1
|
Henriksen NL, Serrano-Chávez E, Fuglsang-Madsen A, Jensen LK, Gottlieb H, Bue M, Andresen TL, Henriksen JR, Hansen AE. Gentamicin and clindamycin antibiotic-eluting depot technology eradicates S. aureus in an implant-associated osteomyelitis pig model without systemic antibiotics. Antimicrob Agents Chemother 2024; 68:e0069124. [PMID: 39287404 PMCID: PMC11459913 DOI: 10.1128/aac.00691-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
The therapeutic challenges of orthopedic device-related infections and emerging antimicrobial resistance have attracted attention to drug delivery technologies. This study evaluates the preclinical efficacy of local single- and dual-antibiotic therapy against implant-associated osteomyelitis (IAO) using a drug-eluting depot technology, CarboCell, that provides sustained release of high-dose antibiotics and allows for strategic in situ placement in relation to infectious lesions. Clindamycin and gentamicin were formulated in CarboCell compositions. One-stage-revision of tibial Staphylococcus aureus IAO was conducted in 19 pigs. Pigs were treated locally with CarboCell containing either gentamicin alone for 1 week or a co-formulation of gentamicin and clindamycin for 1 or 3 weeks. Bone, soft tissue, and antibiotic depots were collected for microbiology, histology, and HPLC analyses. Supporting in vivo release studies of CarboCell formulations were performed on mice. Both single- and dual-antibiotic CarboCell formulations were developed and capable of eradicating the infectious bacteria in bone and preventing colonization of implants inserted at revision. Eradication in soft tissue was observed in all pigs after 3 weeks and in 6/9 pigs after 1 week of treatment. Neutrophil counts in bone tissue were below the infection cut-off in all pigs receiving the dual-antibiotic therapies, but above in all pigs receiving the single-antibiotic therapy. Histological signs of active bone reorganization and healing were observed at 3 weeks. In conclusion, all CarboCell formulations demonstrated strong therapeutic activity against IAO, eradicating S. aureus in bone tissue and preventing colonization of implants even without the addition of systemic antibiotic therapy.
Collapse
Affiliation(s)
- Nicole L. Henriksen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | - Louise K. Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hans Gottlieb
- Department of Orthopedic Surgery, Herlev Hospital, Herlev, Denmark
| | - Mats Bue
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas L. Andresen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jonas R. Henriksen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders E. Hansen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Fuglsang-Madsen AJ, Henriksen NL, Chávez ES, Kvich LA, Birch JKM, Hartmann KT, Eriksen T, Bjarnsholt T, Gottlieb H, Andresen TL, Jensen LK, Henriksen JR, Hansen AE. Eradication of Staphylococcus aureus in Implant-Associated Osteomyelitis by an Injectable In Situ-Forming Depot Antibiotics Delivery System. J Infect Dis 2024; 230:614-623. [PMID: 38537273 DOI: 10.1093/infdis/jiae139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Bone infections with Staphylococcus aureus are notoriously difficult to treat and have high recurrence rates. Local antibiotic delivery systems hold the potential to achieve high in situ antibiotic concentrations, which are otherwise challenging to achieve via systemic administration. Existing solutions have been shown to confer suboptimal drug release and distribution. Here we present and evaluate an injectable in situ-forming depot system termed CarboCell. The CarboCell technology provides sustained and tuneable release of local high-dose antibiotics. METHODS CarboCell formulations of levofloxacin or clindamycin with or without antimicrobial adjuvants cis-2-decenoic acid or cis-11-methyl-2-dodecenoic acid were tested in experimental rodent and porcine implant-associated osteomyelitis models. In the porcine models, debridement and treatment with CarboCell-formulated antibiotics was carried out without systemic antibiotic administration. The bacterial burden was determined by quantitative bacteriology. RESULTS CarboCell formulations eliminated S. aureus in infected implant rat models. In the translational implant-associated pig model, surgical debridement and injection of clindamycin-releasing CarboCell formulations resulted in pathogen-free bone tissues and implants in 9 of 12 and full eradication in 5 of 12 pigs. CONCLUSIONS Sustained release of antimicrobial agents mediated by the CarboCell technology demonstrated promising therapeutic efficacy in challenging translational models and may be beneficial in combination with the current standard of care.
Collapse
Affiliation(s)
| | - Nicole Lind Henriksen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Lasse Andersson Kvich
- Costerton Biofilm Centre, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Katrine Top Hartmann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Eriksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Centre, Institute of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Gottlieb
- Department of Orthopedic Surgery, Herlev Hospital, Herlev, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Louise Kruse Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Anders Elias Hansen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Top Hartmann K, Lund Nielsen R, Mikkelsen FC, Aalbæk B, Lichtenberg M, Holm Jakobsen T, Bjarnsholt T, Kvich L, Ingmer H, Odgaard A, Elvang Jensen H, Kruse Jensen L. Bacterial micro-aggregates as inoculum in animal models of implant-associated infections. Biofilm 2024; 7:100200. [PMID: 38803605 PMCID: PMC11128829 DOI: 10.1016/j.bioflm.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Is it time to rethink the inoculum of animal models of implant-associated infections (IAI)? Traditionally, animal models of IAI are based on inoculation with metabolically active overnight cultures of planktonic bacteria or pre-grown surface-attached biofilms. However, such inoculums do not mimic the clinical initiation of IAI. Therefore, the present study aimed to develop a clinically relevant inoculum of low metabolic micro-aggregated bacteria. The porcine Staphylococcus aureus strain S54F9 was cultured in Tryptone Soya Broth (TSB) for seven days to facilitate the formation of low metabolic micro-aggregates. Subsequently, the aggregated culture underwent filtration using cell strainers of different pore sizes to separate micro-aggregates. Light microscopy was used to evaluate the aggregate formation and size in the different fractions, while isothermal microcalorimetry was used to disclose a low metabolic activity. The micro-aggregate fraction obtained with filter size 5-15 μm (actual measured mean size 32 μm) was used as inoculum in a porcine implant-associated osteomyelitis (IAO) model and compared to a standard overnight planktonic inoculum and a sham inoculum of 0.9 % saline. The micro-aggregate and planktonic inoculums caused IAO with the re-isolation of S. aureus from soft tissues, bones, and implants. However, compared to their planktonic counterpart, neither of the micro-aggregate inoculated animals showed signs of osteomyelitis, i.e., sequester, osteolysis, and pus at gross inspection. Furthermore, inoculation with low metabolic micro-aggregates resulted in a strong healing response with pronounced osteoid formation, comparable to sham animals. In conclusion, the formation and separation of low metabolic bacterial micro-aggregates into various size fractions is possible, however, planktonic bacteria were still seen in all size fractions. Inoculation with micro-aggregates caused a less-aggressive osteomyelitis i.e. combination of infected tissue and strong healing response. Therefore, the use of low metabolic micro-aggregates could be a relevant inoculum for animal models of less-aggressive and thereby slower developing IAI and add in to our understanding of the host-implant-bacteria interactions in slow-onset low-grade infections.
Collapse
Affiliation(s)
- Katrine Top Hartmann
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| | - Regitze Lund Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Freja Cecilie Mikkelsen
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| | - Bent Aalbæk
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| | - Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Lasse Kvich
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| | - Anders Odgaard
- Department of Orthopedic Surgery, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns vej 6, 2100, Copenhagen, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| | - Louise Kruse Jensen
- Department of Veterinary- and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870, Frederiksberg C, Denmark
| |
Collapse
|
4
|
Vittrup S, Jensen LK, Hartmann KT, Aalbaek B, Hanberg P, Slater J, Hvistendahl MA, Stilling M, Jørgensen NP, Bue M. Rifampicin does not reduce moxifloxacin concentrations at the site of infection and may not improve treatment outcome of a one-stage exchange surgery protocol of implant-associated osteomyelitis lesions in a porcine model. APMIS 2024; 132:198-209. [PMID: 38153297 DOI: 10.1111/apm.13371] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/23/2023] [Indexed: 12/29/2023]
Abstract
We aimed to evaluate moxifloxacin steady-state concentrations in infected bone and soft tissue and to explore the additive microbiological and pathological treatment effect of rifampicin to standard moxifloxacin treatment of implant-associated osteomyelitis (IAO). 16 pigs were included. On Day 0, IAO was induced in the proximal tibia using a susceptible Staphylococcus aureus strain. On Day 7, the pigs underwent one-stage exchange surgery of the IAO lesions and were randomized to receive seven days of intravenous antibiotic treatment of either rifampicin combined with moxifloxacin or moxifloxacin monotherapy. On Day 14, microdialysis was applied for continuous sampling (8 h) of moxifloxacin concentrations. Microbiological, macroscopical pathology, and histopathological analyses were performed postmortem. Steady-state moxifloxacin area under the concentration-time curve was lower in the combination therapy group in plasma (total) and subcutaneous tissue compartments (infected and noninfected) (p < 0.04), while no differences were found in bone compartments. No additional treatment effect of rifampicin to moxifloxacin treatment was found (p = 0.57). Conclusive, additive rifampicin treatment does not reduce moxifloxacin concentrations at the infection site. Rifampicin treatment may not be necessary in a one-stage exchange treatment of IAO. However, our sample size and treatment period may have been too small and short to reveal true clinical differences.
Collapse
Affiliation(s)
- Sofus Vittrup
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Louise Kruse Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Katrine Top Hartmann
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bent Aalbaek
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pelle Hanberg
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Josefine Slater
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Magnus Andreas Hvistendahl
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Maiken Stilling
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | | | - Mats Bue
- Aarhus Denmark Microdialysis Research (ADMIRE), Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Huang S, Wen J, Zhang Y, Bai X, Cui ZK. Choosing the right animal model for osteomyelitis research: Considerations and challenges. J Orthop Translat 2023; 43:47-65. [PMID: 38094261 PMCID: PMC10716383 DOI: 10.1016/j.jot.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 03/22/2024] Open
Abstract
Osteomyelitis is a debilitating bone disorder characterized by an inflammatory process involving the bone marrow, bone cortex, periosteum, and surrounding soft tissue, which can ultimately result in bone destruction. The etiology of osteomyelitis can be infectious, caused by various microorganisms, or noninfectious, such as chronic nonbacterial osteomyelitis (CNO) and chronic recurrent multifocal osteomyelitis (CRMO). Researchers have turned to animal models to study the pathophysiology of osteomyelitis. However, selecting an appropriate animal model that accurately recapitulates the human pathology of osteomyelitis while controlling for multiple variables that influence different clinical presentations remains a significant challenge. In this review, we present an overview of various animal models used in osteomyelitis research, including rodent, rabbit, avian/chicken, porcine, minipig, canine, sheep, and goat models. We discuss the characteristics of each animal model and the corresponding clinical scenarios that can provide a basic rationale for experimental selection. This review highlights the importance of selecting an appropriate animal model for osteomyelitis research to improve the accuracy of the results and facilitate the development of novel treatment and management strategies.
Collapse
Affiliation(s)
| | | | - Yiqing Zhang
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Kai Cui
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
6
|
Sabater-Martos M, Verdejo MA, Morata L, Muñoz-Mahamud E, Guerra-Farfan E, Martinez-Pastor JC, Soriano A. Antimicrobials in polymethylmethacrylate: from prevention to prosthetic joint infection treatment: basic principles and risk of resistance. ARTHROPLASTY 2023; 5:12. [PMID: 36864538 PMCID: PMC9983184 DOI: 10.1186/s42836-023-00166-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/16/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Excellent revisions about antibiotic-loaded bone cement (ALBC) have been recently published. In the present article, we review the principles and limitations of local antibiotic delivery in the context of recent advances in the pathogenesis of prosthetic joint infections (PJI), with particular attention paid to the potential association between ALBC and antimicrobial resistance. MAIN BODY Recalcitrance of PJI is related to the ability of pathogens to adapt to particular environments present in bone tissue and protect themselves from host immunity in different ways. Accordingly, delivery of high local antimicrobial concentrations using ALBC is needed. Most relevant clinical data showing the efficacy of ALBC for PJI prophylaxis and treatment are reviewed, and we dissected the limitations on the basis of the recent findings from animal models and suggested that aminoglycosides, in particular, could not be the best option. One of the major concerns associated with ALBC is the emergence of resistance because of theoretical prolonged exposure to low antibiotic concentrations. We summarize the mechanisms for the selection of resistant microorganisms, and we critically reviewed the evidence from animal models and clinical data from observational and registry studies and concluded that there is no evidence to support this association. CONCLUSION While waiting for better evidence from well-designed clinical trials, ALBC shows a beneficial effect as a prophylaxis in arthroplasty, and to avoid the colonization of spacers used for two-stage revision in patients with PJI. Experimental models and clinical evidence suggest the need to achieve high local antimicrobial concentrations to obtain the highest prophylactic and therapeutic effect. The current evidence does not support the risk of increasing resistance with use of ALBC. In the future, it is necessary to evaluate new carriers and different antimicrobials to improve clinical outcomes.
Collapse
Affiliation(s)
- Marta Sabater-Martos
- Department of Orthopedics and Traumatology, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036, Barcelona, Spain.
| | - Miguel A. Verdejo
- grid.410458.c0000 0000 9635 9413Department of Infectious Diseases, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036 Barcelona, Spain
| | - Laura Morata
- grid.410458.c0000 0000 9635 9413Department of Infectious Diseases, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036 Barcelona, Spain
| | - Ernesto Muñoz-Mahamud
- grid.410458.c0000 0000 9635 9413Department of Orthopedics and Traumatology, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036 Barcelona, Spain
| | - Ernesto Guerra-Farfan
- grid.411083.f0000 0001 0675 8654Department of Orthopedics and Traumatology, Hospital Vall d’Hebron of Barcelona, Passeig de la Vall d’Hebron 119, 08035 Barcelona, Spain
| | - Juan C. Martinez-Pastor
- grid.410458.c0000 0000 9635 9413Department of Orthopedics and Traumatology, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036 Barcelona, Spain
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clínic of Barcelona, Carrer Villarroel 170, 08036, Barcelona, Spain. .,University of Barcelona, CIBERINF, Carrer Casanova 143, 08036, Barcelona, Spain.
| |
Collapse
|
7
|
Shi X, Wu Y, Ni H, Chen X, Xu Y. Comparing the efficacy of different antibiotic regimens on osteomyelitis: A network meta-analysis of animal studies. Front Med (Lausanne) 2022; 9:975666. [PMID: 36275796 PMCID: PMC9582527 DOI: 10.3389/fmed.2022.975666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 12/09/2022] Open
Abstract
Background Despite the surge in the number of antibiotics used to treat preclinical osteomyelitis (OM), their efficacy remains inadequately assessed. Objective To establish network comparisons on the efficacy of antibiotic regimens on OM in animal studies. Methods PubMed, Embase, Web of Science, and The Cochrane Library were searched from inception to March 2022 for relevant articles. Odds ratios (ORs) were generated for dichotomous variants, and the standard mean difference (SMD) was calculated for constant variables. The predominant outcomes were the effective rate of sterility, also known as sterility rates, as well as the bacterial counts at the end of the experiments and antibiotic concentrations in serum or bone. All the network meta-analyses were performed using STATA MP 16.0. This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO; no. CRD42022316544). Results A total of 28 eligible studies with 1,488 animals were included for data analysis, including 13 antibiotic regimens. Regarding the effective rate of sterility, glycopeptides (GLY), linezolid (LIN), rifampicin (RIF)+β-Lactam, and β-Lactam showed significant efficacy compared with placebo (OR ranging from 0.01 to 0.08). For radiological grade, only RIF+GLY (SMD: −5.92, 95%CI: −11.65 to −0.19) showed significant efficacy compared with placebo. As for reducing bacteria count, fosfomycin (FOS), tigecycline (TIG), GLY, LIN, RIF, RIF+β-Lactam, RIF+GLY, aminoglycosides (AMI), and clindamycin (CLI) showed significant efficacy compared with placebo (SMD ranging from −6.32 to −2.62). Moreover, the bone concentrations of GLY were higher 1 h after administration and the higher blood concentrations were higher after 1 h and 4 h compared with the other antibiotics. Conclusion Multiple antibiotic regimens showed significant efficacy in animals with OM, including increasing effective rates of sterility, reducing bacterial counts, and lowering radiological scores. Among them, RIF+GLY was the most promising treatment regimen owing to its optimal efficacy. Based on the preclinical studies included in our meta-analysis, head-to-head clinical randomized controlled trials are required to confirm these findings in humans.
Collapse
Affiliation(s)
- Xiangwen Shi
- Graduate School, Kunming Medical University, Kunming, China
| | - Yipeng Wu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Haonan Ni
- Graduate School, Kunming Medical University, Kunming, China
| | - Xi Chen
- School of Health, Brooks College, Sunnyvale, CA, United States,Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University, Hangzhou, China
| | - Yongqing Xu
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China,*Correspondence: Yongqing Xu
| |
Collapse
|
8
|
The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 2022; 20:608-620. [PMID: 35922483 PMCID: PMC9841534 DOI: 10.1038/s41579-022-00767-0] [Citation(s) in RCA: 512] [Impact Index Per Article: 170.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
Abstract
Bacterial biofilms are often defined as communities of surface-attached bacteria and are typically depicted with a classic mushroom-shaped structure characteristic of Pseudomonas aeruginosa. However, it has become evident that this is not how all biofilms develop, especially in vivo, in clinical and industrial settings, and in the environment, where biofilms often are observed as non-surface-attached aggregates. In this Review, we describe the origin of the current five-step biofilm development model and why it fails to capture many aspects of bacterial biofilm physiology. We aim to present a simplistic developmental model for biofilm formation that is flexible enough to include all the diverse scenarios and microenvironments where biofilms are formed. With this new expanded, inclusive model, we hereby introduce a common platform for developing an understanding of biofilms and anti-biofilm strategies that can be tailored to the microenvironment under investigation.
Collapse
|
9
|
Jensen N, Jensen HE, Aalbaek B, Blirup-Plum SA, Soto SM, Cepas V, López Y, Gabasa Y, Gutiérrez-del-Río I, Villar CJ, Lombó F, Iglesias MJ, Soengas R, López Ortiz F, Jensen LK. Synthesis of the cyanobacterial halometabolite Chlorosphaerolactylate B and demonstration of its antimicrobial effect in vitro and in vivo. Front Microbiol 2022; 13:950855. [PMID: 36246241 PMCID: PMC9557163 DOI: 10.3389/fmicb.2022.950855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Chlorosphaerolactylate B, a newly discovered antimicrobial halometabolite from the cyanobacterium Sphaerospermopsis sp. LEGE 00249 has been synthesized in three steps by using 12-bromododecanoic acid as starting material. A total of 0.5 g was produced for in vitro and in vivo antimicrobial efficacy testing. In vitro, the minimal inhibitory concentration (MIC) was estimated to be 256 mg/L for Staphylococcus aureus, while the minimal biofilm inhibitory concentration (MBIC) was estimated to be 74 mg/L. The in vivo study utilized a porcine model of implant-associated osteomyelitis. In total, 12 female pigs were allocated into 3 groups based on inoculum (n = 4 in each group). An implant cavity (IC) was drilled in the right tibia and followed by inoculation and insertion of a steel implant. All pigs were inoculated with 10 μL containing either: 11.79 mg synthetic Chlorosphaerolactylate B + 104 CFU of S. aureus (Group A), 104 CFU of S. aureus (Group B), or pure saline (Group C), respectively. Pigs were euthanized five days after inoculation. All Group B animals showed macroscopic and microscopic signs of bone infection and both tissue and implant harbored S. aureus bacteria (mean CFU on implants = 1.9 × 105). In contrast, S. aureus could not be isolated from animals inoculated with saline. In Group A, two animals had a low number of S. aureus (CFU = 6.7 × 101 and 3.8 × 101, respectively) on the implants, otherwise all Group A animals were similar to Group C animals. In conclusion, synthetic Chlorosphaerolactylate B holds potential to be a novel antimicrobial and antibiofilm compound.
Collapse
Affiliation(s)
- Nikoline Jensen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Elvang Jensen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Bent Aalbaek
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Amalie Blirup-Plum
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Sara M. Soto
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Virginio Cepas
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yuly López
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Ignacio Gutiérrez-del-Río
- Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC, Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Claudio J. Villar
- Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC, Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Felipe Lombó
- Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC, Department of Functional Biology, University of Oviedo, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María José Iglesias
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Raquel Soengas
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Almería, Spain
| | - Fernando López Ortiz
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Almería, Spain
- *Correspondence: Fernando López Ortiz,
| | - Louise Kruse Jensen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
- Louise Kruse Jensen,
| |
Collapse
|
10
|
Meroni G, Tsikopoulos A, Tsikopoulos K, Allemanno F, Martino PA, Soares Filipe JF. A Journey into Animal Models of Human Osteomyelitis: A Review. Microorganisms 2022; 10:1135. [PMID: 35744653 PMCID: PMC9228829 DOI: 10.3390/microorganisms10061135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Osteomyelitis is an infection of the bone characterized by progressive inflammatory destruction and apposition of new bone that can spread via the hematogenous route (hematogenous osteomyelitis (HO)), contiguous spread (contiguous osteomyelitis (CO)), and direct inoculation (osteomyelitis associated with peripheral vascular insufficiency (PVI)). Given the significant financial burden posed by osteomyelitis patient management, the development of new preventive and treatment methods is warranted. To achieve this objective, implementing animal models (AMs) of infection such as rats, mice, rabbits, avians, dogs, sheep, goats, and pigs might be of the essence. This review provides a literature analysis of the AMs developed and used to study osteomyelitis. Historical relevance and clinical applicability were taken into account to choose the best AMs, and some study methods are briefly described. Furthermore, the most significant strengths and limitations of each species as AM are discussed, as no single model incorporates all features of osteomyelitis. HO's clinical manifestation results in extreme variability between patients due to multiple variables (e.g., age, sex, route of infection, anatomical location, and concomitant diseases) that could alter clinical studies. However, these variables can be controlled and tested through different animal models.
Collapse
Affiliation(s)
- Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Alexios Tsikopoulos
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Francesca Allemanno
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Piera Anna Martino
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Joel Fernando Soares Filipe
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy;
| |
Collapse
|
11
|
Billings C, Anderson DE. Role of Animal Models to Advance Research of Bacterial Osteomyelitis. Front Vet Sci 2022; 9:879630. [PMID: 35558882 PMCID: PMC9087578 DOI: 10.3389/fvets.2022.879630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Osteomyelitis is an inflammatory bone disease typically caused by infectious microorganisms, often bacteria, which causes progressive bone destruction and loss. The most common bacteria associated with chronic osteomyelitis is Staphylococcus aureus. The incidence of osteomyelitis in the United States is estimated to be upwards of 50,000 cases annually and places a significant burden upon the healthcare system. There are three general categories of osteomyelitis: hematogenous; secondary to spread from a contiguous focus of infection, often from trauma or implanted medical devices and materials; and secondary to vascular disease, often a result of diabetic foot ulcers. Independent of the route of infection, osteomyelitis is often challenging to diagnose and treat, and the effect on the patient's quality of life is significant. Therapy for osteomyelitis varies based on category and clinical variables in each case. Therapeutic strategies are typically reliant upon protracted antimicrobial therapy and surgical interventions. Therapy is most successful when intensive and initiated early, although infection may recur months to years later. Also, treatment is accompanied by risks such as systemic toxicity, selection for antimicrobial drug resistance from prolonged antimicrobial use, and loss of form or function of the affected area due to radical surgical debridement or implant removal. The challenges of diagnosis and successful treatment, as well as the negative impacts on patient's quality of life, exemplify the need for improved strategies to combat bacterial osteomyelitis. There are many in vitro and in vivo investigations aimed toward better understanding of the pathophysiology of bacterial osteomyelitis, as well as improved diagnostic and therapeutic strategies. Here, we review the role of animal models utilized for the study of bacterial osteomyelitis and their critically important role in understanding and improving the management of bacterial osteomyelitis.
Collapse
|
12
|
Marston S, Mirick Mueller G, Sabin A, Hansen GT, Lindgren B, Aparicio C, Armstrong AR, Larsen OH, Schmidt A, Kyle R, Gustilo R, Tsukayama D, Bechtold J, Bue M. Systemic versus free antibiotic delivery in preventing acute exogenous implant related infection in a rat model. J Orthop Res 2022; 40:429-438. [PMID: 33913540 DOI: 10.1002/jor.25052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
We studied systemic ceftriaxone, and free/local tobramycin and doxycycline in a controlled rat model representing a generic acute exogenous joint infection. We hypothesized that evidence of infection (quantitative colony forming units [CFU], qualitative scanning electron microscopy [SEM], histopathology) (1a) would be reduced with local versus systemic antibiotic, (1b) any antibiotic would be superior to control, (2) there would be a difference among antibiotics, and (3) antibiotic would not be detectable in serum at 4-week euthanasia. Study groups included infected and noninfected (1) control (no treatment), (2) systemic ceftriaxone (daily), (3) local tobramycin, and (4) local doxycycline (10 rats/group; power = 0.8). With IACUC approval, a reliable acute exogenous joint infection was created by slowly injecting 50-μl, 104 CFU Staphylococcus aureus, into the distal femoral medullary canal. The antibiotic formulation was introduced locally to the femoral canal and joint space. After 4 weeks, serum, pin, bone, and synovium were obtained. CFU/ml of bone and synovium were quantified using macrotiter method. SEM imaged biofilm on the surface of the pin, histopathology identified tissue response, liquid chromatography/mass spectrometry quantified plasma antibiotic. (1) Groups receiving any antibiotic reported lower CFU/ml in synovium compared with no treatment. (2) In the synovium, free/local tobramycin reduced CFU/ml to a greater extent than free/local doxycycline (p < 0.05). (3) Antibiotic in plasma after the local application was nondetectable in all groups after 4 weeks. SEM revealed no difference in biofilm on pin among all groups.
Collapse
Affiliation(s)
- Scott Marston
- University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Arick Sabin
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Glen T Hansen
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | | | | | | | - Ole H Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Andrew Schmidt
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Richard Kyle
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Ramon Gustilo
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Dean Tsukayama
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Joan Bechtold
- University of Minnesota, Minneapolis, Minnesota, USA.,Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Mats Bue
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Cyphert EL, Zhang N, Learn GD, Hernandez CJ, von Recum HA. Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections In Vivo. ACS Infect Dis 2021; 7:3125-3160. [PMID: 34761915 DOI: 10.1021/acsinfecdis.1c00465] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
While orthopedic implant-associated infections are rare, revision surgeries resulting from infections incur considerable healthcare costs and represent a substantial research area clinically, in academia, and in industry. In recent years, there have been numerous advances in the development of antimicrobial strategies for the prevention and treatment of orthopedic implant-associated infections which offer promise to improve the limitations of existing delivery systems through local and controlled release of antimicrobial agents. Prior to translation to in vivo orthopedic implant-associated infection models, the properties (e.g., degradation, antimicrobial activity, biocompatibility) of the antimicrobial materials can be evaluated in subcutaneous implant in vivo models. The antimicrobial materials are then incorporated into in vivo implant models to evaluate the efficacy of using the material to prevent or treat implant-associated infections. Recent technological advances such as 3D-printing, bacterial genomic sequencing, and real-time in vivo imaging of infection and inflammation have contributed to the development of preclinical implant-associated infection models that more effectively recapitulate the clinical presentation of infections and improve the evaluation of antimicrobial materials. This Review highlights the advantages and limitations of antimicrobial materials used in conjunction with orthopedic implants for the prevention and treatment of orthopedic implant-associated infections and discusses how these materials are evaluated in preclinical in vivo models. This analysis serves as a resource for biomaterial researchers in the selection of an appropriate orthopedic implant-associated infection preclinical model to evaluate novel antimicrobial materials.
Collapse
Affiliation(s)
- Erika L. Cyphert
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ningjing Zhang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Greg D. Learn
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Christopher J. Hernandez
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
14
|
Yagi H, Kihara S, Mittwede PN, Maher PL, Rothenberg AC, Falcione ADCM, Chen A, Urish KL, Tuan RS, Alexander PG. Development of a large animal rabbit model for chronic periprosthetic joint infection. Bone Joint Res 2021; 10:156-165. [PMID: 33641351 PMCID: PMC8005337 DOI: 10.1302/2046-3758.103.bjr-2019-0193.r3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aims Periprosthetic joint infections (PJIs) and osteomyelitis are clinical challenges that are difficult to eradicate. Well-characterized large animal models necessary for testing and validating new treatment strategies for these conditions are lacking. The purpose of this study was to develop a rabbit model of chronic PJI in the distal femur. Methods Fresh suspensions of Staphylococcus aureus (ATCC 25923) were prepared in phosphate-buffered saline (PBS) (1 × 109 colony-forming units (CFUs)/ml). Periprosthetic osteomyelitis in female New Zealand white rabbits was induced by intraosseous injection of planktonic bacterial suspension into a predrilled bone tunnel prior to implant screw placement, examined at five and 28 days (n = 5/group) after surgery, and compared to a control aseptic screw group. Radiographs were obtained weekly, and blood was collected to measure ESR, CRP, and white blood cell (WBC) counts. Bone samples and implanted screws were harvested on day 28, and processed for histological analysis and viability assay of bacteria, respectively. Results Intraosseous periprosthetic introduction of planktonic bacteria induced an acute rise in ESR and CRP that subsided by day 14, and resulted in radiologically evident periprosthetic osteolysis by day 28 accompanied by elevated WBC counts and histological evidence of bacteria in the bone tunnels after screw removal. The aseptic screw group induced no increase in ESR, and no lysis developed around the implants. Bacterial viability was confirmed by implant sonication fluid culture. Conclusion Intraosseous periprosthetic introduction of planktonic bacteria reliably induces survivable chronic PJI in rabbits. Cite this article: Bone Joint Res 2021;10(3):156–165.
Collapse
Affiliation(s)
- Haruyo Yagi
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shinsuke Kihara
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Peter N Mittwede
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Patrick L Maher
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Adam C Rothenberg
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Alyssa D C M Falcione
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Antonia Chen
- Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth L Urish
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Arthritis and Arthroplasty Design Group, Magee Womens Hospital of UPMC, Pittsburgh, Pennsylvania, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
15
|
Roux KM, Cobb LH, Seitz MA, Priddy LB. Innovations in osteomyelitis research: A review of animal models. Animal Model Exp Med 2021; 4:59-70. [PMID: 33738438 PMCID: PMC7954837 DOI: 10.1002/ame2.12149] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Infection of bone tissue, or osteomyelitis, has become a growing concern in modern healthcare due in no small part to a rise in antibiotic resistance among bacteria, notably Staphylococcus aureus. The current standard of care involves aggressive, prolonged antibiotic therapy combined with surgical debridement of infected tissues. While this treatment may be sufficient for resolving a portion of cases, recurrences of the infection and associated risks including toxicity with long-term antibiotic usage have been reported. Therefore, there exists a need to produce safer, more efficacious options of treatment for osteomyelitis. In order to test treatment regimens, animal models that closely mimic the clinical condition and allow for accurate evaluation of therapeutics are necessary. Establishing a model that replicates features of osteomyelitis in humans continues to be a challenge to scientists, as there are many variables involved, including choosing an appropriate species and method to establish infection. This review addresses the refinement of animal models of osteomyelitis to reflect the clinical disease and test prospective therapeutics. The aim of this review is to explore studies regarding the use of animals for osteomyelitis therapeutics research and encourage further development of such animal models for the translation of results from the animal experiment to human medicine.
Collapse
Affiliation(s)
- Kylie M. Roux
- College of Veterinary MedicineMississippi State UniversityMississippi StateMSUSA
| | - Leah H. Cobb
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
| | - Marc A. Seitz
- College of Veterinary MedicineMississippi State UniversityMississippi StateMSUSA
| | - Lauren B. Priddy
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
| |
Collapse
|
16
|
Jakobsen TH, Xu Y, Bay L, Schønheyder HC, Jakobsen T, Bjarnsholt T, Thomsen TR. Sampling challenges in diagnosis of chronic bacterial infections. J Med Microbiol 2021; 70. [PMID: 33410733 DOI: 10.1099/jmm.0.001302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent decades there has been an increase in knowledge of the distribution, species diversity and growth patterns of bacteria in human chronic infections. This has challenged standard diagnostic methods, which have undergone a development to both increase the accuracy of testing as well as to decrease the occurrence of contamination. In particular, the introduction of new technologies based on molecular techniques into the clinical diagnostic process has increased detection and identification of infectious pathogens. Sampling is the first step in the diagnostic process, making it crucial for obtaining a successful outcome. However, sampling methods have not developed at the same speed as molecular identification. The heterogeneous distribution and potentially small number of pathogenic bacterial cells in chronic infected tissue makes sampling a complicated task, and samples must be collected judiciously and handled with care. Clinical sampling is a step in the diagnostic process that may benefit from innovative methods based on current knowledge of bacteria present in chronic infections. In the present review, we describe and discuss different aspects that complicate sampling of chronic infections. The purpose is to survey representative scientific work investigating the presence and distribution of bacteria in chronic infections in relation to various clinical sampling methods.
Collapse
Affiliation(s)
- Tim Holm Jakobsen
- Costerton Biofilm Center, Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Yijuan Xu
- Bio- and Environmental Technology, Danish Technological Institute, Taastrup, Denmark
- Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, Aalborg, Denmark
| | - Lene Bay
- Costerton Biofilm Center, Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Carl Schønheyder
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Thomas Jakobsen
- Department of Orthopaedics, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Trine Rolighed Thomsen
- Bio- and Environmental Technology, Danish Technological Institute, Taastrup, Denmark
- Center for Microbial Communities, Department of Chemistry and Biosciences, Aalborg University, Aalborg, Denmark
| |
Collapse
|
17
|
Lüthje FL, Skovgaard K, Jensen HE, Blirup-Plum SA, Henriksen NL, Aalbæk B, Jensen LK. Receptor Activator of Nuclear Factor kappa-B Ligand is Not Regulated During Chronic Osteomyelitis in Pigs. J Comp Pathol 2020; 179:7-24. [PMID: 32958151 DOI: 10.1016/j.jcpa.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/30/2020] [Accepted: 06/17/2020] [Indexed: 01/12/2023]
Abstract
Bone loss is a major complication of osteomyelitis and from numerous in-vitro studies, it has been concluded that the bone lysis is caused by elevated expression of the receptor activator of nuclear factor κB ligand (RANKL), leading to increased osteoclast activity. However, we failed to find any relationship between bone loss and osseous RANKL expression in a porcine model of acute and chronic implant-associated osteomyelitis (IAO) due to Staphylococcus aureus or in chronic osteomyelitis lesions in slaughter pigs. Surprisingly, we found that the expression of RANKL was reduced during chronic bone infections. This is in line with the few studies conducted on human samples. A significant bone loss was observed in IAO lesions and in lesions from slaughter pigs, but with no indication of osteoclast involvement using histochemistry, immunohistochemistry for RANKL, receptor activator of nuclear factor kappa-B, osteoprotegerin and cathepsin K, and high-throughput quantitative real-time polymerase chain reaction on bone tissue from osteomyelitic lesions. A strong inflammatory response was seen in the infected animals and, therefore, we propose proteolytic enzymes induced by inflammation to be a major component of the bone loss. Furthermore, we found a significant upregulation of the IL26 gene in infected animals, which can inhibit RANKL-induced osteoclastogenesis, but has no homologue in mice. This finding emphasises that neither murine models nor in-vitro studies can mirror human disease development completely. The present study emphasises that the interactions between microorganisms, the immune system and bone cells in osteomyelitis are too complex to be accurately represented by an in-vitro model.
Collapse
Affiliation(s)
- F L Lüthje
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - K Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - H E Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - S A Blirup-Plum
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - N L Henriksen
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - B Aalbæk
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - L K Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
18
|
Thomassen MB, Hanberg P, Stilling M, Petersen KK, Søballe K, Krag LB, Højskov CS, Bue M. Local concentrations of gentamicin obtained by microdialysis after a controlled application of a GentaColl sponge in a porcine model. J Orthop Res 2020; 38:1793-1799. [PMID: 31943345 DOI: 10.1002/jor.24588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/21/2019] [Indexed: 02/04/2023]
Abstract
Local treatment with gentamicin may be an important tool in the prevention and treatment of surgical site infections in high-risk procedures and patients. The aim of this study was to evaluate the pharmacokinetic profile of gentamicin in bone and surrounding tissue, released from a controlled application of a GentaColl sponge in a porcine model. In eight female pigs, a GentaColl sponge of 10 × 10 cm (1.3 mg gentamicin/cm2 ) was placed in a cancellous bone cavity in the proximal tibia. Microdialysis was used for sampling of gentamicin concentrations over 48 hours from the cavity with the implanted GentaColl sponge, cancellous bone parallel to the cavity over and under the epiphyseal plate, cortical bone, the intramedullary canal, subcutaneous tissue, and the joint cavity of the knee. Venous blood samples were obtained as reference. The main finding was a mean peak drug concentration (95% CI) of gentamicin in the cancellous bone cavity containing the implanted GentaColl sponge of 11 315 (9049-13 581) μg/mL, persisting above 1000 μg/mL until approximately 40 hours after application. Moreover, the concentrations were low (<1 μg/mL) in the surrounding tissues as well as in plasma. The mean peak gentamicin concentration from the cancellous bone cavity after a controlled application of a GentaColl sponge was high and may be adequate for the prevention of biofilm formation. However, high MIC strains and uncontrolled application of the GentaColl sponge may jeopardize this conclusion.
Collapse
Affiliation(s)
- Maja B Thomassen
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Pelle Hanberg
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| | - Maiken Stilling
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Klaus K Petersen
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Kjeld Søballe
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Lasse B Krag
- Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Carsten S Højskov
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Mats Bue
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| |
Collapse
|
19
|
Blirup-Plum SA, Bjarnsholt T, Jensen HE, Kragh KN, Aalbæk B, Gottlieb H, Bue M, Jensen LK. Pathological and microbiological impact of a gentamicin-loaded biocomposite following limited or extensive debridement in a porcine model of osteomyelitis. Bone Joint Res 2020; 9:394-401. [PMID: 32793334 PMCID: PMC7393185 DOI: 10.1302/2046-3758.97.bjr-2020-0007.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aims CERAMENT|G is an absorbable gentamicin-loaded biocomposite used as an on-site vehicle of antimicrobials for the treatment of chronic osteomyelitis. The purpose of the present study was to investigate the sole effect of CERAMENT|G, i.e. without additional systemic antimicrobial therapy, in relation to a limited or extensive debridement of osteomyelitis lesions in a porcine model. Methods Osteomyelitis was induced in nine pigs by inoculation of 104 colony-forming units (CFUs) of Staphylococcus aureus into a drill hole in the right tibia. After one week, the pigs were allocated into three groups. Group A (n = 3) received no treatment during the study period (19 days). Groups B (n = 3) and C (n = 3) received limited or extensive debridement seven days postinoculation, respectively, followed by injection of CERAMENT|G into the bone voids. The pigs were euthanized ten (Group C) and 12 (Group B) days after the intervention. Results All animals presented confirmatory signs of bone infection post-mortem. The estimated amount of inflammation was substantially greater in Groups A and B compared to Group C. In both Groups B and C, peptide nucleic acid fluorescence in situ hybridization (PNA FISH) of CERAMENT|G and surrounding bone tissue revealed bacteria embedded in an opaque matrix, i.e. within biofilm. In addition, in Group C, the maximal measured post-mortem gentamicin concentrations in CERAMENT|G and surrounding bone tissue samples were 16.6 μg/ml and 6.2 μg/ml, respectively. Conclusion The present study demonstrates that CERAMENT|G cannot be used as a standalone alternative to extensive debridement or be used without the addition of systemic antimicrobials. Cite this article: Bone Joint Res 2020;9(7):394–401.
Collapse
Affiliation(s)
- Sophie A Blirup-Plum
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik E Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper N Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, Copenhagen, Copenhagen, Denmark
| | - Bent Aalbæk
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Gottlieb
- Department of Orthopedic Surgery, Herlev Hospital, Herlev, Denmark
| | - Mats Bue
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Louise K Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Leuchsenring AB, Karlsson C, Bundgaard L, Malmström J, Heegaard PMH. Targeted mass spectrometry for Serum Amyloid A (SAA) isoform profiling in sequential blood samples from experimentally Staphylococcus aureus infected pigs. J Proteomics 2020; 227:103904. [PMID: 32702520 DOI: 10.1016/j.jprot.2020.103904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Serum amyloid A (SAA) is a well-described acute phase protein induced during the acute phase response (APR) to infection. Four isoform specific genes are found in most mammals. Depending on species, SAA3 and SAA4 are generally preferentially expressed extrahepatically whereas SAA1 and SAA2 are hepatic isoforms dominating the SAA serum pool. Little is known about how specific infections affect the serum SAA isoform profile, as SAA isoform discriminating antibodies are not generally available. An antibody independent, quantitative targeted MS method (Selected Reaction Monitoring, SRM) based on available information on porcine SAA isoform genes was developed and used to profile SAA in serum samples from pigs experimentally infected with Staphylococcus aureus (Sa). While results suggest SAA2 as the main circulating porcine SAA isoform, induced around 10 times compared to non-infected controls, total SAA serum concentrations reached only around 4 μg/mL, much lower than established previously by immunoassays. This might suggest that SAA isoform variants not detected by the SRM method might be present in porcine serum. The assay allows monitoring host responses to experimental infections, infectious diseases and inflammation states in the pig at an unprecedented level of detail. It can also be used in a non-calibrated (relative quantification) format. SIGNIFICANCE: We developed an SRM MS method which for the first time allowed the specific quantification of each of the circulating porcine SAA isoforms (SAA2, SAA3, SAA4). It was found that SAA2 is the dominating circulating isoform of SAA in the pig and that, during the acute phase response to Sa infection SAA2, SAA3 and SAA4 are induced approx. 10, 15 and 2 times, respectively. Absolute levels of the isoforms as determined by SRM MS were much lower than reported previously for total SAA quantified by immunosassays, suggesting the existence of hitherto non-described SAA variants. SRM MS holds great promise for the study of the basic biology of SAA isoforms with the potential to study an even broader range of SAA variants.
Collapse
Affiliation(s)
- Anna Barslund Leuchsenring
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Christofer Karlsson
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| | - Louise Bundgaard
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Johan Malmström
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, BMC, Lund, Sweden
| | - Peter M H Heegaard
- Department of Biotechnology and Biomedicine, DTU Bioengineering, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
21
|
Bue M, Bergholt NL, Jensen LK, Jensen HE, Søballe K, Stilling M, Hanberg P. Inflammatory proteins in infected bone tissue - An explorative porcine study. Bone Rep 2020; 13:100292. [PMID: 32637468 PMCID: PMC7330156 DOI: 10.1016/j.bonr.2020.100292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 12/01/2022] Open
Abstract
Objective To explore the in situ inflammatory proteins in the local extracellular fluid of infected bone tissue. Material and methods Seven pigs went through a two-step surgery performing a traumatically implant-associated Staphylococcus aureus osteomyelitis in the proximal tibia. Five days later, microdialysis catheters (membrane cut off: 20 kDa) were placed in the implant cavity, infected and healthy cancellous bone, and infected and healthy subcutaneous tissue. Plasma samples were collected simultaneously. We employed an antibody-based proximity extension assay (Olink Inflammatory panel) for the measurement of inflammatory molecules within plasma and extracellular fluid of the investigated tissue compartments. Results A higher normalized protein expression in the infected bone tissue in comparison to healthy bone tissue was identified for proteins associated with angiogenesis and bone remodeling: OPG, TGFα, MCP-1, VEGFA, and uPA. Moreover, a parallel detectability of the systemic range of cytokines and chemokines as from the investigated local tissue compartments was demonstrated, indicating the same occurrence of proteins in the local environment as within plasma. Conclusion An angiogenic and osteogenic inflammatory protein composition within the extracellular fluid of infected bone tissue was described. The findings support the current histopathological knowledge and, therefore, microdialysis may represent a valid method for sampling of material for protein investigation of the in vivo inflammatory composition within the extracellular environment in infected bone tissue.
Collapse
Affiliation(s)
- Mats Bue
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Natasja Leth Bergholt
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Louise Kruse Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Denmark
| | | | - Kjeld Søballe
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Maiken Stilling
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Pelle Hanberg
- Aarhus Microdialysis Research Group, Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| |
Collapse
|
22
|
Hunka J, Riley JT, Debes GF. Approaches to overcome flow cytometry limitations in the analysis of cells from veterinary relevant species. BMC Vet Res 2020; 16:83. [PMID: 32143631 PMCID: PMC7060616 DOI: 10.1186/s12917-020-02299-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/25/2020] [Indexed: 01/04/2023] Open
Abstract
Background Flow cytometry is a powerful tool for the multiparameter analysis of leukocyte subsets on the single cell level. Recent advances have greatly increased the number of fluorochrome-labeled antibodies in flow cytometry. In particular, an increase in available fluorochromes with distinct excitation and emission spectra combined with novel multicolor flow cytometers with several lasers have enhanced the generation of multidimensional expression data for leukocytes and other cell types. However, these advances have mainly benefited the analysis of human or mouse cell samples given the lack of reagents for most animal species. The flow cytometric analysis of important veterinary, agricultural, wildlife, and other animal species is still hampered by several technical limitations, even though animal species other than the mouse can serve as more accurate models of specific human physiology and diseases. Results Here we present time-tested approaches that our laboratory regularly uses in the multiparameter flow cytometric analysis of ovine leukocytes. The discussed approaches will be applicable to the analysis of cells from most animal species and include direct modification of antibodies by covalent conjugation or Fc-directed labeling (Zenon™ technology), labeled secondary antibodies and other second step reagents, labeled receptor ligands, and antibodies with species cross-reactivity. Conclusions Using refined technical approaches, the number of parameters analyzed by flow cytometry per cell sample can be greatly increased, enabling multidimensional analysis of rare samples and giving critical insight into veterinary and other less commonly analyzed species. By maximizing information from each cell sample, multicolor flow cytometry can reduce the required number of animals used in a study.
Collapse
Affiliation(s)
- Julia Hunka
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA, 19107, USA.,Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - John T Riley
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA, 19107, USA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 S 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
23
|
The host response to bacterial bone infection involves a local upregulation of several acute phase proteins. Immunobiology 2020; 225:151914. [PMID: 32098686 DOI: 10.1016/j.imbio.2020.151914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022]
Abstract
Bone infections often become chronic and can be difficult to diagnose. In the present study, the osseous gene expression of several acute phase proteins (APPs) during osteomyelitis was investigated in a porcine model of implant associated osteomyelitis (IAO) (sampled 5, 10 and 15 days after infection) and in slaughter pigs with spontaneous hematogenous osteomyelitis, and compared to gene expression in liver tissue. Furthermore, immunohistochemical (IHC) staining of the APP complement component C3 (C3) was performed on the porcine osteomyelitis lesions together with material from human patients with chronic osteomyelitis. In the porcine bone samples a local upregulation of the expression of several APP genes, including serum amyloid A (SAA) and C3, was observed during infection. In the liver, only C-reactive protein (CRP) and Inter-Alpha-Trypsin Inhibitor Heavy Chain 4 were significantly upregulated. Serum concentrations of CRP, SAA and haptoglobin were only upregulated at day 5 in infected animals of the IAO model. This indicates a limited systemic response to osteomyelitis. Similar numbers of positive IHC stained C3 leukocytes were found in human and porcine bone samples with chronic osteomyelitis, indicating a high transcriptional value of porcine models of osteomyelitis. The local upregulation of APPs could potentially be used for diagnosing osteomyelitis.
Collapse
|
24
|
Jensen LK, Henriksen NL, Blirup SA, Jensen HE. Guideline for Preclinical Studies of Bone Infections in Large Animals Based on a Systematic Review of 316 Non-Rodent Models. J Bone Joint Surg Am 2019; 101:1894-1903. [PMID: 31567666 DOI: 10.2106/jbjs.18.01369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND In recent years, animal models of bone infections have been used with increased frequency in order to evaluate novel diagnostic and anti-infective technologies, like antibacterial coating of bone implants or local antibiotic carrier products. Therefore, it is highly relevant to evaluate the scientific quality of existing bone infection models. METHODS We conducted a systematic review of 316 studies of large non-rodent animal models of bone infection (254 rabbit, 16 pig, 23 dog, 11 goat, and 12 sheep) and extracted data on study design, methodological quality, and postmortem evaluation of infection with respect to reporting and quantification of pathology and microbiology. RESULTS The review demonstrated a substantial lack of study-design information, which hampers reproducibility and continuation of the established work. Furthermore, the methodological study quality was found to be low, as the definition of infection, randomization, power analysis, and blinding were only seldomly reported. The use of histology increased in recent years, but a semi-quantitative scoring of the lesions was often missing, i.e. no objective quantification of outcome. Most of the studies focused on whether the inoculated bacteria were present within the bone tissue post mortem or not. However, very often the bacterial burden was not quantified. In many of the models, different antimicrobial interventions were examined and, although antimicrobial effects were commonly described, a lack of complete sterile outcome was observed in many models. On the basis of the systematic review, we established a study template providing a guideline for the standard reporting of animal models of bone infections, including details related to the animal, pathogen, infected animal, and postmortem analysis that are of crucial importance for validation of results and reproducibility. CONCLUSIONS As the aim of many bone infection models is to examine the effect of an intervention, the guideline emphasizes the importance of objective quantification of outcome, e.g., blinded quantitative scoring of histological findings and quantification of bacterial burden within tissue and on inserted implants. Less than 5% of the analyzed studies adhered completely to the ideal form presented in the study template. CLINICAL RELEVANCE Anti-infective interventions must be tested in preclinical animal models before implementation in human patients, and optimal design and validation is essential for a high translational value.
Collapse
Affiliation(s)
- L K Jensen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - N L Henriksen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - S A Blirup
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - H E Jensen
- Section for Pathobiological Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Hanberg P, Lund A, Søballe K, Bue M. Single-dose pharmacokinetics of meropenem in porcine cancellous bone determined by microdialysis: An animal study. Bone Joint Res 2019; 8:313-322. [PMID: 31463039 PMCID: PMC6691366 DOI: 10.1302/2046-3758.87.bjr-2018-0308.r1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objectives Meropenem may be an important drug in the treatment of open tibial fractures and chronic osteomyelitis. Therefore, the objective of this study was to describe meropenem pharmacokinetics in plasma, subcutaneous adipose tissue (SCT), and cancellous bone using microdialysis in a porcine model. Methods Six female pigs were assigned to receive 1000 mg of meropenem intravenously over five minutes. Measurements of meropenem were obtained from plasma, SCT, and cancellous bone for eight hours thereafter. Microdialysis was applied for sampling in solid tissues. The meropenem concentrations were determined using ultra-high-performance liquid chromatography. Results The penetration of meropenem into cancellous bone, expressed as the ratio of plasma to cancellous bone area under the concentration-curve from zero to the last measured value, was incomplete and delayed. The time with concentration above the minimal inhibitory concentration (T>MIC), for an MIC of 0.5 μg/ml, was shorter for cancellous bone in comparison with both plasma and SCT. For MICs above 0.5 μg/ml, T>MIC in cancellous bone was only shorter than SCT. Considering an MIC of 4 μg/ml, no animals achieved the target of 40% T>MIC in plasma and cancellous bone, while less than 20% achieved it in SCT. Conclusion The main finding of this study was short T>MIC in cancellous bone after intravenous administration of 1000 mg meropenem. Consequently, in order to achieve sufficient tissue concentration in the cases of open tibial fractures and chronic osteomyelitis, supplemental application of meropenem may be necessary.Cite this article: P. Hanberg, A. Lund, K. Søballe, M. Bue. Single-dose pharmacokinetics of meropenem in porcine cancellous bone determined by microdialysis: An animal study. Bone Joint Res 2019;8:342-348. DOI: 10.1302/2046-3758.87.BJR-2018-0308.R1.
Collapse
Affiliation(s)
- Pelle Hanberg
- Department of Orthopaedic Surgery, Horsens Regional Hospital and Orthopaedic Research Unit, Aarhus University Hospital, Horsens, Denmark and Aarhus, Denmark
| | - Andrea Lund
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Kjeld Søballe
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark; Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Mats Bue
- Department of Orthopaedic Surgery, Horsens Regional Hospital and Orthopaedic Research Unit, Aarhus University Hospital, Horsens, Denmark and Aarhus, Denmark
| |
Collapse
|
26
|
In Vivo Gentamicin Susceptibility Test for Prevention of Bacterial Biofilms in Bone Tissue and on Implants. Antimicrob Agents Chemother 2019; 63:AAC.01889-18. [PMID: 30455228 DOI: 10.1128/aac.01889-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
The objective of this study was to set up an in vivo gentamicin susceptibility test for biofilm prevention in bone tissue and on implants. Twenty-five pigs were allocated to six groups. Pigs in group A (n = 6) were inoculated with saline. Pigs in groups B (n = 6), C (n = 3), D (n = 3), E (n = 3), and F (n = 4) were inoculated with 10 μl saline containing 104 CFU of Staphylococcus aureus Different concentrations based on the MIC of gentamicin for the specific strain were added to the 10-μl inoculum for groups C (160× MIC), D (1,600× MIC), E (16,000× MIC), and F (160,000× MIC). The inocula were injected into a predrilled tibial implant cavity, followed by insertion of a steel implant (2 by 15 mm). The pigs were euthanized after 5 days. In vitro, all the doses used were found to be bactericidal after up to 6 h. All implant cavities of pigs inoculated with bacteria and bacteria plus 160× MIC or 1,600× MIC of gentamicin were positive for S. aureus In animals in each of groups E (16,000× MIC) and F (160,000× MIC), 2/3 and 1/4 of the implant cavities were S. aureus positive, respectively. By grouping groups C and D (<10,000× MIC) and groups E and F (>10,000× MIC), a significant decrease in the number of implant-attached bacteria was seen only between the high-MIC-value group and group B. Histologically, it was demonstrated that 1,600×, 16,000×, and 160,000× MIC resulted in a peri-implant tissue reaction comparable to that in saline-inoculated animals. In vivo, the antimicrobial tolerance of the inoculated planktonic bacteria was increased by in vivo-specific factors of acute inflammation. This resulted in bacterial aggregation and biofilm formation, which further increased the gentamicin tolerance. Thus, susceptibility patterns in vitro might not reflect the actual in vivo susceptibility locally within a developing infectious area.
Collapse
|
27
|
Jensen LK, Henriksen NL, Jensen HE. Guidelines for porcine models of human bacterial infections. Lab Anim 2018; 53:125-136. [PMID: 30089438 DOI: 10.1177/0023677218789444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During the last 10 years the number of porcine models for human bacterial infectious diseases has increased. In the future, this tendency is expected to continue and, therefore, the aim of the present review is to describe guidelines for the development and reporting of these models. The guidelines are based on a review of 122 publications of porcine models for different bacterial infectious diseases in humans. The review demonstrates a substantial lack of information in most papers which hampers reproducibility and continuation of the work that was established in the models. The guidelines describe overall principles related to the inoculum, the animal, the infected animal and the post-mortem characterization that are of crucial importance when porcine models of infectious diseases are developed, validated and reported.
Collapse
Affiliation(s)
- Louise K Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicole L Henriksen
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Henrik E Jensen
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Lüthje FL, Skovgaard K, Jensen HE, Kruse Jensen L. Pigs are useful for the molecular study of bone inflammation and regeneration in humans. Lab Anim 2018; 52:630-640. [PMID: 29653496 DOI: 10.1177/0023677218766391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pigs are used with increased frequency to model different kinds of orthopedic surgical conditions. In order to show the full potential of porcine models in orthopedic research, it is therefore required to examine the expression of bone regulatory genes in pigs affected by orthopedic surgery and compare it to the expression in humans and mice as mice, are one of the most applied animal species in orthopedics today. In the present study, the local molecular response to drilling of a tibial implant cavity, and the subsequent insertion of a steel implant was examined in a porcine model. Pigs were euthanized five days after drilling of the bone. The molecular response of 73 different genes was analyzed using a high-throughput quantitative polymerase chain reaction platform and compared to histopathology. Histologically, it was found that bone remodeling was initiated on day 5 after surgery and was associated with upregulation of several genes involved in bone degradation and formation ( CTSK, ACP5, IBSP, RANK, RANKL and COL1A1). Interleukin-6 and several acute-phase proteins (C3, SAA and ITIH4) were significantly upregulated, indicating their importance in the initial process of healing and osseointegration. All tested bone morphogenic proteins (BMP2, -4 and -7) including their inhibitor noggin were also significantly upregulated. Surprisingly, vascular endothelial growth factor A was not found to be regulated five days after surgery while several other vascular growth factors (ANGPT1, ANGPT2 and PTN) were upregulated. The pig was found to be a useful model for elucidation of bone regulatory genes in humans.
Collapse
Affiliation(s)
- Freja Lea Lüthje
- 1 Department of Veterinary and Animal Science, University of Copenhagen, Denmark.,2 Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Kerstin Skovgaard
- 2 Department of Biotechnology and Biomedicine, Technical University of Denmark, Denmark
| | - Henrik Elvang Jensen
- 1 Department of Veterinary and Animal Science, University of Copenhagen, Denmark
| | - Louise Kruse Jensen
- 1 Department of Veterinary and Animal Science, University of Copenhagen, Denmark
| |
Collapse
|
29
|
Bue M, Hanberg P, Koch J, Jensen LK, Lundorff M, Aalbaek B, Jensen HE, Søballe K, Tøttrup M. Single-dose bone pharmacokinetics of vancomycin in a porcine implant-associated osteomyelitis model. J Orthop Res 2018; 36:1093-1098. [PMID: 29058823 DOI: 10.1002/jor.23776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/13/2017] [Indexed: 02/04/2023]
Abstract
The increasing incidence of orthopaedic methicillin-resistant Staphylococcus aureus (MRSA) infections represents a significant therapeutic challenge. Being effective against MRSA, the role of vancomycin may become more important in the orthopaedic setting in the years to come. Nonetheless, vancomycin bone and soft tissue penetration during infection remains unclear. In eight pigs, implant-associated osteomyelitis was induced on day 0, using a Staphylococcus aureus strain. Following administration of 1,000 mg of vancomycin on day 5, vancomycin concentrations were obtained with microdialysis for 8 h in the implant bone cavity, in cancellous bone adjacent to the implant cavity, in subcutaneous adipose tissue (SCT) adjacent to the implant cavity, and in healthy cancellous bone and healthy SCT in the contralateral leg. Venous blood samples were also obtained. The extent of infection and inflammation was evaluated by post-mortem computed tomography scans, C-reactive protein serum levels and cultures of blood and swabs. In relation to all the implant cavities, bone destruction was found. Ranging from 0.20 to 0.74, tissue penetration, expressed as the ratio of the area under the concentration-time curve from 0 to the last measured value, was incomplete for all compartments except for healthy SCT. The lowest penetration was found in the implant cavity. In conclusion, Staphylococcus aureus implant-associated osteomyelitis was found to reduce vancomycin bone penetration, especially in the implant cavity. These findings suggest that it may be unsafe to rely solely on vancomycin therapy when treating acute osteomyelitis. Particularly when metaphyseal cavities are present, surgical debridement seems necessary. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1093-1098, 2018.
Collapse
Affiliation(s)
- Mats Bue
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Sundvej 30, Horsens, 8700, Denmark.,Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Pelle Hanberg
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Sundvej 30, Horsens, 8700, Denmark.,Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Janne Koch
- Department of Experimental medicine, University of Copenhagen, Denmark
| | | | - Martin Lundorff
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Sundvej 30, Horsens, 8700, Denmark
| | - Bent Aalbaek
- Department of Veterinary Disease Biology, University of Copenhagen, Denmark
| | | | - Kjeld Søballe
- Orthopaedic Research Unit, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel Tøttrup
- Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus, Denmark.,Department of Orthopaedic Surgery, Randers Regional Hospital, Randers, Denmark
| |
Collapse
|
30
|
Jensen LK, Henriksen NL, Bjarnsholt T, Kragh KN, Jensen HE. Combined Staining Techniques for Demonstration of Staphylococcus aureus Biofilm in Routine Histopathology. J Bone Jt Infect 2018; 3:27-36. [PMID: 29545993 PMCID: PMC5852845 DOI: 10.7150/jbji.22799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/19/2018] [Indexed: 11/24/2022] Open
Abstract
Aim: Visualization of Staphylococcus aureus biofilm using histochemical staining and combined histochemistry (HC) and immunohistochemistry (IHC). Methods: The ability of S. aureus S54F9 to form biofilm was tested in vitro. Hereafter, infected bone tissue was collected from two different porcine models of osteomyelitis inoculated with S. aureus strain S54F9. The infection time was five and fifteen days, respectively. Twenty-five different histochemical staining protocols were tested in order to find the stains that could identify extracellular biofilm matrix. Protocols with an optimal visualization of biofilm extracellular matrix were combined with an immunohistochemical protocol based on a specific antibody against S. aureus. The combined protocols were applied to the tissue from the porcine models and to infected bone tissue from a child suffering from chronic staphylococcal osteomyelitis for more than a year. Results:S. aureus S54F9 showed an ability to form biofilm in vitro. Visualization of biofilm, i.e. bacterial cells and extracellular matrix in different colours, was seen when the immunohistochemical protocol was combined with Alcian Blue pH3, Luna and Methyl-pyronin green. The bacterial cells were red to light brown and the extracellular matrix either light blue, blue or orange depending on the histochemical stain. In the porcine models and the human case 10 and 90 percent, respectively, of the bacterial aggregates in a 100x magnification field displayed both the extracellular matrix and the bacterial cells simultaneously in two different colours. Conclusions: A combination of HC and IHC can be used to diagnose and characterise biofilm infections on a routine basis.
Collapse
Affiliation(s)
- Louise Kruse Jensen
- Department of Veterinary Clinical and Animal Sciences, Ridebanevej 3, 1870 Frederiksberg C, University of Copenhagen, Denmark
| | - Nicole Lind Henriksen
- Department of Veterinary Clinical and Animal Sciences, Ridebanevej 3, 1870 Frederiksberg C, University of Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, Blegdamsvej 3B, 2200 Copenhagen N, University of Copenhagen, Denmark.,Department of Clinical Microbiology, Juliane Maries Vej 22, 2100 Copenhagen Ø, Copenhagen University Hospital, Denmark
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, Blegdamsvej 3B, 2200 Copenhagen N, University of Copenhagen, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary Clinical and Animal Sciences, Ridebanevej 3, 1870 Frederiksberg C, University of Copenhagen, Denmark
| |
Collapse
|
31
|
Jensen LK, Koch J, Henriksen NL, Bue M, Tøttrup M, Hanberg P, Søballe K, Jensen HE. Suppurative Inflammation and Local Tissue Destruction Reduce the Penetration of Cefuroxime to Infected Bone Implant Cavities. J Comp Pathol 2017; 157:308-316. [PMID: 29169629 DOI: 10.1016/j.jcpa.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/27/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022]
Abstract
Treatment of post-traumatic and implant-associated osteomyelitis (IAO) includes surgical debridement, removal of implants and long-term antibiotic therapy. The success of antibiotic therapy relies not only on activity towards the infecting pathogen, but also on sufficient penetration of the target site. The aim of the present study was to characterize the local pathological changes associated with reduced penetration of cefuroxime to infected bone implant cavities. Previously, reduced penetration of systemically administrated cefuroxime was demonstrated in the implant cavity of 10 pigs with Staphylococcus aureus IAO present for 5 days. In the present study, a comprehensive histopathological characterization of the peri-implant bone tissue was performed and correlated with the reduced penetration of cefuroxime. In two pigs, the levels of oxygen, pyruvate and lactate was estimated in the implant cavity. A peri-implant pathological bone area (PIBA) developed with a width of 1.2 up to 3.8 mm. PIBAs included: (1) suppuration, resulting in destruction of the implant cavity contour, and (2) a non-vascular zone of primarily necrotic bone tissue. A strong negative correlation was seen between PIBA width and cefuroxime area under the concentration time curves (AUC[0-last]) and peak concentration of cefuroxime (Cmax). All metabolic measurements demonstrated hypoxia. In conclusion, subacute suppurative bone inflammation with local tissue destruction can result in decreased penetration of antibiotics and insufficient oxygen supply.
Collapse
Affiliation(s)
- L Kruse Jensen
- Department of Veterinary and Animal Science, Ridebanevej 3, 1870 Frederiksberg C, University of Copenhagen, Denmark.
| | - J Koch
- Department of Veterinary and Animal Science, Ridebanevej 3, 1870 Frederiksberg C, University of Copenhagen, Denmark
| | - N Lind Henriksen
- Department of Veterinary and Animal Science, Ridebanevej 3, 1870 Frederiksberg C, University of Copenhagen, Denmark
| | - Mats Bue
- Orthopaedic Research Unit, Building 1A, Nørrebrogade 44, 8000 Aarhus, Aarhus University Hospital, Denmark; Department of Orthopaedic Surgery, Sundvej 30, 8700 Horsens, Horsens Regional Hospital, Denmark
| | - M Tøttrup
- Orthopaedic Research Unit, Building 1A, Nørrebrogade 44, 8000 Aarhus, Aarhus University Hospital, Denmark; Department of Orthopaedic Surgery, Skovlyvej 15, 8930 Randers NØ, Randers Regional Hospital, Denmark
| | - P Hanberg
- Orthopaedic Research Unit, Building 1A, Nørrebrogade 44, 8000 Aarhus, Aarhus University Hospital, Denmark
| | - K Søballe
- Orthopaedic Research Unit, Building 1A, Nørrebrogade 44, 8000 Aarhus, Aarhus University Hospital, Denmark
| | - H Elvang Jensen
- Department of Veterinary and Animal Science, Ridebanevej 3, 1870 Frederiksberg C, University of Copenhagen, Denmark
| |
Collapse
|
32
|
Jensen LK, Johansen ASB, Jensen HE. Porcine Models of Biofilm Infections with Focus on Pathomorphology. Front Microbiol 2017; 8:1961. [PMID: 29067019 PMCID: PMC5641329 DOI: 10.3389/fmicb.2017.01961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Bacterial biofilm formation is one of the main reasons for a negative treatment outcome and a high recurrence rate for many chronic infections in humans. The optimal way to study both the biofilm forming bacteria and the host response simultaneously is by using discriminative, reliable, and reproducible animal models of the infections. In this review, the advantages of in vivo studies are compared to in vitro studies of biofilm formation in infectious diseases. The pig is the animal of choice when developing and applying large animal models of infectious diseases due to its similarity of anatomy, physiology, and immune system to humans. Furthermore, conventional pigs spontaneously develop many of the same chronic bacterial infections as seen in humans. Therefore, in this review porcine models of five different infectious diseases all associated with biofilm formation and chronicity in humans are described. The infectious diseases are: chronic wounds, endocarditis, pyelonephritis, hematogenous osteomyelitis, and implant-associated osteomyelitis (IAO).
Collapse
Affiliation(s)
- Louise K Jensen
- Section for Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anne S B Johansen
- Section for Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik E Jensen
- Section for Experimental Animal Models, Department of Veterinary and Animal Science, Faculty of Health and Medical Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
33
|
Gallo J, Raska M, Kriegova E, Goodman SB. Inflammation and its resolution and the musculoskeletal system. J Orthop Translat 2017; 10:52-67. [PMID: 28781962 PMCID: PMC5541893 DOI: 10.1016/j.jot.2017.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 02/08/2023] Open
Abstract
Inflammation, an essential tissue response to extrinsic/intrinsic damage, is a very dynamic process in terms of complexity and extension of cellular and metabolic involvement. The aim of the inflammatory response is to eliminate the pathogenic initiator with limited collateral damage of the inflamed tissue, followed by a complex tissue repair to the preinflammation phenotype. Persistent inflammation is a major contributor to the pathogenesis of many musculoskeletal diseases including ageing-related pathologies such as osteoporosis, osteoarthritis, and sarcopaenia. Understanding the mechanisms of inflammation and its resolution is therefore critical for the development of effective regenerative, and therapeutic strategies in orthopaedics.
Collapse
Affiliation(s)
- Jiri Gallo
- Department of Orthopaedics, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, I.P. Pavlova 6, 779 00 Olomouc, Czech Republic
| | - Milan Raska
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University School of Medicine, 450 Broadway Street, Pavilion C, Redwood City, CA 94063-6342, USA
| |
Collapse
|