1
|
Winter C, Springer A, Descamps JL, Hoefinghoff J, Mohammad-Sadegh S, Paudel A, Stankovic-Brandl M. Unraveling the Effects of Filtration, Process Interruptions, and Post-Process Agitation on Protein Aggregation. AAPS PharmSciTech 2025; 26:85. [PMID: 40087238 DOI: 10.1208/s12249-025-03076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/18/2025] [Indexed: 03/17/2025] Open
Abstract
Filtration is an essential process step for the manufacturing and filling of biopharmaceuticals. In filling operations, sterile filtration is typically achieved through dead-end filtration using fine membrane filters that completely retain colony-forming units per square centimeter of filter area. According to FDA and USP guidelines, sterilizing filters must be product-compatible and composed of non-fiber releasing materials, typically with a absolute pore size rating of 0.22 µm. However, it has been observed that protein interaction with filters and particle shedding from filter materials, can contribute to protein aggregation when exposed to routine stresses such as agitation during manufacturing, handling, storage or transportation. Since aggregates can cause severe immune responses upon parenteral application, it is crucial to understand the possible effects of various filter materials during different manufacturing and filling set-ups in order to choose the most suitable filter types and filtration processes. To address this, we investigated particle formation on the visible, subvisible and submicron scales as well as structural changes in a specific liquid glycoprotein (GP) formulation after constant and impulse filtration (i.e., stop and go mechanisms to assess possible film formation and film disruption on the filter material) with commonly used hydrophilic membrane materials, i.e., polyvinylidene fluoride (PVDF), polyether sulfone (PES), and cellulose acetate (CA) with a pore size of 0.22 μm. In addition, we exposed the material to stirring and heating to induce aggregation and investigate the filter performances in the case of initially high particle content.
Collapse
Affiliation(s)
| | - Anna Springer
- Research Center Pharmaceutical Engineering Gmbh, Graz, Austria
| | | | | | - Salehi Mohammad-Sadegh
- Research Center Pharmaceutical Engineering Gmbh, Graz, Austria
- Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering Gmbh, Graz, Austria
- Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
2
|
Desai KG, Sofa C, Wang N, Mandal B, Blockus B, Heacock N, Colandene JD. Feasibility of Laboratory Equipment-Based Simulation Methods to Assess the Impact of Vehicle Transportation on Product Quality of mAb Dosing Solutions. Mol Pharm 2024; 21:4726-4746. [PMID: 39141808 DOI: 10.1021/acs.molpharmaceut.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Therapeutic monoclonal antibody (mAb) products for intravenous (IV) administration generally require aseptic compounding with a commercially available diluent. When the administration site is located away from the preparation site, the prepared dosing solution may need to be transported in a vehicle. The impact of vehicle transportation on the product quality of mAbs needs to be evaluated to define safe handling and transportation conditions for dosing solutions. The design and execution of actual vehicle transportation studies require considerable resources and time. In this study, we systematically developed three different laboratory equipment-based methods that simulate vehicle transportation stresses: orbital shaker (OS), reciprocating shaker (RS), and vibration test system (VTS)-based simulation methods. We assessed their feasibility by comparing the impact on product quality caused by each simulated method with that caused by actual vehicle transportation. Without residual polysorbate 80 (PS80) in the mAb dosing solution, transportation via a cargo van led to a considerable increase in the subvisible particle counts and did not meet the compendial specifications for the light obscuration method. However, the presence of as low as 0.0004%w/v (4 ppm) PS80 in the dosing solution stabilized the mAb against vehicle transportation stresses and met the compendial specifications. Vehicle transportation of an IV bag with headspace resulted in negligible micro air bubbles and foaming in both PS80-free and PS80-containing mAb dosing solutions. These phenomena were found to be comparable to the VTS-based simulated method. However, the OS- and RS-based simulated methods formed significantly more micro air bubbles and foaming in an IV bag with headspace than either actual vehicle transportation or the VTS-based simulated method. Despite the higher interfacial stress (micro air bubbles and foaming) in the dosing solution created by the OS- and RS-based simulated methods, 0.0004%w/v (4 ppm) PS80 in the dosing solution was found to be sufficient to stabilize the mAb. The study shows that under appropriate simulated conditions, the OS-, RS-, and VTS-based simulated methods can be used as practical and meaningful models to assess the impact and risk of vehicle transportation on the quality of mAb dosing solutions.
Collapse
Affiliation(s)
- Kashappa Goud Desai
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Cait Sofa
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Ning Wang
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Bivash Mandal
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Brendan Blockus
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - Nathan Heacock
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| | - James D Colandene
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 S. Collegeville Ave, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
3
|
Liu JZ, Li L, Fang WJ. A Novel Size Exclusion Chromatography Method for the Analysis of Monoclonal Antibodies and Antibody-drug Conjugates by Using Sodium Iodide in the Mobile Phase. Pharm Res 2024; 41:1893-1901. [PMID: 39231906 DOI: 10.1007/s11095-024-03763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
PURPOSES Size exclusion chromatography (SEC) is widely used to characterize molecular size variants of antibody drugs. However, SEC analysis is hindered by secondary interactions (or nonspecific interactions) between proteins and stationary phase packing, which result in poor column efficiency. Previous studies have reported that chaotropic salt can inhibit these interactions, but the corresponding applications of this aspect are relatively rare. Therefore, this study introduces a novel approach using sodium iodide (NaI) as a mobile-phase component in SEC and investigates the influence of the mobile-phase composition on secondary interactions. METHODS SEC analysis was performed on one antibody-drug conjugate and four monoclonal antibodies (mAbs) using three different mobile-phase systems (i.e., sodium chloride/L-arginine hydrochloride/NaI mobile phases system) to compare the column efficiency. Subsequently, mAb-1 was used as a model to investigate the effects of these factors on secondary interactions by adjusting the ionic strength (salt concentration) and pH of the NaI mobile-phase system. RESULTS NaI exhibits superior column efficiency performance in the SEC analysis of most products. The ionic strength will affect nonideal electrostatic and hydrophobic interaction. An appropriate ionic strength can inhibit electrostatic interactions, while an excessive ionic strength increases hydrophobic interactions. pH primarily influences electrostatic interactions. Determining the appropriate pH necessitates consideration of the isoelectric point of the protein and the pH tolerance of the column. CONCLUSIONS In SEC analysis, using NaI as the salt component in the mobile phase reduces secondary interactions and improves column efficiency. This approach is advantageous for samples with intense secondary interactions and is a suitable alternative.
Collapse
Affiliation(s)
- Jian-Zhong Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Taizhou Institute of Zhejiang University, Taizhou, 317000, China
| | - Lei Li
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Taizhou Institute of Zhejiang University, Taizhou, 317000, China.
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321000, China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
4
|
Desai KG, Colandene JD, Crotts G, Sofa C, Wang N, Blockus B, Mandal B, Wittig K, Shukla A. Transportation of mAb Dosing Solution in Intravenous Bag: Impact of Manual, Vehicle, and Pneumatic Tube System Transportation Methods on Product Quality. Mol Pharm 2023; 20:6474-6491. [PMID: 37962592 DOI: 10.1021/acs.molpharmaceut.3c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Monoclonal antibody (mAb) products for intravenous (IV) administration generally require aseptic compounding with a commercial diluent within a pharmacy. The prepared dosing solution in the IV bag may be transported to the dosing location via manual, vehicular, pneumatic tube system (PTS), or a combination of these methods. In this study, the type and level of physical stresses associated with these three methods and their product quality impact for relatively sensitive and stable mAbs were assessed. Vibration was found to be the main stress associated with manual and vehicle transportation methods, although this was at a relatively low level (<1 GRMS/Root-Mean-Square Acceleration). Shock and drop events, at relatively low levels, were also observed with these methods. PTS transportation showed substantially more intense shock, vibration, and drop stresses and the measured levels were up to 91 G/force of acceleration or deceleration, 3.7 GRMS and 39 G, respectively. Using a foam padding insert for PTS transportation reduced the shock level considerably (91 G to 59 G). Transportation of mAb dosing solutions in IV bags via different methods including PTS transportation variables caused a small increase in the subvisible particle counts and there was no change in submicrometer particle distribution. No visible particles and no significant change to soluble aggregate levels were observed after transportation. Strategies such as removal of IV bag headspace prior to transport and in-line filtration poststress reduced the subvisible particles counts. All tested transportation conditions showed negligible impact on other product quality attributes tested. Removal of IV bag headspace prior to PTS transport prevented formation of micro air bubbles and foaming compared to the unaltered IV bag. This study shows examples where manual, vehicle, and PTS transport methods did not significantly impact product quality, and provides evidence that mAb products that are appropriately stabilized in the dosing solution (e.g., with a surfactant) can be transported via a PTS.
Collapse
Affiliation(s)
- Kashappa Goud Desai
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - James D Colandene
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - George Crotts
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Cait Sofa
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Ning Wang
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Brendan Blockus
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Bivash Mandal
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Katie Wittig
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| | - Asha Shukla
- Drug Product Development - Steriles, Medicine Development and Supply, GSK, 1250 South Collegeville Avenue, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
5
|
Riccardi C, Carlson DP, Graham KS, Shameem M, Kamen DE. Evaluation of the In-Use Stability of Monoclonal Antibody IV Admixtures Prepared from Drug Products Containing Polysorbate 20 Degraded by Host-Cell Lipases. J Pharm Sci 2023; 112:3045-3055. [PMID: 37643700 DOI: 10.1016/j.xphs.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Host-cell lipases can be present in monoclonal antibody drug products and can degrade polysorbates present in the formulations as stabilizers. We hypothesized that the in-use stability of the IV admixture prepared from such a drug product might be impacted by decreasing levels of polysorbate 20. Host-cell lipase activity has, in fact, been observed during development of one of our therapeutic monoclonal antibody drug products. Throughout the course of the product shelf life, polysorbate 20 levels decreased but no other quality attributes of the drug product were impacted. An experimental approach was developed to simulate how the prepared IV admixture in-use stability is affected as polysorbate 20 concentration in the drug product decreased over the shelf life, and from that a minimum level of polysorbate 20 required in the drug product was determined to estimate the in-use stability of the IV admixture as the polysorbate 20 in the drug product degrades. The results indicate that although the observed degradation of polysorbate 20 does not affect quality attributes of this drug product, in-use stability of the IV admixture as a function of polysorbate degradation can be impacted and should be assessed to ensure sufficient quality.
Collapse
Affiliation(s)
- Caterina Riccardi
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA
| | - Dane P Carlson
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA
| | - Kenneth S Graham
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA
| | - Mohammed Shameem
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA
| | - Douglas E Kamen
- Regeneron Pharmaceuticals Inc., Formulation Development, 777 Old Saw Mill River Road, Tarrytown, New York, NY 10591, USA.
| |
Collapse
|
6
|
Kim M, Ma Y, Srinivasan C, O'Connor T, Telikepalli SN, Ripple DC, Lute S, Bhirde A. Morphologically-Directed Raman Spectroscopy as an Analytical Method for Subvisible Particle Characterization in Therapeutic Protein Product Quality. Sci Rep 2023; 13:20473. [PMID: 37993487 PMCID: PMC10665318 DOI: 10.1038/s41598-023-45720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023] Open
Abstract
Subvisible particles (SVPs) are a critical quality attribute of injectable therapeutic proteins (TPs) that needs to be controlled due to potential risks associated with drug product quality. The current compendial methods routinely used to analyze SVPs for lot release provide information on particle size and count. However, chemical identification of individual particles is also important to address root-cause analysis. Herein, we introduce Morphologically-Directed Raman Spectroscopy (MDRS) for SVP characterization of TPs. The following particles were used for method development: (1) polystyrene microspheres, a traditional standard used in industry; (2) photolithographic (SU-8); and (3) ethylene tetrafluoroethylene (ETFE) particles, candidate reference materials developed by NIST. In our study, MDRS rendered high-resolution images for the ETFE particles (> 90%) ranging from 19 to 100 μm in size, covering most of SVP range, and generated comparable morphology data to flow imaging microscopy. Our method was applied to characterize particles formed in stressed TPs and was able to chemically identify individual particles using Raman spectroscopy. MDRS was able to compare morphology and transparency properties of proteinaceous particles with reference materials. The data suggests MDRS may complement the current TPs SVP analysis system and product quality characterization workflow throughout development and commercial lifecycle.
Collapse
Affiliation(s)
- Minkyung Kim
- Division of Biotechnology Research and Review II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Youlong Ma
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Charudharshini Srinivasan
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Thomas O'Connor
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Srivalli N Telikepalli
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Dean C Ripple
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Scott Lute
- Division of Biotechnology Research and Review II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| | - Ashwinkumar Bhirde
- Division of Biotechnology Research and Review II, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
7
|
Wong B, Zhao X, Su Y, Ouyang H, Rhodes T, Xu W, Xi H, Fu D. Characterizing Silicone Oil-Induced Protein Aggregation with Stimulated Raman Scattering Imaging. Mol Pharm 2023; 20:4268-4276. [PMID: 37382286 DOI: 10.1021/acs.molpharmaceut.3c00391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Particles in biopharmaceutical products present high risks due to their detrimental impacts on product quality and safety. Identification and quantification of particles in drug products are important to understand particle formation mechanisms, which can help develop control strategies for particle formation during the formulation development and manufacturing process. However, existing analytical techniques such as microflow imaging and light obscuration measurement lack the sensitivity and resolution to detect particles with sizes smaller than 2 μm. More importantly, these techniques are not able to provide chemical information to determine particle composition. In this work, we overcome these challenges by applying the stimulated Raman scattering (SRS) microscopy technique to monitor the C-H Raman stretching modes of the proteinaceous particles and silicone oil droplets formed in the prefilled syringe barrel. By comparing the relative signal intensity and spectral features of each component, most particles can be classified as protein-silicone oil aggregates. We further show that morphological features are poor indicators of particle composition. Our method has the capability to quantify aggregation in protein therapeutics with chemical and spatial information in a label-free manner, potentially allowing high throughput screening or investigation of aggregation mechanisms.
Collapse
Affiliation(s)
- Brian Wong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xi Zhao
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Sterile and Specialty Products, Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yongchao Su
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hanlin Ouyang
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Timothy Rhodes
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Wei Xu
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hanmi Xi
- Analytical Enabling Capabilities, Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Rahn H, Oeztuerk M, Hentze N, Junge F, Hollmann M. The Strengths of Total Holographic Video Microscopy in Detecting Sub-Visible Protein Particles in Biopharmaceuticals: A Comparison to Flow Imaging and Resonant Mass Measurement. J Pharm Sci 2023; 112:985-990. [PMID: 36596393 DOI: 10.1016/j.xphs.2022.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/02/2023]
Abstract
Determination of subvisible particle (SVP) content in biopharmaceuticals is a prerequisite to ensure the quality of liquid biopharmaceutical products. Here, we present a comparison of the recently introduced holographic video microscopy (total holographic characterization, THC) with two orthogonal and well-established analytical technologies: micro flow imaging (MFI) and resonant mass measurement (RMM). The capabilities of the THC were investigated under conditions commonly applied in drug product development. Three different antibody products were used at different concentrations and formulations to cover a wide range of realistic use-cases. The comparison was particularly focused on protein aggregates to investigate the applicability of THC to this critical class of particles in drug product development. Protein concentrations up to 100 mg/ml were investigated covering a broad range of viscosity and refractive indices, both important parameters in particle detection. The comparison reveals that THC is highly sensitive to detect protein aggregates in a size range from 0.5 µm to 10 µm. THC shows a significant superiority to FI and RMM in detecting heterogenous protein aggregates which often appear as transparent and porous particles. Additionally, THC needs very small sample amount of about 30 µl and short measurement times, making it applicable for early development stages and high-throughput approaches. These results show that THC is a valuable supplement to the existing particle characterization method portfolio in drug product development.
Collapse
Affiliation(s)
- Harri Rahn
- AbbVie Deutschland GmbH & Co. KG, Knollstraße, Ludwigshafen 67061, Germany.
| | - Merve Oeztuerk
- AbbVie Deutschland GmbH & Co. KG, Knollstraße, Ludwigshafen 67061, Germany
| | - Nikolai Hentze
- AbbVie Deutschland GmbH & Co. KG, Knollstraße, Ludwigshafen 67061, Germany
| | - Friederike Junge
- AbbVie Deutschland GmbH & Co. KG, Knollstraße, Ludwigshafen 67061, Germany
| | - Markus Hollmann
- AbbVie Deutschland GmbH & Co. KG, Knollstraße, Ludwigshafen 67061, Germany
| |
Collapse
|
9
|
Fawaz I, Schaz S, Boehrer A, Garidel P, Blech M. Micro-flow imaging multi-instrument evaluation for sub-visible particle detection. Eur J Pharm Biopharm 2023; 185:55-70. [PMID: 36708971 DOI: 10.1016/j.ejpb.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Sub-visible particles (SVPs) in pharmaceutical products are a critical quality attribute, and therefore should be monitored during development. Although light obscuration (LO) and microscopic particle count tests are the primary pharmacopeial methods used to quantify SVPs, flow imaging methods like Micro-Flow Imaging (MFI™) appear to overcome shortcomings of LO such as limited sensitivity concerning smaller translucent SVPs in the size range < 10 µm. Nowadays, MFI™ is routinely utilized during development of biologicals. Oftentimes multiple devices are distributed across several laboratories and departments. This poses challenges in data interpretation and consistency as well as in the use of multiple devices for one purpose. In this study, we systematically evaluated seven MFI™ instruments concerning their counting and size precision and accuracy, using an inter-comparable approach to mimic daily working routine. Therefore, we investigated three different types of particles (i) NIST certified counting standards, (ii) protein-coated particles, and (iii) stress-induced particles from a monoclonal antibody. We compared the results to alternative particle detection methods: LO and Backgrounded Membrane Imaging (BMI). Our results showed that the precision and accuracy of particle count and size, as well as the comparability of instruments, depended on the particle source and its material properties. The various MFI™ instruments investigated showed high precision (<15 %) and data generated on different instruments were of the same order of magnitude within pharmacopeial relevant size ranges for NIST certified counting standards. However, we found limitations in the upper and lower detection limits, contrary to the limits claimed by the manufacturer. In addition, proteinaceous and protein-containing particles showed statistically significant differences in particle counts, while the measured particle diameters of all sizes were quite consistent.
Collapse
Affiliation(s)
- Ibrahim Fawaz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals, 88397 Biberach an der Riss, Germany
| | - Simone Schaz
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals, 88397 Biberach an der Riss, Germany
| | - Armin Boehrer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Analytical Development Biologicals, CMC Statistics, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals, 88397 Biberach an der Riss, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, Pharmaceutical Development Biologicals, 88397 Biberach an der Riss, Germany.
| |
Collapse
|
10
|
In-line warming reduces in-line pressure of subcutaneous infusion of concentrated immunoglobulins. Drug Deliv Transl Res 2023:10.1007/s13346-023-01321-y. [PMID: 36920736 PMCID: PMC10382333 DOI: 10.1007/s13346-023-01321-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Immunoglobulin replacement therapy is a life-saving treatment in patients with immunodeficiency and effective in the management of autoimmune disorders. Immunoglobulins are administered intravenously or subcutaneously, with the latter route reducing systemic reactions and providing an option for self-infusion, increasing patient convenience, while decreasing patient burden, healthcare utilization, and costs. A major limitation with subcutaneous administrations is the frequency of infusion due to limited volumes administrable into subcutaneous space, necessitating increased drug concentration, absorption, and dispersion. Increasing the concentration of immunoglobulins from 10 to 20% halves the required volume, but leads to higher dynamic viscosity, limiting infusion rate. Recombinant human hyaluronidase increases dispersion and absorption of immunoglobulins allowing administration of ≤ 600 mL per site, but does not change viscosity. Since the viscosity of fluids depends on temperature, we tested the feasibility of in-line warming of immunoglobulin formulations to physiological temperatures. In vitro analysis showed no negative impact of in-line warming to 38 °C on product quality. Subcutaneous infusion studies in pigs confirmed the feasibility of infusion rates of up to 7.5 mL/min with in-line warmed TAK-881, an immunoglobulin 20% facilitated with recombinant human hyaluronidase. In-line pressures were reduced compared with conventional immunoglobulin 20%, and local tolerance was not altered. Reduction of in-line pressures was more pronounced with thinner needle sets, indicating a potential benefit for patients. In summary, an in in-line warming device can circumvent the limitation of high viscosity, while product quality and local tolerance are maintained. The results of the presented studies warrant further testing in a phase 1 clinical study.
Collapse
|
11
|
Hu Z, Mi W, Ye C, Zhao Y, Cavicchi RE, Hang H, Li H. Global Analysis of Aggregation Profiles of Three Kinds of Immuno-Oncology mAb Drug Products Using Flow Cytometry. Anal Chem 2023; 95:4768-4775. [PMID: 36862732 DOI: 10.1021/acs.analchem.2c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Accurately quantifying the protein particles in both subvisible (1-100 μm) and submicron (≤1 μm) ranges remains a prominent challenge in the development and manufacturing of protein drugs. Due to the limitation of the sensitivity, resolution, or quantification level of various measurement systems, some instruments may not provide count information, while others can only count particles in a limited size range. Moreover, the reported concentrations of protein particles commonly have significant discrepancies owing to different methodological dynamic ranges and the detection efficiency of these analytical tools. Therefore, it is extremely difficult to accurately and comparably quantify protein particles within the desired size range at one time. To develop an efficient protein aggregation measurement method that can span the entire range of interest, we established, in this study, a single particle-sizing/counting method based on our highly sensitive lab-built flow cytometry (FCM) system. The performance of this method was assessed, and its capability of identifying and counting microspheres between 0.2 and 25 μm was demonstrated. It was also used to characterize and quantify both subvisible and submicron particles in three kinds of top-selling immuno-oncology antibody drugs and their lab-produced counterparts. These assessment and measurement results suggest that there may be a role for an enhanced FCM system as an efficient investigative tool for characterizing and learning the molecular aggregation behavior, stability, or safety risk of protein products.
Collapse
Affiliation(s)
- Zhishang Hu
- National Institute of Metrology, No. 18, Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Wei Mi
- National Institute of Metrology, No. 18, Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Chen Ye
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Yun Zhao
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Richard E Cavicchi
- Bioprocess Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Haiying Hang
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Hongmei Li
- National Institute of Metrology, No. 18, Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| |
Collapse
|
12
|
Poozesh S, Cannavò F, Manikwar P. Sensitivity and Uncertainty Analysis of Micro-Flow Imaging for Sub-Visible Particle Measurements Using Artificial Neural Network. Pharm Res 2023; 40:721-733. [PMID: 36697932 DOI: 10.1007/s11095-023-03474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/15/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE During biopharmaceutical drug manufacturing, storage, and distribution, proteins in both liquid and solid dosage forms go through various processes that could lead to protein aggregation. The extent of aggregation in the sub-micron range can be measured by analyzing a liquid or post-reconstituted powder sample using Micro-Flow Imaging (MFI) technique. MFI is widely used in biopharmaceutical industries due to its high sensitivity in detecting and analyzing particle size distribution. However, the MFI's sensitivity to various factors makes accurate measurement challenging. Therefore, in light of the inherent variability of the method, this work aims to explore the capabilities of an adopted coupled sensitivity analysis and machine learning algorithm to quantify the influencing factors on the formed sub-visible particles and method variability. METHODS The proposed algorithm consists of two interconnected components, namely a surrogate model with a neural network and a sensitivity analyzer. A machine learning tool based on artificial neural networks (ANN) is constructed with MFI data. The best fit with an optimized configuration is found. Sensitivity and uncertainty analysis is performed using this network as the surrogate model to understand the impacts of input parameters on MFI data. RESULTS Results reveal the most impactful reconstitution preparation factors and others that are masked by the instrument variabilities. It is shown that instrument inaccuracy is a function of size category, with higher variabilities associated with larger size ranges. CONCLUSION Utilizing this tool while assessing the sensitivity of outputs to various parameters, measurement variabilities for analytical characterization tests can be quantified.
Collapse
Affiliation(s)
- Sadegh Poozesh
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca , Gaithersburg, MD, USA.
| | - Flavio Cannavò
- Istituto Nazionale Di Geofisica E Vulcanologia, Sezione Di Catania-Osservatorio Etneo, Piazza Roma, 2-95125, Catania, Italy
| | - Prakash Manikwar
- Dosage Form Design and Development, BioPharmaceuticals Development, R&D, AstraZeneca , Gaithersburg, MD, USA
| |
Collapse
|
13
|
Saunier J, Khzam A, Yagoubi N. Impact of mechanical stress on flexible tubing used for biomedical applications: Characterization of the damages and impact on the patient's health. J Mech Behav Biomed Mater 2022; 136:105477. [PMID: 36219992 DOI: 10.1016/j.jmbbm.2022.105477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022]
Abstract
Flexible tubing is a key part of a lot of medical devices used in hospital, but may be subjected to a lot of various mechanical stresses that can led to the failure or to complications for the patients. The nature and causes of these mechanical stresses were listed for peristaltic pump tubing, infusion set tubing and catheters. Their consequences in term of tubing damages and particular contamination were reported. The impact of the chemical nature of the tubing, of its size and also the impact of various parameters of the clinical acts were reviewed. Last the consequences for the patient's health were discussed.
Collapse
Affiliation(s)
- J Saunier
- Matériaux et Santé, Faculté de pharmacie, Université Paris Saclay, France.
| | - A Khzam
- Matériaux et Santé, Faculté de pharmacie, Université Paris Saclay, France
| | - N Yagoubi
- Matériaux et Santé, Faculté de pharmacie, Université Paris Saclay, France
| |
Collapse
|
14
|
Murphy MI, Bruque M, Hanford A, Trayton I, Handali M, Leissa J, Hasige S, Day K, Patel S. Qualitative high-throughput analysis of subvisible particles in biological formulations using backgrounded membrane imaging. J Pharm Sci 2022; 111:1605-1613. [DOI: 10.1016/j.xphs.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
15
|
Cavicchi RE, Philips LA, Cheong FC, Ruffner DB, Kasimbeg P, Vreeland W. Distribution of Average Aggregate Density from Stir-stressed NISTmAb Protein. J Pharm Sci 2022; 111:1614-1624. [DOI: 10.1016/j.xphs.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
|
16
|
Jing ZY, Huo GL, Sun MF, Shen BB, Fang WJ. Characterization of Grinding-Induced Subvisible Particles and Free Radicals in a Freeze-Dried Monoclonal Antibody Formulation. Pharm Res 2022; 39:399-410. [PMID: 35083639 DOI: 10.1007/s11095-022-03170-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSES The primary objectives of this study were to investigate the degradation mechanisms of freeze-dried monoclonal antibody (mAb) formulations under mechanical grinding, assess the sensitivity and suitability of various particle analysis techniques, analyze the structure of the collected subvisible particles (SbVPs), and analyze the antioxidant mechanism of methionine (Met) under degradation process to gain a thorough understanding of the phenomenon. METHODS The freeze-dried mAb-X formulations underwent grinding, and the resultant SbVPs were characterized through visual inspection, flow imaging microscopy, dynamic light scattering, ultraviolet-visible spectroscopy, and size-exclusion high-performance liquid chromatography. We further evaluated the effect of different temperatures and the free radical scavenger Met on SbVP formation. The produced free radicals were detected using electron paramagnetic resonance, and Met S-oxide formation was detected using liquid chromatography-mass spectrometry. In addition, we analyzed the obtained SbVPs using capillary electrophoresis sodium dodecyl sulfate and Fourier transform infrared spectroscopy. RESULTS Grinding leads to SbVP formation under high temperature and free radical formation. Free radicals produced during grinding require the participation of a macromolecule. Met could then bind to the produced free radicals, thus partially protecting mAb-X from degradation while itself undergoing oxidation to form Met(O). Sensitivity differences between different particle analysis techniques were evaluated, and the obtained SbVPs showed significant changes in secondary structure and the formation of covalent aggregates and fragments. CONCLUSIONS Met plays the role of an antioxidant in protecting macromolecules by quenching the free radicals produced during grinding. To thoroughly characterize SbVPs, multiple and orthogonal particle analysis techniques should be used, and if necessary, SbVPs should be processed by enrichment to accurately analyze primary and high order structures.
Collapse
Affiliation(s)
- Zhen-Yi Jing
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Guo-Li Huo
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Min-Fei Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Bin-Bin Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
17
|
Guo S, Yu C, Guo X, Jia Z, Yu X, Yang Y, Guo L, Wang L. Subvisible Particle Analysis of 17 Monoclonal Antibodies Approved in China Using Flow Imaging and Light Obscuration. J Pharm Sci 2021; 111:1164-1171. [PMID: 34551350 DOI: 10.1016/j.xphs.2021.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022]
Abstract
In the study, subvisible particles in 205 samples from 17 commercial mAb drug products approved in China were analyzed using light obscuration (LO) and flow imaging microscopy (FIM) methods. For each method, a total 633 tests (runs) were performed. In the tests, samples in state of lyophilized powder or syringe package had significantly higher particle concentrations. It was confirmed by analyzing the 205 drug product samples that FIM particle counts are generally higher than LO counts. The cause of the higher counts of FIM method than LO counts was examined by looking into the contribution of proteinaceous, translucent particles in the samples. The data of the study showed that the number of proteinaceous, translucent particles was a factor in the elevated counts of FIM method compared to LO method.
Collapse
Affiliation(s)
- Sha Guo
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China
| | - Chuanfei Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China
| | - Xiao Guo
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China
| | - Zhe Jia
- School of Pharmacy, Yantai University, No. 30, Qingquan Road, Yantai 264005, China
| | - Xiaojuan Yu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China
| | - Yalan Yang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China
| | - Luyun Guo
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China
| | - Lan Wang
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 31, Huatuo Road, Daxing District, Beijing 102629, China.
| |
Collapse
|
18
|
Kim NA, Yu HW, Noh GY, Park SK, Kang W, Jeong SH. Protein microbeadification to achieve highly concentrated protein formulation with reversible properties and in vivo pharmacokinetics after reconstitution. Int J Biol Macromol 2021; 185:935-948. [PMID: 34237365 DOI: 10.1016/j.ijbiomac.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
A protein precipitation technique was optimized to produce biophysically stable 'protein microbeads', applicable to highly concentrated protein formulation. Initially, production of BSA microbeads was performed using rapid dehydration by vortexing in organic solvents followed by cold ethanol treatment and a vacuum drying. Out of four solvents, n-octanol produced the most reversible microbeads upon reconstitution. A Shirasu porous glass (SPG) membrane emulsification technique was utilized to enhance the size distribution and manufacturing process of the protein microbeads with a marketized human IgG solution. Process variants such as dehydration time, temperature, excipients, drying conditions, and initial protein concentration were evaluated in terms of the quality of IgG microbeads and their reversibility. The hydrophobized SPG membrane produced a narrow size distribution of the microbeads, which were further enhanced by shorter dehydration time, low temperature, minimized the residual solvents, lower initial protein concentration, and addition of trehalose to the IgG solution. Final reversibility of the IgG microbeads with trehalose was over 99% at both low and high protein concentrations. Moreover, the formulation was highly stable under repeated mechanical shocks and at an elevated temperature compared to its liquid state. Its in vivo pharmacokinetic profiles in rats were consistent before and after the 'microbeadification'.
Collapse
Affiliation(s)
- Nam Ah Kim
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea.
| | - Hyun Woo Yu
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea
| | - Ga Yeon Noh
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea
| | - Sang-Koo Park
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea.
| |
Collapse
|
19
|
Xu X, Hu Q, Liu D, Qiu H, Shameem M, Li N. Characterization of Proteinaceous Particles in Monoclonal Antibody Drug Products Using Mass Spectrometry. J Pharm Sci 2021; 110:3403-3409. [PMID: 34139261 DOI: 10.1016/j.xphs.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
In recent years, monoclonal antibodies (mAb) have become one of the most important classes of therapeutic proteins. Among many of the quality attributes monitored and controlled throughout therapeutic antibody development, particulate matter is one of the critical quality attributes (CQAs) for drug products. Visible and subvisible particulates in drug products may pose safety and immunogenicity risks to patients and therefore are tightly controlled and regulated. Characterization of the particle composition in drug products is essential to understand the origin of particulates and their mechanism of formation. In this study, we developed a liquid chromatography-mass spectrometry (LC-MS) based method and integrated it into the typical particulate characterization workflow to identify and quantify the composition of proteinaceous particles isolated from a therapeutic mAb drug product. The LC-MS workflow provides a useful tool to study particle formation and monitor the protein composition of particulates during therapeutic mAb development.
Collapse
Affiliation(s)
- Xiaobin Xu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Qingyan Hu
- Formulation Development, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Dingjiang Liu
- Formulation Development, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Mohammed Shameem
- Formulation Development, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
20
|
Klijn ME, Hubbuch J. Application of ultraviolet, visible, and infrared light imaging in protein-based biopharmaceutical formulation characterization and development studies. Eur J Pharm Biopharm 2021; 165:319-336. [PMID: 34052429 DOI: 10.1016/j.ejpb.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023]
Abstract
Imaging is increasingly more utilized as analytical technology in biopharmaceutical formulation research, with applications ranging from subvisible particle characterization to thermal stability screening and residual moisture analysis. This review offers a comprehensive overview of analytical imaging for scientists active in biopharmaceutical formulation research and development, where it presents the unique information provided by the ultraviolet (UV), visible (Vis), and infrared (IR) sections in the electromagnetic spectrum. The main body of this review consists of an outline of UV, Vis, and IR imaging techniques for several (bio)physical properties that are commonly determined during protein-based biopharmaceutical formulation characterization and development studies. The review concludes with a future perspective of applied imaging within the field of biopharmaceutical formulation research.
Collapse
Affiliation(s)
- Marieke E Klijn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands.
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Baird G, Farrell C, Cheung J, Semple A, Blue J, Ahl PL. FTIR Spectroscopy Detects Intermolecular β-Sheet Formation Above the High Temperature T m for Two Monoclonal Antibodies. Protein J 2021; 39:318-327. [PMID: 32656609 PMCID: PMC7387379 DOI: 10.1007/s10930-020-09907-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The temperature-dependent secondary structure of two monoclonal IgG antibodies, anti-IGF1R and anti-TSLP, were examined by transmission mode Fourier Transform Infrared (FTIR) spectroscopy. Anti-IGF1R and anti-TSLP are IgG monoclonal antibodies (mAbs) directed against human Insulin-like Growth Factor 1 Receptor for anti-tumor activity and Thymic Stromal Lymphopoietin cytokine for anti-asthma activity, respectively. Differential scanning calorimetry (DSC) clearly indicates both antibodies in their base formulations have a lower temperature protein conformational change near 70 °C (Tm1) and a higher temperature protein conformational change near 85 °C (Tm2). Thermal scanning dynamic light scatting (TS-DLS) indicates a significant particle size increase for both antibodies near Tm2 suggesting a high level of protein aggregation. The nature of these protein conformational changes associated with increasing the formulation temperature and decreasing sucrose concentration were identified by transmission mode FTIR and second derivative FTIR spectroscopy of temperature controlled aqueous solutions of both monoclonal antibodies. The transition from intra-molecular β sheets to inter-molecular β sheets was clearly captured for both monoclonal antibodies using FTIR spectroscopy. Finally, FTIR Spectroscopy was able to show the impact of a common excipient such as sucrose on the stability of each monoclonal antibody, further demonstrating the usefulness of FTIR spectroscopy for studying protein aggregation and formulation effects.
Collapse
|
22
|
Particle Detection and Characterization for Biopharmaceutical Applications: Current Principles of Established and Alternative Techniques. Pharmaceutics 2020; 12:pharmaceutics12111112. [PMID: 33228023 PMCID: PMC7699340 DOI: 10.3390/pharmaceutics12111112] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Detection and characterization of particles in the visible and subvisible size range is critical in many fields of industrial research. Commercial particle analysis systems have proliferated over the last decade. Despite that growth, most systems continue to be based on well-established principles, and only a handful of new approaches have emerged. Identifying the right particle-analysis approach remains a challenge in research and development. The choice depends on each individual application, the sample, and the information the operator needs to obtain. In biopharmaceutical applications, particle analysis decisions must take product safety, product quality, and regulatory requirements into account. Biopharmaceutical process samples and formulations are dynamic, polydisperse, and very susceptible to chemical and physical degradation: improperly handled product can degrade, becoming inactive or in specific cases immunogenic. This article reviews current methods for detecting, analyzing, and characterizing particles in the biopharmaceutical context. The first part of our article represents an overview about current particle detection and characterization principles, which are in part the base of the emerging techniques. It is very important to understand the measuring principle, in order to be adequately able to judge the outcome of the used assay. Typical principles used in all application fields, including particle–light interactions, the Coulter principle, suspended microchannel resonators, sedimentation processes, and further separation principles, are summarized to illustrate their potentials and limitations considering the investigated samples. In the second part, we describe potential technical approaches for biopharmaceutical particle analysis as some promising techniques, such as nanoparticle tracking analysis (NTA), micro flow imaging (MFI), tunable resistive pulse sensing (TRPS), flow cytometry, and the space- and time-resolved extinction profile (STEP®) technology.
Collapse
|
23
|
Thakare V, Schmidt T, Rupprechter O, Leibold J, Stemmer S, Mischo A, Bhattacharjee D, Prazeller P. Can Cross-Linked Siliconized PFS Come to the Rescue of the Biologics Drug Product? J Pharm Sci 2020; 109:3340-3351. [PMID: 32871152 DOI: 10.1016/j.xphs.2020.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Silicone can present a challenge during the development of a biologics drug product particularly in pre-filled syringe (PFS). Due to silicone related challenges, substantial changes in components and manufacturing of the PFS are being sought. Cross-linking of the silicone being one of them, can help reduce mobilization of the silicone into drug product whilst retaining its functionality of lubrication during injection. In this work, we systematically compare the stability of a fusion protein and monoclonal antibody formulation in conventionally siliconized and cross-linked siliconized PFS available from commercial manufacturers. The two types of syringes did not influence the aggregation profile of proteins as determined by HP-SEC. Compared to conventionally siliconized PFS, a cross-linked siliconized PFS can have a favorable or indifferent impact (depending on vendor) on the sub-visible particles profile as assessed by light obscuration and microflow imaging. The different PFS after 24 months of long-term storage showed comparable functionality attributes like break-loose/gliding force and silicone oil distribution. Cross-linked siliconized PFS can offer an incremental advantage over conventionally siliconized PFS for the moderately concentrated protein solutions, however the differences in the quality of these PFS amongst manufacturers is an important aspect that needs to be considered as shown in this study.
Collapse
Affiliation(s)
- Vivek Thakare
- Novartis, Biopharmaceutical Product & Process Development, Global Drug Development, Schaftenau, Austria.
| | - Thomas Schmidt
- Novartis, Biopharmaceutical Product & Process Development, Global Drug Development, Schaftenau, Austria
| | - Olga Rupprechter
- Novartis, Biopharmaceutical Product & Process Development, Global Drug Development, Schaftenau, Austria
| | - Julia Leibold
- Novartis, Biopharmaceutical Product & Process Development, Global Drug Development, Schaftenau, Austria
| | - Susanne Stemmer
- Novartis, Biopharmaceutical Product & Process Development, Global Drug Development, Schaftenau, Austria
| | - André Mischo
- Novartis, Biopharmaceutical Product & Process Development, Global Drug Development, Schaftenau, Austria
| | - Debarati Bhattacharjee
- Novartis, Biopharmaceutical Product & Process Development, Global Drug Development, Schaftenau, Austria
| | - Peter Prazeller
- Novartis, Device Development & Commercialization, Schaftenau, Austria
| |
Collapse
|
24
|
Bansal R, Srivastava P, Rathore AS, Chokshi P. Population balance modelling of aggregation of monoclonal antibody based therapeutic proteins. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Vargas SK, Eskafi A, Carter E, Ciaccio N. A comparison of background membrane imaging versus flow technologies for subvisible particle analysis of biologics. Int J Pharm 2020; 578:119072. [PMID: 32001293 DOI: 10.1016/j.ijpharm.2020.119072] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022]
Abstract
A recently developed high-throughput background membrane imaging (BMI) technique, the HORIZON, was assessed for its ability to quantify subvisible particulate (SVP) generated during protein therapeutic development. The HORIZON platform method was optimized and compared to three well-characterized SVP counting techniques: light obscuration, micro-flow imaging (MFI), and FlowCam®. A head-to-head comparison was performed for precision, linearity, SVP concentration, and morphological output of BMI compared to the other three techniques using two unique enzymes under investigation. We found that dilution requirements for BMI are protein-specific, and membrane coverage is the critical instrument parameter to monitor for dilution suitability. The precision of BMI ranked similarly to all other techniques. Analysis of the same sample dilution, run in triplicate, across all four techniques indicated the BMI technique provides SVP concentrations that are comparable with the flow imaging techniques. Morphological information from BMI was generally less practical when compared with flow microscopy. The major drawback of BMI was that the current software indiscriminately clips large particles, potentially resulting in a misrepresentation of SVP size distribution. Despite this phenomenon, the concentration and size data generated corresponds well with current flow imaging techniques while decreasing time, cost, and sample requirements for SVP quantification.
Collapse
Affiliation(s)
- Stephanie K Vargas
- Formulation Development, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA.
| | - Aydin Eskafi
- Formulation Development, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA.
| | - Eric Carter
- Formulation Development, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA.
| | - Natalie Ciaccio
- Formulation Development, BioMarin Pharmaceutical Inc., 105 Digital Drive, Novato, CA 94949, USA.
| |
Collapse
|
26
|
Gambe-Gilbuena A, Shibano Y, Krayukhina E, Torisu T, Uchiyama S. Automatic Identification of the Stress Sources of Protein Aggregates Using Flow Imaging Microscopy Images. J Pharm Sci 2020; 109:614-623. [DOI: 10.1016/j.xphs.2019.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
|
27
|
Probst C. Characterization of Protein Aggregates, Silicone Oil Droplets, and Protein-Silicone Interactions Using Imaging Flow Cytometry. J Pharm Sci 2020; 109:364-374. [DOI: 10.1016/j.xphs.2019.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
|
28
|
Analytical Platform for Monitoring Aggregation of Monoclonal Antibody Therapeutics. Pharm Res 2019; 36:152. [DOI: 10.1007/s11095-019-2690-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022]
|
29
|
Akhunzada ZS, Hubert M, Sahin E, Pratt J. Separation, Characterization and Discriminant Analysis of Subvisible Particles in Biologics Formulations. Curr Pharm Biotechnol 2019; 20:232-244. [DOI: 10.2174/1389201020666190214100840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Background:The presence of subvisible particles (SVPs) in parenteral formulations of biologics is a major challenge in the development of therapeutic protein formulations. Distinction between proteinaceous and non-proteinaceous SVPs is vital in monitoring formulation stability.Methods:The current compendial method based on light obscuration (LO) has limitations in the analysis of translucent/low refractive index particles. A number of attempts have been made to develop an unambiguous method to characterize SVPs, albeit with limited success.Results:Herein, we describe a robust method that characterizes and distinguishes both potentially proteinaceous and non-proteinaceous SVPs in protein formulations using Microflow imaging (MFI) in conjunction with the MVAS software (MFI View Analysis Suite), developed by ProteinSimple. The method utilizes two Intensity parameters and a morphological filter that successfully distinguishes proteinaceous SVPs from non-proteinaceous SVPs and mixed aggregates.Conclusion:he MFI generated raw data of a protein sample is processed through Lumetics LINK software that applies an in-house developed filter to separate proteinaceous from the rest of the particulates.
Collapse
Affiliation(s)
- Zahir S. Akhunzada
- BMS via PPD, DPST, Material Science & Engineering, New Brunswick, New Jersey 08903, United States
| | - Mario Hubert
- Celgene, 556 Morris Avenue, Summit, NJ 07901, United States
| | - Erinc Sahin
- BMS DPST, PST, New Brunswick, New Jersey 08903, United States
| | - James Pratt
- BMS Research & Development, GRS&B, Princeton, New Jersey 08543, United States
| |
Collapse
|
30
|
Senga Y, Imamura H, Ogura T, Honda S. In-Solution Microscopic Imaging of Fractal Aggregates of a Stressed Therapeutic Antibody. Anal Chem 2019; 91:4640-4648. [PMID: 30888793 DOI: 10.1021/acs.analchem.8b05979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aggregates of therapeutic proteins that can contaminate drug products during manufacture is a growing concern for the pharmaceutical industry because the aggregates are potentially immunogenic. Electron microscopy is a typical, indispensable method for imaging nanometer- to micrometer-sized structures. Nevertheless, it is not ideal because it must be performed with ex situ monitoring under high-vacuum conditions, where the samples could be altered by staining and drying. Here, we introduce a scanning electron-assisted dielectric microscopy (SE-ADM) technique for in-solution imaging of monoclonal immunoglobulin G (IgG) aggregates without staining and drying. Remarkably, SE-ADM allowed assessment of the size and morphology of the IgG aggregates in solution by completely excluding drying-induced artifacts. SE-ADM was also beneficial to study IgG aggregation caused by temporary acid exposure followed by neutralization, pH-shift stress. A box-counting analysis of the SE-ADM images provided fractal dimensions of the larger aggregates, which complemented the fractal dimensions of the smaller aggregates measured by light scattering. The scale-free or self-similarity nature of the fractal aggregates indicated that a common mechanism for antibody aggregation existed between the smaller and larger aggregates. Consequently, SE-ADM is a useful method for characterizing protein aggregates to bridge the gaps that occur among conventional analytical methods, such as those related to in situ/ ex situ techniques or size/morphology assessments.
Collapse
Affiliation(s)
- Yukako Senga
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| | - Hiroshi Imamura
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| | - Toshihiko Ogura
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| | - Shinya Honda
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| |
Collapse
|
31
|
Variance Between Different Light Obscuration and Flow Imaging Microscopy Instruments and the Impact of Instrument Calibration. J Pharm Sci 2019; 108:2397-2405. [PMID: 30844365 DOI: 10.1016/j.xphs.2019.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/15/2019] [Accepted: 02/01/2019] [Indexed: 11/20/2022]
Abstract
Subvisible particles (SVPs) are an obligatory critical quality attribute of the product, and yet, they are found in all biopharmaceutical products intended for infusion or injection. Light obscuration (LO) is the primary pharmacopeial method used to quantify SVPs. However, the method may not be equally sensitive toward all particles that can possibly occur. Calibration of LO instruments is usually performed using polystyrene beads suspended in water. In this study, the dependence of the sizing accuracy of LO analysis was evaluated by using a calibration suspension of lower refractive index beads made of silica suspended in sucrose solution. It was demonstrated that the sizing accuracy was strongly dependent on the reference material's properties used for calibration. It was also demonstrated that flow imaging microscopy suffered from the same artifact, albeit to a smaller extent. We further tested different LO sensors and instruments. Interestingly, our results show that the sizing accuracy varied from instrument to instrument, strongly depending on the properties of the sensor. To summarize, sizing and counting accuracies were dependent on the material used for calibration and its optical properties as well as the calibration curve, the sensor, and the instrument supplier. Closer match of optical properties between calibration system and test system seems to improve the sensitivity of the measurement. The results of this study raise the following major practical implications: (1) LO and flow imaging microscopy are not truly orthogonal analytical methods, (2) while matching optimal properties of material used for calibration and test items increased sensitivity, this is of poor practical applicability given that analytes contain multiple particles, and (3) setting product-specific limits for SVPs require special considerations with regard to the data sets used.
Collapse
|
32
|
Hu Z, Ye C, Mi W, Zhao Y, Quan C, Li WW, Li H, Hang H. Light-scattering detection within the difficult size range of protein particle measurement using flow cytometry. NANOSCALE 2018; 10:19277-19285. [PMID: 30325375 DOI: 10.1039/c8nr05214j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The phenomenon of protein aggregation is a prominent challenge that impacts biopharmaceutical development at every stage. It may have a number of deleterious effects on protein drugs, including the loss of efficacy, induction of immunogenicity, altered pharmacokinetics and reduced shelf life. At present, multiple methods are available for counting and sizing particles over a broad range of sizes. However, there remains a conundrum in the measurement of particles in the submicrometer range, from 100 nm to 2 μm. In this study, the capability of our new laboratory built FCM system to detect model polystyrene (PS) and silica (SiO2) submicrometer microspheres was evaluated and benchmarked against flow field-flow fractionation (FFF). The FCM system showed its advantages on sensitivity, selectivity, reproducibility and speed. The laboratory-built FCM system can readily analyze model PS and SiO2 microspheres down to 200 nm, covering much of the difficult range from 100 nm to 2 μm. Our data also showed that this machine was able to monitor the distribution of antibody aggregates ranged between 200 nm and 10 μm, suggesting its usability for characterizing protein aggregation in future.
Collapse
Affiliation(s)
- Zhishang Hu
- Chemical Metrology & Analytical Science Division (NRCCRM), National Institute of Metrology, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Nejadnik MR, Randolph TW, Volkin DB, Schöneich C, Carpenter JF, Crommelin DJ, Jiskoot W. Postproduction Handling and Administration of Protein Pharmaceuticals and Potential Instability Issues. J Pharm Sci 2018; 107:2013-2019. [DOI: 10.1016/j.xphs.2018.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/18/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
|
34
|
The missing piece in the puzzle: Prediction of aggregation via the protein-protein interaction parameter A∗2. Eur J Pharm Biopharm 2018; 128:200-209. [DOI: 10.1016/j.ejpb.2018.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/01/2018] [Accepted: 04/22/2018] [Indexed: 01/15/2023]
|
35
|
Schack MM, Møller EH, Carpenter JF, Rades T, Groenning M. A Platform for Preparing Homogeneous Proteinaceous Subvisible Particles With Distinct Morphologies. J Pharm Sci 2018; 107:1842-1851. [DOI: 10.1016/j.xphs.2018.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/23/2018] [Accepted: 03/08/2018] [Indexed: 11/30/2022]
|
36
|
Impact of Buffer, Protein Concentration and Sucrose Addition on the Aggregation and Particle Formation during Freezing and Thawing. Pharm Res 2018; 35:101. [PMID: 29556730 PMCID: PMC5859698 DOI: 10.1007/s11095-018-2378-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/26/2018] [Indexed: 01/06/2023]
Abstract
Purpose This study addresses the effect of freezing and thawing on a therapeutic monoclonal antibody (mAb) solution and the corresponding buffer formulation. Particle formation, crystallization behaviour, morphology changes and cryo-concentration effects were studied after varying the freezing and thawing rates, buffer formulation and protein concentration. The impact of undergoing multiple freeze/thaw (FT)-cycles at controlled and uncontrolled temperature rates on mAb solutions was investigated in terms of particle formation. Methods Physicochemical characteristics were analysed by Differential Scanning Calorimetry whereas morphology changes are visualized by cryomicroscopy measurements. Micro Flow Imaging, Archimedes and Dynamic Light Scattering were used to investigate particle formation. Results Data retrieved in the present study emphasizes the damage caused by multiple FT-cyles and the need for sucrose as a cryoprotectant preventing cold-crystallization specifically at high protein concentrations. Low protein concentrations cause an increase of micron particle formation. Low freezing rates lead to a decreased particle number with increased particle diameter. Conclusion The overall goal of this research is to gain a better understanding of the freezing and thawing behaviour of mAb solutions with the ultimate aim to optimize this process step by reducing the unwanted particle formation, which also includes protein aggregates.
Collapse
|
37
|
Huston RK, Christensen JM, Alsharhani SM, Mohamed SM, Heisel CF. Calcium Chloride and Calcium Gluconate in Neonatal Parenteral Nutrition Solutions without Cysteine: Compatibility Studies Using Laser Light Obscuration Methodology. Nutrients 2018; 10:E208. [PMID: 29443921 PMCID: PMC5852784 DOI: 10.3390/nu10020208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/26/2018] [Accepted: 02/12/2018] [Indexed: 11/17/2022] Open
Abstract
There are no compatibility studies for neonatal parenteral nutrition solutions without cysteine containing calcium chloride or calcium gluconate using light obscuration as recommended by the United States Pharmacopeia (USP). The purpose of this study was to do compatibility testing for solutions containing calcium chloride and calcium gluconate without cysteine. Solutions of TrophAmine and Premasol (2.5% amino acids), containing calcium chloride or calcium gluconate were compounded without cysteine. Solutions were analyzed for particle counts using light obscuration. Maximum concentrations tested were 15 mmol/L of calcium and 12.5 mmol/L of phosphate. If the average particle count of three replicates exceeded USP guidelines, the solution was determined to be incompatible. This study found that 12.5 and 10 mmol/L of calcium and phosphate, respectively, are compatible in neonatal parenteral nutrition solutions compounded with 2.5% amino acids of either TrophAmine or Premasol. There did not appear to be significant differences in compatibility for solutions containing TrophAmine or Premasol when solutions were compounded with either CaCl₂ or CaGlu-Pl. This study presents data in order to evaluate options for adding calcium and phosphate to neonatal parenteral nutrition solutions during shortages of calcium and cysteine.
Collapse
Affiliation(s)
- Robert K Huston
- Northwest Newborn Specialists, PC and Pediatrix Medical Group, Portland, OR 97227, USA.
| | - J Mark Christensen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
| | - Sultan M Alsharhani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
| | - Sumeia M Mohamed
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA.
| | - Carl F Heisel
- Neonatal Pharmacy, Randall Children's Hospital at Legacy Emanuel, Portland, OR 97227, USA.
| |
Collapse
|
38
|
Probst C, Zeng Y, Zhu RR. Characterization of Protein Particles in Therapeutic Formulations Using Imaging Flow Cytometry. J Pharm Sci 2017; 106:1952-1960. [DOI: 10.1016/j.xphs.2017.04.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 01/18/2023]
|
39
|
Zhang L, Shi S, Antochshuk V. Closing the Gap: Counting and Sizing of Particles Across Submicron Range by Flow Cytometry in Therapeutic Protein Products. J Pharm Sci 2017. [PMID: 28625725 DOI: 10.1016/j.xphs.2017.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Quantification and size distribution characterization of subvisible particles in parenteral biopharmaceutics, present as both proteinaceous and nonproteinaceous particles in the size range from 0.1 to 100 μm, are important for biopharmaceutical industry due to their potential safety and efficacy implications. Although a number of analytical techniques are available to count and size subvisible particles, characterization of particles ≤2 μm remains a significant challenge due to technical limitations of existing particle counting instruments. In this article, we demonstrate the ability of an optimized flow cytometry system to detect and quantify size distribution of subvisible particles without additional labeling that includes the critical submicron range in biopharmaceutical formulations. In addition, these qualitative and quantitative determinations are performed in a high-throughput manner using sample volumes that allow statistically significant evaluations. This approach can be used not only to ascertain the quality of therapeutic protein products but also to evaluate numerous conditions during the screening of drug candidates and their prospective formulations.
Collapse
Affiliation(s)
- Liling Zhang
- Sterile Formulation Sciences, Merck & Company, Inc., 2015 Galloping Hills Road, Kenilworth, New Jersey 07033.
| | - Shuai Shi
- Sterile Formulation Sciences, Merck & Company, Inc., 2015 Galloping Hills Road, Kenilworth, New Jersey 07033
| | - Valentyn Antochshuk
- Sterile Formulation Sciences, Merck & Company, Inc., 2015 Galloping Hills Road, Kenilworth, New Jersey 07033.
| |
Collapse
|
40
|
High-throughput analysis of sub-visible mAb aggregate particles using automated fluorescence microscopy imaging. Anal Bioanal Chem 2017; 409:4149-4156. [DOI: 10.1007/s00216-017-0362-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/10/2017] [Indexed: 12/29/2022]
|
41
|
Lewis LM, Pizzo ME, Sinha S, Ahmed SS, Joseph L. Visible and Sub-visible Particle Formation for a Model Bioconjugate. AAPS PharmSciTech 2017; 18:926-931. [PMID: 27161337 DOI: 10.1208/s12249-016-0540-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/25/2016] [Indexed: 01/13/2023] Open
Abstract
The time-course and extent of visible particle (VP) and sub-visible particle (SVP) formation was monitored as a function of interfacial area (IA) for a model bioconjugate. To facilitate particle formation, the bioconjugate was agitated in a glass vial and exposed to IAs up to 478 mm2. Since vials had equal fill and headspace volumes, the area of the air-water interface was varied by placing vials on angled blocks at 0°, 30°, 60°, or 90° from the horizontal. A significant increase in visible and sub-visible particle formation was observed with increasing air-water IA. Exposure to IAs below ∼305 mm2 resulted in the formation of very few particles, while IAs > ∼305 mm2 resulted in substantial particle formation. Visible and sub-visible particle morphology varied with interfacial area and time. The sub-visible particles initially increased with time but did not reach steady state; instead the initial increase was followed by complete depletion. These phenomena indicate that visible particle formation likely increased at the expense of the sub-visible particle population and demonstrate a potential link between the two particle populations for this model bioconjugate. Initiation of particle formation did not result in corresponding decreases in protein concentration or increases in soluble aggregates. However, extended agitation time resulted in a significant decrease in protein concentration.
Collapse
|
42
|
A Random Forest Approach for Counting Silicone Oil Droplets and Protein Particles in Antibody Formulations Using Flow Microscopy. Pharm Res 2016; 34:479-491. [DOI: 10.1007/s11095-016-2079-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022]
|
43
|
Bastos P, Trindade F, Leite-Moreira A, Falcão-Pires I, Ferreira R, Vitorino R. Methodological approaches and insights on protein aggregation in biological systems. Expert Rev Proteomics 2016; 14:55-68. [DOI: 10.1080/14789450.2017.1264877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Paulo Bastos
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- Department of Chemistry, Mass Spectrometry Center, QOPNA, University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
44
|
Silicone Migration From Baked-on Silicone Layers. Particle Characterization in Placebo and Protein Solutions. J Pharm Sci 2016; 105:3520-3531. [DOI: 10.1016/j.xphs.2016.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 11/24/2022]
|
45
|
Rauk AP, Griffiths KL, Gossage MD, Weiss WF. Variability in Flow-Imaging Microscopy Measurements and Considerations for Biopharmaceutical Development. J Pharm Sci 2016; 105:3296-3303. [PMID: 27663382 DOI: 10.1016/j.xphs.2016.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022]
Abstract
Flow-imaging microscopy is widely used in the biopharmaceutical industry to characterize populations of subvisible (1-100 μm) particles due to high sensitivity and the ability to discriminate different particle morphologies. The present work provides a comprehensive assessment of the capabilities of flow-imaging microscopy by exploring the impacts of a variety of factors on the observed variability of these measurements. A novel graphical presentation is proposed to facilitate both determination of expected levels and detection of potential atypical results. Data collected across different products and container-closure systems illustrate that a substantial amount of historical experience is typically required to adequately define the expected levels of subvisible particles for any specific system. It is also shown, however, that an appropriate level of control can be demonstrated without the need to pool large numbers of containers or perform replicate measurements.
Collapse
Affiliation(s)
- Adam P Rauk
- Global Statistical Sciences, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Kristi L Griffiths
- Global Statistical Sciences, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - Melody D Gossage
- Biopharmaceutical Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | - William F Weiss
- Biopharmaceutical Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285.
| |
Collapse
|
46
|
Saller V, Hediger C, Matilainen J, Grauschopf U, Bechtold-Peters K, Mahler HC, Friess W. Influence of particle shedding from silicone tubing on antibody stability. J Pharm Pharmacol 2016; 70:675-685. [DOI: 10.1111/jphp.12603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/10/2016] [Indexed: 12/28/2022]
Abstract
Abstract
Objectives
Peristaltic pumps are increasingly employed during fill & finish operations of a biopharmaceutical drug, due to sensitivity of many biological products to rotary piston pump-related stresses. Yet, possibly also unit operations using peristaltic pumps may shed particulates into the final product due to abrasion from the employed tubing. It was the aim of this study to elucidate the potential influence of particles shed from peristaltic pump tubing on the stability of a drug product.
Methods
Spiking solutions containing shed silicone particles were prepared via peristaltic pumping of placebo under recirculating conditions and subsequently characterized. Two formulated antibodies were spiked with two realistic, but worst-case levels of particles and a 6-month accelerated stability study with storage at 2–8, 25 and 40°C were conducted.
Key findings
Regarding the formation of aggregates and fragments, both mAbs degraded at their typically expected rates and no additional impact of spiked particles was observed. No changes were discerned however in turbidity, subvisible and visible particle assessments. Flow imaging data for one of the mAb formulations with spiked particles suggested limited colloidal stability of shed particles as indicated by a similar increase in spiked placebo.
Conclusions
Shed silicone particles from peristaltic pump tubing are assumed to not impair drug product stability.
Collapse
Affiliation(s)
- Verena Saller
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Constanze Hediger
- F. Hoffmann-La Roche Ltd, Pharmaceutical Development & Supplies, PTD Biologics Europe, Basel, Switzerland
| | - Julia Matilainen
- F. Hoffmann-La Roche Ltd, Pharmaceutical Development & Supplies, PTD Biologics Europe, Basel, Switzerland
| | - Ulla Grauschopf
- F. Hoffmann-La Roche Ltd, Pharmaceutical Development & Supplies, PTD Biologics Europe, Basel, Switzerland
| | - Karoline Bechtold-Peters
- F. Hoffmann-La Roche Ltd, Pharmaceutical Development & Supplies, PTD Biologics Europe, Basel, Switzerland
| | - Hanns-Christian Mahler
- F. Hoffmann-La Roche Ltd, Pharmaceutical Development & Supplies, PTD Biologics Europe, Basel, Switzerland
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
47
|
Farrell CJ, Cicalese SM, Davis HB, Dogdas B, Shah T, Culp T, Hoang VM. Cell confluency analysis on microcarriers by micro-flow imaging. Cytotechnology 2016; 68:2469-2478. [PMID: 27179644 DOI: 10.1007/s10616-016-9967-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/17/2016] [Indexed: 12/22/2022] Open
Abstract
The productivity of cell culture-derived vaccines grown in anchorage-dependent animal cells is limited by bioreactor surface area. One way to increase the available surface area is by growing cells as monolayers on small spheres called microcarriers, which are approximately 100-250 μm in diameter. In order for microcarrier-based cell culture to be a success, it is important to understand the kinetics of cell growth on the microcarriers. Micro-flow imaging (MFI) is a simple and powerful technique that captures images and analyzes samples as they are drawn through a precision flow cell. In addition to providing size distribution and defect frequency data to compare microcarrier lots, MFI was used to generate hundreds of images to determine cell coverage and confluency on microcarriers. Same-day manual classification of these images provided upstream cell culture teams with actionable data that informed in-process decision making (e.g. time of infection). Additionally, an automated cell coverage algorithm was developed to increase the speed and throughput of the analyses.
Collapse
Affiliation(s)
- Christopher J Farrell
- Vaccine Analytical Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA.
| | - Stephanie M Cicalese
- Eurofins Lancaster Laboratories Professional Scientific Services, Lancaster, PA, USA
| | - Harrison B Davis
- Vaccine Drug Product Development, Merck & Co., Inc., West Point, PA, USA
| | - Belma Dogdas
- Applied Mathematics and Modeling, Merck & Co., Inc., Rahway, NJ, USA
| | - Tosha Shah
- Applied Mathematics and Modeling, Merck & Co., Inc., Rahway, NJ, USA
| | - Tim Culp
- Vaccine Analytical Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Van M Hoang
- Vaccine Analytical Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| |
Collapse
|
48
|
Ripple DC, Hu Z. Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters. Pharm Res 2015; 33:653-72. [DOI: 10.1007/s11095-015-1817-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/26/2015] [Indexed: 02/08/2023]
|
49
|
Huston RK, Christensen JM, Alshahrani SM, Mohamed SM, Clark SM, Nason JA, Wu YX. Calcium Chloride in Neonatal Parenteral Nutrition Solutions with and without Added Cysteine: Compatibility Studies Using Laser and Micro-Flow Imaging Methodology. PLoS One 2015; 10:e0136894. [PMID: 26317344 PMCID: PMC4552580 DOI: 10.1371/journal.pone.0136894] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/09/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Previous studies of compatibility of calcium chloride (CaCl2) and phosphates have not included particle counts in the range specified by the United States Pharmacopeia. Micro-flow imaging techniques have been shown to be comparable to light obscuration when determining particle count and size in pharmaceutical solutions. OBJECTIVE The purpose of this study was to do compatibility testing for parenteral nutrition (PN) solutions containing CaCl2 using dynamic light scattering and micro-flow imaging techniques. METHODS Solutions containing TrophAmine (Braun Medical Inc, Irvine, CA), CaCl2, and sodium phosphate (NaPhos) were compounded with and without cysteine. All solutions contained standard additives to neonatal PN solutions including dextrose, trace metals, and electrolytes. Control solutions contained no calcium or phosphate. Solutions were analyzed for particle size and particle count. Means of Z-average particle size and particle counts of controls were determined. Study solutions were compared to controls and United States Pharmacopeia (USP) Chapter 788 guidelines. The maximum amount of Phos that was compatible in solutions that contained at least 10 mmol/L of Ca in 2.5% amino acids (AA) was determined. Compatibility of these solutions was verified by performing analyses of 5 repeats of these solutions. Microscopic analyses of the repeats were also performed. RESULTS Amounts of CaCl2 and NaPhos that were compatible in solutions containing 1.5%, 2%, 2.5%, and 3% AA were determined. The maximum amount of NaPhos that could be added to TrophAmine solutions of > = 2.5% AA containing at least 10 mmol/L of CaCl2 was 7.5 mmol/L. Adding 50 mg/dL of cysteine increased the amount of NaPhos that could be added to solutions containing 10 mmol/L of CaCl2 to 10 mmol/L. CONCLUSION Calcium chloride can be added to neonatal PN solutions containing NaPhos in concentrations that can potentially provide an intravenous intake of adequate amounts of calcium and phosphorus.
Collapse
Affiliation(s)
- Robert K. Huston
- Northwest Newborn Specialists, PC and Pediatrix Medical Group, Portland, OR, United States of America
- * E-mail:
| | - J. Mark Christensen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States of America
| | - Sultan M. Alshahrani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States of America
| | - Sumeia M. Mohamed
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States of America
| | - Sara M. Clark
- Neonatal Pharmacy, Providence St. Vincent Medical Center, Portland, OR, United States of America
| | - Jeffrey A. Nason
- School of Chemical, Biological, & Environmental Engineering, Oregon State University, Corvallis, OR, United States of America
| | - Ying Xing Wu
- Medical Data Research Center, Providence Health and Services, Portland, OR, United States of America
| |
Collapse
|
50
|
Vasudev R, Mathew S, Afonina N. Characterization of Submicron (0.1–1 μm) Particles in Therapeutic Proteins by Nanoparticle Tracking Analysis. J Pharm Sci 2015; 104:1622-31. [DOI: 10.1002/jps.24411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/15/2015] [Accepted: 02/02/2015] [Indexed: 01/10/2023]
|