1
|
Yano S, Tazawa H, Kishimoto H, Kagawa S, Fujiwara T, Hoffman RM. Real-Time Fluorescence Image-Guided Oncolytic Virotherapy for Precise Cancer Treatment. Int J Mol Sci 2021; 22:E879. [PMID: 33477279 PMCID: PMC7830621 DOI: 10.3390/ijms22020879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy is one of the most promising, emerging cancer therapeutics. We generated three types of telomerase-specific replication-competent oncolytic adenovirus: OBP-301; a green fluorescent protein (GFP)-expressing adenovirus, OBP-401; and Killer-Red-armed OBP-301. These oncolytic adenoviruses are driven by the human telomerase reverse transcriptase (hTERT) promoter; therefore, they conditionally replicate preferentially in cancer cells. Fluorescence imaging enables visualization of invasion and metastasis in vivo at the subcellular level; including molecular dynamics of cancer cells, resulting in greater precision therapy. In the present review, we focused on fluorescence imaging applications to develop precision targeting for oncolytic virotherapy. Cell-cycle imaging with the fluorescence ubiquitination cell cycle indicator (FUCCI) demonstrated that combination therapy of an oncolytic adenovirus and a cytotoxic agent could precisely target quiescent, chemoresistant cancer stem cells (CSCs) based on decoying the cancer cells to cycle to S-phase by viral treatment, thereby rendering them chemosensitive. Non-invasive fluorescence imaging demonstrated that complete tumor resection with a precise margin, preservation of function, and prevention of distant metastasis, was achieved with fluorescence-guided surgery (FGS) with a GFP-reporter adenovirus. A combination of fluorescence imaging and laser ablation using a KillerRed-protein reporter adenovirus resulted in effective photodynamic cancer therapy (PDT). Thus, imaging technology and the designer oncolytic adenoviruses may have clinical potential for precise cancer targeting by indicating the optimal time for administering therapeutic agents; accurate surgical guidance for complete resection of tumors; and precise targeted cancer-specific photosensitization.
Collapse
Affiliation(s)
- Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Center for Graduate Medical Education, Okayama University Hospital, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Center of Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA 92111, USA;
- Department of Surgery, University of California, San Diego, CA 92093, USA
| |
Collapse
|
2
|
Tazawa H, Hasei J, Yano S, Kagawa S, Ozaki T, Fujiwara T. Bone and Soft-Tissue Sarcoma: A New Target for Telomerase-Specific Oncolytic Virotherapy. Cancers (Basel) 2020; 12:cancers12020478. [PMID: 32085583 PMCID: PMC7072448 DOI: 10.3390/cancers12020478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Adenovirus serotype 5 (Ad5) is widely and frequently used as a virus vector in cancer gene therapy and oncolytic virotherapy. Oncolytic virotherapy is a novel antitumor treatment for inducing lytic cell death in tumor cells without affecting normal cells. Based on the Ad5 genome, we have generated three types of telomerase-specific replication-competent oncolytic adenoviruses: OBP-301 (Telomelysin), green fluorescent protein (GFP)-expressing OBP-401 (TelomeScan), and tumor suppressor p53-armed OBP-702. These viruses drive the expression of the adenoviral E1A and E1B genes under the control of the hTERT (human telomerase reverse transcriptase-encoding gene) promoter, providing tumor-specific virus replication. This review focuses on the therapeutic potential of three hTERT promoter-driven oncolytic adenoviruses against bone and soft-tissue sarcoma cells with telomerase activity. OBP-301 induces the antitumor effect in monotherapy or combination therapy with chemotherapeutic drugs via induction of autophagy and apoptosis. OBP-401 enables visualization of sarcoma cells within normal tissues by serving as a tumor-specific labeling reagent for fluorescence-guided surgery via induction of GFP expression. OBP-702 exhibits a profound antitumor effect in OBP-301-resistant sarcoma cells via activation of the p53 signaling pathway. Taken together, telomerase-specific oncolytic adenoviruses are promising antitumor reagents that are expected to provide novel therapeutic options for the treatment of bone and soft-tissue sarcomas.
Collapse
Affiliation(s)
- Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
- Correspondence: ; Tel.: +81-86-235-7491; Fax: +81-86-235-7492
| | - Joe Hasei
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (J.H.); (T.O.)
| | - Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (J.H.); (T.O.)
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
| |
Collapse
|
3
|
Samkoe KS, Sardar HS, Gunn J, Feldwisch J, Linos K, Henderson E, Pogue B, Paulsen K. Measuring microdose ABY-029 fluorescence signal in a primary human soft-tissue sarcoma resection. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10862. [PMID: 31595101 DOI: 10.1117/12.2510935] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Microdose administration of ABY-029, an anti-epidermal growth factor receptor Affibody molecule conjugated to IRDye 800CW, is being studied in a Phase 0 trial for resection of soft-tissue sarcomas. The excised tissue of a single patient in the microdose administration group was imaged with both a wide-field fluorescence surgical system and a flat-bed scanning fluorescence imaging system. Here the resultant fluorescence from a breadloaf section of the primary tumor specimen and six region-specific tissue samples collected from that breadloaf are compared using these two imaging systems - a flatbed, black-box, fluorescence scanning system, the Odyssey CLx, and a open-air, wide-field, pre-clinical surgical imaging system, the Solaris. Florescence signal is compared using a variety of methods including: mean, standard deviation, variance, tumor-to-background ratio, biological-variance ratio, and contrast-to-noise ratio. The images produced from the Odyssey scanner have higher signal variance but more accurately represent the EGFR expression in small tissue sections. The Solaris system has higher depth sensitivity and volume averaging, and as such has lower signal variation and higher contrast-to-noise ratio.
Collapse
Affiliation(s)
- Kimberley S Samkoe
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755.,Department of Surgery, Dartmouth-Hitchcock, Lebanon, NH, 03756.,Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755
| | | | - Jason Gunn
- Department of Surgery, Dartmouth-Hitchcock, Lebanon, NH, 03756
| | | | - Konstantinos Linos
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755.,Department of Pathology, Dartmouth-Hitchcock, Lebanon, NH, 03756
| | - Eric Henderson
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755.,Department of Orthopaedics, Dartmouth-Hitchcock, Lebanon, NH, 03756
| | - Brian Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755
| | - Keith Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755
| |
Collapse
|
4
|
Sakuda T, Kubo T, Johan MP, Furuta T, Sakaguchi T, Nakanishi M, Ochi M, Adachi N. Novel Near-Infrared Fluorescence-Guided Surgery With Vesicular Stomatitis Virus for Complete Surgical Resection of Osteosarcomas in Mice. J Orthop Res 2019; 37:1192-1201. [PMID: 30839125 DOI: 10.1002/jor.24277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/20/2019] [Indexed: 02/04/2023]
Abstract
Attempts have been made to visualize tumor cells intraoperatively with fluorescence guidance. However, the clear demarcation and complete tumor resection have always been a challenging task. To address this, we have developed a novel fluorescence bioimaging system with vesicular stomatitis virus (VSV) incorporating Katushka, near-infrared fluorescent protein. VSV is tumor-specific owing to the deficiency of antiviral interferon signaling pathways in tumor cells. We aimed to evaluate the tumor specificity of the recombinant VSV-Katushka (rVSV-K) in osteosarcoma cells and to assess the feasibility of complete tumor resection by the rVSV-K fluorescence guidance. In in vitro experiments, mouse and human osteosarcoma cell lines and normal human mesenchymal stem cells were infected with rVSV-K and observed by fluorescence microscopy. Near-infrared fluorescence was observed only in osteosarcoma cells, even at a low-concentration of virus infections. In in vivo experiments, mouse osteosarcoma (LM8) cells were transplanted subcutaneously into the back of immune-competent mice to produce an osteosarcoma, which was then injected with rVSV-K. The areas emitting fluorescence were resected using a bioimaging system. The distance between the surgical and tumor margins of the fluorescence-guided resection with rVSV-K group was significantly larger than that of the non-guided resection groups. The local recurrence rate was significantly lower in the fluorescence-guided resection with rVSV-K group than in the non-guided resection groups. The distant metastasis rate and average survival rate were not significantly different between all groups. These results suggest that the rVSV-K is specific to osteosarcoma cells and enables complete tumor resection of osteosarcomas in mice. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Tomohiko Sakuda
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tadahiko Kubo
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Muhammad Phetrus Johan
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Department of Orthopedic and Traumatology, Faculty of Medicine, Hasanuddin University, Tamalanrea Makassar, Indonesia
| | - Taisuke Furuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Mahito Nakanishi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Mitsuo Ochi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
5
|
Lwin TM, Hoffman RM, Bouvet M. Advantages of patient-derived orthotopic mouse models and genetic reporters for developing fluorescence-guided surgery. J Surg Oncol 2018; 118:253-264. [PMID: 30080930 PMCID: PMC6146062 DOI: 10.1002/jso.25150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022]
Abstract
Fluorescence-guided surgery can enhance the surgeon's ability to achieve a complete oncologic resection. There are a number of tumor-specific probes being developed with many preclinical mouse models to evaluate their efficacy. The current review discusses the different preclinical mouse models in the setting of probe evaluation and highlights the advantages of patient-derived orthotopic xenografts (PDOX) mouse models and genetic reporters to develop fluorescence-guided surgery.
Collapse
Affiliation(s)
- Thinzar M. Lwin
- Department of Surgery, University of California San Diego, San Diego, CA
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, CA
- AntiCancer, Inc., San Diego, CA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, CA
- Department of Surgery, VA Medical Center, San Diego, CA
| |
Collapse
|
6
|
A topically-sprayable, activatable fluorescent and retaining probe, SPiDER-βGal for detecting cancer: Advantages of anchoring to cellular proteins after activation. Oncotarget 2018; 8:39512-39521. [PMID: 28467810 PMCID: PMC5503628 DOI: 10.18632/oncotarget.17080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/22/2017] [Indexed: 01/11/2023] Open
Abstract
SPiDER-βGal is a newly-developed probe that is activated by β-galactosidase and is then retained within cells by anchoring to intracellular proteins. Previous work has focused on gGlu-HMRG, a probe activated by γ-glutamyltranspeptidase, which demonstrated high sensitivity for the detection of peritoneal ovarian cancer metastases in an animal model. However, its fluorescence, after activation by γ-glutamyltranspeptidase, rapidly declines over time, limiting the actual imaging window and the ability to define the border of lesions. The purpose of this study is to compare the fluorescence signal kinetics of SPiDER-βGal with that of gGlu-HMRG using ovarian cancer cell lines in vitro and ex vivo tissue imaging. In vitro removal of gGlu-HMRG resulted in a rapid decrease of fluorescence intensity followed by a more gradual decrease up to 60 min while there was a gradual increase in fluorescence up to 60 min after removal of SPiDER-βGal. This is most likely due to internalization and retention of the dye within cells. This was also confirmed ex vivo tissue imaging using a red fluorescence protein (RFP)-labeled tumor model in which the intensity of fluorescence increased gradually after activation of SPiDER-βGal. Additionally, SPiDER-βGal resulted in intense enhancement within the tumor due to the high target-to-background ratio, which extended up to 60 min after activation. In contrast, gGlu-HMRG fluorescence resulted in decreasing fluorescence over time in extracted tumors. Thus, SPiDER-βGal has the advantages of higher signal with more signal retention, resulting in improved contrast of the tumor margin and suggesting it may be an alternative to existing activatable probes.
Collapse
|
7
|
Yano S, Takehara K, Kishimoto H, Tazawa H, Urata Y, Kagawa S, Bouvet M, Fujiwara T, Hoffman RM. Tumor-targeting adenovirus OBP-401 inhibits primary and metastatic tumor growth of triple-negative breast cancer in orthotopic nude-mouse models. Oncotarget 2018; 7:85273-85282. [PMID: 27863373 PMCID: PMC5356735 DOI: 10.18632/oncotarget.13296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 11/26/2022] Open
Abstract
Our laboratory previously developed a highly-invasive, triple-negative breast cancer (TNBC) variant using serial orthotopic implantation of the human MDA-MB-231 cell line in nude mice. The isolated variant was highly-invasive in the mammary gland and lymphatic channels and metastasized to lymph nodes in 10 of 12 mice compared to 2 of 12 of the parental cell line. In the present study, the tumor-selective telomerase dependent OBP-401 adenovirus was injected intratumorally (i.t.) (1 × 108 PFU) when the high-metastatic MDA-MB-231 primary tumor expressing red fluorescent protein (MDA-MB-231-RFP) reached approximately 500 mm3 (diameter; 10 mm). The mock-infected orthotopic primary tumor grew rapidly. After i.t. OBP-401 injection, the growth of the orthotopic tumors was arrested. Six weeks after implantation, the fluorescent area and fluorescence intensity showed no increase from the beginning of treatment. OBP-401 was then injected into high-metastatic MDA-MB-231-RFP primary orthotopic tumor growing in mice which already had developed metastasis within lymphatic ducts. All 7 of 7 control mice subsequently developed lymph node metastasis. In contrast, none of 7 mice which received OBP-401 had lymph node metastasis. Seven of 7 control mice also had gross lung metastasis. In contrast, none of the 7 mice which received OBP-401 had gross lung metastasis. Confocal laser microscopy imaging demonstrated that all control mice had diffuse lung metastases. In contrast, all 7 mice which received OBP-401 only had a few metastatic cells in the lung. OBP-401 treatment significantly extended survival of the treated mice.
Collapse
Affiliation(s)
- Shuya Yano
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, CA, USA.,Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoto Takehara
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, CA, USA.,Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, CA, USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, CA, USA
| |
Collapse
|
8
|
Abstract
Three-dimensional cell culture and tissue culture (histoculture) is much more in vivo-like than 2D culture on plastic. Three-dimensional culture allows investigation of crucial events in tumor biology such as drug response, proliferation and cell cycle progression, cancer cell migration, invasion, metastasis, immune response, and antigen expression that mimic in vivo conditions. Three-dimensional sponge-matrix histoculture maintains the in vivo phenotype, including the formation of differentiated structures of normal and malignant tissues, perhaps due to cells maintaining their natural shape in a sponge-gel matrix such as Gelfoam®. Sponge-matrix histoculture can also support normal tissues and their function including antibody-producing lymphoid tissue that allows efficient HIV infection, hair-growing skin, excised hair follicles that grow hair, pluripotent stem cells that form nerves, and much more.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.
- Department of Surgery, UCSD, San Diego, CA, USA.
| |
Collapse
|
9
|
Samkoe KS, Bates BD, Elliott JT, LaRochelle E, Gunn JR, Marra K, Feldwisch J, Ramkumar DB, Bauer DF, Paulsen KD, Pogue BW, Henderson ER. Application of Fluorescence-Guided Surgery to Subsurface Cancers Requiring Wide Local Excision: Literature Review and Novel Developments Toward Indirect Visualization. Cancer Control 2018; 25:1073274817752332. [PMID: 29334791 PMCID: PMC5933571 DOI: 10.1177/1073274817752332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/05/2017] [Indexed: 01/08/2023] Open
Abstract
The excision of tumors by wide local excision is challenging because the mass must be removed entirely without ever viewing it directly. Positive margin rates in sarcoma resection remain in the range of 20% to 35% and are associated with increased recurrence and decreased survival. Fluorescence-guided surgery (FGS) may improve surgical accuracy and has been utilized in other surgical specialties. ABY-029, an anti-epidermal growth factor receptor Affibody molecule covalently bound to the near-infrared fluorophore IRDye 800CW, is an excellent candidate for future FGS applications in sarcoma resection; however, conventional methods with direct surface tumor visualization are not immediately applicable. A novel technique involving imaging through a margin of normal tissue is needed. We review the past and present applications of FGS and present a novel concept of indirect FGS for visualizing tumor through a margin of normal tissue and aiding in excising the entire lesion as a single, complete mass with tumor-free margins.
Collapse
Affiliation(s)
- Kimberley S. Samkoe
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Brent D. Bates
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Ethan LaRochelle
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jason R. Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Kayla Marra
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | - Dipak B. Ramkumar
- Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - David F. Bauer
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eric R. Henderson
- Department of Orthopaedics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- White River Junction VA Medical Center, White River Junction, VT, USA
| |
Collapse
|
10
|
Samkoe KS, Bates BD, Tselepidakis NN, DSouza AV, Gunn JR, Ramkumar DB, Paulsen KD, Pogue BW, Henderson ER. Development and evaluation of a connective tissue phantom model for subsurface visualization of cancers requiring wide local excision. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-12. [PMID: 29274143 PMCID: PMC5741805 DOI: 10.1117/1.jbo.22.12.121613] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/01/2017] [Indexed: 05/14/2023]
Abstract
Wide local excision (WLE) of tumors with negative margins remains a challenge because surgeons cannot directly visualize the mass. Fluorescence-guided surgery (FGS) may improve surgical accuracy; however, conventional methods with direct surface tumor visualization are not immediately applicable, and properties of tissues surrounding the cancer must be considered. We developed a phantom model for sarcoma resection with the near-infrared fluorophore IRDye 800CW and used it to iteratively define the properties of connective tissues that typically surround sarcoma tumors. We then tested the ability of a blinded surgeon to resect fluorescent tumor-simulating inclusions with ∼1-cm margins using predetermined target fluorescence intensities and a Solaris open-air fluorescence imaging system. In connective tissue-simulating phantoms, fluorescence intensity decreased with increasing blood concentration and increased with increasing intralipid concentrations. Fluorescent inclusions could be resolved at ≥1-cm depth in all inclusion concentrations and sizes tested. When inclusion depth was held constant, fluorescence intensity decreased with decreasing volume. Using targeted fluorescence intensities, a blinded surgeon was able to successfully excise inclusions with ∼1-cm margins from fat- and muscle-simulating phantoms with inclusion-to-background contrast ratios as low as 2∶1. Indirect, subsurface FGS is a promising tool for surgical resection of cancers requiring WLE.
Collapse
Affiliation(s)
- Kimberley S. Samkoe
- Dartmouth-Hitchcock Medical Center, Department of Surgery, Lebanon, New Hampshire, United States
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
- Address all correspondence to: Kimberley S. Samkoe, E-mail:
| | - Brent D. Bates
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
| | - Niki N. Tselepidakis
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Alisha V. DSouza
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Jason R. Gunn
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Dipak B. Ramkumar
- Dartmouth-Hitchcock Medical Center, Department of Orthopaedics, Lebanon, New Hampshire, United States
| | - Keith D. Paulsen
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Brian W. Pogue
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire, United States
| | - Eric R. Henderson
- Dartmouth-Hitchcock Medical Center, Department of Orthopaedics, Lebanon, New Hampshire, United States
- White River Junction VAMC, White River Junction, Vermont, United States
| |
Collapse
|
11
|
Cai Z, Lv H, Cao W, Zhou C, Liu Q, Li H, Zhou F. Targeting strategies of adenovirus‑mediated gene therapy and virotherapy for prostate cancer (Review). Mol Med Rep 2017; 16:6443-6458. [PMID: 28901490 PMCID: PMC5865813 DOI: 10.3892/mmr.2017.7487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/11/2017] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) poses a high risk to older men and it is the second most common type of male malignant tumor in western developed countries. Additionally, there is a lack of effective therapies for PCa at advanced stages. Novel treatment strategies such as adenovirus-mediated gene therapy and virotherapy involve the expression of a specific therapeutic gene to induce death in cancer cells, however, wild-type adenoviruses are also able to infect normal human cells, which leads to undesirable toxicity. Various PCa-targeting strategies in adenovirus-mediated therapy have been developed to improve tumor-targeting effects and human safety. The present review summarizes the relevant knowledge regarding available adenoviruses and PCa-targeting strategies. In addition, future directions in this area are also discussed. In conclusion, although they remain in the early stages of basic research, adenovirus-mediated gene therapy and virotherapy are expected to become important therapies for tumors in the future due to their potential targeting strategies.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Haidi Lv
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Wenjuan Cao
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Chuan Zhou
- Department of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiangzhao Liu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hui Li
- Department of Neurosurgery, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Fenghai Zhou
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
12
|
Yano S, Takehara K, Tazawa H, Kishimoto H, Urata Y, Kagawa S, Fujiwara T, Hoffman RM. Therapeutic Cell-Cycle-Decoy Efficacy of a Telomerase-Dependent Adenovirus in an Orthotopic Model of Chemotherapy-Resistant Human Stomach Carcinomatosis Peritonitis Visualized With FUCCI Imaging. J Cell Biochem 2017; 118:3635-3642. [PMID: 27171483 DOI: 10.1002/jcb.25593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/10/2016] [Indexed: 01/26/2023]
Abstract
We have established an orthotopic nude-mouse model of gastric cancer carcinomatosis peritonitis, a recalcitrant disease in human patients. Human MKN45 poorly-differentiated human gastric cancer cells developed carcinomatosis peritonitis upon orthotopic transplantation in nude mice. The MKN45 cells expressed the fluorescent ubiquitination-based cell cycle indicator (FUCCI) that color codes the phases of the cell cycle. The intra-peritoneal tumors and ascites contained mostly quiescent G1 /Go cancer cells visualized as red by FUCCI imaging. Cisplatinum (CDDP) treatment did not reduce bloody ascites, and larger tumors formed in the peritoneal cavity after CDDP treatment in an early-stage carcinomatosis peritonitis orthotopic mouse model. Paclitaxel-treated mice had reduced ascites, but also had large tumor masses in the peritonium after treatment with cancer cells mostly in G0 /G1 , visualized by FUCCI red. In contrast, OBP-301 telomerase-dependent adenovirus-treated mice had no ascites and only small tumor nodules consisting of cancer cells mostly in S/G2 phases in the early-stage carcinomatosis peritonitis model, visualized by FUCCI green. Furthermore, OBP-301 significantly reduced the size of tumors (P < 0.01) and ascites even in a late-stage carcinomatosis peritonitis model. These results suggest that quiescent peritoneally-disseminated gastric cancer cells are resistant to conventional chemotherapy, but OBP-301 significantly reduced the weight of the tumors and increased survival, suggesting clinical potential. J. Cell. Biochem. 118: 3635-3642, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shuya Yano
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California San Diego, San Diego, California.,Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoto Takehara
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California San Diego, San Diego, California.,Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, California.,Department of Surgery, University of California San Diego, San Diego, California
| |
Collapse
|
13
|
Hoffman RM. Strategies for In Vivo Imaging Using Fluorescent Proteins. J Cell Biochem 2017; 118:2571-2580. [DOI: 10.1002/jcb.25677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 08/25/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Robert M. Hoffman
- AntiCancer, Inc.; San Diego California
- Department of Surgery; University of California San Diego; San Diego California
| |
Collapse
|
14
|
Ito K, Mitsunaga M, Nishimura T, Saruta M, Iwamoto T, Kobayashi H, Tajiri H. Near-Infrared Photochemoimmunotherapy by Photoactivatable Bifunctional Antibody-Drug Conjugates Targeting Human Epidermal Growth Factor Receptor 2 Positive Cancer. Bioconjug Chem 2017; 28:1458-1469. [PMID: 28402624 DOI: 10.1021/acs.bioconjchem.7b00144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new class of molecular targeted cancer therapy based on antibody-photoabsorber conjugates and NIR light irradiation. Recent studies have shown effective tumor control, including that of human epidermal growth factor receptor 2 (HER2)-positive cancer, by selective molecular targeting with NIR-PIT. However, the depth of NIR light penetration limits its use. Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate consisting of the monoclonal antibody trastuzumab linked to the cytotoxic agent maytansinoid DM1. Here, we developed bifunctional antibody-drug-photoabsorber conjugates, T-DM1-IR700, that can work as both NIR-PIT and chemoimmunotherapy agents. We evaluated the feasibility of T-DM1-IR700-mediated NIR light irradiation by comparing the in vitro and in vivo cytotoxic efficacy of trastuzumab-IR700 (T-IR700)-mediated NIR light irradiation in HER2-expressing cells. T-IR700 and T-DM1-IR700 showed almost identical binding to HER2 in vitro and in vivo. Owing to the presence of internalized DM1 in the target cells, NIR-PIT using T-DM1-IR700 tended to induce greater cytotoxicity than that of NIR-PIT using T-IR700 in vitro. In vivo NIR-PIT using T-DM1-IR700 did not show a superior antitumor effect to NIR-PIT using T-IR700 in subcutaneous small-tumor models, which could receive sufficient NIR light. In contrast, NIR-PIT using T-DM1-IR700 tended to reduce the tumor volume and showed significant prolonged survival compared to NIR-PIT using T-IR700 in large-tumor models that could not receive sufficient NIR light. We successfully developed a T-DM1-IR700 conjugate that has a similar immunoreactivity to the parental antibody with increased cytotoxicity due to DM1 and potential as a new NIR-PIT agent for targeting tumors that are large and inaccessible to sufficient NIR light irradiation to activate the photoabsorber IR700.
Collapse
Affiliation(s)
| | | | | | | | | | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute , NIH, Building 10, Room B3B69, MSC1088, Bethesda, Maryland 20892, United States
| | | |
Collapse
|
15
|
Yano S, Takehara K, Kishimoto H, Urata Y, Kagawa S, Bouvet M, Fujiwara T, Hoffman RM. Adenoviral targeting of malignant melanoma for fluorescence-guided surgery prevents recurrence in orthotopic nude-mouse models. Oncotarget 2017; 7:18558-72. [PMID: 26701857 PMCID: PMC4951309 DOI: 10.18632/oncotarget.6670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/27/2015] [Indexed: 11/30/2022] Open
Abstract
Malignant melanoma requires precise resection in order to avoid metastatic recurrence. We report here that the telomerase-dependent, green fluorescent protein (GFP)-containing adenovirus OBP-401 could label malignant melanoma with GFP in situ in orthotopic mouse models. OBP-401-based fluorescence-guided surgery (FGS) resulted in the complete resection of malignant melanoma in the orthotopic models, where conventional bright-light surgery (BLS) could not. High-dose administration of OBP-401 enabled FGS without residual cancer cells or recurrence, due to its dual effect of cancer-cell labeling with GFP and killing.
Collapse
Affiliation(s)
- Shuya Yano
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, La Jolla, CA, USA.,Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoto Takehara
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, La Jolla, CA, USA.,Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA.,Department of Surgery, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Takehara K, Yano S, Tazawa H, Kishimoto H, Narii N, Mizuguchi H, Urata Y, Kagawa S, Fujiwara T, Hoffman RM. Eradication of melanoma in vitro and in vivo via targeting with a Killer-Red-containing telomerase-dependent adenovirus. Cell Cycle 2017; 16:1502-1508. [PMID: 28055296 DOI: 10.1080/15384101.2016.1249548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Melanoma is a highly recalcitrant cancer and transformative therapy is necessary for the cure of this disease. We recently developed a telomerase-dependent adenovirus containing the fluorescent protein Killer-Red. In the present report, we first determined the efficacy of Killer-Red adenovirus combined with laser irradiation on human melanoma cell lines in vitro. Cell viability of human melanoma cells was reduced in a dose-dependent and irradiation-time-dependent manner. We used an intradermal xenografted melanoma model in nude mice to determine efficacy of the Killer-Red adenovirus. Intratumoral injection of Killer-Red adenovirus, combined with laser irradiation, eradicated the melanoma indicating the potential of a new paradigm of cancer therapy.
Collapse
Affiliation(s)
- Kiyoto Takehara
- a AntiCancer, Inc. , San Diego , CA , USA.,b Department of Surgery , University of California San Diego , San Diego , CA , USA.,c Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Shuya Yano
- a AntiCancer, Inc. , San Diego , CA , USA.,b Department of Surgery , University of California San Diego , San Diego , CA , USA.,c Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hiroshi Tazawa
- d Center for Innovative Clinical Medicine , Okayama University Hospital , Okayama , Japan
| | - Hiroyuki Kishimoto
- c Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Nobuhiro Narii
- e Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences , Osaka University , Osaka , Japan
| | - Hiroyuki Mizuguchi
- e Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences , Osaka University , Osaka , Japan
| | | | - Shunsuke Kagawa
- c Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Toshiyoshi Fujiwara
- c Department of Gastroenterological Surgery , Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Robert M Hoffman
- a AntiCancer, Inc. , San Diego , CA , USA.,b Department of Surgery , University of California San Diego , San Diego , CA , USA
| |
Collapse
|
17
|
Hiroshima Y, Lwin TM, Murakami T, Mawy AA, Kuniya T, Chishima T, Endo I, Clary BM, Hoffman RM, Bouvet M. Effective fluorescence-guided surgery of liver metastasis using a fluorescent anti-CEA antibody. J Surg Oncol 2016; 114:951-958. [PMID: 27696448 PMCID: PMC5565879 DOI: 10.1002/jso.24462] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Delineation of adequate tumor margins is critical in oncologic surgery, particularly in resection of metastatic lesions. Surgeons are limited in visualization with bright-light surgery, but fluorescence-guided surgery (FGS) has been efficacious in helping the surgeon achieve negative margins. METHODS The present study uses FGS in a mouse model that has undergone surgical orthotopic implantation (SOI) of colorectal liver metastasis tagged with green fluorescent protein (GFP). An anti-CEA antibody conjugated to DyLight 650 was used to highlight the tumor. RESULTS The fluorescent antibody clearly demarcated the lesion at deeper tissue depth compared to GFP. Fluorescence of the anti-CEA-DyLight650 showed maximal tumor-to-liver contrast at 72 hr. Fifteen mice underwent bright-light surgery (BLS) versus FGS with GFP versus FGS with anti-CEA-DyLight650. Mice that underwent FGS had a significantly smaller area of residual tumor (P < 0.001) and significantly longer overall survival (P < 0.001) and disease-free survival (P < 0.001). Within the two FGS groups, mice undergoing surgery with anti-CEA-DyLight650 improved survival compared to only GFP labeling. CONCLUSIONS In the present report, we demonstrate that an anti-CEA antibody conjugated to a DyLight 650 nm dye clearly labeled colon cancer liver metastases, thereby enabling successful FGS. J. Surg. Oncol. 2016;114:951-958. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yukihiko Hiroshima
- Department of Surgery, University of California San Diego, San Diego, California
- AntiCancer, Inc., San Diego, California
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Thinzar M. Lwin
- Department of Surgery, University of California San Diego, San Diego, California
- AntiCancer, Inc., San Diego, California
| | - Takashi Murakami
- Department of Surgery, University of California San Diego, San Diego, California
- AntiCancer, Inc., San Diego, California
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ali A. Mawy
- Department of Surgery, University of California San Diego, San Diego, California
- AntiCancer, Inc., San Diego, California
| | - Tanaka Kuniya
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takashi Chishima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Bryan M. Clary
- Department of Surgery, University of California San Diego, San Diego, California
| | - Robert M. Hoffman
- Department of Surgery, University of California San Diego, San Diego, California
- AntiCancer, Inc., San Diego, California
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, San Diego, California
| |
Collapse
|