1
|
Liu Y, Jia F, Li K, Liang C, Lin X, Geng W, Li Y. Critical signaling molecules in the temporomandibular joint osteoarthritis under different magnitudes of mechanical stimulation. Front Pharmacol 2024; 15:1419494. [PMID: 39055494 PMCID: PMC11269110 DOI: 10.3389/fphar.2024.1419494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanical stress environment in the temporomandibular joint (TMJ) is constantly changing due to daily mandibular movements. Therefore, TMJ tissues, such as condylar cartilage, the synovial membrane and discs, are influenced by different magnitudes of mechanical stimulation. Moderate mechanical stimulation is beneficial for maintaining homeostasis, whereas abnormal mechanical stimulation leads to degeneration and ultimately contributes to the development of temporomandibular joint osteoarthritis (TMJOA), which involves changes in critical signaling molecules. Under abnormal mechanical stimulation, compensatory molecules may prevent degenerative changes while decompensatory molecules aggravate. In this review, we summarize the critical signaling molecules that are stimulated by moderate or abnormal mechanical loading in TMJ tissues, mainly in condylar cartilage. Furthermore, we classify abnormal mechanical stimulation-induced molecules into compensatory or decompensatory molecules. Our aim is to understand the pathophysiological mechanism of TMJ dysfunction more deeply in the ever-changing mechanical environment, and then provide new ideas for discovering effective diagnostic and therapeutic targets in TMJOA.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Geng
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yanxi Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Gou Y, Li H, Sun X, Chen D, Tian F. Parathyroid hormone (1-34) retards the lumbar facet joint degeneration and activates Wnt/β-catenin signaling pathway in ovariectomized rats. J Orthop Surg Res 2024; 19:352. [PMID: 38877549 PMCID: PMC11177467 DOI: 10.1186/s13018-024-04817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
PURPOSE Facet joint degeneration (FJD) is a major cause of low back pain. Parathyroid hormone (PTH) (1-34) is commonly used to treat osteoporosis. However, little is known about its effects on FJD induced by estrogen deficiency. This study aims to investigate the effects of PTH (1-34) on FJD induced by estrogen deficiency and the underlying pathogenesis of the disease. METHODS Forty 3-month-old female Sprague-Dawley rats were randomly divided into four groups: 30 received bilateral ovariectomy (OVX) followed by 12 weeks of treatment with normal saline, PTH (1-34) or 17β-estradiol (E2), and 10 received sham surgery followed by administration of normal saline. Status and Wnt/β-catenin signaling activity in the cartilage and subchondral bone of the L4-L5 FJs and serum biomarkers were analyzed. RESULTS Administration of PTH (1-34) and E2 ameliorated cartilage lesions, and significantly decreased MMP-13 and caspase-3 levels and chondrocyte apoptosis. PTH (1-34) but not E2 significantly increased cartilage thickness, number of chondrocytes, and the expression of aggrecan. PTH (1-34) significantly improved microarchitecture parameters of subchondral bone, increased the expression of collagen I and osteocalcin, and decreased RANKL/OPG ratio. E2 treatment significantly increased the OPG level and decreased the RANKL/OPG ratio in the subchondral bone of ovariectomized rats, but it did not significantly improve the microarchitecture parameters of subchondral bone. Wnt3a and β-catenin expression was significantly reduced in the articular cartilage and subchondral bone in OVX rats, but PTH (1-34) could increase the expression of these proteins. E2 significantly increased the activity of Wnt/β-catenin pathway only in cartilage, but not in subchondral bone. The restoration of Wnt/β-catenin signaling had an obvious correlation with the improvement of some parameters associated with the FJs status. CONCLUSION Wnt/β-catenin signaling may be a potential therapeutic target for FJD induced by estrogen deficiency. PTH (1-34) is effective in treating this disease with better efficacy than 17β-estradiol, and the efficacy may be attributed to its restoration of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Hetong Li
- Department of Orthopaedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xun Sun
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Desheng Chen
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
3
|
Distinctive Roles of Wnt Signaling in Chondrogenic Differentiation of BMSCs under Coupling of Pressure and Platelet-Rich Fibrin. Tissue Eng Regen Med 2022; 19:823-837. [PMID: 35467329 PMCID: PMC9294129 DOI: 10.1007/s13770-022-00456-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 03/24/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Although newly formed constructs of feasible pressure-preadjusted bone marrow mesenchymal stem cells (BMSCs) and platelet-rich fibrin (PRF) showed biomechanical flexibility and superior capacity for cartilage regeneration, it is still not very clear how BMSCs and seed cells feel mechanical stimuli and convert them into biological signals, and the difference in signal transduction underlying mechanical and chemical cues is also unclear. METHODS To determine whether mechanical stimulation (hydrostatic pressure) and chemical cues (platelet-rich fibrin, PRF) activate canonical or noncanonical Wnt signaling in BMSCs, BMSCs cocultured with PRF were subjected to hydrostatic pressure loading, and the activation of the Wnt signaling molecules and expression of cartilage-associated proteins and genes were determined by western blotting and polymerase chain reaction (PCR). Inhibitors of canonical or noncanonical Wnt signaling, XVX-939 or L690,330, were adopted to investigate the role of Wnt signaling molecules in mechanically promoted chondrogenic differentiation of BMSCs. RESULTS Hydrostatic pressure of 120 kPa activated both Wnt/β-catenin signaling and Wnt/Ca2+ signaling, with the the maximum promotion effect at 60 min. PRF exerted no synergistic effect on Wnt/β-catenin signaling activation. However, the growth factors released by PRF might reverse the promotion effects of pressure on Wnt/Ca2+ signaling. Real-time PCR and Western blotting results showed that pressure could activate the expression of Col-II, Sox9, and aggrecan in BMSCs cocultured with PRF. Blocking experiment found a positive role of Wnt/β-catenin signaling, and a negative role of Wnt/Ca2+ signaling in chondrogenic differentiation of the BMSCs. Mutual inhibition exists between canonical and noncanonical Wnt signaling in BMSCs under pressure. CONCLUSION Wnt signaling participates in the pressure-promoted chondrogenesis of the BMSCs co-cultured with PRF, with canonical and noncanonical pathways playing distinct roles during the process.
Collapse
|
4
|
Chilbule SK, Rajagopal K, Walter N, Dutt V, Madhuri V. Role of WNT Agonists, BMP and VEGF Antagonists in Rescuing Osteoarthritic Knee Cartilage in a Rat Model. Indian J Orthop 2022; 56:24-33. [PMID: 35070139 PMCID: PMC8748585 DOI: 10.1007/s43465-021-00434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The superficial zone of articular cartilage (AC) is vital for its function and biomechanics. The damaged AC gets vascularized and undergoes hypertrophy and ossification. Studies have highlighted these two as the major causative factors in osteoarthritis (OA). We aimed at preventing the OA progression in a rat knee instability model by inhibiting the vascular ingrowth and ossification using VEGF and BMP antagonist. A WNT agonist was also used to promote AC regeneration because of its protective effect on the superficial layer. METHODS Rat knee OA was created by surgical excision of the medial meniscus and medial collateral ligament. Forty rats were divided into two groups of twenty each for surgical control and tests (surgery + intra-articular injection of drugs every two weeks). Ten animals from each group were sacrificed at four and eight weeks. Histology was mainly used to evaluate the outcome. RESULTS A surgical OA model was successfully created with higher histological scores for operated knees, both in short- (P = 0.0001) and long-term (P = 0.001). Modified Mankin score was lesser in the test animals as compared to control (P = 0.17) in the short-term, but the trend was reversed in the long-term (P = 0.13). Subgroup analysis revealed that repeated injections in the anterolateral compartment contributed to higher scores in the lateral (P = 0.03) and anterior (P = 0.03) compartment of the knee in the long-term. CONCLUSION The combinatorial approach was effective in controlling the OA in short-term. Further studies are needed to test the sustained drug delivery system to improve the outcome.
Collapse
Affiliation(s)
- Sanjay K. Chilbule
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
| | - Karthikeyan Rajagopal
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
- Centre for Stem Cell Research, Christian Medical College, Vellore, 632002 India
| | - Noel Walter
- Department of Forensic Medicine, Christian Medical College, Vellore, 632004 India
| | - Vivek Dutt
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
| | - Vrisha Madhuri
- Department of Paediatric Orthopaedics, Christian Medical College, Vellore, 632004 India
- Centre for Stem Cell Research, Christian Medical College, Vellore, 632002 India
| |
Collapse
|
5
|
Zhang Z, Pan X, Chen M, Bai M. Wnt signalling in oral and maxillofacial diseases. Cell Biol Int 2021; 46:34-45. [PMID: 34643311 DOI: 10.1002/cbin.11708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
Wnts include more than 19 types of secreted glycoproteins that are involved in a wide range of pathological processes in oral and maxillofacial diseases. The transmission of Wnt signalling from the extracellular matrix into the nucleus includes canonical pathways and noncanonical pathways, which play an important role in tooth development, alveolar bone regeneration, and related diseases. In recent years, with the in-depth study of Wnt signalling in oral and maxillofacial-related diseases, many new conclusions and perspectives have been reached, and there are also some controversies. This article aims to summarise the roles of Wnt signalling in various oral diseases, including periodontitis, dental pulp disease, jaw disease, cleft palate, and abnormal tooth development, to provide researchers with a better and more comprehensive understanding of Wnts in oral and maxillofacial diseases.
Collapse
Affiliation(s)
- Zhaowei Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyue Pan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyang Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Li B, Guan G, Mei L, Jiao K, Li H. Pathological mechanism of chondrocytes and the surrounding environment during osteoarthritis of temporomandibular joint. J Cell Mol Med 2021; 25:4902-4911. [PMID: 33949768 PMCID: PMC8178251 DOI: 10.1111/jcmm.16514] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Temporomandibular joint (TMJ) osteoarthritis is a common chronic degenerative disease of the TMJ. In order to explore its aetiology and pathological mechanism, many animal models and cell models have been constructed to simulate the pathological process of TMJ osteoarthritis. The main pathological features of TMJ osteoarthritis include chondrocyte death, extracellular matrix (ECM) degradation and subchondral bone remodelling. Chondrocyte apoptosis accelerates the destruction of cartilage. However, autophagy has a protective effect on condylar chondrocytes. Degradation of ECM not only changes the properties of cartilage but also affects the phenotype of chondrocytes. The loss of subchondral bone in the early stages of TMJ osteoarthritis plays an aetiological role in the onset of osteoarthritis. In recent years, increasing evidence has suggested that chondrocyte hypertrophy and endochondral angiogenesis promote TMJ osteoarthritis. Hypertrophic chondrocytes secrete many factors that promote cartilage degeneration. These chondrocytes can further differentiate into osteoblasts and osteocytes and accelerate cartilage ossification. Intrachondral angiogenesis and neoneurogenesis are considered to be important triggers of arthralgia in TMJ osteoarthritis. Many molecular signalling pathways in endochondral osteogenesis are responsible for TMJ osteoarthritis. These latest discoveries in TMJ osteoarthritis have further enhanced the understanding of this disease and contributed to the development of molecular therapies. This paper summarizes recent cognition on the pathogenesis of TMJ osteoarthritis, focusing on the role of chondrocyte hypertrophy degeneration and cartilage angiogenesis.
Collapse
Affiliation(s)
- Baochao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangzhao Guan
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Du J, Jiang Q, Mei L, Yang R, Wen J, Lin S, Li H. Effect of high fat diet and excessive compressive mechanical force on pathologic changes of temporomandibular joint. Sci Rep 2020; 10:17457. [PMID: 33060739 PMCID: PMC7566592 DOI: 10.1038/s41598-020-74326-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to investigate the effect of high fat diet and excessive compressive mechanical force on temporomandibular joint. In vivo, a mouse model of temporomandibular joint compressive loading device was used. A high fat diet mouse model and a combined mouse model intraperitoneally treated with or without simvastatin were used in the study. The pathological changes of mandibular condylar cartilage were assessed by Safranin-O staining. The IL-1β, MMP-3, leptin expression changes in the cartilage were detected by immunohistochemistry. In vitro, the mandibular condylar chondrocytes were treated with or without L-1β and simvastatin. The mRNA expression level of matrix MMPs and leptin were assessed. Both excessive compressive mechanical force and high fat diet induced obesity caused TMJ osteoarthritis-like changes and increased expression of IL-1β, MMP-3, and leptin. These pathological changes were much more serious when the two interventions were exerted together, while simvastatin could obviously alleviate these changes. The mRNA expression of MMP-3, MMP-13, and leptin increased in the IL-1β treated chondrocytes treated with IL-1β, and decreased with simvastatin treatment. The development of temporomandibular joint pathological changes could be caused by the excessive compressive mechanical force and high fat diet induced obesity.
Collapse
Affiliation(s)
- Jing Du
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China.,Children's Department of Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qian Jiang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Li Mei
- Discipline of Orthodontics, Department of Oral Sciences, Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Ren Yang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Juan Wen
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Shuang Lin
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Almoshari Y, Ren R, Zhang H, Jia Z, Wei X, Chen N, Li G, Ryu S, Lele SM, Reinhardt RA, Wang D. GSK3 inhibitor-loaded osteotropic Pluronic hydrogel effectively mitigates periodontal tissue damage associated with experimental periodontitis. Biomaterials 2020; 261:120293. [PMID: 32877763 DOI: 10.1016/j.biomaterials.2020.120293] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/16/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Periodontitis is a chronic inflammatory disease caused by complex interactions between the host immune system and pathogens that affect the integrity of periodontium. To prevent disease progression and thus preserve alveolar bone structure, simultaneous anti-inflammatory and osteogenic intervention are essential. Hence, a glycogen synthase kinase 3 beta inhibitor (BIO) was selected as a potent inflammation modulator and osteogenic agent to achieve this treatment objective. BIO's lack of osteotropicity, poor water solubility, and potential long-term systemic side effects, however, have hampered its clinical applications. To address these limitations, pyrophosphorylated Pluronic F127 (F127-PPi) was synthesized and mixed with regular F127 to prepare an injectable and thermoresponsive hydrogel formulation (PF127) of BIO, which could adhere to hard tissue and gradually release BIO to exert its therapeutic effects locally. Comparing to F127 hydrogel, PF127 hydrogels exhibited stronger binding to hydroxyapatite (HA). Additionally, BIO's solubility in PF127 solution was dramatically improved over F127 solution and the improvement was proportional to the polymer concentration. When evaluated on a rat model of periodontitis, PF127-BIO hydrogel treatment was found to be very effective in preserving alveolar bone and ligament, and preventing periodontal inflammation, as shown by the micro-CT and histological data, respectively. Altogether, these findings suggested that the thermoresponsive PF127 hydrogel is an effective local drug delivery system for better clinical management of periodontitis and associated pathologies.
Collapse
Affiliation(s)
- Yosif Almoshari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Rongguo Ren
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Haipeng Zhang
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Guojuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sangjin Ryu
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, NE, 68588, USA
| | - Subodh M Lele
- Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Richard A Reinhardt
- Department of Surgical Specialties, College of Dentistry, University of Nebraska Medical Center, Lincoln, NE, 68583, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
9
|
Clough BH, Zeitouni S, Krause U, Chaput CD, Cross LM, Gaharwar AK, Gregory CA. Rapid Osteogenic Enhancement of Stem Cells in Human Bone Marrow Using a Glycogen-Synthease-Kinase-3-Beta Inhibitor Improves Osteogenic Efficacy In Vitro and In Vivo. Stem Cells Transl Med 2018; 7:342-353. [PMID: 29405665 PMCID: PMC5866944 DOI: 10.1002/sctm.17-0229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/06/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Non‐union defects of bone are a major problem in orthopedics, especially for patients with a low healing capacity. Fixation devices and osteoconductive materials are used to provide a stable environment for osteogenesis and an osteogenic component such as autologous human bone marrow (hBM) is then used, but robust bone formation is contingent on the healing capacity of the patients. A safe and rapid procedure for improvement of the osteoanabolic properties of hBM is, therefore, sought after in the field of orthopedics, especially if it can be performed within the temporal limitations of the surgical procedure, with minimal manipulation, and at point‐of‐care. One way to achieve this goal is to stimulate canonical Wingless (cWnt) signaling in bone marrow‐resident human mesenchymal stem cells (hMSCs), the presumptive precursors of osteoblasts in bone marrow. Herein, we report that the effects of cWnt stimulation can be achieved by transient (1–2 hours) exposure of osteoprogenitors to the GSK3β‐inhibitor (2′Z,3′E)‐6‐bromoindirubin‐3′‐oxime (BIO) at a concentration of 800 nM. Very‐rapid‐exposure‐to‐BIO (VRE‐BIO) on either hMSCs or whole hBM resulted in the long‐term establishment of an osteogenic phenotype associated with accelerated alkaline phosphatase activity and enhanced transcription of the master regulator of osteogenesis, Runx2. When VRE‐BIO treated hBM was tested in a rat spinal fusion model, VRE‐BIO caused the formation of a denser, stiffer, fusion mass as compared with vehicle treated hBM. Collectively, these data indicate that the VRE‐BIO procedure may represent a rapid, safe, and point‐of‐care strategy for the osteogenic enhancement of autologous hBM for use in clinical orthopedic procedures. stemcellstranslationalmedicine2018;7:342–353
Collapse
Affiliation(s)
- Bret H Clough
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Suzanne Zeitouni
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Ulf Krause
- Institute for Transfusion Medicine and Transplant Immunology, University Hospital Muenster, Muenster, Germany
| | - Christopher D Chaput
- Department of Orthopedic Surgery, Baylor Scott and White Hospital, Temple, Texas, USA
| | - Lauren M Cross
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Material Sciences, College Station, Texas, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas, USA
| | - Carl A Gregory
- Department of Molecular and Cellular Medicine, Institute for Regenerative Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|