1
|
Fu R, Zhao X, Liu Y, Qiao A, Yang H. An In Silico Model to Examine the Interaction Between Implant Degradation and Fracture Healing Under Mechanical Loading. Ann Biomed Eng 2025:10.1007/s10439-025-03741-y. [PMID: 40372605 DOI: 10.1007/s10439-025-03741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/21/2025] [Indexed: 05/16/2025]
Abstract
Biodegradable implants are promising for fracture fixation but they have not been applied to the load-bearing skeletal sites. A critical issue is how implant degradation and fracture healing affect each other under mechanical loading. To address this issue, we first developed a finite element model of a long bone fracture fixed with a Zn alloy-based screw-plate system, where implant degradation and bone healing were simulated based upon the continuum damage mechanics and mechano-regulated tissue differentiation algorithm, respectively. For comparison, non-degradable Ti alloy implant with normal bone healing and non-healing fracture with normal implant degradation were served as two reference controls. In terms of the effect of implant degradation on bone healing, the results indicated that implant degradation resulted in a greater volume of newly formed bone within the callus (16% for the degradable implant vs 12% for the non-degradable implant) and a better biomechanical recovery of the fractured bone (bone stiffness fraction: 107% vs 95%) at week 8. Regarding the effect of bone healing on implant degradation, fracture healing led to a significant decrease in the degradation rate of the implant (implant stiffness fraction at week 4: 8% for non-healing vs 40% for healing) and an increase in the overall period from 4 to 8 weeks for a complete degradation of the implant. These results together suggest that implant degradation and fracture healing significantly affect each other under mechanical loading. The in silico model developed here may provide a valuable platform to consider interactions between material degradation and bone healing when designing biodegradable implants for orthopaedic internal fixation at the load-bearing sites.
Collapse
Affiliation(s)
- Ruisen Fu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xurun Zhao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Yang Liu
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Aike Qiao
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Haisheng Yang
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
2
|
Williams KE, Harrer JA, LaBelle SA, Leguineche K, Kaiser J, Karipott S, Lin A, Vongphachanh A, Fulton T, Walker Rosenthal J, Muhib F, Ong KG, Weiss JA, Willett NJ, Guldberg RE. Early resistance rehabilitation improves functional regeneration following segmental bone defect injury. NPJ Regen Med 2024; 9:38. [PMID: 39668145 PMCID: PMC11638264 DOI: 10.1038/s41536-024-00377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/01/2024] [Indexed: 12/14/2024] Open
Abstract
Many studies have explored different loading and rehabilitation strategies, yet rehabilitation intensity and its impact on the local strain environment and bone healing have largely not been investigated. This study combined implantable strain sensors and subject-specific finite element models in a 2 mm rodent segmental bone defect model. After injury animals were underwent high or low intensity rehabilitation. High intensity rehabilitation increased local strains within the regenerative niche by an average of 44% compared to the low intensity rehabilitation. Finite element modeling demonstrated that resistance rehabilitation significantly increased compressive strain by a factor of 2.0 at week 2 and 4.45 after 4 weeks of rehabilitation. Animals that underwent resistance running had the greatest bone volume and improved functional recovery with regenerated femurs that matched intact failure torque and torsional stiffness values. These results demonstrate the potential for early resistance rehabilitation to improve bone healing.
Collapse
Affiliation(s)
- Kylie E Williams
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Julia Andraca Harrer
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Atlanta Veteran's Affairs Medical Center, Atlanta, GA, USA
| | - Steven A LaBelle
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 841123, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 841126, USA
| | - Kelly Leguineche
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Jarred Kaiser
- Atlanta Veteran's Affairs Medical Center, Atlanta, GA, USA
- Emory University, Atlanta, GA, USA
| | - Salil Karipott
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Angela Lin
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Alyssa Vongphachanh
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Travis Fulton
- Atlanta Veteran's Affairs Medical Center, Atlanta, GA, USA
| | - J Walker Rosenthal
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Farhan Muhib
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 841123, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 841126, USA
| | - Keat Ghee Ong
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 841123, USA
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, 841126, USA
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, 841123, USA
| | - Nick J Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA.
| | - Robert E Guldberg
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
3
|
Bertrand DT, Fu R, Kavaseri K, Villemure I, Rauch F, Hamdy R, Yang H, Willie BM. The accordion technique did not improve bone healing in a mouse model of distraction osteogenesis. Sci Rep 2024; 14:24466. [PMID: 39424834 PMCID: PMC11489654 DOI: 10.1038/s41598-024-71335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/27/2024] [Indexed: 10/21/2024] Open
Abstract
Distraction osteogenesis (DO) is a valuable surgical method for limb lengthening and bone defect correction, but its lengthy consolidation phase presents challenges. The accordion technique (AT), involving compression and distraction of bone segments, has shown potential for enhancing healing. This study aimed to investigate the effectiveness of the AT conducted at three different time points (distraction phase, early consolidation phase, or late consolidation phase) compared to conventional DO in a mouse osteotomy model. Healing was evaluated using in vivo microCT, histology, and computational modeling. Results showed that bridging frequency, BV, and callus tissue composition were similar between conventional DO and late consolidation AT. In contrast, distraction phase AT led to delayed healing at day 15 with a 72% reduction in BV compared to DO, but no significant differences by the endpoint. Early consolidation AT showed significantly impaired healing compared to DO, with only 29% of mice achieving bony bridging, and significantly reduced bone marrow area of the endpoint callus. In silico modeling was generally predictive of in vivo findings and suggested that application of the AT during early consolidation results in destruction of newly-formed vascular tissue. Overall, no benefit was observed for the AT compared to conventional DO with the parameters employed in this study.
Collapse
Affiliation(s)
- David T Bertrand
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Ruisen Fu
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Kyle Kavaseri
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Isabelle Villemure
- Department of Mechanical Engineering, Polytechnique Montréal, Montreal, Canada
| | - Frank Rauch
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Department of Pediatrics, McGill University, Montreal, Canada
| | - Reggie Hamdy
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
- Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Haisheng Yang
- Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada.
| |
Collapse
|
4
|
Siverino C, Metsemakers WJ, Sutter R, Della Bella E, Morgenstern M, Barcik J, Ernst M, D'Este M, Joeris A, Chittò M, Schwarzenberg P, Stoddart M, Vanvelk N, Richards G, Wehrle E, Weisemann F, Zeiter S, Zalavras C, Varga P, Moriarty TF. Clinical management and innovation in fracture non-union. Expert Opin Biol Ther 2024; 24:973-991. [PMID: 39126182 DOI: 10.1080/14712598.2024.2391491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION With the introduction and continuous improvement in operative fracture fixation, even the most severe bone fractures can be treated with a high rate of successful healing. However, healing complications can occur and when healing fails over prolonged time, the outcome is termed a fracture non-union. Non-union is generally believed to develop due to inadequate fixation, underlying host-related factors, or infection. Despite the advancements in fracture fixation and infection management, there is still a clear need for earlier diagnosis, improved prediction of healing outcomes and innovation in the treatment of non-union. AREAS COVERED This review provides a detailed description of non-union from a clinical perspective, including the state of the art in diagnosis, treatment, and currently available biomaterials and orthobiologics.Subsequently, recent translational development from the biological, mechanical, and infection research fields are presented, including the latest in smart implants, osteoinductive materials, and in silico modeling. EXPERT OPINION The first challenge for future innovations is to refine and to identify new clinical factors for the proper definition, diagnosis, and treatment of non-union. However, integration of in vitro, in vivo, and in silico research will enable a comprehensive understanding of non-union causes and correlations, leading to the development of more effective treatments.
Collapse
Affiliation(s)
- C Siverino
- AO Research Institute Davos, Davos Platz, Switzerland
| | - W-J Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven - University of Leuven, Leuven, Belgium
| | - R Sutter
- Radiology Department, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - E Della Bella
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Morgenstern
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - J Barcik
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M Ernst
- AO Research Institute Davos, Davos Platz, Switzerland
| | - M D'Este
- AO Research Institute Davos, Davos Platz, Switzerland
| | - A Joeris
- AO Innovation Translation Center, Davos Platz, Switzerland
| | - M Chittò
- AO Research Institute Davos, Davos Platz, Switzerland
| | | | - M Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland
| | - N Vanvelk
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - G Richards
- AO Research Institute Davos, Davos Platz, Switzerland
| | - E Wehrle
- AO Research Institute Davos, Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - F Weisemann
- Department of Trauma Surgery, BG Unfallklinik Murnau, Murnau am Staffelsee, Germany
| | - S Zeiter
- AO Research Institute Davos, Davos Platz, Switzerland
| | - C Zalavras
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - P Varga
- AO Research Institute Davos, Davos Platz, Switzerland
| | - T F Moriarty
- AO Research Institute Davos, Davos Platz, Switzerland
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
5
|
Wang M, Jiang G, Yang H, Jin X. Computational models of bone fracture healing and applications: a review. BIOMED ENG-BIOMED TE 2024; 69:219-239. [PMID: 38235582 DOI: 10.1515/bmt-2023-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Fracture healing is a very complex physiological process involving multiple events at different temporal and spatial scales, such as cell migration and tissue differentiation, in which mechanical stimuli and biochemical factors assume key roles. With the continuous improvement of computer technology in recent years, computer models have provided excellent solutions for studying the complex process of bone healing. These models not only provide profound insights into the mechanisms of fracture healing, but also have important implications for clinical treatment strategies. In this review, we first provide an overview of research in the field of computational models of fracture healing based on CiteSpace software, followed by a summary of recent advances, and a discussion of the limitations of these models and future directions for improvement. Finally, we provide a systematic summary of the application of computational models of fracture healing in three areas: bone tissue engineering, fixator optimization and clinical treatment strategies. The application of computational models of bone healing in clinical treatment is immature, but an inevitable trend, and as these models become more refined, their role in guiding clinical treatment will become more prominent.
Collapse
Affiliation(s)
- Monan Wang
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Guodong Jiang
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Haoyu Yang
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| | - Xin Jin
- School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Bowers KM, Anderson DE. Delayed Union and Nonunion: Current Concepts, Prevention, and Correction: A Review. Bioengineering (Basel) 2024; 11:525. [PMID: 38927761 PMCID: PMC11201148 DOI: 10.3390/bioengineering11060525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Surgical management of fractures has advanced with the incorporation of advanced technology, surgical techniques, and regenerative therapies, but delayed bone healing remains a clinical challenge and the prevalence of long bone nonunion ranges from 10 to 15% of surgically managed fractures. Delayed bone healing arises from a combination of mechanical, biological, and systemic factors acting on the site of tissue remodeling, and careful consideration of each case's injury-related, patient-dependent, surgical, and mechanical risk factors is key to successful bone union. In this review, we describe the biology and biomechanics of delayed bone healing, outline the known risk factors for nonunion development, and introduce modern preventative and corrective therapies targeting fracture nonunion.
Collapse
Affiliation(s)
| | - David E. Anderson
- Large Animal Clinical Sciences, University of Tennessee College of Veterinary Medicine, 2407 River Dr., Knoxville, TN 37996-4550, USA;
| |
Collapse
|
7
|
Hamed N, Alahmadi A, Abdelsamad Y, Alballaa A, Almuhawas F, Allami H, Almousa H, Hagr A. A novel method for evaluating mastoid defect regrowth after cochlear implantation. Sci Rep 2024; 14:9194. [PMID: 38649424 PMCID: PMC11035648 DOI: 10.1038/s41598-024-59295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
This retrospective study examined mastoid defects resulting from cochlear implant (CI) surgery and their potential for spontaneous regrowth across different age groups. Spontaneous closure of mastoid defects has been observed in certain CI patients during revision surgery or through post-operative temporal bone computer tomography (TB-CT). The analysis encompassed 123 CI recipients, comprising 81.3% children and 18.7% adults, who underwent post-operative TB-CT scans. Using image adjustment software, the study measured mastoid defect areas and found a significant reduction in children's defects between the initial and subsequent scans. Notably, mastoid defect areas differed significantly between children and adults at both time points. Furthermore, the analysis revealed significant correlations between mastoid defect areas and the age at implantation as well as the time elapsed since the CI surgery and the first CT scan. This study provides valuable insights for evaluating CI patients scheduled for revision surgery by assessing potential surgical challenges and duration. Furthermore, it may have a pivotal role in evaluating patients who experience postauricular swelling subsequent to CI surgery.
Collapse
Affiliation(s)
- Nezar Hamed
- King Abdullah Ear Specialist Center (KAESC), Department of Otorhinolaryngology, College of Medicine, King Saud University Medical City (KSUMC), King Saud University, P.O. Box: 245, 11411, Riyadh, Saudi Arabia.
| | - Asma Alahmadi
- King Abdullah Ear Specialist Center (KAESC), Department of Otorhinolaryngology, College of Medicine, King Saud University Medical City (KSUMC), King Saud University, P.O. Box: 245, 11411, Riyadh, Saudi Arabia
| | | | - Abdulaziz Alballaa
- King Abdullah Ear Specialist Center (KAESC), Department of Otorhinolaryngology, College of Medicine, King Saud University Medical City (KSUMC), King Saud University, P.O. Box: 245, 11411, Riyadh, Saudi Arabia
| | - Fida Almuhawas
- King Abdullah Ear Specialist Center (KAESC), Department of Otorhinolaryngology, College of Medicine, King Saud University Medical City (KSUMC), King Saud University, P.O. Box: 245, 11411, Riyadh, Saudi Arabia
| | - Hussain Allami
- King Abdullah Ear Specialist Center (KAESC), Department of Otorhinolaryngology, College of Medicine, King Saud University Medical City (KSUMC), King Saud University, P.O. Box: 245, 11411, Riyadh, Saudi Arabia
| | - Hisham Almousa
- King Abdullah Ear Specialist Center (KAESC), Department of Otorhinolaryngology, College of Medicine, King Saud University Medical City (KSUMC), King Saud University, P.O. Box: 245, 11411, Riyadh, Saudi Arabia
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center (KAESC), Department of Otorhinolaryngology, College of Medicine, King Saud University Medical City (KSUMC), King Saud University, P.O. Box: 245, 11411, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Fu R, Liu Y, Song F, Fu J, Du T, Liu Y, Willie BM, Yang H. Effects of dynamization timing and degree on bone healing of different fracture types. J Orthop Res 2023; 41:2394-2404. [PMID: 37138390 DOI: 10.1002/jor.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/27/2022] [Accepted: 05/01/2023] [Indexed: 05/05/2023]
Abstract
Dynamization, that is, increasing interfragmentary movement (IFM) by reducing fixation stiffness from a rigid to a more flexible state, has been successfully used in clinical practice to promote fracture healing. However, it remains unclear how dynamization timing and degree affect bone healing of different fracture types. Finite element models of tibial fractures based on the OTA/AO classification (Simple: A1-Spiral, A2-Oblique, A3-Transverse; Wedge: B2-Spiral, B3-Fragmented; Complex: C2-Segment, C3-Irregular), in combination with fuzzy logic-based mechano-regulatory tissue differentiation algorithms, were used to simulate the healing process when dynamization of varied degrees (dynamization coefficient or DC = 0-0.9; 0.9 represents 90% reduction in the fixation stiffness relative to a rigid fixation) were applied at different time points after fracture. The fuzzy logic-based algorithms have been validated with a preclinical animal model. The results showed that the healing responses of type A fractures were more sensitive to the changes in dynamization degree and timing comparing with type B or C fractures. Additionally, the optimal dynamization regime for each fracture type was different. For type A fractures, a moderate dynamization degree (e.g., DC = 0.5) applied after Week 1 promoted the recovery of biomechanical integrity. For type B and C fractures, the effective dynamization included a greater dynamization degree (DC = 0.7) applied after Week 2. Our results further demonstrated that the fracture morphology affected interfragmentary strain environments within the callus, leading to varied healing results for different fracture types. These results suggest that the effects of dynamization are highly dependent of the fracture types. Therefore, specific dynamization strategies should be chosen for different fracture types to achieve optimal healing outcomes.
Collapse
Affiliation(s)
- Ruisen Fu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Fei Song
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jizhi Fu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Bettina M Willie
- Department of Dentistry, McGill University, Montreal, Canada
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
9
|
Hu M, Zeng W, Zhang J, Feng Y, Ma L, Huang F, Cai Q. Fixators dynamization for delayed union and non-union of femur and tibial fractures: a review of techniques, timing and influence factors. J Orthop Surg Res 2023; 18:577. [PMID: 37550732 PMCID: PMC10405409 DOI: 10.1186/s13018-023-04054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
The optimal balance between mechanical environment and biological factors is crucial for successful bone healing, as they synergistically affect bone development. Any imbalance between these factors can lead to impaired bone healing, resulting in delayed union or non-union. To address this bone healing disorder, clinicians have adopted a technique known as "dynamization" which involves modifying the stiffness properties of the fixator. This technique facilitates the establishment of a favorable mechanical and biological environment by changing a rigid fixator to a more flexible one that promotes bone healing. However, the dynamization of fixators is selective for certain types of non-union and can result in complications or failure to heal if applied to inappropriate non-unions. This review aims to summarize the indications for dynamization, as well as introduce a novel dynamic locking plate and various techniques for dynamization of fixators (intramedullary nails, steel plates, external fixators) in femur and tibial fractures. Additionally, Factors associated with the effectiveness of dynamization are explored in response to the variation in dynamization success rates seen in clinical studies.
Collapse
Affiliation(s)
- Minhua Hu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenxing Zeng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingtao Zhang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanlan Feng
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Luyao Ma
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Huang
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qunbin Cai
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Hetterich J, Joos D, Beyerbach M, Cigler P, Hackenbroich C, Hatt JM, Müller K, Thöle M, Fehr M, Reuschel M. Treatment options, complications and long-term outcomes for limb fractures in pet rabbits. Vet Rec 2023; 192:e2344. [PMID: 36349546 DOI: 10.1002/vetr.2344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Limb fractures represent the most common orthopaedic disease in pet rabbits. However, only a few studies have evaluated therapeutic details of limb fractures. There are no data available for long-term outcomes of limb fracture treatment. METHODS The medical records of six institutions were reviewed retrospectively to identify cases of traumatic limb bone fractures in pet rabbits between 1999 and 2020. The medical records (n = 387) were analysed for details of fracture prevalence, aetiology, therapy protocols, treatment complications, outcome and long-term effects. In addition to the retrospective data evaluation, 13 rabbits were re-evaluated in person in recent clinical analyses, including orthopaedic examination, radiography and computed-tomographic imaging. Details of long-term effects of fracture treatment were requested over the telephone for a further 232 animals using a standardised questionnaire. RESULTS Long bone fractures accounted for the majority of all fractures (296/387; 76.5%). Hindlimb fractures (301/387; 77.7%) were more common than forelimb fractures (86/387; 22.2%), and tibial fractures and combined fractures of the tibia and fibula (119/387; 30.8%) were observed most frequently. Most fracture treatments were based on osteosynthesis procedures (243/328; 74.1%). Treatment complications occurred in 130 out of 328 (39.6%) cases. A high bodyweight (p = 0.047) and an older age (p = 0.01) were found to be significant risk factors for the emergence of therapy complications. Overall, 75.4% of animals (175/232) had a satisfactory long-term outcome. Limb posture anomalies were evaluated in 61 cases (26.3%). LIMITATIONS The multi-centre approach led to the inclusion of various institutions, veterinarians, treatment protocols and rabbit populations that might have influenced the results. The medical records were reviewed retrospectively, so there were some data that were lacking or could not be collected in a standardised manner. Furthermore, rabbit owners' evaluation of long-term outcomes might be prone to error, despite the use of a standardised interview questionnaire. CONCLUSION Limb fractures are a common orthopaedic issue in pet rabbits. The patient's bodyweight and age are significant risk factors for the emergence of complications during the fracture treatment process. Long-term orthopaedic effects, such as abnormal limb posture and permanent lameness of the affected limb, were observed regularly.
Collapse
Affiliation(s)
- Johannes Hetterich
- Department of Small Mammal, Reptile and Avian Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Martin Beyerbach
- Institute of Biometry and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pia Cigler
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | | | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Kerstin Müller
- Small Animal Clinic, Freie Universität Berlin, Berlin, Germany
| | - Milena Thöle
- Veterinary Clinic Posthausen, Posthausen, Germany
| | - Michael Fehr
- Department of Small Mammal, Reptile and Avian Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maximilian Reuschel
- Department of Small Mammal, Reptile and Avian Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
11
|
Fu R, Feng Y, Liu Y, Gao X, Bertrand DT, Du T, Liu Y, Willie BM, Yang H. Effect of the accordion technique on bone regeneration during distraction osteogenesis: A computational study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 227:107232. [PMID: 36371976 DOI: 10.1016/j.cmpb.2022.107232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Distraction osteogenesis (DO), a bone lengthening technique, is widely employed to treat congenital and acquired limb length discrepancies and large segmental bone defects. However, a major issue of DO is the prolonged consolidation phase (10-36 months) during which patients must wear a cumbersome external fixator. Attempts have been made to accelerate the healing process of DO by an alternating distraction and compression mode (so-called "accordion" technique or AT). However, it remains unclear how varied AT parameters affect DO outcomes and what the most effective AT mode is. METHODS Based on an experimentally-verified mechanobiological model, we performed a parametric analysis via in silico simulation of the bone regeneration process of DO under different AT modes, including combinations of varied application times (AT began at week 1-8 of the consolidation phase), durations (AT was used continuously for 1 week, 2 weeks or 4 weeks) and rates (distraction or compression at 0.25, 0.5, 0.75, and 1 mm/12 h). The control group had no AT applied during the consolidation phase. RESULTS Compared with the control group (no AT), AT applied at an early consolidation stage (e.g. week 1 of the consolidation phase) significantly enhanced bone formation and reduced the overall healing time. However, the effect of AT on bone healing was dependent on its duration and rate. Specifically, a moderate rate of AT (e.g. 0.5 mm/12 h) lasting for two weeks promoted blood perfusion recovery and bone regeneration, ultimately shortening the healing time. Conversely, over-high rates (e.g. 1 mm/12 h) and longer durations (e.g. 4 weeks) of AT adversely affected bone regeneration and blood perfusion recovery, thereby delaying bone bridging. CONCLUSIONS These results suggest that the therapeutic effects of AT on DO are highly dependent of the AT parameters of choice. Under appropriate durations and rates, the AT applied at an early consolidation phase is beneficial for blood recovery and bone regeneration. These results may provide a basis for selecting effective AT modes to accelerate consolidation and reduce the overall treatment period of DO.
Collapse
Affiliation(s)
- Ruisen Fu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yili Feng
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Xing Gao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - David T Bertrand
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada; Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China
| | - Bettina M Willie
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada; Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|
12
|
Bioresorbable Chitosan-Based Bone Regeneration Scaffold Using Various Bioceramics and the Alteration of Photoinitiator Concentration in an Extended UV Photocrosslinking Reaction. Gels 2022; 8:gels8110696. [DOI: 10.3390/gels8110696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone tissue engineering (BTE) is an ongoing field of research based on clinical needs to treat delayed and non-union long bone fractures. An ideal tissue engineering scaffold should have a biodegradability property matching the rate of new bone turnover, be non-toxic, have good mechanical properties, and mimic the natural extracellular matrix to induce bone regeneration. In this study, biodegradable chitosan (CS) scaffolds were prepared with combinations of bioactive ceramics, namely hydroxyapatite (HAp), tricalcium phosphate-α (TCP- α), and fluorapatite (FAp), with a fixed concentration of benzophenone photoinitiator (50 µL of 0.1% (w/v)) and crosslinked using a UV curing system. The efficacy of the one-step crosslinking reaction was assessed using swelling and compression testing, SEM and FTIR analysis, and biodegradation studies in simulated body fluid. Results indicate that the scaffolds had comparable mechanical properties, which were: 13.69 ± 1.06 (CS/HAp), 12.82 ± 4.10 (CS/TCP-α), 13.87 ± 2.9 (CS/HAp/TCP-α), and 15.55 ± 0.56 (CS/FAp). Consequently, various benzophenone concentrations were added to CS/HAp formulations to determine their effect on the degradation rate. Based on the mechanical properties and degradation profile of CS/HAp, it was found that 5 µL of 0.1% (w/v) benzophenone resulted in the highest degradation rate at eight weeks (54.48% degraded), while maintaining compressive strength between (4.04 ± 1.49 to 10.17 ± 4.78 MPa) during degradation testing. These results indicate that incorporating bioceramics with a suitable photoinitiator concentration can tailor the biodegradability and load-bearing capacity of the scaffolds.
Collapse
|
13
|
Liu Y, Du T, Qiao A, Mu Y, Yang H. Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation. J Funct Biomater 2022; 13:jfb13040164. [PMID: 36278633 PMCID: PMC9589944 DOI: 10.3390/jfb13040164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, Mg-based alloys have attracted much attention by researchers. However, the issues with an over-fast degradation rate and release of hydrogen still need to be overcome. Zn alloys have comparable mechanical properties with traditional metal materials, e.g., titanium (Ti), and have a moderate degradation rate, potentially serving as a good candidate for internal fixation materials, especially at load-bearing sites of the skeleton. Emerging Zn-based alloys and composites have been developed in recent years and in vitro and in vivo studies have been performed to explore their biodegradability, mechanical property, and biocompatibility in order to move towards the ultimate goal of clinical application in fracture fixation. This article seeks to offer a review of related research progress on Zn-based biodegradable materials, which may provide a useful reference for future studies on Zn-based biodegradable materials targeting applications in orthopedic internal fixation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Aike Qiao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Correspondence: ; Tel.: +86-(010)-6739-6657
| |
Collapse
|
14
|
Fu R, Feng Y, Bertrand D, Du T, Liu Y, Willie BM, Yang H. Enhancing the Efficiency of Distraction Osteogenesis through Rate-Varying Distraction: A Computational Study. Int J Mol Sci 2021; 22:ijms222111734. [PMID: 34769163 PMCID: PMC8583714 DOI: 10.3390/ijms222111734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Distraction osteogenesis (DO) is a mechanobiological process of producing new bone and overlying soft tissues through the gradual and controlled distraction of surgically separated bone segments. The process of bone regeneration during DO is largely affected by distraction parameters. In the present study, a distraction strategy with varying distraction rates (i.e., "rate-varying distraction") is proposed, with the aim of shortening the distraction time and improving the efficiency of DO. We hypothesized that faster and better healing can be achieved with rate-varying distractions, as compared with constant-rate distractions. A computational model incorporating the viscoelastic behaviors of the callus tissues and the mechano-regulatory tissue differentiation laws was developed and validated to predict the bone regeneration process during DO. The effect of rate-varying distraction on the healing outcomes (bony bridging time and bone formation) was examined. Compared to the constant low-rate distraction, a low-to-high rate-varying distraction provided a favorable mechanical environment for angiogenesis and bone tissue differentiation, throughout the distraction and consolidation phase, leading to an improved healing outcome with a shortened healing time. These results suggest that a rate-varying clinical strategy could reduce the overall treatment time of DO and decrease the risk of complications related to the external fixator.
Collapse
Affiliation(s)
- Ruisen Fu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (R.F.); (Y.F.); (T.D.); (Y.L.)
| | - Yili Feng
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (R.F.); (Y.F.); (T.D.); (Y.L.)
| | - David Bertrand
- Department of Pediatric Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (D.B.); (B.M.W.)
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (R.F.); (Y.F.); (T.D.); (Y.L.)
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (R.F.); (Y.F.); (T.D.); (Y.L.)
| | - Bettina M. Willie
- Department of Pediatric Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (D.B.); (B.M.W.)
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (R.F.); (Y.F.); (T.D.); (Y.L.)
- Correspondence: ; Tel.: +86-(010)-6739-6657
| |
Collapse
|
15
|
Barcik J, Epari DR. Can Optimizing the Mechanical Environment Deliver a Clinically Significant Reduction in Fracture Healing Time? Biomedicines 2021; 9:691. [PMID: 34207370 PMCID: PMC8234230 DOI: 10.3390/biomedicines9060691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
The impact of the local mechanical environment in the fracture gap on the bone healing process has been extensively investigated. Whilst it is widely accepted that mechanical stimulation is integral to callus formation and secondary bone healing, treatment strategies that aim to harness that potential are rare. In fact, the current clinical practice with an initially partial or non-weight-bearing approach appears to contradict the findings from animal experiments that early mechanical stimulation is critical. Therefore, we posed the question as to whether optimizing the mechanical environment over the course of healing can deliver a clinically significant reduction in fracture healing time. In reviewing the evidence from pre-clinical studies that investigate the influence of mechanics on bone healing, we formulate a hypothesis for the stimulation protocol which has the potential to shorten healing time. The protocol involves confining stimulation predominantly to the proliferative phase of healing and including adequate rest periods between applications of stimulation.
Collapse
Affiliation(s)
- Jan Barcik
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
- Bulgarian Academy of Sciences, Institute of Metal Science “Acad. A. Balevski”, Shipchenski prohod 67, 1574 Sofia, Bulgaria
| | - Devakara R. Epari
- Institute of Health and Biomedical Innovation, Queensland University of Technology, George Street 2, Brisbane, QLD 4000, Australia;
| |
Collapse
|