1
|
Yang S, Soheilmoghaddam F, Pivonka P, Li J, Rudd S, Yeo T, Tu J, Zhu Y, Cooper-White JJ. Engineering Intervertebral Disc Regeneration: Biomaterials, Cell Sources and Animal Models. Cell Prolif 2025:e70046. [PMID: 40389238 DOI: 10.1111/cpr.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 04/15/2025] [Indexed: 05/21/2025] Open
Abstract
Intervertebral disc (IVD) degeneration is an age-related problem triggering chronic spinal issues, such as low back pain and IVD herniation. Standard surgical treatment for such spinal issues is the removal of the degenerated or herniated IVD and fusion of adjacent vertebrae to stabilise the joint and locally decompress the spinal cord and/or nerve roots to relieve pain. However, a key challenge of current surgical strategies is the increasing risk of adjacent segment degeneration due to the disruption of native biomechanics of the functional spinal unit, dominated by the loss of the IVD. In the past two decades, research has focused on developing a number of bioengineering approaches to repair and regenerate the IVD; in particular, tissue engineering of the IVD, using bioscaffolds and stem cells represents a promising area. This review highlights the current tissue engineering approaches utilising biomaterials, animal models and cell sources for IVD regeneration and discusses future opportunities.
Collapse
Affiliation(s)
- Sidong Yang
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, China
- Hebei International Joint Research Centre for Spine Diseases, Shijiazhuang, China
| | - Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Peter Pivonka
- School of Mechanical Medical & Process Engineering, Queensland University of Technology, Brisbane City, Queensland, Australia
| | - Joan Li
- Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Samuel Rudd
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Trifanny Yeo
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Singapore
| | - Ji Tu
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Yibo Zhu
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Lin L, Li D, Cai G, Zheng G, Huang D, Liu H, Lin S, Zhao F. Exploring the molecular mechanisms underlying intervertebral disc degeneration by analysing multiple datasets. Sci Rep 2025; 15:14748. [PMID: 40289127 PMCID: PMC12034803 DOI: 10.1038/s41598-025-98070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
The purpose of this study was to explore the genetic characteristics and immune cell infiltration related to intervertebral disc degeneration through multidataset analysis, predict potential therapeutic drugs, and provide a theoretical basis for clinical treatment. The gene expression profile data of the GSE70362, GSE186542, and GSE245147 datasets were downloaded from the Gene Expression Omnibus (GEO) database, and the hub genes were identified through differentially expressed gene analysis, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) functional annotation and Mendelian randomization analysis were performed. Hub genes and immune cells were identified. Infiltration status was determined through GSEA and GSVA to clarify the specific signalling pathways associated with key genes and explore the potential molecular mechanisms by which key genes affect disease progression. The key genes were reversely predicted using miRNA grid construction and transcription factor regulation, and genes related to disease regulation were obtained from the GeneCards database. Finally, the differentially expressed genes were used for drug prediction through the Connectivity Map database to identify potential drugs for the treatment of intervertebral disc degeneration. The feasibility of the predicted drugs was tested by molecular docking technology. Real-time quantitative PCR was used to confirm the expression of key genes in the tissue samples.A total of 126 differentially expressed genes were identified in the GEO database, and 4 differentially expressed hub genes (COL6A2, DCXR, GLRX, and PDGFRB) were identified through bioinformatics methods. Immune infiltration analysis revealed that NK cells, macrophages, and eosinophils were activated during IVDD, whereas mast cells and T cells were suppressed. GO and KEGG analyses revealed that key genes are involved in the development of this disease through signalling pathways such as the glycolysis pathway, the oxidative phosphorylation pathway, the cholesterol regulatory pathway, and the haem metabolism pathway. Analysis of the constructed miRNA grid revealed that key genes are jointly regulated by multiple transcription factors, among which the most important motif is cisbp_M5578. Disease regulation-related genes were obtained through the GeneCards database, analysis of the correlation with key genes was performed, and the expression levels of the two mRNA and miRNA were significantly correlated. Finally, drug prediction performed through the Connectivity Map database revealed that drugs such as Abt-751, LY-2183240, podophyllotoxin, and vindesine can alleviate or even reverse the disease state. Finally, we collected 10 IVDD and 10 healthy disc tissue samples, and the RT‒qPCR results were consistent with the bioinformatics results. We identified COL6A2, DCXR, GLRX, and PDGFRB as key genes involved in IVDD. In addition, drugs such as Abt-751 are expected to control and reverse the progression of the disease. In the future, these key genes and predicted drugs may provide new directions for further mechanistic studies as well as new therapies for IVDD patients.
Collapse
Affiliation(s)
- Longquan Lin
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China.
| | - Da Li
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Gangfeng Cai
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fujian, 350000, China.
| | - Gengyang Zheng
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Dianfeng Huang
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Hua Liu
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Shunxin Lin
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Feng Zhao
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| |
Collapse
|
3
|
Chen S, Fu J, Long J, Liu C, Ai X, Long D, Leng X, Zhang Y, Liao Z, Li C, Zhou Y, Dong S, Huang B, Feng C. Bulk RNA-seq conjoined with ScRNA-seq analysis reveals the molecular characteristics of nucleus pulposus cell ferroptosis in rat aging intervertebral discs. Arthritis Res Ther 2025; 27:90. [PMID: 40247370 PMCID: PMC12004870 DOI: 10.1186/s13075-025-03550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
OBJECTIVE Recently, several studies have reported that nucleus pulposus (NP) cell ferroptosis plays a key role in IDD. However, the characteristics and molecular mechanisms of cell subsets involved remain unclear. We aimed to define the key factors driving ferroptosis, and the characteristics of ferroptotic NP cells subsets during IDD. METHODS The accumulation of iron ions in NP tissues of rats caudal intervertebral discs (IVDs) was determined by Prussian blue staining. Fluorescent probe Undecanoyl Boron Dipyrromethene (C11-BODIPY) and lipid peroxidation product 4-Hydroxynonenal (4-HNE) staining were performed to assess lipid peroxidation level of NP cells. The differentially expressed genes in NP tissues with aging were overlapped with FerrDB database to screen ferroptosis driving genes associated with aging-related IDD. In addition, single cell sequencing (ScRNA-seq) was used to map the NP cells, and further identify ferroptotic NP cell subsets, as well as their crucial drivers. Finally, cluster analysis was performed to identify the marker genes of ferroptotic NP cells. RESULTS Histological staining showed that, compared with 10 months old (10M-old) group, the accumulation of iron ions increased in NP tissues of 20 months old (20M-old) rats, and the level of lipid peroxidation was also enhanced. 15 ferroptosis driving factors related to IDD were selected by cross-enrichment. ScRNA-seq identified 14 subsets in NP tissue cells, among which the number and ratio of 5 subsets was reduced, and the intracellular ferroptosis related signaling pathways were significantly enriched, accompanied by enhanced cell lipid peroxidation. Notably, ranking the up-regulation fold of ferroptosis related genes, we found Atf3 was always present within TOP2 of these five cell subsets, suggests it is the key driving factor in NP cell ferroptosis. Finally, cluster cross-enrichment and fluorescence colocalization analysis revealed that Rps6 +/Cxcl1- was a common molecular feature among the 5 ferroptotic NP cell subsets. CONCLUSIONS This study reveals that ATF3 is a key driver of NP cell ferroptosis during IDD, and Rps6 +/Cxcl1- is a common molecular feature of ferroptotic NP cell subsets. These findings provide evidence and theoretical support for subsequent targeted intervention of NP cell ferroptosis, as well as provide directions for preventing and delaying IDD.
Collapse
Affiliation(s)
- Shipeng Chen
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Jiawei Fu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Jiang Long
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Chang Liu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Xuezheng Ai
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Dan Long
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Xue Leng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Yang Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Zhengao Liao
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Army Medical University, Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.
| | - Bo Huang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China.
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China.
| | - Chencheng Feng
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China.
- Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, China.
| |
Collapse
|
4
|
Ambrosio L, Schol J, Ruiz-Fernández C, Tamagawa S, Joyce K, Nomura A, de Rinaldis E, Sakai D, Papalia R, Vadalà G, Denaro V. Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus. J Dev Biol 2024; 12:18. [PMID: 39051200 PMCID: PMC11270426 DOI: 10.3390/jdb12030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue characterized by a high content of type II collagen and proteoglycans, which is crucial for the disc's load-bearing and shock-absorbing properties. With aging and IVD degeneration (IDD), the NP gradually loses its physiological characteristics, leading to low back pain and additional sequelae. In contrast to surrounding spinal tissues, the NP presents a distinctive embryonic development since it directly derives from the notochord. This review aims to explore the embryology of the NP, emphasizing the pivotal roles of key transcription factors, which guide the differentiation and maintenance of the NP cellular components from the notochord and surrounding sclerotome. Through an understanding of NP development, we sought to investigate the implications of the critical developmental aspects in IVD-related pathologies, such as IDD and the rare malignant chordomas. Moreover, this review discusses the therapeutic strategies targeting these pathways, including the novel regenerative approaches leveraging insights from NP development and embryology to potentially guide future treatments.
Collapse
Affiliation(s)
- Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Clara Ruiz-Fernández
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Kieran Joyce
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland;
- School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Akira Nomura
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Elisabetta de Rinaldis
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
| |
Collapse
|
5
|
Liu Y, Li L, Li X, Cherif H, Jiang S, Ghezelbash F, Weber MH, Juncker D, Li-Jessen NYK, Haglund L, Li J. Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration. Acta Biomater 2024; 180:244-261. [PMID: 38615812 DOI: 10.1016/j.actbio.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Li Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Hosni Cherif
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Shuaibing Jiang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Michael H Weber
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; McGill University & Genome Quebec Innovation Centre, 740 Avenue Dr. Penfield, Montréal, QC H4A 0G1, Canada
| | - Nicole Y K Li-Jessen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; School of Communication Sciences and Disorders, McGill University, 2001 McGill College Avenue, Montréal, QC H3A 1G1, Canada; Department of Otolaryngology - Head and Neck Surgery, McGill University Health Centre, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada; Research Institute of McGill University Health Center, McGill University, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada; Shriners Hospital for Children, 1003 Bd Décarie, Montréal, QC H4A 0A9, Canada.
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada; Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada.
| |
Collapse
|
6
|
Chen Y, Zhang L, Shi X, Han J, Chen J, Zhang X, Xie D, Li Z, Niu X, Chen L, Yang C, Sun X, Zhou T, Su P, Li N, Greenblatt MB, Ke R, Huang J, Chen Z, Xu R. Characterization of the Nucleus Pulposus Progenitor Cells via Spatial Transcriptomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303752. [PMID: 38311573 PMCID: PMC11095158 DOI: 10.1002/advs.202303752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/11/2024] [Indexed: 02/06/2024]
Abstract
Loss of refreshment in nucleus pulposus (NP) cellularity leads to intervertebral disc (IVD) degeneration. Nevertheless, the cellular sequence of NP cell differentiation remains unclear, although an increasing body of literature has identified markers of NP progenitor cells (NPPCs). Notably, due to their fragility, the physical enrichment of NP-derived cells has limited conventional transcriptomic approaches in multiple studies. To overcome this limitation, a spatially resolved transcriptional atlas of the mouse IVD is generated via the 10x Genomics Visium platform dividing NP spots into two clusters. Based on this, most reported NPPC-markers, including Cathepsin K (Ctsk), are rare and predominantly located within the NP-outer subset. Cell lineage tracing further evidence that a small number of Ctsk-expressing cells generate the entire adult NP tissue. In contrast, Tie2, which has long suggested labeling NPPCs, is actually neither expressed in NP subsets nor labels NPPCs and their descendants in mouse models; consistent with this, an in situ sequencing (ISS) analysis validated the absence of Tie2 in NP tissue. Similarly, no Tie2-cre-mediated labeling of NPPCs is observed in an IVD degenerative mouse model. Altogether, in this study, the first spatial transcriptomic map of the IVD is established, thereby providing a public resource for bone biology.
Collapse
Affiliation(s)
- Yu Chen
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Long Zhang
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Xueqing Shi
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Jie Han
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Jingyu Chen
- Gene Denovo Biotechnology CoGuangzhou510006China
| | - Xinya Zhang
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
| | - Danlin Xie
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
- School of Life SciencesWestlake UniversityHangzhou310030China
| | - Zan Li
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Xing Niu
- China Medical UniversityShenyangLiaoning110122China
| | - Lijie Chen
- China Medical UniversityShenyangLiaoning110122China
| | - Chaoyong Yang
- Department of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiujie Sun
- Department of Obstetrics and GynecologySchool of MedicineXiang'an Hospital of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Taifeng Zhou
- Department of Spine SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080China
| | - Peiqiang Su
- Department of Spine SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510080China
| | - Na Li
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkNY10065USA
- Research DivisionHospital for Special SurgeryNew YorkNY10065USA
| | - Rongqin Ke
- School of Medicine and School of Biomedical SciencesHuaqiao UniversityQuanzhou362000China
| | - Jianming Huang
- Department of OrthopedicsChengong Hospital (the 73th Group Military Hospital of People's Liberation Army) affiliated to Xiamen UniversityXiamen361000China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityNew YorkNY11439USA
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University‐ICMRS Collaborating Center for Skeletal Stem CellsState Key Laboratory of Cellular Stress BiologyFaculty of Medicine and Life SciencesSchool of MedicineXiamen UniversityXiamen361102China
- Xiamen Key Laboratory of Regeneration MedicineFujian Provincial Key Laboratory of Organ and Tissue RegenerationSchool of MedicineXiamen UniversityXiamen361102China
| |
Collapse
|
7
|
Li Y, Zhang H, Zhu D, Yang F, Wang Z, Wei Z, Yang Z, Jia J, Kang X. Notochordal cells: A potential therapeutic option for intervertebral disc degeneration. Cell Prolif 2024; 57:e13541. [PMID: 37697480 PMCID: PMC10849793 DOI: 10.1111/cpr.13541] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal degenerative disorder worldwide, and ~40% of chronic low back pain cases are associated with IDD. Although the pathogenesis of IDD remains unclear, the reduction in nucleus pulposus cells (NPCs) and degradation of the extracellular matrix (ECM) are critical factors contributing to IDD. Notochordal cells (NCs), derived from the notochord, which rapidly degrades after birth and is eventually replaced by NPCs, play a crucial role in maintaining ECM homeostasis and preventing NPCs apoptosis. Current treatments for IDD only provide symptomatic relief, while lacking the ability to inhibit or reverse its progression. However, NCs and their secretions possess anti-inflammatory properties and promote NPCs proliferation, leading to ECM formation. Therefore, in recent years, NCs therapy targeting the underlying cause of IDD has emerged as a novel treatment strategy. This article provides a comprehensive review of the latest research progress on NCs for IDD, covering their biological characteristics, specific markers, possible mechanisms involved in IDD and therapeutic effects. It also highlights significant future directions in this field to facilitate further exploration of the pathogenesis of IDD and the development of new therapies based on NCs strategies.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Haijun Zhang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
- The Second People's Hospital of Gansu ProvinceLanzhouPeople's Republic of China
| | - Daxue Zhu
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Fengguang Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhaoheng Wang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Ziyan Wei
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhili Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Jingwen Jia
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Xuewen Kang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| |
Collapse
|
8
|
Li W, Li X, Gao Y, Xiong C, Tang Z. Emerging roles of RNA binding proteins in intervertebral disc degeneration and osteoarthritis. Orthop Surg 2023; 15:3015-3025. [PMID: 37803912 PMCID: PMC10694020 DOI: 10.1111/os.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023] Open
Abstract
The etiology of intervertebral disc degeneration (IDD) and osteoarthritis (OA) is complex and multifactorial. Both predisposing genes and environmental factors are involved in the pathogenesis of IDD and OA. Moreover, epigenetic modifications affect the development of IDD and OA. Dysregulated phenotypes of nucleus pulposus (NP) cells and OA chondrocytes, including apoptosis, extracellular matrix disruption, inflammation, and angiogenesis, are involved at all developmental stages of IDD and OA. RNA binding proteins (RBPs) have recently been recognized as essential post-transcriptional regulators of gene expression. RBPs are implicated in many cellular processes, such as proliferation, differentiation, and apoptosis. Recently, several RBPs have been reported to be associated with the pathogenesis of IDD and OA. This review briefly summarizes the current knowledge on the RNA-regulatory networks controlled by RBPs and their potential roles in the pathogenesis of IDD and OA. These initial findings support the idea that specific modulation of RBPs represents a promising approach for managing IDD and OA.
Collapse
Affiliation(s)
- Wen Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Xing‐Hua Li
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Yang Gao
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Cheng‐Jie Xiong
- Department of OrthopaedicGeneral Hospital of Central Theater Command of PLAWuhanChina
| | - Zhong‐Zhi Tang
- Department of EmergencyGeneral Hospital of Central Theater Command of PLAWuhanChina
| |
Collapse
|
9
|
Williams RJ, Laagland LT, Bach FC, Ward L, Chan W, Tam V, Medzikovic A, Basatvat S, Paillat L, Vedrenne N, Snuggs JW, Poramba-Liyanage DW, Hoyland JA, Chan D, Camus A, Richardson SM, Tryfonidou MA, Le Maitre CL. Recommendations for intervertebral disc notochordal cell investigation: From isolation to characterization. JOR Spine 2023; 6:e1272. [PMID: 37780826 PMCID: PMC10540834 DOI: 10.1002/jsp2.1272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Lineage-tracing experiments have established that the central region of the mature intervertebral disc, the nucleus pulposus (NP), develops from the embryonic structure called "the notochord". However, changes in the cells derived from the notochord which form the NP (i.e., notochordal cells [NCs]), in terms of their phenotype and functional identity from early developmental stages to skeletal maturation are less understood. These key issues require further investigation to better comprehend the role of NCs in homeostasis and degeneration as well as their potential for regeneration. Progress in utilizing NCs is currently hampered due to poor consistency and lack of consensus methodology for in vitro NC extraction, manipulation, and characterization. Methods Here, an international group has come together to provide key recommendations and methodologies for NC isolation within key species, numeration, in vitro manipulation and culture, and characterization. Results Recommeded protocols are provided for isolation and culture of NCs. Experimental testing provided recommended methodology for numeration of NCs. The issues of cryopreservation are demonstrated, and a pannel of immunohistochemical markers are provided to inform NC characterization. Conclusions Together we hope this article provides a road map for in vitro studies of NCs to support advances in research into NC physiology and their potential in regenerative therapies.
Collapse
Affiliation(s)
- Rebecca J Williams
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Lisanne T Laagland
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Frances C Bach
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Lizzy Ward
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Wilson Chan
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Vivian Tam
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Adel Medzikovic
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Shaghayegh Basatvat
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Lily Paillat
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Nicolas Vedrenne
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Joseph W Snuggs
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| | - Deepani W Poramba-Liyanage
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
- NIHR Manchester Biomedical Research Centre Central Manchester Foundation Trust, Manchester Academic Health Science Centre Manchester UK
| | - Danny Chan
- School of Biomedical Sciences The University of Hong Kong Pokfulam Hong Kong China
| | - Anne Camus
- Regenerative Medicine and Skeleton, RMeS Nantes Université, Oniris, CHU Nantes, INSERM, UMR 1229 Nantes France
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
| | - Marianna A Tryfonidou
- Department of Clinical Sciences Faculty of Veterinary Medicine, Utrecht University Utrecht The Netherlands
| | - Christine L Le Maitre
- Department of Oncology and Metabolism Medical School, The University of Sheffield Sheffield UK
- Biomolecular Sciences Research Centre Sheffield Hallam University Sheffield UK
| |
Collapse
|
10
|
Tanaka M, Homme M, Teramura Y, Kumegawa K, Yamazaki Y, Yamashita K, Osato M, Maruyama R, Nakamura T. HEY1-NCOA2 expression modulates chondrogenic differentiation and induces mesenchymal chondrosarcoma in mice. JCI Insight 2023; 8:160279. [PMID: 37212282 DOI: 10.1172/jci.insight.160279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/12/2023] [Indexed: 05/23/2023] Open
Abstract
Mesenchymal chondrosarcoma affects adolescents and young adults, and most cases usually have the HEY1::NCOA2 fusion gene. However, the functional role of HEY1-NCOA2 in the development and progression of mesenchymal chondrosarcoma remains largely unknown. This study aimed to clarify the functional role of HEY1-NCOA2 in transformation of the cell of origin and induction of typical biphasic morphology of mesenchymal chondrosarcoma. We generated a mouse model for mesenchymal chondrosarcoma by introducing HEY1-NCOA2 into mouse embryonic superficial zone (eSZ) followed by subcutaneous transplantation into nude mice. HEY1-NCOA2 expression in eSZ cells successfully induced subcutaneous tumors in 68.9% of recipients, showing biphasic morphologies and expression of Sox9, a master regulator of chondrogenic differentiation. ChIP sequencing analyses indicated frequent interaction between HEY1-NCOA2 binding peaks and active enhancers. Runx2, which is important for differentiation and proliferation of the chondrocytic lineage, is invariably expressed in mouse mesenchymal chondrosarcoma, and interaction between HEY1-NCOA2 and Runx2 is observed using NCOA2 C-terminal domains. Although Runx2 knockout resulted in significant delay in tumor onset, it also induced aggressive growth of immature small round cells. Runx3, which is also expressed in mesenchymal chondrosarcoma and interacts with HEY1-NCOA2, replaced the DNA-binding property of Runx2 only in part. Treatment with the HDAC inhibitor panobinostat suppressed tumor growth both in vitro and in vivo, abrogating expression of genes downstream of HEY1-NCOA2 and Runx2. In conclusion, HEY1::NCOA2 expression modulates the transcriptional program in chondrogenic differentiation, affecting cartilage-specific transcription factor functions.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Project for Cancer Epigenomics, The Cancer Institute, and
| | - Mizuki Homme
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasuyo Teramura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kohei Kumegawa
- Project for Cancer Epigenomics, The Cancer Institute, and
| | - Yukari Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Kyoko Yamashita
- Department of Pathology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Reo Maruyama
- Project for Cancer Epigenomics, The Cancer Institute, and
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
11
|
Zhou T, Chen Y, Liao Z, Zhang L, Su D, Li Z, Yang X, Ke X, Liu H, Chen Y, Weng R, Shen H, Xu C, Wan Y, Xu R, Su P. Spatiotemporal Characterization of Human Early Intervertebral Disc Formation at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206296. [PMID: 36965031 DOI: 10.1002/advs.202206296] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/28/2023] [Indexed: 05/18/2023]
Abstract
The intervertebral disc (IVD) acts as a fibrocartilaginous joint to anchor adjacent vertebrae. Although several studies have demonstrated the cellular heterogeneity of adult mature IVDs, a single-cell transcriptomic atlas mapping early IVD formation is still lacking. Here, the authors generate a spatiotemporal and single cell-based transcriptomic atlas of human IVD formation at the embryonic stage and a comparative mouse transcript landscape. They identify two novel human notochord (NC)/nucleus pulposus (NP) clusters, SRY-box transcription factor 10 (SOX10)+ and cathepsin K (CTSK)+ , that are distributed in the early and late stages of IVD formation and they are validated by lineage tracing experiments in mice. Matrisome NC/NP clusters, T-box transcription factor T (TBXT)+ and CTSK+ , are responsible for the extracellular matrix homeostasis. The IVD atlas suggests that a subcluster of the vertebral chondrocyte subcluster might give rise to an inner annulus fibrosus of chondrogenic origin, while the fibroblastic outer annulus fibrosus preferentially expresseds transgelin and fibromodulin . Through analyzing intercellular crosstalk, the authors further find that notochordal secreted phosphoprotein 1 (SPP1) is a novel cue in the IVD microenvironment, and it is associated with IVD development and degeneration. In conclusion, the single-cell transcriptomic atlas will be leveraged to develop preventative and regenerative strategies for IVD degeneration.
Collapse
Affiliation(s)
- Taifeng Zhou
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Chen
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhiheng Liao
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Long Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuling Li
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Ke
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hengyu Liu
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuyu Chen
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ricong Weng
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Huimin Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yong Wan
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Peiqiang Su
- Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
12
|
Xia KS, Li DD, Wang CG, Ying LW, Wang JK, Yang B, Shu JW, Huang XP, Zhang YA, Yu C, Zhou XP, Li FC, Slater NK, Tang JB, Chen QX, Liang CZ. An esterase-responsive ibuprofen nano-micelle pre-modified embryo derived nucleus pulposus progenitor cells promote the regeneration of intervertebral disc degeneration. Bioact Mater 2023; 21:69-85. [PMID: 36017070 PMCID: PMC9399388 DOI: 10.1016/j.bioactmat.2022.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/16/2022] [Accepted: 07/21/2022] [Indexed: 10/27/2022] Open
|
13
|
Sun H, Wang H, Zhang W, Mao H, Li B. Single-cell RNA sequencing reveals resident progenitor and vascularization-associated cell subpopulations in rat annulus fibrosus. J Orthop Translat 2022; 38:256-267. [PMID: 36568849 PMCID: PMC9758498 DOI: 10.1016/j.jot.2022.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background One of the main causes of low back pain is intervertebral disc degeneration (IDD). Annulus fibrosus (AF) is important for the integrity and functions of the intervertebral disc (IVD). However, the resident functional cell components such as progenitors and vascularization-associated cells in AF are yet to be fully identified. Purpose Identification of functional AF cell subpopulations including resident progenitors and vascularization-associated cells. Methods In this study, the single-cell RNA sequencing data of rat IVDs from a public database were analyzed using Seurat for cell clustering, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for functional analysis, StemID for stem cell identification, Monocle and RNA velocity for pseudotime differentiation trajectory validation, single-cell regulatory network inference and clustering (SCENIC) for gene regulatory network (GRN) analysis, and CellChat for cell-cell interaction analysis. Immunostaining on normal and degenerated rat IVDs, as well as human AF, was used for validations. Results From the data analysis, seven AF cell clusters were identified, including two newly discovered functional clusters, the Grem1 + subpopulation and the Lum + subpopulation. The Grem1 + subpopulation had progenitor characteristics, while the Lum + subpopulation was associated with vascularization during IDD. The GRN analysis showed that Sox9 and Id1 were among the key regulators in the Grem1 + subpopulation, and Nr2f2 and Creb5 could be responsible for the vascularization function in the Lum + subpopulation. Cell-cell interaction analysis revealed highly regulated cellular communications between these cells, and multiple signaling networks including PDGF and MIF signaling pathways were involved in the interactions. Conclusions Our results revealed two new functional AF cell subpopulations, with stemness and vascularization induction potential, respectively. The Translational potential of this article These findings complement our knowledge about IVDs, especially the AF, and in return provide potential cell source and regulation targets for IDD treatment and tissue repair. The existence of the cell subpopulations was also validated in human AF, which strengthen the clinical relevance of the findings.
Collapse
Affiliation(s)
- Heng Sun
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Haijiao Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, China,Corresponding author.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China,Corresponding author. 178 Ganjiang Rd, Rm 201 Bldg 18, Soochow University (North Campus), Suzhou, Jiangsu, 215007, China.
| |
Collapse
|
14
|
Laagland LT, Bach FC, Creemers LB, Le Maitre CL, Poramba-Liyanage DW, Tryfonidou MA. Hyperosmolar expansion medium improves nucleus pulposus cell phenotype. JOR Spine 2022; 5:e1219. [PMID: 36203869 PMCID: PMC9520765 DOI: 10.1002/jsp2.1219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Background Repopulating the degenerated intervertebral disc (IVD) with tissue-specific nucleus pulposus cells (NPCs) has already been shown to promote regeneration in various species. Yet the applicability of NPCs as cell-based therapy has been hampered by the low cell numbers that can be extracted from donor IVDs and their potentially limited regenerative capacity due to their degenerated phenotype. To optimize the expansion conditions, we investigated the effects of increasing culture medium osmolarity during expansion on the phenotype of dog NPCs and their ability to produce a healthy extracellular matrix (ECM) in a 3D culture model. Methods Dog NPCs were expanded in expansion medium with a standard osmolarity of 300 mOsm/L or adjusted to 400 or 500 mOsm/L in both normoxic and hypoxic conditions. Following expansion, NPCs were cultured in a 3D culture model in chondrogenic culture medium with a standard osmolarity. Read-out parameters included cell proliferaton rate, morphology, phenotype and healthy ECM production. Results Increasing the expansion medium osmolarity from 300 to 500 mOsm/L resulted in NPCs with a more rounded morphology and a lower cell proliferation rate accompanied by the expression of several healthy NPC and progenitor markers at gene (KRT18, ACAN, COL2, CD73, CD90) and protein (ACAN, PAX1, CD24, TEK, CD73) level. The NPCs expanded at 500 mOsm/L were able to retain most of their phenotypic markers and produce healthy ECM during 3D culture independent of the oxygen level used during expansion. Conclusions Altogether, our findings show that increasing medium osmolarity during expansion results in an NPC population with improved phenotype, which could enhance the potential of cell-based therapies for IVD regeneration.
Collapse
Affiliation(s)
- Lisanne T Laagland
- Department of Clinical Sciences, Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Frances C Bach
- Department of Clinical Sciences, Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Laura B Creemers
- Department of Orthopedics University Medical Centre Utrecht Utrecht The Netherlands
| | | | - Deepani W Poramba-Liyanage
- Department of Clinical Sciences, Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| |
Collapse
|
15
|
GINS2 Is Downregulated in Peripheral Blood of Patients with Intervertebral Disk Degeneration and Promotes Proliferation and Migration of Nucleus Pulposus Cells. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1986348. [PMID: 36092790 PMCID: PMC9462986 DOI: 10.1155/2022/1986348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
GINS complex subunit 2 (GINS2) regulates the migration, invasion, and growth of cells in many malignant and chronic diseases. In the present study, we aimed to investigate the expression of GINS2 in the peripheral blood and nucleus pulposus (NP) cells of patients with intervertebral disk degeneration (IDD). GINS2 expression was detected using bioinformatics tools from the GEO public repository and validated using peripheral blood samples from IDD patients and healthy participants. GINS2 clinical significance was explored by the receiver operating curve (ROC) utilizing area under the curve (AUC). Moreover, the influences of GINS2 on cell viability, migration, and invasion were explored by MTT, wound healing, and transwell assays, whereas cell apoptosis was determined by flow cytometry. Expression levels of GINS2 in the peripheral blood were significantly lower in IDD patients than in healthy participants. Moreover, ROC obtained a significantly higher AUC of GINS2 in IDD patients. Further, overexpressed GINS2 increased the proliferation, migration, and invasion of NP cells while overexpressed GINS2 decreased the apoptotic property of cells compared to the NC plasmid and control groups. In conclusion, GINS2 might be a potential therapeutic target of IDD.
Collapse
|
16
|
Single-Cell RNA-Seq Analysis of Cells from Degenerating and Non-Degenerating Intervertebral Discs from the Same Individual Reveals New Biomarkers for Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms23073993. [PMID: 35409356 PMCID: PMC8999935 DOI: 10.3390/ijms23073993] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we used single-cell transcriptomic analysis to identify new specific biomarkers for nucleus pulposus (NP) and inner annulus fibrosis (iAF) cells, and to define cell populations within non-degenerating (nD) and degenerating (D) human intervertebral discs (IVD) of the same individual. Cluster analysis based on differential gene expression delineated 14 cell clusters. Gene expression profiles at single-cell resolution revealed the potential functional differences linked to degeneration, and among NP and iAF subpopulations. GO and KEGG analyses discovered molecular functions, biological processes, and transcription factors linked to cell type and degeneration state. We propose two lists of biomarkers, one as specific cell type, including C2orf40, MGP, MSMP, CD44, EIF1, LGALS1, RGCC, EPYC, HILPDA, ACAN, MT1F, CHI3L1, ID1, ID3 and TMED2. The second list proposes predictive IVD degeneration genes, including MT1G, SPP1, HMGA1, FN1, FBXO2, SPARC, VIM, CTGF, MGST1, TAF1D, CAPS, SPTSSB, S100A1, CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MGP, SLPI, DCN, MT-ND2, MTCYB, ADIRF, FRZB, CLEC3A, UPP1, S100A2, PRG4, COL2A1, SOD2 and MT2A. Protein and mRNA expression of MGST1, vimentin, SOD2 and SYF2 (p29) genes validated our scRNA-seq findings. Our data provide new insights into disc cells phenotypes and biomarkers of IVD degeneration that could improve diagnostic and therapeutic options.
Collapse
|
17
|
de Lemos L, Dias A, Nóvoa A, Mallo M. Epha1 is a cell-surface marker for the neuromesodermal competent population. Development 2022; 149:274735. [DOI: 10.1242/dev.198812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The vertebrate body is built during embryonic development by the sequential addition of new tissue as the embryo grows at its caudal end. During this process, progenitor cells within the neuromesodermal competent (NMC) region generate the postcranial neural tube and paraxial mesoderm. Here, we have applied a genetic strategy to recover the NMC cell population from mouse embryonic tissues and have searched their transcriptome for cell-surface markers that would give access to these cells without previous genetic modifications. We found that Epha1 expression is restricted to the axial progenitor-containing areas of the mouse embryo. Epha1-positive cells isolated from the mouse tailbud generate neural and mesodermal derivatives when cultured in vitro. This observation, together with their enrichment in the Sox2+/Tbxt+ molecular phenotype, indicates a direct association between Epha1 and the NMC population. Additional analyses suggest that tailbud cells expressing low Epha1 levels might also contain notochord progenitors, and that high Epha1 expression might be associated with progenitors entering paraxial mesoderm differentiation. Epha1 could thus be a valuable cell-surface marker for labeling and recovering physiologically active axial progenitors from embryonic tissues.
Collapse
Affiliation(s)
- Luisa de Lemos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - André Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
18
|
Bach FC, Poramba-Liyanage DW, Riemers FM, Guicheux J, Camus A, Iatridis JC, Chan D, Ito K, Le Maitre CL, Tryfonidou MA. Notochordal Cell-Based Treatment Strategies and Their Potential in Intervertebral Disc Regeneration. Front Cell Dev Biol 2022; 9:780749. [PMID: 35359916 PMCID: PMC8963872 DOI: 10.3389/fcell.2021.780749] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic low back pain is the number one cause of years lived with disability. In about 40% of patients, chronic lower back pain is related to intervertebral disc (IVD) degeneration. The standard-of-care focuses on symptomatic relief, while surgery is the last resort. Emerging therapeutic strategies target the underlying cause of IVD degeneration and increasingly focus on the relatively overlooked notochordal cells (NCs). NCs are derived from the notochord and once the notochord regresses they remain in the core of the developing IVD, the nucleus pulposus. The large vacuolated NCs rapidly decline after birth and are replaced by the smaller nucleus pulposus cells with maturation, ageing, and degeneration. Here, we provide an update on the journey of NCs and discuss the cell markers and tools that can be used to study their fate and regenerative capacity. We review the therapeutic potential of NCs for the treatment of IVD-related lower back pain and outline important future directions in this area. Promising studies indicate that NCs and their secretome exerts regenerative effects, via increased proliferation, extracellular matrix production, and anti-inflammatory effects. Reports on NC-like cells derived from embryonic- or induced pluripotent-stem cells claim to have successfully generated NC-like cells but did not compare them with native NCs for phenotypic markers or in terms of their regenerative capacity. Altogether, this is an emerging and active field of research with exciting possibilities. NC-based studies demonstrate that cues from developmental biology can pave the path for future clinical therapies focused on regenerating the diseased IVD.
Collapse
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Frank M. Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jerome Guicheux
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
- PHU4 OTONN, CHU Nantes, Nantes, France
| | - Anne Camus
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Marianna A. Tryfonidou,
| |
Collapse
|
19
|
Zhu K, Zhao R, Ye Y, Xu G, Zhang C. Effect of lentivirus-mediated growth and differentiation factor-5 transfection on differentiation of rabbit nucleus pulposus mesenchymal stem cells. Eur J Med Res 2022; 27:5. [PMID: 35022077 PMCID: PMC8756615 DOI: 10.1186/s40001-021-00624-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a natural progression of age-related processes. Associated with IDD, degenerative disc disease (DDD) is a pathologic condition implicated as a major cause of chronic lower back pain, which can have a severe impact on the quality of life of patients. As degeneration progression is associated with elevated levels of inflammatory cytokines, enhanced aggrecan and collagen degradation, and changes in the disc cell phenotype. The purpose of this study was to investigate the biological and cytological characteristics of rabbit nucleus pulposus mesenchymal stem cells (NPMSCs)—a key factor in IDD—and to determine the effect of the growth and differentiation factor-5 (GDF5) on the differentiation of rabbit NPMSCs transduced with a lentivirus vector. Methods An in vitro culture model of rabbit NPMSCs was established and NPMSCs were identified by flow cytometry (FCM) and quantitative real-time PCR (qRT-PCR). Subsequently, NPMSCs were randomly divided into three groups: a transfection group (the lentiviral vector carrying GDF5 gene used to transfect NPMSCs); a control virus group (the NPMSCs transfected with an ordinary lentiviral vector); and a normal group (the NPMSCs alone). FCM, qRT-PCR, and western blot (WB) were used to detect the changes in NPMSCs. Results The GDF5-transfected NPMSCs displayed an elongated shape, with decreased cell density, and significantly increased GDF5 positivity rate in the transfected group compared to the other two groups (P < 0.01). The mRNA levels of Krt8, Krt18, and Krt19 in the transfected group were significantly higher in comparison with the other two groups (P < 0.01), and the WB results were consistent with that of qRT-PCR. Conclusions GDF5 could induce the differentiation of NPMSCs. The lentiviral vector carrying the GDF5 gene could be integrated into the chromosome genome of NPMSCs and promoted differentiation of NPMSCs into nucleus pulposus cells. Our findings advance the development of feasible and effective therapies for IDD. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-021-00624-5.
Collapse
Affiliation(s)
- Kun Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Rui Zhao
- Department of General Medicine, Bengbu Medical College, Bengbu, China
| | - Yuchen Ye
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China
| | - Gang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China.
| | - Changchun Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui, China.
| |
Collapse
|
20
|
Intervertebral disc repair and regeneration: Insights from the notochord. Semin Cell Dev Biol 2021; 127:3-9. [PMID: 34865989 DOI: 10.1016/j.semcdb.2021.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/25/2022]
Abstract
The vertebrate notochord plays an essential role in patterning multiple structures during embryonic development. In the early 2000s, descendants of notochord cells were demonstrated to form the entire nucleus pulposus of the intervertebral disc in addition to their key role in embryonic patterning. The nucleus pulposus undergoes degeneration during postnatal life, which can lead to back pain. Recently, gene and protein profiles of notochord and nucleus pulposus cells have been identified. These datasets, coupled with the ability to differentiate human induced pluripotent stem cells (iPSCs) into cells that resemble nucleus pulposus cells, provide the possibility of generating a cell-based therapy to halt and/or reverse disc degeneration.
Collapse
|
21
|
Lin Z, Ni L, Teng C, Zhang Z, Wu L, Jin Y, Lu X, Lin Z. Eicosapentaenoic Acid-Induced Autophagy Attenuates Intervertebral Disc Degeneration by Suppressing Endoplasmic Reticulum Stress, Extracellular Matrix Degradation, and Apoptosis. Front Cell Dev Biol 2021; 9:745621. [PMID: 34805156 PMCID: PMC8599281 DOI: 10.3389/fcell.2021.745621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of low back pain (LBP), but there is still a lack of effective therapy. Multiple studies have reported that endoplasmic reticulum (ER) stress and extracellular matrix (ECM) degradation exert an enormous function on the occurrence and development of IDD. Autophagy can effectively repair ER stress and maintain ECM homeostasis. Eicosapentaenoic acid (EPA) can specifically induce autophagy. The purpose of this study is to demonstrate that EPA can promote autophagy, reduce ECM degradation and ER stress in vitro, thereby reducing cell apoptosis, and the protective effects of EPA in an IDD-rat model in vivo. Western blot and immunofluorescence were used to detect the autophagic flux, ER stress, ECM degradation, and apoptosis in nucleus pulposus cells (NPCs) treated by EPA. We also used puncture-induced IDD rats as experimental subjects to observe the therapeutic effect of EPA on IDD. Our findings indicated that EPA can effectively improve the autophagy activity in NPCs, inhibit the endoplasmic reticulum stress process, reduce the degree of cell apoptosis, and exert protective effects on the anabolism and catabolism of ECM. In addition, in vivo investigations demonstrated that EPA ameliorated the progression of puncture-induced IDD in rats. In conclusion, this study revealed the intrinsic mechanisms of EPA's protective role in NPCs and its potential therapeutic significance for the treatment of IDD.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Libin Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Cheng Teng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yu Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.,Department of Orthopedics, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Xinlei Lu
- The School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Zhongke Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Coexpression Network Analysis of lncRNA Associated with Overexpression of DNMT1 in Esophageal Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7162270. [PMID: 34660799 PMCID: PMC8519683 DOI: 10.1155/2021/7162270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Screening and preliminary identification of high DNMT1 expression-related lncRNA, which is involved in various interrelated signaling pathways, has led to the development of a theoretical basis for various types of disease mechanisms. Differential expression profiles of lncRNA and mRNA were identified in a microarray. Ten lncRNAs with high levels of variation were identified by qRT-PCR. KEGG and GO analyses were used to identify differentially expressed mRNAs. Six signaling pathways were selected based on the KEGG results of the lncRNA-mRNA expression network analysis. From the microarrays in the experimental and control groups, we found a total of 6987 differentially expressed lncRNAs, and 7421 differentially expressed mRNAs were obtained (P < 0.05; fold change > 2.0x). GO analysis and KEGG pathway analysis showed high expression of DNMT1 in esophageal epithelial cells. Nine pathways were involved in mRNA upregulation, including natural killer cell-mediated cytotoxicity and many other prominent biochemical pathways. Forty-six pathways were associated with downregulated mRNAs and ribosomes involving multiple biological pathways. Coexpression network analysis showed that 8 mRNAs and 16 lncRNAs were linked to the p53 signaling pathway. In Helicobacter pylori infections, interactions occurred between 22 lncRNAs and 11 mRNAs in the ErbB signaling pathway and between 19 lncRNAs and 8 mRNAs in epithelial cell signal transduction. Interactions were present between 19 lncRNAs and 5 mRNAs in the sphingolipid signaling pathway, along with interactions between 21 lncRNAs and 12 mRNAs in the PI3K-Akt signaling pathway. Cytotoxicity interactions occurred between 22 lncRNAs and 9 mRNAs in natural killer cells.
Collapse
|
23
|
Kanda Y, Yurube T, Morita Y, Takeoka Y, Kurakawa T, Tsujimoto R, Miyazaki K, Kakiuchi Y, Miyazaki S, Zhang Z, Takada T, Hoshino Y, Masuda K, Kuroda R, Kakutani K. Delayed notochordal cell disappearance through integrin α5β1 mechanotransduction during ex-vivo dynamic loading-induced intervertebral disc degeneration. J Orthop Res 2021; 39:1933-1944. [PMID: 33049071 DOI: 10.1002/jor.24883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 02/04/2023]
Abstract
The loss of nucleus pulposus (NP) notochordal cells is one of the key initial hallmarks of age-related intervertebral disc degeneration. Although the transmembrane mechanoreceptor integrin α5β1 is important in the process of disc degeneration, the relationship between integrin α5β1 and notochordal cell disappearance remains unclear. The purpose of this study was to elucidate the role of integrin α5β1 in the homeostasis of notochordal cells using an ex-vivo dynamic loading culture system that we developed. Rat tail functional spinal units (n = 80 from 40 rats) were cultured under unloading or 1.3-MPa, 1.0-Hz dynamic compressive loading for 48 or 144 h with or without an integrin α5β1 inhibitor. Disc histomorphology, cell viability, apoptosis, senescence, and phenotypic expression were investigated. Consequently, histological degenerative disc changes with decreased cell viability and increased cell apoptosis and senescence were observed with an extended loading duration. Immunofluorescence revealed that the expression of notochordal cell markers, CD24 and brachyury, and chondrocyte markers, collagen type II and SRY-box 9, declined with loading. In particular, reduction in notochordal cell marker expression was more dramatic than that in chondrocyte marker expression. Apoptotic terminal deoxynucleotidyl transferase dUTP nick-end labeling positivity was also higher in brachyury-positive notochordal cells. Furthermore, all these changes were delayed by inhibiting integrin α5β1. Findings of our dynamic loading regimen with a relatively high pressure suggest reproducibility of the cellularity and phenotypic disappearance of NP notochordal cells during adolescence, the susceptibility of notochordal cells to mechanical stimuli partially through the integrin α5β1 pathway, and future potential treatment of integrin regulation for intervertebral disc disease.
Collapse
Affiliation(s)
- Yutaro Kanda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yusuke Morita
- Department of Biomedical Engineering, Doshisha University, Kyoto, Japan
| | - Yoshiki Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuto Kurakawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryu Tsujimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kunihiko Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuji Kakiuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shingo Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Zhongying Zhang
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toru Takada
- Department of Orthopaedic Surgery, Kobe Hokuto Hospital, Kobe, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Masuda
- Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, California, USA
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
24
|
Mitochondrial quality control in intervertebral disc degeneration. Exp Mol Med 2021; 53:1124-1133. [PMID: 34272472 PMCID: PMC8333068 DOI: 10.1038/s12276-021-00650-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a common and early-onset pathogenesis in the human lifespan that can increase the risk of low back pain. More clarification of the molecular mechanisms associated with the onset and progression of IDD is likely to help establish novel preventive and therapeutic strategies. Recently, mitochondria have been increasingly recognized as participants in regulating glycolytic metabolism, which has historically been regarded as the main metabolic pathway in intervertebral discs due to their avascular properties. Indeed, mitochondrial structural and functional disruption has been observed in degenerated nucleus pulposus (NP) cells and intervertebral discs. Multilevel and well-orchestrated strategies, namely, mitochondrial quality control (MQC), are involved in the maintenance of mitochondrial integrity, mitochondrial proteostasis, the mitochondrial antioxidant system, mitochondrial dynamics, mitophagy, and mitochondrial biogenesis. Here, we address the key evidence and current knowledge of the role of mitochondrial function in the IDD process and consider how MQC strategies contribute to the protective and detrimental properties of mitochondria in NP cell function. The relevant potential therapeutic treatments targeting MQC for IDD intervention are also summarized. Further clarification of the functional and synergistic mechanisms among MQC mechanisms may provide useful clues for use in developing novel IDD treatments.
Collapse
|
25
|
Sun Q, Tian FM, Liu F, Fang JK, Hu YP, Lian QQ, Zhou Z, Zhang L. Denosumab alleviates intervertebral disc degeneration adjacent to lumbar fusion by inhibiting endplate osteochondral remodeling and vertebral osteoporosis in ovariectomized rats. Arthritis Res Ther 2021; 23:152. [PMID: 34049577 PMCID: PMC8161944 DOI: 10.1186/s13075-021-02525-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/05/2021] [Indexed: 01/22/2023] Open
Abstract
Background Although adjacent segmental intervertebral disc degeneration (ASDD) is one of the most common complications after lumbar fusion, its exact mechanism remains unclear. As an antibody to RANKL, denosumab (Dmab) effectively reduces bone resorption and stimulates bone formation, which can increase bone mineral density (BMD) and improve osteoporosis. However, it has not been confirmed whether Dmab has a reversing or retarding effect on ASDD. Methods Three-month-old female Sprague-Dawley rats that underwent L4–L5 posterolateral lumbar fusion (PLF) with spinous-process wire fixation 4 weeks after bilateral ovariectomy (OVX) surgery were given Dmab 4 weeks after PLF surgery (OVX+PLF+Dmab group). In addition, the following control groups were defined: Sham, OVX, PLF, and OVX+PLF (n=12 each). Next, manual palpation and X-ray were used to evaluate the state of lumbar fusion. The bone microstructure in the lumbar vertebra and endplate as well as the disc height index (DHI) of L5/6 was evaluated by microcomputed tomography (μCT). The characteristic alterations of ASDD were identified via Safranin-O green staining. Osteoclasts were detected using tartrate-resistant acid phosphatase (TRAP) staining, and the biomechanical properties of vertebrae were evaluated. Aggrecan (Agg), metalloproteinase-13 (MMP-13), and a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4) expression in the intervertebral disc were detected by immunohistochemistry and real-time polymerase chain reaction (RT-PCR) analysis. In addition, the expression of CD24 and Sox-9 was assessed by immunohistochemistry. Results Manual palpation showed clear evidence of the fused segment’s immobility. Compared to the OVX+PLF group, more new bone formation was observed by X-ray examination in the OVX+PLF+Dmab group. Dmab significantly alleviated ASDD by retaining disc height index (DHI), decreasing endplate porosity, and increasing vertebral biomechanical properties and BMD. TRAP staining results showed a significantly decreased number of active osteoclasts after Dmab treatment, especially in subchondral bone and cartilaginous endplates. Moreover, the protein and mRNA expression results in discs (IVDs) showed that Dmab not only inhibited matrix degradation by decreasing MMP-13 and ADAMTS-4 but also promoted matrix synthesis by increasing Agg. Dmab maintained the number of notochord cells by increasing CD24 but reducing Sox-9. Conclusions These results suggest that Dmab may be a novel therapeutic target for ASDD treatment.
Collapse
Affiliation(s)
- Qi Sun
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Fa-Ming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Fang Liu
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Jia-Kang Fang
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Yun-Peng Hu
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Qiang-Qiang Lian
- Medical Research Center, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Zhuang Zhou
- Department of Bone and Soft Tissue Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, 361 Zhongshan ERoad, Hebei, 050000, Shijiazhuang, People's Republic of China.
| |
Collapse
|
26
|
The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021. [DOI: 10.3390/ijms22094917
expr 996488947 + 961598850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
|
27
|
Calió M, Gantenbein B, Egli M, Poveda L, Ille F. The Cellular Composition of Bovine Coccygeal Intervertebral Discs: A Comprehensive Single-Cell RNAseq Analysis. Int J Mol Sci 2021; 22:ijms22094917. [PMID: 34066404 PMCID: PMC8124861 DOI: 10.3390/ijms22094917] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration and its medical consequences is still one of the leading causes of morbidity worldwide. To support potential regenerative treatments for degenerated IVDs, we sought to deconvolute the cell composition of the nucleus pulposus (NP) and the annulus fibrosus (AF) of bovine intervertebral discs. Bovine calf tails have been extensively used in intervertebral disc research as a readily available source of NP and AF material from healthy and young IVDs. We used single-cell RNA sequencing (scRNAseq) coupled to bulk RNA sequencing (RNAseq) to unravel the cell populations in these two structures and analyze developmental changes across the rostrocaudal axis. By integrating the scRNAseq data with the bulk RNAseq data to stabilize the clustering results of our study, we identified 27 NP structure/tissue specific genes and 24 AF structure/tissue specific genes. From our scRNAseq results, we could deconvolute the heterogeneous cell populations in both the NP and the AF. In the NP, we detected a notochordal-like cell cluster and a progenitor stem cell cluster. In the AF, we detected a stem cell-like cluster, a cluster with a predominantly fibroblast-like phenotype and a potential endothelial progenitor cluster. Taken together, our results illustrate the cell phenotypic complexity of the AF and NP in the young bovine IVDs.
Collapse
Affiliation(s)
- Martina Calió
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology (TOM), Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.C.); (B.G.)
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Marcel Egli
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
| | - Lucy Poveda
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology, University of Zurich, 8057 Zurich, Switzerland;
| | - Fabian Ille
- Space Biology Group, Institute of Medical Engineering, School of Engineering and Architecture, Lucerne University of Applied Sciences and Arts, 6052 Hergiswil, Switzerland;
- Correspondence: ; Tel.: +41-41-349-36-15
| |
Collapse
|
28
|
Zhang Y, Zhang Z, Chen P, Ma CY, Li C, Au TYK, Tam V, Peng Y, Wu R, Cheung KMC, Sham PC, Tse HF, Chan D, Leung VY, Cheah KSE, Lian Q. Directed Differentiation of Notochord-like and Nucleus Pulposus-like Cells Using Human Pluripotent Stem Cells. Cell Rep 2021; 30:2791-2806.e5. [PMID: 32101752 DOI: 10.1016/j.celrep.2020.01.100] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 10/15/2019] [Accepted: 01/28/2020] [Indexed: 12/26/2022] Open
Abstract
Intervertebral disc degeneration might be amenable to stem cell therapy, but the required cells are scarce. Here, we report the development of a protocol for directed in vitro differentiation of human pluripotent stem cells (hPSCs) into notochord-like and nucleus pulposus (NP)-like cells of the disc. The first step combines enhancement of ACTIVIN/NODAL and WNT and inhibition of BMP pathways. By day 5 of differentiation, hPSC-derived cells express notochordal cell characteristic genes. After activating the TGF-β pathway for an additional 15 days, qPCR, immunostaining, and transcriptome data show that a wide array of NP markers are expressed. Transcriptomically, the in vitro-derived cells become more like in vivo adolescent human NP cells, driven by a set of influential genes enriched with motifs bound by BRACHYURY and FOXA2, consistent with an NP cell-like identity. Transplantation of these NP-like cells attenuates fibrotic changes in a rat disc injury model of disc degeneration.
Collapse
Affiliation(s)
- Yuelin Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China
| | - Zhao Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China
| | - Peikai Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Chui Yan Ma
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Cheng Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Tiffany Y K Au
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Vivian Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Yan Peng
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Ron Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Pak C Sham
- Centre for PanorOmic Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Victor Y Leung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong
| | - Kathryn S E Cheah
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong.
| | - Qizhou Lian
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong; Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong 510080, China; The State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong.
| |
Collapse
|
29
|
Wang J, Huang Y, Huang L, Shi K, Wang J, Zhu C, Li L, Zhang L, Feng G, Liu L, Song Y. Novel biomarkers of intervertebral disc cells and evidence of stem cells in the intervertebral disc. Osteoarthritis Cartilage 2021; 29:389-401. [PMID: 33338640 DOI: 10.1016/j.joca.2020.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/23/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Rat intervertebral disc (IVD) is one of the most commonly used and cost-effective alternative models for human IVD. Many IVD related clinical studies need to be pre-tested on rat IVDs. However, studies on the heterogeneous cell clusters of the rat IVD are inadequate, and a further understanding of the marker genes and cell phenotypes of healthy mature IVD cells is essential. METHODS In this study, we used the 10X Genomics technology to analyze the single-cell transcriptome of purified wild-type rat IVDs. RESULTS We identified potentially new gene markers of IVDs via single-cell sequencing. Based on the unsupervised cluster analysis of 13,578 single-cell transcripts, 3 known IVD cell types were identified. We provided a complete single-cell gene expression map of the IVD. Immunohistochemical and immunofluorescence images of rat disc sections confirmed the new marker genes of all cell types. One group of heterologous cell groups expressed multi-functional stem cell (MSC)-specific genes, indicating the stem cell potential of IVD cells. CONCLUSION We provided the phenotype and marker genes of IVD cells at the single-cell level, reconfirmed existing data, and proposed new marker genes, including MSC marker genes. By identifying more accurate target cells and genes, our results pave the way for further study of the response of individual disc cells to disease states and provide the basis for future disc regeneration therapies.
Collapse
Affiliation(s)
- J Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Y Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - L Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - K Shi
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - J Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - C Zhu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - L Li
- Department of Science and Technology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - L Zhang
- Analytical and Testing Center, State Key Laboratory of Oral Diseases, School of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - G Feng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - L Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Y Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
30
|
Xu C, Luo S, Wei L, Wu H, Gu W, Zhou W, Sun B, Hu B, Zhou H, Liu Y, Chen H, Ye X, Yuan W. Integrated transcriptome and proteome analyses identify novel regulatory network of nucleus pulposus cells in intervertebral disc degeneration. BMC Med Genomics 2021; 14:40. [PMID: 33536009 PMCID: PMC7860219 DOI: 10.1186/s12920-021-00889-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Degeneration of intervertebral disc is a major cause of lower back pain and neck pain. Studies have tried to unveil the regulatory network using either transcriptomic or proteomic analysis. However, neither have fully elucidated the exact mechanism of degeneration process. Since post-transcriptional regulation may affect gene expression by modulating the translational process of mRNA to protein product, a combined transcriptomic and proteomic study may provide more insight into the key regulatory network of Intervertebral disc degeneration. METHODS In order to obtain the proteomic and transcriptomic data, we performed label-free proteome analysis on freshly isolated nucleus pulposus cells and obtained transcriptome profiling data from the Gene Expression Omnibus repository. To identify the key regulatory network of intervertebral disc degeneration in nucleus pulposus cells, we performed bioinformatic analyses and established a protein-RNA interacting network. To validate the candidate genes, we performed in vitro experimentation and immunochemistry labeling to identify their potential function during nucleus pulposus degeneration. RESULTS The label-free proteome analysis identified altogether 656 proteins, and 503 of which were differentially expressed between nucleus pulposus cells from degenerated or normal disc cells. Using the existing nucleus pulposus transcriptomic profiling data, we integrated the proteomic and transcriptomic data of nucleus pulposus cells, and established a protein-RNA interacting network to show the combined regulatory network of intervertebral disc degeneration. In the network, we found 9 genes showed significant changes, and 6 of which (CHI3L1, KRT19, COL6A2, DPT, TNFAIP6 and COL11A2) showed concordant changes in both protein and mRNA level. Further functional analysis showed these candidates can significantly affect the degeneration of the nucleus pulposus cell when altering their expression. CONCLUSIONS This study is the first to use combined analysis of proteomic and transcriptomic profiling data to identify novel regulatory network of nucleus pulposus cells in intervertebral disc degeneration. Our established protein-RNA interacting network demonstrated novel regulatory mechanisms and key genes that may play vital roles in the pathogenesis of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Chen Xu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Shengchang Luo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
- Microsurgery Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
- Department of Orthopaedics, The First People's Hospital of Huzhou, Huzhou, 200003, China
| | - Leixin Wei
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Huiqiao Wu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wei Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Wenchao Zhou
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Baifeng Sun
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Bo Hu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Hongyu Zhou
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yang Liu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Huajiang Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Xiaojian Ye
- Microsurgery Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200050, China.
| | - Wen Yuan
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
31
|
Tam V, Chen P, Yee A, Solis N, Klein T, Kudelko M, Sharma R, Chan WC, Overall CM, Haglund L, Sham PC, Cheah KSE, Chan D. DIPPER, a spatiotemporal proteomics atlas of human intervertebral discs for exploring ageing and degeneration dynamics. eLife 2020; 9:64940. [PMID: 33382035 PMCID: PMC7857729 DOI: 10.7554/elife.64940] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
The spatiotemporal proteome of the intervertebral disc (IVD) underpins its integrity and function. We present DIPPER, a deep and comprehensive IVD proteomic resource comprising 94 genome-wide profiles from 17 individuals. To begin with, protein modules defining key directional trends spanning the lateral and anteroposterior axes were derived from high-resolution spatial proteomes of intact young cadaveric lumbar IVDs. They revealed novel region-specific profiles of regulatory activities and displayed potential paths of deconstruction in the level- and location-matched aged cadaveric discs. Machine learning methods predicted a ‘hydration matrisome’ that connects extracellular matrix with MRI intensity. Importantly, the static proteome used as point-references can be integrated with dynamic proteome (SILAC/degradome) and transcriptome data from multiple clinical samples, enhancing robustness and clinical relevance. The data, findings, and methodology, available on a web interface (http://www.sbms.hku.hk/dclab/DIPPER/), will be valuable references in the field of IVD biology and proteomic analytics. The backbone of vertebrate animals consists of a series of bones called vertebrae that are joined together by disc-like structures that allow the back to move and distribute forces to protect it during daily activities. It is common for these intervertebral discs to degenerate with age, resulting in back pain and severely reducing quality of life. The mechanical features of intervertebral discs are the result of their proteins. These include extracellular matrix proteins, which form the external scaffolding that binds cells together in a tissue, and signaling proteins, which allow cells to communicate. However, how the levels of different proteins in each region of the disc vary with time has not been fully examined. To establish how protein composition changes with age, Tam, Chen et al. quantified the protein levels and gene activity (which leads to protein production) of intervertebral discs from young and old deceased individuals. They found that the position of different mixtures of proteins in the intervertebral disc changes with age, and that young people have high levels of extracellular matrix proteins and signaling proteins. Levels of these proteins decreased as people got older, as did the amount of proteins produced. To determine which region of the intervertebral disc different proteins were in, Tam, Chen et al. also performed magnetic resonance imaging (MRI) of the samples to correlate image intensity (which represents water content) with the corresponding protein signature. The data obtained provides a high-quality map of how the location of different proteins changes with age, and is available online under the name DIPPER. This database is an informative resource for research into skeletal biology, and it will likely advance the understanding of intervertebral disc degeneration in humans and animals, potentially leading to the development of new treatment strategies for this condition.
Collapse
Affiliation(s)
- Vivian Tam
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China
| | - Peikai Chen
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Anita Yee
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Nestor Solis
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Theo Klein
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Mateusz Kudelko
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong
| | - Rakesh Sharma
- Proteomics and Metabolomics Core Facility, The University of Hong Kong, Hong Kong
| | - Wilson Cw Chan
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China.,Department of Orthopaedics Surgery and Traumatology, HKU-Shenzhen Hospital, Shenzhen, China
| | - Christopher M Overall
- Centre for Blood Research, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, Montreal, Canada
| | - Pak C Sham
- Centre for PanorOmic Sciences (CPOS), The University of Hong Kong, Hong Kong
| | | | - Danny Chan
- School of Biomedical Sciences,, The University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen of Research Institute and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
32
|
Nucleus Pulposus Cell Conditioned Medium Promotes Mesenchymal Stem Cell Differentiation into Nucleus Pulposus-Like Cells under Hypoxic Conditions. Stem Cells Int 2020; 2020:8882549. [PMID: 33424982 PMCID: PMC7773475 DOI: 10.1155/2020/8882549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Low back pain (LBP) is a major physical and socioeconomic challenge worldwide. Nucleus pulposus (NP) is directly associated with LBP due to intervertebral disc (IVD) degeneration. IVD degeneration is mainly caused by structural and matrix-related changes within the IVD occurring during aging and degeneration. Mesenchymal stem cells (MSCs) can differentiate into multiple mesenchymal lineages under specific stimulatory conditions. This study is aimed at evaluating the effectiveness of the nucleus pulposus cell (NPC) conditioned medium for promoting the expression of MSCs and at confirming the expression of healthy NP phenotypic markers recently recommended by the Spine Research Interest Group. Expression was investigated using quantitative polymerase chain reaction (qPCR) and western blotting under normoxic and hypoxic conditions. qPCR and western blotting demonstrated significant upregulation of NP marker expression in MSCs cultured under hypoxic conditions and treated with the 50% or 100% NPC conditioned medium, compared with those cultured under normoxic conditions. Upregulation was highest in the presence of the 100% NPC conditioned medium compared with the control group (aggrecan, p < 0.01; brachyury, p < 0.05; collagen II, p < 0.001; KRT8, p < 0.01; KRT19, p < 0.001; and Shh, p < 0.01). The expression levels of genes in MSCs treated with the 50% NPC conditioned medium also showed upregulation compared with the control group (collagen II, p < 0.05; KRT8, p < 0.05; and KRT19, p < 0.01). These findings suggested that the NPC conditioned medium stimulated MSC differentiation into an NP-like phenotype with distinct characteristics. The results could inform strategies for IVD regeneration.
Collapse
|
33
|
Tsingas M, Ottone OK, Haseeb A, Barve RA, Shapiro IM, Lefebvre V, Risbud MV. Sox9 deletion causes severe intervertebral disc degeneration characterized by apoptosis, matrix remodeling, and compartment-specific transcriptomic changes. Matrix Biol 2020; 94:110-133. [PMID: 33027692 DOI: 10.1016/j.matbio.2020.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
SOX9 plays an important role in chondrocyte differentiation and, in the developing axial skeleton, maintains the notochord and the demarcation of intervertebral disc compartments. Diminished expression is linked to campomelic dysplasia, resulting in severe scoliosis and progressive disc degeneration. However, the specific functions of SOX9 in the adult spinal column and disc are largely unknown. Accordingly, employing a strategy to conditionally delete Sox9 in Acan-expressing cells (AcanCreERT2Sox9fl/fl), we delineated these functions in the adult intervertebral disc. AcanCreERT2Sox9fl/fl mice (Sox9cKO) showed extensive and progressive remodeling of the extracellular matrix in nucleus pulposus (NP) and annulus fibrosus (AF), consistent with human disc degeneration. Progressive degeneration of the cartilaginous endplates (EP) was also evident in Sox9cKO mice, and it preceded morphological changes seen in the NP and AF compartments. Fate mapping using tdTomato reporter, EdU chase, and quantitative immunohistological studies demonstrated that SOX9 is crucial for disc cell survival and phenotype maintenance. Microarray analysis showed that Sox9 regulated distinct compartment-specific transcriptomic landscapes, with prominent contributions to the ECM, cytoskeleton-related, and metabolic pathways in the NP and ion transport, the cell cycle, and signaling pathways in the AF. In summary, our work provides new insights into disc degeneration in Sox9cKO mice at the cellular, molecular, and transcriptional levels, underscoring tissue-specific roles of this transcription factor. Our findings may direct future cell therapies targeting SOX9 to mitigate disc degeneration.
Collapse
Affiliation(s)
- Maria Tsingas
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Olivia K Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Abdul Haseeb
- Department of Surgery/Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO 63110, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
34
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
35
|
NOTO Transcription Factor Directs Human Induced Pluripotent Stem Cell-Derived Mesendoderm Progenitors to a Notochordal Fate. Cells 2020; 9:cells9020509. [PMID: 32102328 PMCID: PMC7072849 DOI: 10.3390/cells9020509] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The founder cells of the Nucleus pulposus, the centre of the intervertebral disc, originate in the embryonic notochord. After birth, mature notochordal cells (NC) are identified as key regulators of disc homeostasis. Better understanding of their biology has great potential in delaying the onset of disc degeneration or as a regenerative-cell source for disc repair. Using human pluripotent stem cells, we developed a two-step method to generate a stable NC-like population with a distinct molecular signature. Time-course analysis of lineage-specific markers shows that WNT pathway activation and transfection of the notochord-related transcription factor NOTO are sufficient to induce high levels of mesendoderm progenitors and favour their commitment toward the notochordal lineage instead of paraxial and lateral mesodermal or endodermal lineages. This study results in the identification of NOTO-regulated genes including some that are found expressed in human healthy disc tissue and highlights NOTO function in coordinating the gene network to human notochord differentiation.
Collapse
|
36
|
Yang S, Zhang F, Ma J, Ding W. Intervertebral disc ageing and degeneration: The antiapoptotic effect of oestrogen. Ageing Res Rev 2020; 57:100978. [PMID: 31669486 DOI: 10.1016/j.arr.2019.100978] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
As an important part of the spinal column, the intervertebral disc (IVD) plays an important role in the intervertebral juncture and spinal movement in general. IVD degeneration (IVDD), which mimics disc ageing but at an accelerated rate, is a common and chronic process that results in severe spinal symptoms, such as lower back pain. It is generally assumed that lower back pain caused by IVDD can also develop secondary conditions, including spinal canal stenosis, spinal segmental instability, osteophyte formation, disc herniation and spinal cord and nerve root compression. Over the past few years, many researchers around the world have widely studied the relevance between oestrogen and IVDD, indicating that oestrogen can effectively alleviate IVDD development by inhibiting the apoptosis of IVD cells. Oestrogen can decrease IVD cell apoptosis in multiple ways, including the inhibition of the inflammatory cytokines IL-1β and TNF-α, reducing catabolism because of inhibition of matrix metalloproteinases, upregulating integrin α2β1 and IVD anabolism, activating the PI3K/Akt pathway, decreasing oxidative damage and promoting autophagy. In this article, we perform an overview of the literature regarding the antiapoptotic effect of oestrogen in IVDD.
Collapse
Affiliation(s)
- Sidong Yang
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139Ziqiang Rd, Shijiazhuang 050051, PR China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, 139Ziqiang Rd, Shijiazhuang 050051, PR China.
| | - Jiangtao Ma
- Laboratory of Immunology, Hebei Provincial Institute of Orthopaedic Research, 139Ziqiang Rd, Shijiazhuang 050051, PR China.
| | - Wenyuan Ding
- Department of Spine Surgery, The Third Hospital of Hebei Medical University, 139Ziqiang Rd, Shijiazhuang 050051, PR China.
| |
Collapse
|
37
|
Yang SH, Hu MH, Wu CC, Chen CW, Sun YH, Yang KC. CD24 expression indicates healthier phenotype and less tendency of cellular senescence in human nucleus pulposus cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3021-3028. [PMID: 31334674 DOI: 10.1080/21691401.2019.1642205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Identification of specific cell markers is crucial for recognizing functionally healthy nucleus pulposus (NP) cells. The objective of this study was to investigate the role of CD24 expression in adult human NP cells. Cells were retrieved from NP tissues of 20 patients (aged 17-44) operated on for lumbar disc herniation. Based on CD24 expression, NP cells were separated by sorting and then used to examine phenotypic behavior, the effects of culture conditions and cellular senescence pathway related proteins. CD24 expression was positive in 35.5 ± 3.7% (range 9.1-65.2%) of NP cells. Consistently, normoxic expansion and serial passages in monolayers decreased percentage positivity for CD24 in NP cells. CD24- NP cells showed a markedly decreased GSK-3β activity and increased mitogen-activated protein kinase phosphorylation accompanying by an increased β-catenin expression. Higher levels of matrix metalloproteinases, as well as lower levels of ACAN and COL2 in CD24- cells, indicated the breakdown and reduced the formation of key extracellular matrix components. CD24+ NP cells presented a more favorable phenotype while CD24- cells showed a more prominent cellular senescence fate. CD24 in NP cells may be a surrogate marker of healthy cells, in the cell-based therapeutic treatment of degenerative disc disorders.
Collapse
Affiliation(s)
- Shu-Hua Yang
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Ming-Hsiao Hu
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Chang-Chin Wu
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Chih-Wei Chen
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Yuan-Hui Sun
- a Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital , Taipei , Taiwan
| | - Kai-Chiang Yang
- b Department of Dental Technology, College of Oral Medicine, Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
38
|
Sheyn D, Ben-David S, Tawackoli W, Zhou Z, Salehi K, Bez M, De Mel S, Chan V, Roth J, Avalos P, Giaconi JC, Yameen H, Hazanov L, Seliktar D, Li D, Gazit D, Gazit Z. Human iPSCs can be differentiated into notochordal cells that reduce intervertebral disc degeneration in a porcine model. Theranostics 2019; 9:7506-7524. [PMID: 31695783 PMCID: PMC6831475 DOI: 10.7150/thno.34898] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: As many as 80% of the adult population experience back pain at some point in their lifetimes. Previous studies have indicated a link between back pain and intervertebral disc (IVD) degeneration. Despite decades of research, there is an urgent need for robust stem cell therapy targeting underlying causes rather than symptoms. It has been proposed that notochordal cells (NCs) appear to be the ideal cell type to regenerate the IVD: these cells disappear in humans as they mature, are replaced by nucleus pulposus (NP) cells, and their disappearance correlates with the initiation of degeneration of the disc. Human NCs are in short supply, thus here aimed for generation of notochordal-like cells from induced pluripotent cells (iPSCs). Methods: Human iPSCs were generated from normal dermal fibroblasts by transfecting plasmids encoding for six factors: OCT4, SOX2, KLF4, L-MYC, LIN28, and p53 shRNA. Then the iPSCs were treated with GSK3i to induce differentiation towards Primitive Streak Mesoderm (PSM). The differentiation was confirmed by qRT-PCR and immunofluorescence. PSM cells were transfected with Brachyury (Br)-encoding plasmid and the cells were encapsulated in Tetronic-tetraacrylate-fibrinogen (TF) hydrogel that mimics the NP environment (G'=1kPa), cultured in hypoxic conditions (2% O2) and with specifically defined growth media. The cells were also tested in vivo in a large animal model. IVD degeneration was induced after an annular puncture in pigs, 4 weeks later the cells were injected and IVDs were analyzed at 12 weeks after the injury using MRI, gene expression analysis and histology. Results: After short-term exposure of iPSCs to GSK3i there was a significant change in cell morphology, Primitive Streak Mesoderm (PSM) markers (Brachyury, MIXL1, FOXF1) were upregulated and markers of pluripotency (Nanog, Oct4, Sox2) were downregulated, both compared to the control group. PSM cells nucleofected with Br (PSM-Br) cultured in TF hydrogels retained the NC phenotype consistently for up to 8 weeks, as seen in the gene expression analysis. PSM-Br cells were co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSCs) which, with time, expressed the NC markers in higher levels, however the levels of expression in BM-MSCs alone did not change. Higher expression of NC and NP marker genes in human BM-MSCs was found to be induced by iNC-condition media (iNC-CM) than porcine NC-CM. The annular puncture induced IVD degeneration as early as 2 weeks after the procedure. The injected iNCs were detected in the degenerated discs after 8 weeks in vivo. The iNC-treated discs were found protected from degeneration. This was evident in histological analysis and changes in the pH levels, indicative of degeneration state of the discs, observed using qCEST MRI. Immunofluorescence stains show that their phenotype was consistent with the in vitro study, namely they still expressed the notochordal markers Keratin 18, Keratin 19, Noto and Brachyury. Conclusion: In the present study, we report a stepwise differentiation method to generate notochordal cells from human iPSCs. These cells not only demonstrate a sustainable notochordal cell phenotype in vitro and in vivo, but also show the functionality of notochordal cells and have protective effect in case of induced disc degeneration and prevent the change in the pH level of the injected IVDs. The mechanism of this effect could be suggested via the paracrine effect on resident cells, as it was shown in the in vitro studies with MSCs.
Collapse
Affiliation(s)
- Dmitriy Sheyn
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Shiran Ben-David
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Wafa Tawackoli
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Zhengwei Zhou
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Khosrawdad Salehi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Maxim Bez
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| | - Sandra De Mel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Virginia Chan
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Joseph Roth
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Pablo Avalos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Joseph C Giaconi
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Haneen Yameen
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Lena Hazanov
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Dror Seliktar
- Faculty of Biomedical Engineering, Technion, Haifa, 32003, Israel
| | - Debiao Li
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
| | - Dan Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, 90048, CA
- Skeletal Biotech Laboratory, Hebrew University of Jerusalem, 91120, Israel
| |
Collapse
|
39
|
Hodgkinson T, Stening JZ, White LJ, Shakesheff KM, Hoyland JA, Richardson SM. Microparticles for controlled growth differentiation factor 6 delivery to direct adipose stem cell-based nucleus pulposus regeneration. J Tissue Eng Regen Med 2019; 13:1406-1417. [PMID: 31066515 PMCID: PMC6771973 DOI: 10.1002/term.2882] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Currently, there is no effective long‐term treatment for intervertebral disc (IVD) degeneration, making it an attractive candidate for regenerative therapies. Hydrogel delivery of adipose stem cells (ASCs) in combination with controlled release of bioactive molecules is a promising approach to halt IVD degeneration and promote regeneration. Growth differentiation factor 6 (GDF6) can induce ASC differentiation into anabolic nucleus pulposus (NP) cells and hence holds promise for IVD regeneration. Here, we optimised design of novel poly(DL‐lactic acid‐co‐glycolic acid) (PLGA)–polyethylene glycol–PLGA microparticles to control GDF6 delivery and investigated effect of released GDF6 on human ASCs differentiation to NP cells. Recombinant human (rh)GDF6 was loaded into microparticles and total protein and rhGDF6 release assessed. The effect of microparticle loading density on distribution and gel formation was investigated through scanning electron microscopy. ASC differentiation to NP cells was examined after 14 days in hydrogel culture by quantitative polymerase chain reaction, histological, and immunohistochemical staining in normoxic and IVD‐like hypoxic conditions. RhGDF6 microparticles were distributed throughout gels without disrupting gelation and controlled rhGDF6 release over 14 days. Released GDF6 significantly induced NP differentiation of ASCs, with expression comparable with or exceeding media supplemented rhGDF6. Microparticle‐delivered rhGDF6 also up‐regulated sulphated glycosaminoglycan and aggrecan secretion in comparison with controls. In hypoxia, microparticle‐delivered rhGDF6 continued to effectively induce NP gene expression and aggrecan production. This study demonstrates the effective encapsulation and controlled delivery of rhGDF6, which maintained its activity and induced ASC differentiation to NP cells and synthesis of an NP‐like matrix suggesting suitability of microparticles for controlled growth factor release in regenerative strategies for treatment of IVD degeneration.
Collapse
Affiliation(s)
- Tom Hodgkinson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jasmine Z Stening
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham, UK
| | - Lisa J White
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham, UK
| | - Kevin M Shakesheff
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Faculty of Science, University of Nottingham, Nottingham, UK
| | - Judith A Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Central Manchester Foundation Trust, Manchester Academic Health Science Centre, NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - Stephen M Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
40
|
Quantitative Single-Cell Transcript Assessment of Biomarkers Supports Cellular Heterogeneity in the Bovine IVD. Vet Sci 2019; 6:vetsci6020042. [PMID: 31083612 PMCID: PMC6631975 DOI: 10.3390/vetsci6020042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Severe and chronic low back pain is often associated with intervertebral disc (IVD) degeneration. While imposing a considerable socio-economic burden worldwide, IVD degeneration is also severely impacting on the quality of life of affected individuals. Cell-based regenerative medicine approaches have moved into clinical trials, yet IVD cell identities in the mature disc remain to be fully elucidated and tissue heterogeneity exists, requiring a better characterization of IVD cells. The bovine coccygeal IVD is an accepted research model to study IVD mechano-biology and disc homeostasis. Recently, we identified novel IVD biomarkers in the outer annulus fibrosus (AF) and nucleus pulposus (NP) of the mature bovine coccygeal IVD through RNA in situ hybridization (AP-RISH) and z-proportion test. Here we follow up on Lam1, Thy1, Gli1, Gli3, Noto, Ptprc, Scx, Sox2 and Zscan10 with fluorescent RNA in situ hybridization (FL-RISH) and confocal microscopy. This permits sub-cellular transcript localization and the addition of quantitative single-cell derived values of mRNA expression levels to our previous analysis. Lastly, we used a Gaussian mixture modeling approach for the exploratory analysis of IVD cells. This work complements our earlier cell population proportion-based study, confirms the previously proposed biomarkers and indicates even further heterogeneity of cells in the outer AF and NP of a mature IVD.
Collapse
|
41
|
Liu Z, Zheng Z, Qi J, Wang J, Zhou Q, Hu F, Liang J, Li C, Zhang W, Zhang X. CD24 identifies nucleus pulposus progenitors/notochordal cells for disc regeneration. J Biol Eng 2018; 12:35. [PMID: 30598696 PMCID: PMC6303933 DOI: 10.1186/s13036-018-0129-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/09/2018] [Indexed: 12/19/2022] Open
Abstract
Background Cell-based therapy by transplantation of nucleus pulposus (NP) progenitor/notochordal cells has been proposed as a promising way to halt and reverse the progression of disc degeneration. Although some studies have provided a broad panel of potential markers associated with the phenotype of notochordal cells, suitability of these markers for isolation of notochordal cells for the treatment of disc degeneration is unclear. Results Here, we found that the number of CD24-positive NP cells significantly decreased with increasing severity of disc degeneration. In addition, CD24-positive NP cells were shown to maintain their multipotent differentiation and self-renewal potential in vitro and to abundantly express brachyury, SHH, and GLUT-1, suggesting that CD24-positive NP cells are the progenitor/notochordal cells in the NP. Moreover, our in vivo experiments revealed that transplantation of CD24-positive NP cells enables the recovery of degenerate discs, as evidenced by increased disc height, restored magnetic resonance imaging T2-weighted signal intensity, and NP structure. In terms of the mechanism, HIF-1α-Notch1 pathway activation was essential for the maintenance of CD24-positive NP cells. Conclusion Our studies identify that CD24-positive NP cells are the resident progenitor/notochordal cells in disc regeneration and elucidate a crucial role of HIF-1α-Notch1 pathway in the phenotypic maintenance of CD24-positive NP cells.
Collapse
Affiliation(s)
- Zhuochao Liu
- 1Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China.,2Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyong Zheng
- 3Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Medicine, Jinan, China
| | - Jin Qi
- 1Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China.,2Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Wang
- 1Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China.,2Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Zhou
- 1Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China.,2Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangqiong Hu
- 1Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China.,2Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Liang
- 1Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China.,2Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changwei Li
- 1Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China.,2Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weibin Zhang
- 1Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China.,2Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingkai Zhang
- 1Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China.,2Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Li K, Kapper D, Youngs B, Kocsis V, Mondal S, Kraus P, Lufkin T. Potential biomarkers of the mature intervertebral disc identified at the single cell level. J Anat 2018; 234:16-32. [PMID: 30450595 PMCID: PMC6284444 DOI: 10.1111/joa.12904] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration and trauma is a major socio-economic burden and the focus of cell-based regenerative medicine approaches. Despite numerous ongoing clinical trials attempting to replace ailing IVD cells with mesenchymal stem cells, a solid understanding of the identity and nature of cells in a healthy mature IVD is still in need of refinement. Although anatomically simple, the IVD is comprised of heterogeneous cell populations. Therefore, methods involving cell pooling for RNA profiling could be misleading. Here, by using RNA in situ hybridization and z proportion test, we have identified potential novel biomarkers through single cell assessment. We quantified the proportion of RNA transcribing cells for 50 genetic loci in the outer annulus fibrosus (AF) and nucleus pulposus (NP) in coccygeal bovine discs isolated from tails of four skeletally mature animals. Our data reconfirm existing data and suggest 10 novel markers such as Lam1 and Thy1 in the outer AF and Gli1, Gli3, Noto, Scx, Ptprc, Sox2, Zscan10 and LOC101904175 in the NP, including pluripotency markers, that indicate stemness potential of IVD cells. These markers could be added to existing biomarker panels for cell type characterization. Furthermore, our data once more demonstrate heterogeneity in cells of the AF and NP, indicating the need for single cell assessment by methods such as RNA in situ hybridization. Our work refines the molecular identity of outer AF and NP cells, which can benefit future regenerative medicine and tissue engineering strategies in humans.
Collapse
Affiliation(s)
- Kangning Li
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Devin Kapper
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | - Brittany Youngs
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Victoria Kocsis
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Sumona Mondal
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, USA
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
43
|
Humphreys MD, Ward L, Richardson SM, Hoyland JA. An optimized culture system for notochordal cell expansion with retention of phenotype. JOR Spine 2018; 1:e1028. [PMID: 31463448 PMCID: PMC6686815 DOI: 10.1002/jsp2.1028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Notochordal (NC) cells display therapeutic potential in treating degeneration of the intervertebral disc. However, research on their phenotype and function is limited by low-cell yields and a lack of appropriate methodology for cell expansion. Utilizing porcine cells, this study aimed to develop an optimized culture system which allows expansion of NC cell populations with retention of phenotype. METHODS Post-natal porcine and foetal human nucleus pulposus tissue was compared histologically and expression of known NC cell marker genes by porcine NC cells was analyzed. Porcine NC cells were isolated from six-week post-natal discs and cultured in vitro under varied conditions: (1) DMEM vs αMEM; (2) laminin-521, fibronectin, gelatin and uncoated tissue culture-treated polystyrene (TCP); (3) 2% O2 vs normoxia; (4) αMEM (300 mOsm/L) vs αMEM (400 mOsm/L); (5) surface stiffness of 0.5 and 4 kPa and standard TCP. Adherence, proliferation, morphology and expression of NC cell markers were assessed over a 14-day culture period. RESULTS Native porcine nucleus pulposus tissue demonstrated similar morphology to human foetal tissue and porcine NC cells expressed known notochordal markers (CD24, KRT8, KRT18, KRT19, and T). Use of αMEM media and laminin-521-coated surfaces showed the greatest cell adherence, proliferation and retention of NC cell morphology and phenotype. Proliferation of NC cell populations was further enhanced in hypoxia (2%) and phenotypic retention was improved on 0.5 kPa culture surfaces. DISCUSSION Our model has demonstrated an optimized system in which NC cell populations may be expanded while retaining a notochordal phenotype. Application of this optimized culture system will enable NC cell expansion for detailed phenotypic and functional study, a major advantage over current culture methods described in the literature. Furthermore, the similarities identified between porcine and human NC cells suggest this system will be applicable in human NC cell culture for investigation of their therapeutic potential.
Collapse
Affiliation(s)
- Matthew D. Humphreys
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Lizzy Ward
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
44
|
Séguin CA, Chan D, Dahia CL, Gazit Z. Latest advances in intervertebral disc development and progenitor cells. JOR Spine 2018; 1:e1030. [PMID: 30687811 PMCID: PMC6338208 DOI: 10.1002/jsp2.1030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
This paper is a concise review aiming to assemble the most relevant topics presented by the authors at ORS-Philadelphia Spine Research Society Fourth International Spine Research Symposium. It centers on the latest advances in disc development, its main structural entities, and the populating cells, with emphasis on the advances in pivotal molecular pathways responsible for forming the intervertebral discs (IVD). The objective of finding and emphasizing pathways and mechanisms that function to control tissue formation is to identify and to explore modifications occurring during normal aging, disease, and tissue repair. Thus, to comprehend that the cellular and molecular basis of tissue degeneration are crucial in the study of the dynamic interplay that includes cell-cell communication, gene regulation, and growth factors required to form a healthy and functional tissue during normal development.
Collapse
Affiliation(s)
- Cheryle A Séguin
- Schulich School of Medicine and Dentistry Bone and Joint Institute, The University of Western Ontario London ON Canada
| | - Danny Chan
- School of Biomedical Sciences LKS Faculty of Medicine, The University of Hong Kong Hong Kong China
| | - Chitra L Dahia
- Hospital for Special Surgery Weill Cornell Medical College New York New York
| | - Zulma Gazit
- Department of Surgery Regenerative Medicine Institute, Cedars-Sinai Medical Center Los Angeles California
| |
Collapse
|
45
|
Human notochordal cell transcriptome unveils potential regulators of cell function in the developing intervertebral disc. Sci Rep 2018; 8:12866. [PMID: 30150762 PMCID: PMC6110784 DOI: 10.1038/s41598-018-31172-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/01/2018] [Indexed: 11/08/2022] Open
Abstract
The adult nucleus pulposus originates from the embryonic notochord, but loss of notochordal cells with skeletal maturity in humans is thought to contribute to the onset of intervertebral disc degeneration. Thus, defining the phenotype of human embryonic/fetal notochordal cells is essential for understanding their roles and for development of novel therapies. However, a detailed transcriptomic profiling of human notochordal cells has never been achieved. In this study, the notochord-specific marker CD24 was used to specifically label and isolate (using FACS) notochordal cells from human embryonic and fetal spines (7.5–14 weeks post-conception). Microarray analysis and qPCR validation identified CD24, STMN2, RTN1, PRPH, CXCL12, IGF1, MAP1B, ISL1, CLDN1 and THBS2 as notochord-specific markers. Expression of these markers was confirmed in nucleus pulposus cells from aged and degenerate discs. Ingenuity pathway analysis revealed molecules involved in inhibition of vascularisation (WISP2, Noggin and EDN2) and inflammation (IL1-RN) to be master regulators of notochordal genes. Importantly, this study has, for the first time, defined the human notochordal cell transcriptome and suggests inhibition of inflammation and vascularisation may be key roles for notochordal cells during intervertebral disc development. The molecules and pathways identified in this study have potential for use in developing strategies to retard/prevent disc degeneration, or regenerate tissue.
Collapse
|
46
|
Aberrantly expressed messenger RNAs and long noncoding RNAs in degenerative nucleus pulposus cells co-cultured with adipose-derived mesenchymal stem cells. Arthritis Res Ther 2018; 20:182. [PMID: 30115120 PMCID: PMC6097446 DOI: 10.1186/s13075-018-1677-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/17/2018] [Indexed: 02/07/2023] Open
Abstract
Background Stem cell therapy is considered as a promising alternative to treat intervertebral disc degeneration (IDD). Extensive work had been done on identifying and comparing different types of candidate stem cells, both in vivo and in vitro. However, few studies have shed light on degenerative nucleus pulposus cells (NPCs), especially their biological behavior under the influence of exogenous stem cells, specifically the gene expression and regulation pattern. In the present study, we aimed to determine messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs), which are differentially expressed during the co-culturing process with adipose-derived mesenchymal stem cells (ASCs) and to explore the involved signaling pathways and the regulatory networks. Methods We compared degenerative NPCs co-cultured with ASCs with those cultured solely using lncRNA-mRNA microarray analysis. Based on these data, we investigated the significantly regulated signaling pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Moreover, 23 micro RNAs (miRNAs), which were demonstrated to be involved in IDD were chosen; we investigated their theoretic regulatory importance associated with our microarray data. Results We found 632 lncRNAs and 1682 mRNAs were differentially expressed out of a total of 40,716 probes. We then confirmed the microarray data by real-time PCR. Furthermore, we demonstrated 197 upregulated, and 373 downregulated Gene Ontology terms and 176 significantly enriched pathways, such as the mitogen-activated protein kinase (MAPK) pathway. Also, a signal-net was constructed to reveal the interplay among differentially expressed genes. Meanwhile, a mRNA-lncRNA co-expression network was constructed for the significantly changed mRNAs and lncRNAs. Also, the competing endogenous RNA (ceRNA) network was built. Conclusion Our results present the first comprehensive identification of differentially expressed lncRNAs and mRNAs of degenerative NPCs, altered by co-culturing with ASCs, and outline the gene expression regulation pattern. These may provide valuable information for better understanding of stem cell therapy and potential candidate biomarkers for IDD treatment. Electronic supplementary material The online version of this article (10.1186/s13075-018-1677-x) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Sakai D, Schol J, Bach FC, Tekari A, Sagawa N, Nakamura Y, Chan SC, Nakai T, Creemers LB, Frauchiger DA, May RD, Grad S, Watanabe M, Tryfonidou MA, Gantenbein B. Successful fishing for nucleus pulposus progenitor cells of the intervertebral disc across species. JOR Spine 2018; 1:e1018. [PMID: 31463445 PMCID: PMC6686801 DOI: 10.1002/jsp2.1018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Recently, Tie2/TEK receptor tyrosine kinase (Tie2 or syn. angiopoietin-1 receptor) positive nucleus pulposus progenitor cells were detected in human, cattle, and mouse. These cells show remarkable multilineage differentiation capacity and direct correlation with intervertebral disc (IVD) degeneration and are therefore an interesting target for regenerative strategies. Nevertheless, there remains controversy over the presence and function of these Tie2+ nucleus pulposus cells (NPCs), in part due to the difficulty of identification and isolation. PURPOSE Here, we present a comprehensive protocol for sorting of Tie2+ NPCs from human, canine, bovine, and murine IVD tissue. We describe enhanced conditions for expansion and an optimized fluorescence-activated cell sorting-based methodology to sort and analyze Tie2+ NPCs. METHODS We present flow cytometry protocols to isolate the Tie2+ cell population for the aforementioned species. Moreover, we describe crucial pitfalls to prevent loss of Tie2+ NPCs from the IVD cell population during the isolation process. A cross-species phylogenetic analysis of Tie2 across species is presented. RESULTS Our protocols are efficient towards labeling and isolation of Tie2+ NPCs. The total flow cytometry procedure requires approximately 9 hours, cell isolation 4 to 16 hours, cell expansion can take up to multiple weeks, dependent on the application, age, disease state, and species. Phylogenetic analysis of the TEK gene revealed a strong homology among species. CONCLUSIONS Current identification of Tie2+ cells could be confirmed in bovine, canine, mouse, and human specimens. The presented flow cytometry protocol can successfully sort these multipotent cells. The biological function of isolated cells based on Tie2+ expression needs to be confirmed by functional assays such as in vitro differentiation. in vitro culture conditions to maintain and their possible proliferation of the Tie2+ fraction is the subject of future research.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Jordy Schol
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Adel Tekari
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
- Laboratory of Molecular and Cellular Screening ProcessesCentre of Biotechnology of Sfax, University of SfaxSfaxTunisia
| | - Nobuho Sagawa
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Yoshihiko Nakamura
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Samantha C.W. Chan
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
| | - Tomoko Nakai
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Laura B. Creemers
- Department of Orthopaedic SurgeryUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Daniela A. Frauchiger
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
| | - Rahel D. May
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
| | - Sibylle Grad
- AO Spine Research Network, AO Spine InternationalDavosSwitzerland
- Department of Musculoskeletal Regeneration, AO Research InstituteDavosSwitzerland
| | - Masahiko Watanabe
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Benjamin Gantenbein
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
- AO Spine Research Network, AO Spine InternationalDavosSwitzerland
| |
Collapse
|
48
|
Melrose J. Strategies in regenerative medicine for intervertebral disc repair using mesenchymal stem cells and bioscaffolds. Regen Med 2016; 11:705-24. [DOI: 10.2217/rme-2016-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intervertebral disc (IVD) is a major weight bearing structure that undergoes degenerative changes with aging limiting its ability to dissipate axial spinal loading in an efficient manner resulting in the generation of low back pain. Low back pain is a number one global musculoskeletal disorder with massive socioeconomic impact. The WHO has nominated development of mesenchymal stem cells and bioscaffolds to promote IVD repair as primary research objectives. There is a clear imperative for the development of strategies to effectively treat IVD defects. Early preclinical studies with mesenchymal stem cells in canine and ovine models have yielded impressive results in IVD repair. Combinatorial therapeutic approaches encompassing biomaterial and cell-based therapies promise significant breakthroughs in IVD repair in the near future.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone & Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
49
|
Iatridis JC, Kang J, Kandel R, Risbud MV. New Horizons in Spine Research: Disc biology, spine biomechanics and pathomechanisms of back pain. J Orthop Res 2016; 34:1287-8. [PMID: 27571441 PMCID: PMC5072778 DOI: 10.1002/jor.23375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- James C. Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - James Kang
- Department of Orthopedic
Surgery, Brigham and Women’s Hospital, Boston, MA 02115
| | - Rita Kandel
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, Ontario, Canada M5G1X5
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
50
|
Fujita N, Suzuki S, Watanabe K, Ishii K, Watanabe R, Shimoda M, Takubo K, Tsuji T, Toyama Y, Miyamoto T, Horiuchi K, Nakamura M, Matsumoto M. Chordoma-derived cell line U-CH1-N recapitulates the biological properties of notochordal nucleus pulposus cells. J Orthop Res 2016; 34:1341-50. [PMID: 27248133 PMCID: PMC5108487 DOI: 10.1002/jor.23320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/25/2016] [Indexed: 02/04/2023]
Abstract
Intervertebral disc degeneration proceeds with age and is one of the major causes of lumbar pain and degenerative lumbar spine diseases. However, studies in the field of intervertebral disc biology have been hampered by the lack of reliable cell lines that can be used for in vitro assays. In this study, we show that a chordoma-derived cell line U-CH1-N cells highly express the nucleus pulposus (NP) marker genes, including T (encodes T brachyury transcription factor), KRT19, and CD24. These observations were further confirmed by immunocytochemistry and flow cytometry. Reporter analyses showed that transcriptional activity of T was enhanced in U-CH1-N cells. Chondrogenic capacity of U-CH1-N cells was verified by evaluating the expression of extracellular matrix (ECM) genes and Alcian blue staining. Of note, we found that proliferation and synthesis of chondrogenic ECM proteins were largely dependent on T in U-CH1-N cells. In accordance, knockdown of the T transcripts suppressed the expression of PCNA, a gene essential for DNA replication, and SOX5 and SOX6, the master regulators of chondrogenesis. On the other hand, the CD24-silenced cells showed no reduction in the mRNA expression level of the chondrogenic ECM genes. These results suggest that U-CH1-N shares important biological properties with notochordal NP cells and that T plays crucial roles in maintaining the notochordal NP cell-like phenotype in this cell line. Taken together, our data indicate that U-CH1-N may serve as a useful tool in studying the biology of intervertebral disc. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:1341-1350, 2016.
Collapse
Affiliation(s)
- Nobuyuki Fujita
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Satoshi Suzuki
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Kota Watanabe
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Ken Ishii
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Ryuichi Watanabe
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Masayuki Shimoda
- Departments of PathologyKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Keiyo Takubo
- Department of Stem Cell BiologyResearch Institute, National Center for Global Health and Medicine1‐21‐1 ToyamaShinjuku‐kuTokyo160‐8582Japan
| | - Takashi Tsuji
- Kitasato Institute Hospital5‐9‐1 ShiroganeMinato‐kuTokyo108‐8642Japan
| | - Yoshiaki Toyama
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Takeshi Miyamoto
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Keisuke Horiuchi
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Masaya Nakamura
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| | - Morio Matsumoto
- Departments of Orthopaedic SurgeryKeio University School of Medicine35 ShinanomachiShinjuku‐kuTokyo160‐8582Japan
| |
Collapse
|