, IGF2, SERPINE1, fibulin-3 and CHI3L1 mRNA levels were observed. ELISAs assays confirm the decrease by half of osteomodulin protein in SC osteoblasts supernatant compared to NSC and in OA patients serum compared to healthy subjects. Fibulin-3 epitopes Fib3-1, Fib3-2 and Fib3-3 were also increased in SC osteoblasts supernatant compared to NSC. Conclusions We highlighted some proteins differentially secreted by the osteoblasts coming from OA subchondral bone sclerosis. These changes contribute to explain some features observed in OA subchondral bone, like the increase of bone remodeling or abnormalities in bone matrix mineralization. Among identified proteins, osteomodulin was found decreased and fibulin-3 increased in serum of OA patients. These findings suggest that osteomodulin and fibulin-3 fragments could be biomarkers to monitor early changes in subchondral bone metabolism in OA.
Collapse
|
42
|
Alterations of Subchondral Bone Progenitor Cells in Human Knee and Hip Osteoarthritis Lead to a Bone Sclerosis Phenotype. Int J Mol Sci 2018; 19:ijms19020475. [PMID: 29415458 PMCID: PMC5855697 DOI: 10.3390/ijms19020475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 02/06/2023] Open
Abstract
Subchondral bone tissue plays a key role in the initiation and progression of human and experimental osteoarthritis and has received considerable interest as a treatment target. Elevated bone turnover and remodeling leads to subchondral bone sclerosis that is characterized by an increase in bone material that is less mineralized. The aim of this study was to investigate whether perturbations in subchondral bone-resident progenitor cells might play a role in aberrant bone formation in osteoarthritis. Colony formation assays indicated similar clonogenicity of progenitor cells from non-sclerotic and sclerotic subchondral trabecular bone tissues of osteoarthritic knee and hip joints compared with controls from iliac crest bone. However, the osteogenic potential at the clonal level was approximately two-fold higher in osteoarthritis than controls. An osteogenic differentiation assay indicated an efficient induction of alkaline phosphatase activity but blunted in vitro matrix mineralization irrespective of the presence of sclerosis. Micro-computed tomography and histology demonstrated the formation of de novo calcified tissues by osteoblast-like cells in an ectopic implantation model. The expression of bone sialoprotein, a marker for osteoblast maturation and mineralization, was significantly less in sclerotic progenitor cells. Perturbation of resident progenitor cell function is associated with subchondral bone sclerosis and may be a treatment target for osteoarthritis.
Collapse
|
43
|
Weber A, Chan PMB, Wen C. Do immune cells lead the way in subchondral bone disturbance in osteoarthritis? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 148:21-31. [PMID: 29277342 DOI: 10.1016/j.pbiomolbio.2017.12.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is a whole-joint disorder, and non-cartilage articular pathologies, e.g. subchondral bone disturbance, contribute substantially to the onset and progression of the disease. In the early stage of OA, abnormal mechanical loading leads to micro-cracks or micro-fractures that trigger a reparative process with angiogenesis and inflammatory response. With the progression of disease, cystic lesion, sclerosis and osteophytosis occur at tissue level, and osteoblast dysfunction at cellular level. Osteoblasts derived from OA sclerotic bone produce increased amount of type I collagen with aberrant Col1A1/A2 ratio and poor mineralization capability. The coupling mechanism of bone resorption with formation is also impaired with elevated osteoclastic activities. All these suggest a view that OA subchondral bone presents a defective fracture repair process in a chronic course. It has been found that T and B cells, the major effectors in the adaptive immunity, take part in the hard callus formation at fracture site in addition to the initial phase of haematoma and inflammation. Infiltration of lymphocytes could interplay with osteoclasts and osteoblasts via a direct physical cell-to-cell contact. Several lines of evidence have consistently shown the involvement of T and B cells in osteoclastogenesis and bone erosion in arthritic joints. Yet the biological link between immune cells and osteoblastic function remains ambiguous. This review will discuss the current knowledge regarding the role of immune cells in bone remodelling, and address its implications in emerging basic and clinical investigations into the pathogenesis and management of subchondral bone pathologies in OA.
Collapse
Affiliation(s)
- Adrian Weber
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Pok Man Boris Chan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
44
|
Zhao C, Liu Q, Wang K. Artesunate attenuates ACLT-induced osteoarthritis by suppressing osteoclastogenesis and aberrant angiogenesis. Biomed Pharmacother 2017; 96:410-416. [DOI: 10.1016/j.biopha.2017.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 01/22/2023] Open
|
45
|
Hügle T, Geurts J. What drives osteoarthritis?-synovial versus subchondral bone pathology. Rheumatology (Oxford) 2017; 56:1461-1471. [PMID: 28003493 DOI: 10.1093/rheumatology/kew389] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
Subchondral bone and the synovium play an important role in the initiation and progression of OA. MRI often permits an early detection of synovial hypertrophy and bone marrow lesions, both of which can precede cartilage damage. Newer imaging modalities including CT osteoabsorptiometry and hybrid SPECT-CT have underlined the importance of bone in OA pathogenesis. The subchondral bone in OA undergoes an uncoupled remodelling process, which is notably characterized by macrophage infiltration and osteoclast formation. Concomitant increased osteoblast activity leads to spatial remineralization and osteosclerosis in end-stage disease. A plethora of metabolic and mechanical factors can lead to synovitis in OA. Synovial tissue is highly vascularized and thus exposed to systemic influences such as hypercholesterolaemia or low grade inflammation. This review aims to describe the current understanding of synovitis and subchondral bone pathology and their connection in OA.
Collapse
Affiliation(s)
- Thomas Hügle
- Osteoarthritis Research Center Basel.,Department of Rheumatology
| | - Jeroen Geurts
- Osteoarthritis Research Center Basel.,Spine Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
46
|
Focal Defects of the Knee Articular Surface: Evidence of a Regenerative Potential Pattern in Osteochondritis Dissecans and Degenerative Lesions. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9036305. [PMID: 28770227 PMCID: PMC5523180 DOI: 10.1155/2017/9036305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022]
Abstract
The surgical treatment of knee articular focal lesions may offer heterogeneous clinical results. Osteochondritis dissecans (OCD) lesions showed to heal better than degenerative lesions (DL) but the underlying biological reasons are unknown. We evaluated the basal histological and immunohistochemical characteristics of these lesions analyzing a series of osteochondral fragments from young patients with similar age but presenting different etiology. Osteochondral tissue samples were stained with Safranin O and graded using a histological score. Markers of mesenchymal progenitor cells (CD146), osteoclasts (tartrate-resistant acid phosphatase, TRAP), and vessels (CD34) were evaluated. Histological score showed a higher degeneration of both cartilage and bone compartments in OCD compared to DL fragments. Only CD146-positive cells were found at the same percentage in cartilage compartment of both DL and OCD patients. By contrast, in the bone compartment a significantly higher percentage of CD146, TRAP, and CD34 markers was found in OCD compared to DL patients. These data showed distinct histological characteristics of osteochondral focal lesions located in the same anatomical region but having a different etiology. The higher percentages of these markers in OCD than in DL, mainly associated with a high bone turnover, could help to explain the higher clinical healing potential of OCD patients.
Collapse
|
47
|
Gu Q, Yang H, Shi Q. Macrophages and bone inflammation. J Orthop Translat 2017; 10:86-93. [PMID: 29662760 PMCID: PMC5822954 DOI: 10.1016/j.jot.2017.05.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 12/24/2022] Open
Abstract
Bone metabolism is tightly regulated by the immune system. Accelerated bone destruction is observed in many bone diseases, such as rheumatoid arthritis, fracture, and particle-induced osteolysis. These pathological conditions are associated with inflammatory responses, suggesting the contribution of inflammation to bone destruction. Macrophages are heterogeneous immune cells and are polarized into the proinflammatory M1 and antiinflammatory M2 phenotypes in different microenvironments. The cytokines produced by macrophages depend on the macrophage activation and polarization. Macrophages and macrophage-derived cytokines are important to bone loss in inflammatory bone disease. Recent studies have shown that macrophages can be detected in bone tissue and interact with bone cells. The interplay between macrophages and bone cells is critical to bone formation and repair. In this article, we focus on the role of macrophages in inflammatory bone diseases, as well as discuss the latest studies about macrophages and bone formation, which will provide new insights into the therapeutic strategy for bone disease.
Collapse
Affiliation(s)
- Qiaoli Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Qin Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
48
|
GEORG-SCHMORL-PRIZE OF THE GERMAN SPINE SOCIETY (DWG) 2016: Comparison of in vitro osteogenic potential of iliac crest and degenerative facet joint bone autografts for intervertebral fusion in lumbar spinal stenosis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:1408-1415. [PMID: 28324211 DOI: 10.1007/s00586-017-5020-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/25/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE The promotion of spinal fusion using bone autografts is largely mediated by the osteoinductive potential of progenitors/mesenchymal stem cells (MSC) that reside in the marrow spaces of cancellous bone. Iliac crest is the common autograft donor site, but its use presents an increased risk for donor site pain, morbidity and infection. Degenerative bone samples harvested during facetectomy might provide an alternative viable source of osteoinductive autografts. In this study, we conducted an intra-individual comparison of the osteogenic potential of isolated low passage MSC from both sources. METHODS Iliac crest and degenerative facet joints were harvested from eight consecutive patients undergoing transforaminal lumbar interspinal fusion due to lumbar spinal stenosis. MSC were isolated by collagenase digestion, selected by plastic adherence and minimally expanded for downstream assays. Clonogenic and osteogenic potential was evaluated by colony formation assays in control and osteogenic culture medium. Osteogenic properties, including alkaline phosphatase (ALP) induction, matrix mineralization and type I collagen mRNA and protein expression were characterized using quantitative histochemical staining and reverse transcription PCR. Spontaneous adipogenesis was analysed by adipocyte enumeration and gene expression analysis of adipogenic markers. RESULTS Average colony-forming efficiency in osteogenic medium was equal between iliac crest (38 ± 12%) and facet joint (36 ± 11%). Osteogenic potential at the clonal level was 55 ± 26 and 68 ± 17% for iliac crest and facet joint MSC, respectively. Clonogenic and osteogenic potential were significantly negatively associated with donor age. Osteogenic differentiation led to significant induction of ALP activity in iliac crest (sixfold) and facet joint (eightfold) MSC. Matrix mineralization quantified by Alizarin red staining was increased by osteogenic differentiation, yet similar between both MSC sources. Protein expression of type I collagen was enhanced during osteogenesis and significantly greater in iliac crest MSC. Correspondingly, COL1A2 mRNA expression was higher in osteogenically differentiated MSC from iliac crest. Adipocyte numbers showed significant differences between iliac crest (63 ± 60) and facet joint (18 ± 15) MSC under osteogenic conditions. Negative (GREM1) and positive (FABP4) adipogenic markers were not differentially expressed between sources. CONCLUSION MSC from iliac crest and degenerative facet joints largely display similar clonogenic and osteogenic properties in vitro. Differences at the molecular level are not likely to impair the osteoinductive capacity of facet joint MSC. Bone autografts from facetectomy would be viable alternatives as bone autografts for intervertebral spinal fusion in lumbar spinal stenosis.
Collapse
|
49
|
Netzer C, Urech K, Hügle T, Benz RM, Geurts J, Schären S. Characterization of subchondral bone histopathology of facet joint osteoarthritis in lumbar spinal stenosis. J Orthop Res 2016; 34:1475-80. [PMID: 27147479 DOI: 10.1002/jor.23281] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/29/2016] [Indexed: 02/04/2023]
Abstract
Facet joint osteoarthritis may be a cause of low back pain in degenerative spine diseases including lumbar spinal stenosis. Subchondral bone is regarded as a potential therapeutic target for osteoarthritis treatment. The goal of this study was to characterize subchondral bone histopathology in osteoarthritic facet joints from lumbar spinal stenosis patients. Fifteen patients with degenerative spinal stenosis scheduled for transforaminal lumbar interbody fusion surgery were recruited for this study. Osteoarthritis severity was graded on T1- and T2-weighted MRI images using Weishaupt scoring system. Dissected osteoarthritic facet joints were subjected to histological and immunohistochemistry analyses to study relative abundance of osteoblast, osteoclasts, and macrophages using van Gieson's, tartrate-resistant acid phosphatase and CD68-antibody staining, respectively. Presence of nerve fibers was evaluated by PGP9.5-antibody staining. Differential bone histopathology, independent from radiological osteoarthritis grade, was observed in facet joints. Extensive de novo bone formation was found in subchondral bone tissues of eight of fifteen specimens. Regions of bone formation showed high abundance of blood vessels and CD68-positive macrophages, but were devoid of multinucleated osteoclasts. Additional pathological changes in subchondral marrow spaces, including inflammatory infiltration and enhanced osteoclast activity, were characterized by macrophage-rich tissues. PGP9.5-positive nerve fibers were detected near arterioles, but not in regions displaying bone pathology. Individual histopathological parameters did not associate with clinical features or radiological osteoarthritis severity. Subchondral bone histopathology of facet joint osteoarthritis in lumbar spinal stenosis is characterized by marrow infiltration by macrophage-rich tissues and enhanced de novo bone formation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1475-1480, 2016.
Collapse
Affiliation(s)
- Cordula Netzer
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland
| | - Karin Urech
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland
| | - Thomas Hügle
- Department of Orthopaedic, Osteoarthritis Research Center Basel, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland
| | - Robyn Melanie Benz
- Department of Radiology, Musculoskeletal Diagnostics, University Hospital Basel, Petersgraben 4, Basel 4031, Switzerland
| | - Jeroen Geurts
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland.,Department of Orthopaedic, Osteoarthritis Research Center Basel, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Spitalstrasse 21, Basel 4031, Switzerland
| |
Collapse
|