1
|
Xia D, Hu C, Hou Y. Regorafenib loaded self-assembled lipid-based nanocarrier for colorectal cancer treatment via lymphatic absorption. Eur J Pharm Biopharm 2023; 185:165-176. [PMID: 36870399 DOI: 10.1016/j.ejpb.2023.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Oral chemotherapy can improve the life quality of patients; however, the therapeutic effects are limited by low bioavailability and rapid in vivo elimination of anticancer drugs. Here, we developed a regorafenib (REG)-loaded self-assembled lipid-based nanocarrier (SALN) to improve oral absorption and anti-colorectal cancer efficacy of REG through lymphatic absorption. SALN was prepared with lipid-based excipients to utilize lipid transport in the enterocytes and enhance lymphatic absorption of the drug in the gastrointestinal tract. The particle size of SALN was 106 ± 10 nm. SALNs were internalized by the intestinal epithelium via the clathrin-mediated endocytosis, and then transported across the epithelium via the chylomicron secretion pathway, resulting in a 3.76-fold increase in drug epithelial permeability (Papp) compared to the solid dispersion (SD). After oral administration to rats, SALNs were transported by the endoplasmic reticulum, Golgi apparatus, and secretory vesicles of enterocytes and were found in the lamina propria of intestinal villi, abdominal mesenteric lymph, and plasma. The oral bioavailability of SALN was 65.9-fold and 1.70-fold greater than that of the coarse powder suspension and SD, respectively, and was highly dependent on the lymphatic route of absorption. Notably, SALN prolonged the elimination half-life of the drug (9.34 ± 2.51 h) compared to the solid dispersion (3.51 ± 0.46 h), increased the biodistribution of REG in the tumor and gastrointestinal (GI) tract, decreased biodistribution in the liver, and showed better therapeutic efficacy than the solid dispersion in colorectal tumor-bearing mice. These results demonstrated that SALN is promising for the treatment of colorectal cancer via lymphatic transport and has potential for clinical translation.
Collapse
Affiliation(s)
- Dengning Xia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Cunde Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Yulin Hou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
2
|
Ghezzi M, Ferraboschi I, Delledonne A, Pescina S, Padula C, Santi P, Sissa C, Terenziani F, Nicoli S. Cyclosporine-loaded micelles for ocular delivery: Investigating the penetration mechanisms. J Control Release 2022; 349:744-755. [PMID: 35901859 DOI: 10.1016/j.jconrel.2022.07.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022]
Abstract
Cyclosporine is an immunomodulatory drug commonly used for the treatment of mild-to-severe dry eye syndrome as well as intermediate and posterior segment diseases as uveitis. The ocular administration is however hampered by its relatively high molecular weight and poor permeability across biological barriers. The aim of this work was to identify a micellar formulation with the ability to solubilize a considerable amount of cyclosporine and promote its transport across ocular barriers. Non-ionic amphiphilic polymers used for micelles preparation were tocopherol polyethylene glycol 1000 succinate (TPGS) and Solutol® HS15. Furthermore, the addition of alpha-linolenic acid was assessed. A second aim was to evaluate micelles fate in the ocular tissues (cornea and sclera) to shed light on penetration mechanisms. This was possible by extracting and quantifying both drug and polymer in the tissues, by studying TPGS hydrolysis in a bio-relevant environment and by following micelles penetration with two-photon microscopy. Furthermore, TPGS role as permeation enhancer on the cornea, with possible irreversible modifications of tissue permeability, was analyzed. Results showed that TPGS micelles (approx. 13 nm in size), loaded with 5 mg/ml of cyclosporine, promoted drug retention in both the cornea and the sclera. Data demonstrated that micelles behavior strictly depends on the tissue: micelles disruption occurs in contact with the cornea, while intact micelles diffuse in the interfibrillar pores of the sclera and form a reservoir that can sustain over time drug delivery to the deeper tissues. Finally, cornea quickly restore the barrier properties after TPGS removal from the tissue, demonstrating its potential good tolerability for ocular application.
Collapse
Affiliation(s)
- Martina Ghezzi
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Ilaria Ferraboschi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Andrea Delledonne
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Silvia Pescina
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Cristina Padula
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Patrizia Santi
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Cristina Sissa
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Francesca Terenziani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Sara Nicoli
- ADDRes Lab, Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
3
|
Li F, Harvey RD, Modicano P, Hamdi F, Kyrilis F, Müller S, Gruhle K, Kastritis P, Drescher S, Dailey LA. Investigating bolalipids as solubilizing agents for poorly soluble drugs: Effects of alkyl chain length on solubilization and cytotoxicity. Colloids Surf B Biointerfaces 2022; 212:112369. [PMID: 35123195 DOI: 10.1016/j.colsurfb.2022.112369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 01/31/2023]
Abstract
Synthetic single-chain bolalipids with symmetrical headgroups have shown potential in various pharmaceutical applications, such as the stabilization of liposome bilayers. Despite their amphiphilic character, synthetic bolalipids have not yet been investigated for their suitability as solubilizing agents for poorly soluble drug compounds. In this study, three synthetic single-chain bolalipids with increasing alkyl chain lengths (C22, C24 and C26) were investigated. All three bolalipids were able to achieve an increased solubility of the model drug, mefenamic acid, by approximately 180% in a pH 7.4 buffer compared to only a 102-105% increase achieved by sodium dodecyl sulfate (SDS) or the non-ionic surfactant pegylated hydroxystearate (PEG-HS). Subsequently, interfacial activity of bolalipids and their ability to destabilize liposomal bilayers were investigated. The C22 bolalipid exhibited a consistently lower interfacial activity, which was consistent with its significantly lower cytotoxicity in the macrophage-like cell line, J774. A1, compared to C24 and C26 counterparts. The mean IC50 values of the bolalipids tested (0.035-0.093 mM) were approximately 4-100-fold lower than that of SDS (0.401 mM) or PEG-HS (0.922 mM), with the mechanism of toxicity linked to increased cell membrane permeability, as is expected for surfactants. In summary, evidence from this study shows that decreasing the length of the bolalipid alkyl linker from C26 to C22 resulted in a significantly decreased cytotoxicity with no loss in drug solubilization efficiency.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Richard D Harvey
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Paola Modicano
- Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmaceutics, Martin Luther University (MLU) Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle (Saale), Germany
| | - Farzad Hamdi
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Fotios Kyrilis
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Sindy Müller
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Kai Gruhle
- Institute of Pharmacy, Department of Pharmaceutical Chemistry, MLU Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany
| | - Panagiotis Kastritis
- Biozentrum, MLU Halle-Wittenberg, Weinbergweg 22, Halle/Saale, Germany; Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, MLU Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Lea Ann Dailey
- Department of Pharmaceutical Sciences, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria.
| |
Collapse
|
4
|
Li Z, Liu M, Ke L, Wang LJ, Wu C, Li C, Li Z, Wu YL. Flexible polymeric nanosized micelles for ophthalmic drug delivery: research progress in the last three years. NANOSCALE ADVANCES 2021; 3:5240-5254. [PMID: 36132623 PMCID: PMC9417891 DOI: 10.1039/d1na00596k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
The eye is a complex structure with a variety of anatomical barriers and clearance mechanisms, so the provision of safe and effective ophthalmic drug delivery technology is a major challenge. In the past few decades, a number of reports have shown that nano-delivery platforms based on polymeric micelles are of great interest, because of their hydrophobic core that encapsulates lipid-soluble drugs and small size with high penetration, allowing long-term drug retention and posterior penetration in the eye. Furthermore, as an ocular delivery platform, polymeric micelles not only cover the single micellar drug delivery system formed by poloxamer, chitosan or other polymers, but also include composite drug delivery systems like micelle-encapsulated hydrogels and micelle-embedded contact lenses. In this review, a number of ophthalmic micelles that have emerged in the last three years will be systematically reviewed, with a summary of and discussion on their unique advantages or unique drug delivery performance. Last but not least, the current challenges of polymeric micelle formulations in potential clinical ophthalmic therapeutic applications will also be proposed, which might be helpful for future design of ocular drug delivery formulations.
Collapse
Affiliation(s)
- Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Li-Juan Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| | - Cheng Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science & Ocular Surface and Corneal Diseases, Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Department of Materials Science and Engineering, National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University Xiamen 361102 China
| |
Collapse
|
5
|
Brunner J, Ragupathy S, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev 2021; 171:266-288. [PMID: 33617902 DOI: 10.1016/j.addr.2021.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Intercellular tight junctions represent a formidable barrier against paracellular drug absorption at epithelia (e.g., nasal, intestinal) and the endothelium (e.g., blood-brain barrier). In order to enhance paracellular transport of drugs and increase their bioavailability and organ deposition, active excipients modulating tight junctions have been applied. First-generation of permeation enhancers (PEs) acted by unspecific interactions, while recently developed PEs address specific physiological mechanisms. Such target specific tight junction modulators (TJMs) have the advantage of a defined specific mechanism of action. To date, merely a few of these novel active excipients has entered into clinical trials, as their lack in safety and efficiency in vivo often impedes their commercialisation. A stronger focus on the development of such active excipients would result in an economic and therapeutic improvement of current and future drugs.
Collapse
Affiliation(s)
- Joël Brunner
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Sakthikumar Ragupathy
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
6
|
Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111774. [PMID: 33579439 DOI: 10.1016/j.msec.2020.111774] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/25/2020] [Accepted: 11/27/2020] [Indexed: 01/14/2023]
Abstract
The blood-brain barrier (BBB) and blood-brain tumour barrier (BBTB) pose a significant challenge to drug delivery to brain tumours, including aggressive glioblastoma (GB). The present study rationally designed functional nanostructured lipid carriers (NLC) to tailor their BBB penetrating properties with high encapsulation of CNS negative chemotherapeutic drug docetaxel (DTX). We investigated the effect of four liquid lipids, propylene glycol monolaurate (Lauroglycol® 90), Capryol® propylene glycol monocaprylate, caprylocaproylmacrogol-8-glycerides (Labrasol®) and polyoxyl-15-hydroxystearate (Kolliphor® HS15) individually and in combination to develop NLCs with effective permeation across in-vitro 3D BBB model without alteration in the integrity of the barrier. With desirable spherical shape as revealed by TEM and an average particle size of 123.3 ± 0.642 nm and zeta potential of -32 mV, DTX-NLCs demonstrated excellent stability for six months in its freeze-dried form. The confocal microscopy along with flow cytometry data revealed higher internalisation of DTX-NLCs in U87MG over SVG P12 cells. Micropinocytosis was observed to be one of the dominant pathways for internalisation in U87MG cells while clathrin-mediated pathway was more predominat in patient-derived glioblastoma cells. The NLCs readily penetrated the actively proliferating peripheral cells on the surface of the 3D tumour spheroids as compared to the necrotic core. The DTX-NLCs induced cell arrest through G2/M phase with a significant decrease in the mitochondrial reserve capacity of cells. The NLCs circumvented BBTB with high permeability followed by accumulation in glioblastoma cells with patient-derived cells displaying ~2.4-fold higher uptake in comparison to U87MG when studied in a 3D in-vitro model of BBTB/GB. We envisage this simple and industrially feasible technology as a potential candidate to be developed as GB nanomedicine.
Collapse
|
7
|
Zhang J, Li R, Liu Q, Zhou J, Huang H, Huang Y, Zhang Z, Wu T, Tang Q, Huang C, Zhao Y, Zhang G, Mo L, Li Y, He J. SB431542-Loaded Liposomes Alleviate Liver Fibrosis by Suppressing TGF-β Signaling. Mol Pharm 2020; 17:4152-4162. [PMID: 33089693 DOI: 10.1021/acs.molpharmaceut.0c00633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jian Zhou
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hui Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ya Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zijing Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Wu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Cuiyuan Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yingnan Zhao
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Guorong Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Younes NF, Abdel-Halim SA, Elassasy AI. Solutol HS15 based binary mixed micelles with penetration enhancers for augmented corneal delivery of sertaconazole nitrate: optimization, in vitro, ex vivo and in vivo characterization. Drug Deliv 2019; 25:1706-1717. [PMID: 30442039 PMCID: PMC6249589 DOI: 10.1080/10717544.2018.1497107] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Keratomycosis is a serious corneal disease that can cause a permanent visual disability if not treated effectively. Sertaconazole nitrate (STZ), a novel broad spectrum antifungal drug, was suggested as a promising treatment. However, its utility in the ocular route is restricted by its poor solubility, along with other problems facing the ocular delivery like short residence time, and the existing corneal barrier. Therefore, the objective of this study was to formulate STZ loaded binary mixed micelles (STZ-MMs) enriched with different penetration enhancers using thin-film hydration method, based on a 31.22 mixed factorial design. Different formulation variables were examined, namely, type of auxiliary surfactant, type of penetration enhancer, and total surfactants: drug ratio, and their effects on the solubility of STZ in MMs (SM), particle size (PS), polydispersity index (PDI), and zeta potential (ZP) were evaluated. STZ-MMs enhanced STZ aqueous solubility up to 338.82-fold compared to free STZ. Two optimized formulations (MM-8 and MM-11) based on the desirability factor (0.891 and 0.866) were selected by Design expert® software for further investigations. The optimized formulations were imaged by TEM which revealed nanosized spherical micelles. Moreover, they were examined for corneal mucoadhesion, stability upon dilution, storage effect, and ex vivo corneal permeation studies. Finally, both in vivo corneal uptake and in vivo corneal tolerance were investigated. MM-8 showed superiority in the ex vivo and in vivo permeation studies when compared to the STZ-suspension. The obtained results suggest that the aforementioned STZ loaded mixed micellar system could be an effective candidate for Keratomycosis-targeted therapy.
Collapse
Affiliation(s)
- Nihal Farid Younes
- a Department of Pharmaceutics and industrial pharmacy, Faculty of pharmacy , Cairo University , Cairo , Egypt
| | - Sally Adel Abdel-Halim
- a Department of Pharmaceutics and industrial pharmacy, Faculty of pharmacy , Cairo University , Cairo , Egypt
| | - Abdelhalim I Elassasy
- a Department of Pharmaceutics and industrial pharmacy, Faculty of pharmacy , Cairo University , Cairo , Egypt
| |
Collapse
|
9
|
Cavanagh RJ, Smith PA, Stolnik S. Exposure to a Nonionic Surfactant Induces a Response Akin to Heat-Shock Apoptosis in Intestinal Epithelial Cells: Implications for Excipients Safety. Mol Pharm 2019; 16:618-631. [PMID: 30608696 DOI: 10.1021/acs.molpharmaceut.8b00934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amphipathic, nonionic, surfactants are widely used in pharmaceutical, food, and agricultural industry to enhance product features; as pharmaceutical excipients, they are also aimed at increasing cell membrane permeability and consequently improving oral drugs absorption. Here, we report on the concentration- and time-dependent succession of events occurring throughout and subsequent exposure of Caco-2 epithelium to a "typical" nonionic surfactant (Kolliphor HS15) to provide a molecular explanation for nonionic surfactant cytotoxicity. The study shows that the conditions of surfactant exposure, which increase plasma membrane fluidity and permeability, produced rapid (within 5 min) redox and mitochondrial effects. Apoptosis was triggered early during exposure (within 10 min) and relied upon an initial mitochondrial membrane hyperpolarization (5-10 min) as a crucial step, leading to its subsequent depolarization and caspase-3/7 activation (60 min). The apoptotic pathway appears to be triggered prior to substantial surfactant-induced membrane damage (observed ≥60 min). We hence propose that the cellular response to the model nonionic surfactant is triggered via surfactant-induced increase in plasma membrane fluidity, a phenomenon akin to the stress response to membrane fluidization induced by heat shock, and consequent apoptosis. Therefore, the fluidization effect that confers surfactants the ability to enhance drug permeability may also be intrinsically linked to the propagation of their cytotoxicity. The reported observations have important implications for the safety of a multitude of nonionic surfactants used in drug delivery formulations and to other permeability enhancing compounds with similar plasma membrane fluidizing mechanisms.
Collapse
Affiliation(s)
- Robert J Cavanagh
- Division of Molecular Therapeutics and Formulation, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Paul A Smith
- School of Life Science , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy , University of Nottingham , Nottingham NG7 2RD , United Kingdom
| |
Collapse
|
10
|
Płaczek M, Wątróbska-Świetlikowska D, Stefanowicz-Hajduk J, Drechsler M, Ochocka JR, Sznitowska M. Comparison of the in vitro cytotoxicity among phospholipid-based parenteral drug delivery systems: Emulsions, liposomes and aqueous lecithin dispersions (WLDs). Eur J Pharm Sci 2018; 127:92-101. [PMID: 30342174 DOI: 10.1016/j.ejps.2018.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 12/31/2022]
Abstract
Lecithin and isolated phospholipids (mainly phosphatidylcholine) have been used for years as pharmaceutical excipients in parenteral formulations: submicron emulsions, liposomes and mixed micelles. Under development are also other lecithin-based drug delivery systems, e.g. aqueous lecithin dispersions (WLDs). The aim of the study was to investigate the properties and potential cytotoxicity of 7 different phospholipid-based dispersions intended for parenteral administration: emulsions, liposomes and WLDs. Each formulation contained egg phosphatidylcholine (PC) in the concentration range of 0.6-5.0%, and to some formulations other surfactants, such as polysorbate 80 (P80), Solutol HS 15 (HS) and cholesterol (Ch) were added. Particles in all dispersions were homogenous (PDI < 0.26) and submicron in size (Z-average in the range of approx. 100-260 nm). The cytotoxicity of all tested formulations was evaluated by means of 3 independent methods: a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, a real-time xCELLigence (RTCA) system, and a flow cytometry analysis, using two cell lines: human embryonic kidney 293 (HEK-293) and human promyelocytic leukaemia (HL-60). The results indicated that regardless of the test method and cell line type, the cytotoxicity of all formulations was low, especially when dispersions diluted to concentrations of =10% were tested. A more pronounced cytotoxic effect was noticed only for the following formulations: E-P80 (emulsion containing P80), WLD (unbuffered aqueous lecithin dispersion) and L-Ch (liposomes containing Ch), tested as less diluted (concentration 10% or 25%). IC50 values measured for these dispersions (on HL-60 cells) amounted to: 10.4 ± 0.5% (v/v), 14.4 ± 0.2% (v/v) and 24.2 ± 0.6% (v/v), respectively. Our investigation confirmed the biocompatibility of all tested phospholipid-based formulations: emulsions, liposomes and also newly-developed WLDs, which can be considered as safe parenteral drug carriers.
Collapse
Affiliation(s)
- Marcin Płaczek
- Department of Pharmaceutical Technology, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gdansk, Poland.
| | | | - Justyna Stefanowicz-Hajduk
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI), Key Lab of Electron and Optical Microscopy, University of Bayreuth, Universitaetsstr. 30, 95440 Bayreuth, Germany
| | - Jadwiga Renata Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gdansk, Poland
| | - Małgorzata Sznitowska
- Department of Pharmaceutical Technology, Medical University of Gdansk, al. gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
11
|
Yeo LK, Olusanya TOB, Chaw CS, Elkordy AA. Brief Effect of a Small Hydrophobic Drug (Cinnarizine) on the Physicochemical Characterisation of Niosomes Produced by Thin-Film Hydration and Microfluidic Methods. Pharmaceutics 2018; 10:pharmaceutics10040185. [PMID: 30322124 PMCID: PMC6321096 DOI: 10.3390/pharmaceutics10040185] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023] Open
Abstract
Novel niosomal formulations containing cinnarizine were developed to enhance its drug characteristics. In this work, niosomes (non-ionic surfactant vesicles) were prepared by conventional thin-film hydration (TFH) and microfluidic (MF) methods with sorbitan monostearate (Span® 60), cholesterol, and co-surfactants (Cremophor® ELP, Cremophor® RH40 and Solutol® HS15) as key excipients. The aim was to study the effect of cinnarizine on the characteristics of different niosomal formulations manufactured by using different methods. For effective targeted oral drug delivery, the efficacy of niosomes for therapeutic applications is correlated to their physiochemical properties. Niosome vesicles prepared were characterised using dynamic light scattering technique and the morphology of niosomes dispersion was characterised using optical microscopy. Dialysis was carried out to purify niosome suspensions to determine drug loading and drug release studies was performed to study the potential use of niosomal systems for cinnarizine.
Collapse
Affiliation(s)
- Li Key Yeo
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Temidayo O B Olusanya
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Cheng Shu Chaw
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, University of Sunderland, Sunderland SR1 3SD, UK.
| |
Collapse
|
12
|
Effects of surfactant-based permeation enhancers on mannitol permeability, histology, and electrogenic ion transport responses in excised rat colonic mucosae. Int J Pharm 2018; 539:11-22. [DOI: 10.1016/j.ijpharm.2018.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022]
|
13
|
Marzolini C, Rajoli R, Battegay M, Elzi L, Back D, Siccardi M. Physiologically Based Pharmacokinetic Modeling to Predict Drug-Drug Interactions with Efavirenz Involving Simultaneous Inducing and Inhibitory Effects on Cytochromes. Clin Pharmacokinet 2017; 56:409-420. [PMID: 27599706 DOI: 10.1007/s40262-016-0447-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Antiretroviral drugs are among the therapeutic agents with the highest potential for drug-drug interactions (DDIs). In the absence of clinical data, DDIs are mainly predicted based on preclinical data and knowledge of the disposition of individual drugs. Predictions can be challenging, especially when antiretroviral drugs induce and inhibit multiple cytochrome P450 (CYP) isoenzymes simultaneously. METHODS This study predicted the magnitude of the DDI between efavirenz, an inducer of CYP3A4 and inhibitor of CYP2C8, and dual CYP3A4/CYP2C8 substrates (repaglinide, montelukast, pioglitazone, paclitaxel) using a physiologically based pharmacokinetic (PBPK) modeling approach integrating concurrent effects on CYPs. In vitro data describing the physicochemical properties, absorption, distribution, metabolism, and elimination of efavirenz and CYP3A4/CYP2C8 substrates as well as the CYP-inducing and -inhibitory potential of efavirenz were obtained from published literature. The data were integrated in a PBPK model developed using mathematical descriptions of molecular, physiological, and anatomical processes defining pharmacokinetics. Plasma drug-concentration profiles were simulated at steady state in virtual individuals for each drug given alone or in combination with efavirenz. The simulated pharmacokinetic parameters of drugs given alone were compared against existing clinical data. The effect of efavirenz on CYP was compared with published DDI data. RESULTS The predictions indicate that the overall effect of efavirenz on dual CYP3A4/CYP2C8 substrates is induction of metabolism. The magnitude of induction tends to be less pronounced for dual CYP3A4/CYP2C8 substrates with predominant CYP2C8 metabolism. CONCLUSION PBPK modeling constitutes a useful mechanistic approach for the quantitative prediction of DDI involving simultaneous inducing or inhibitory effects on multiple CYPs as often encountered with antiretroviral drugs.
Collapse
Affiliation(s)
- Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, Department of Medicine, University Hospital of Basel, Petersgraben 4, 4031, Basel, Switzerland.
- Division of Infectious Diseases and Hospital Epidemiology, Department of Clinical Research, University Hospital of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Rajith Rajoli
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, Department of Medicine, University Hospital of Basel, Petersgraben 4, 4031, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, Department of Clinical Research, University Hospital of Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Luigia Elzi
- Division of Infectious Diseases, Regional Hospital Bellinzona, Bellinzona, Switzerland
| | - David Back
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marco Siccardi
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
14
|
Micelle carriers based on macrogol 15 hydroxystearate for ocular delivery of terbinafine hydrochloride: In vitro characterization and in vivo permeation. Eur J Pharm Sci 2017; 109:288-296. [DOI: 10.1016/j.ejps.2017.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 01/03/2023]
|
15
|
Grotz E, Bernabeu E, Pappalardo M, Chiappetta DA, Moretton MA. Nanoscale Kolliphor ® HS 15 micelles to minimize rifampicin self-aggregation in aqueous media. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Qin B, Liu L, Pan Y, Zhu Y, Wu X, Song S, Han G. PEGylated Solanesol for Oral Delivery of Coenzyme Q 10. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3360-3367. [PMID: 28418660 DOI: 10.1021/acs.jafc.7b00165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Coenzyme Q10 (CoQ10) is widely used in preventive or curative treatment of cardiovascular diseases. However, CoQ10 exhibits an extremely low solubility in aqueous medium as well as a poor oral bioavailability. Therefore, solanesyl poly(ethylene glycol) succinate (SPGS) and CoQ10 were formulated as CoQ10-SPGS micelles with a high content of CoQ10 to improve the bioavailability of CoQ10 in rat. Findings indicate that, in the CoQ10-SPGS micelles, SPGS is self-assembled into stable nanosized micelles with a CoQ10 loading capacity of more than 39%. The CoQ10-SPGS micelles exhibit an enhanced photostability upon exposure to simulated sunlight. In vivo experiments demonstrate that, as compared to that of the coarse suspensions of CoQ10, there was three-fold enhancement of oral bioavailability for CoQ10-loaded SPGS micelles depending on varying molecular weight of SPGS. In the encapsulation of CoQ10 by SPGS micelles, the self-assembled nanocarriers with strong muco-adhesive properties lead to increases in the solubility and oral absorption of lipophilic CoQ10 nanoparticles.
Collapse
Affiliation(s)
- Benkai Qin
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming, Kaifeng, Henan 475001, China
| | - Lei Liu
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming, Kaifeng, Henan 475001, China
| | - Yangyang Pan
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming, Kaifeng, Henan 475001, China
| | - Yingchun Zhu
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming, Kaifeng, Henan 475001, China
| | - Xiaohe Wu
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming, Kaifeng, Henan 475001, China
| | - Shiyong Song
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming, Kaifeng, Henan 475001, China
| | - Guang Han
- Institute of Pharmacy, Pharmacy College of Henan University , Jinming, Kaifeng, Henan 475001, China
| |
Collapse
|
17
|
Le Roux G, Moche H, Nieto A, Benoit JP, Nesslany F, Lagarce F. Cytotoxicity and genotoxicity of lipid nanocapsules. Toxicol In Vitro 2017; 41:189-199. [PMID: 28323104 DOI: 10.1016/j.tiv.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/01/2022]
Abstract
Lipid nanocapsules (LNCs) offer a promising method for the entrapment and nanovectorisation of lipophilic molecules. This new type of nanocarrier, formulated according to a solvent-free process and using only regulatory-approved components, exhibits many prerequisites for being well tolerated. Although toxicological reference values have already been obtained in mice, interaction of LNCs at the cell level needs to be elucidated. LNCs, measuring from 27.0±0.1nm (25nm LNCs) and 112.1±1.8nm (100nm LNCs) and with a zeta potential between -38.7±1.2mV and +9.18±0.4mV, were obtained by a phase inversion process followed by post-insertion of carboxy- or amino-DSPE-PEG. Trypan blue, MTS and neutral red uptake (NRU) assays were performed to evaluate the cytotoxicity of LNCs on mouse macrophage-like cells RAW264.7 after 24h of exposure. The determination of 50% lethal concentration (LC50) showed a size effect of LNCs on toxicity profiles: LC50 ranged from 1.036mg/L (MTS) and 0.477mg/mL (NRU) for 25nm LNCs, to 4.42mg/mL (MTS) and 2.18mg/mL (NRU) for 100nm LNCs. Surfactant Solutol® HS15 has been shown to be the only constituent to exhibit cytotoxicity; its LC50 reached 0.427mg/mL. Moreover, LNCs were not more toxic than their components in simple mixtures. At sublethal concentration, 100nm LNCs only were able to induce a significant production of nitric oxide (NO) by RAW264.7 cells, as assessed by the Griess reaction. Again, surfactant was the only component responsible for an increased NO release (1.8±0.2-fold). Genotoxicity assays revealed no DNA damage on human lymphocytes in both the in vitro Comet and micronucleus assays using 4-hour and 24-hour treatments, respectively.
Collapse
Affiliation(s)
- Gaël Le Roux
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France.
| | - Hélène Moche
- Laboratoire de Toxicologie, Institut Pasteur de Lille, EA 4483, 59019 Lille Cedex, France
| | - Alejandro Nieto
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France
| | - Jean-Pierre Benoit
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France
| | - Fabrice Nesslany
- Laboratoire de Toxicologie, Institut Pasteur de Lille, EA 4483, 59019 Lille Cedex, France
| | - Frédéric Lagarce
- L'UNAM Université, Inserm U1066 MINT, CHU d'Angers, 49933 Angers Cedex 9, France
| |
Collapse
|
18
|
Hou J, Sun E, Sun C, Wang J, Yang L, Jia XB, Zhang ZH. Improved oral bioavailability and anticancer efficacy on breast cancer of paclitaxel via Novel Soluplus(®)-Solutol(®) HS15 binary mixed micelles system. Int J Pharm 2016; 512:186-193. [PMID: 27567930 DOI: 10.1016/j.ijpharm.2016.08.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 11/27/2022]
Abstract
The aim of this study was to develop a novel drug delivery system using two biocompatible copolymers of Solutol(®)HS15 and Soluplus(®) to improve solubility, oral bioavailability and anticancer activity of paclitaxel (PTX). The PTX-loaded mixed micelles (PTX-M) were prepared by ethanol thin-film hydration method. The optimal PTX-M were provided with small size (164.8±2.0nm) and spherical shape at ratio of 1: 3 (Solutol(®)HS15: Soluplus(®)), thus increasing the solubility to 15.76±0.15mg/mL in water. The entrapment efficiency and drug loading of PTX-M were 98.48±0.91% and 10.59±0.09% respectively. In vitro release study indicated a sustained release of PTX-M. Transcellular transport study showed that the efflux ratio were decreased by 89.72% dramatically in Caco-2 cell transport models, and the pharmacokinetics study of PTX-M compared with PTX, showed a 3.68-fold increase in relative oral bioavailability, indicating the mixed micelles may promote absorption in the gastrointestinal tract. In addition, the MTT assay demonstrated that the IC50 value of PTX-M was reduced by 40.21% (PTX-M: 22.6±2.1μg/mL, PTX: 37.8±1.4μg/mL), and in vivo anti-tumor study (15days' therapy) showed PTX-M achieved higher anti-tumor efficacy (57.66%) compared with PTX (41.13%). Furthermore, a gastrointestinal safety assay also provided the reliability and safety of PTX-M. Collectively, these findings present an oral micelle formulation with increased solubility, oral bioavailability and anticancer activity of PTX.
Collapse
Affiliation(s)
- Jian Hou
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China; College of Pharmacy, Jiangsu University, Jiangsu, Zhenjiang 212013, China
| | - E Sun
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China
| | - Congyong Sun
- College of Pharmacy, Jiangsu University, Jiangsu, Zhenjiang 212013, China
| | - Jing Wang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China
| | - Lei Yang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China; College of Pharmacy, Jiangsu University, Jiangsu, Zhenjiang 212013, China
| | - Xiao-Bin Jia
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China; College of Pharmacy, Jiangsu University, Jiangsu, Zhenjiang 212013, China.
| | - Zhen-Hai Zhang
- Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, China
| |
Collapse
|
19
|
Liu L, Mao K, Wang W, Pan H, Wang F, Yang M, Liu H. Kolliphor® HS 15 Micelles for the Delivery of Coenzyme Q10: Preparation, Characterization, and Stability. AAPS PharmSciTech 2016; 17:757-66. [PMID: 26340950 DOI: 10.1208/s12249-015-0399-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 08/19/2015] [Indexed: 01/17/2023] Open
Abstract
To enhance the stability of coenzyme Q10 (CoQ10), Kolliphor® HS 15 (HS15) was employed as a carrier to build up a stable CoQ10-loaded micelle delivery system. The impact of micellar compositions, the preparation condition, and the preparation method on size characteristics, the solubilization efficiency, and micellar stability were investigated. The optimal preparation conditions were 1:6, 4, 0.2%, 118°C, and 25 min for CoQ10/HS15 mass ratio, pH value, the concentration of glucose, and the sterilization conditions. Upon these conditions, the particle size, polydispersity index (PDI), zeta potential, the entrapment efficiency, drug loading, and the critical micelle concentration (CMC) of CoQ10-loaded micelles were 19.76 nm, 0.112, -3.405 mV, 99.39%, 13.77%, and 5.623 × 10(-4) g/mL, respectively. Differential scanning calorimetry (DSC) analysis collectively corroborated that CoQ10 was entrapped into the micelles in amorphous form. The release pattern of drug was analyzed and proved to follow the first order. Additionally, the samples were exposed to the temperatures of 30°C for 6 months with more significant impact on their stabilities as compared to 4 and 25°C based on particle size and PDI. Under constant humidity with light protection long-term (25 ± 2°C, relative humidity (RH) 60 ± 10%, 18 months) conditions, there was no variation except minor changes of CoQ10 content of the samples. The shelf life of the micellar samples could be predicted as 24 months based on the stability results. Consequently, the CoQ10-loaded micelles showed excellent stabilities below 25°C as a potential drug candidate for further clinical applications.
Collapse
|
20
|
Oh KS, Kim K, Yoon BD, Lee HJ, Park DY, Kim EY, Lee K, Seo JH, Yuk SH. Docetaxel-loaded multilayer nanoparticles with nanodroplets for cancer therapy. Int J Nanomedicine 2016; 11:1077-87. [PMID: 27042062 PMCID: PMC4801198 DOI: 10.2147/ijn.s100170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A mixture of docetaxel (DTX) and Solutol® HS 15 (Solutol) transiently formed nanodroplets when it was suspended in an aqueous medium. However, nanodroplets that comprised DTX and Solutol showed a rapid precipitation of DTX because of their unstable characteristics in the aqueous medium. The incorporation of nanodroplets that comprised DTX and Solutol through vesicle fusion and subsequent stabilization was designed to prepare multilayer nanoparticles (NPs) with a DTX-loaded Solutol nanodroplet (as template NPs) core for an efficient delivery of DTX as a chemotherapeutic drug. As a result, the DTX-loaded Solutol nanodroplets (~11.7 nm) were observed to have an increased average diameter (from 11.7 nm to 156.1 nm) and a good stability of the hydrated NPs without precipitation of DTX by vesicle fusion and multilayered structure, respectively. Also, a long circulation of the multilayer NPs was observed, and this was due to the presence of Pluronic F-68 on the surface of the multilayer NPs. This led to an improved antitumor efficacy based on the enhanced permeation and retention effect. Therefore, this study indicated that the multilayer NPs have a considerable potential as a drug delivery system with an enhanced therapeutic efficacy by blood circulation and with low side effects.
Collapse
Affiliation(s)
- Keun Sang Oh
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kyungim Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Byeong Deok Yoon
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Hye Jin Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dal Yong Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Eun-Yeong Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Kiho Lee
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jae Hong Seo
- Biomedical Research Center, Korea University Guro Hospital, Guro-gu, Seoul, Republic of Korea
| | - Soon Hong Yuk
- College of Pharmacy, Korea University, Sejong, Republic of Korea; Biomedical Research Center, Korea University Guro Hospital, Guro-gu, Seoul, Republic of Korea
| |
Collapse
|
21
|
Liu CS, Zheng YR, Zhang YF, Long XY. Research progress on berberine with a special focus on its oral bioavailability. Fitoterapia 2016; 109:274-82. [PMID: 26851175 DOI: 10.1016/j.fitote.2016.02.001] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
22
|
Chen T, Yang J, Chen L, Qian X, Zheng Q, Fu T, Qiao H, Li J, Di L. Use of ordered mesoporous silica-loaded phyto-phospholipid complex for BCS IV class plant drug to enhance oral bioavailability: a case report of tanshinone IIA. RSC Adv 2016. [DOI: 10.1039/c6ra22778c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A CDDS was composed of PC and SD, using TS as a model drug. The marked improvements in oral bioavailability by TSPC-SD may result from comprehensive effects, including improved lg Po/wandPappviaPC, and increased dissolution rates from SD.
Collapse
Affiliation(s)
- Ting Chen
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS)
| | - Junhui Yang
- Jiangyin Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine
- Jiangyin 214400
- PR China
| | - Lihua Chen
- School of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330004
- PR China
| | - Xiaocui Qian
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS)
| | - Qin Zheng
- School of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330004
- PR China
| | - Tingming Fu
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS)
| | - Hongzhi Qiao
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS)
| | - Junsong Li
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS)
| | - Liuqing Di
- School of Pharmacy
- Nanjing University of Chinese Medicine
- Nanjing 210023
- PR China
- Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS)
| |
Collapse
|
23
|
Chauvet S, Barras A, Boukherroub R, Bouron A. Lipid nanocapsules containing the non-ionic surfactant Solutol HS15 inhibit the transport of calcium through hyperforin-activated channels in neuronal cells. Neuropharmacology 2015; 99:726-34. [PMID: 26341818 DOI: 10.1016/j.neuropharm.2015.08.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/28/2015] [Accepted: 08/26/2015] [Indexed: 01/23/2023]
Abstract
Hyperforin is described as a natural antidepressant inhibiting the reuptake of neurotransmitters and also activating cation channels. However the blood-brain barrier limits the access to the brain of this biomolecule. To circumvent this problem it was envisaged to encapsulate hyperforin into biomimetic lipid nano-carriers like lipid nanocapsules (LNCs). When testing the safety of 25 nm LNCs it appeared that they strongly blocked hyperforin-activated Ca2+ channels of cultured cortical neurons. This inhibition was due to one of their main component: solutol HS15 (polyoxyethylene-660-12-hydroxy stearate), a non-ionic soluble surfactant. Solutol HS15 rapidly depresses in a concentration-dependent manner the entry of Ca2+ through hyperforin-activated channels without influencing store-operated channels. This effect is mimicked by Brij58 but not by PEG600, indicating that the lipid chain of Solutol HS15 is important in determining its effects on the channels. The inhibition of the Ca2+ fluxes depends on the cellular cholesterol content; it is stronger after depleting cholesterol with methyl-β-cyclodextrin and is nearly absent on cells cultured in a cholesterol-rich medium. When chronically applied for 24 h, Solutol HS15 slightly up-regulates the entry of Ca2+ through hyperforin-activated channels. Similar observations were made when testing 25 nm lipid nanocapsules containing the surfactant Solutol HS15. Altogether, this study shows that Solutol HS15 perturbs in a cholesterol-dependent manner the activity of some neuronal channels. This is the first demonstration that LNCs containing this surfactant can influence cellular calcium signaling in the brain, a finding that can have important clinical implications.
Collapse
Affiliation(s)
- Sylvain Chauvet
- Univ Grenoble Alpes, iRTSV-LCBM, F-38000 Grenoble, France; CNRS, iRTSV-LCBM, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France
| | - Alexandre Barras
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille 1, Avenue Poincaré - BP 60069, 59652 Villeneuve d'Ascq, France
| | - Rabah Boukherroub
- Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille 1, Avenue Poincaré - BP 60069, 59652 Villeneuve d'Ascq, France
| | - Alexandre Bouron
- Univ Grenoble Alpes, iRTSV-LCBM, F-38000 Grenoble, France; CNRS, iRTSV-LCBM, F-38000 Grenoble, France; CEA, iRTSV-LCBM, F-38000 Grenoble, France.
| |
Collapse
|
24
|
Shubber S, Vllasaliu D, Rauch C, Jordan F, Illum L, Stolnik S. Mechanism of mucosal permeability enhancement of CriticalSorb® (Solutol® HS15) investigated in vitro in cell cultures. Pharm Res 2014; 32:516-27. [PMID: 25190006 PMCID: PMC4300420 DOI: 10.1007/s11095-014-1481-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/15/2014] [Indexed: 02/02/2023]
Abstract
Purpose CriticalSorb™, with the principal component Solutol® HS15, is a novel mucosal drug delivery system demonstrated to improve the bioavailability of selected biotherapeutics. The intention of this study is to elucidate mechanism(s) responsible for the enhancement of trans-mucosal absorption of biological drugs by Solutol® HS15. Methods Micelle size and CMC of Solutol® HS15 were determined in biologically relevant media. Polarised airway Calu-3 cell layers were used to measure the permeability of a panel of biological drugs, and to assess changes in TEER, tight junction and F-actin morphology. The rate of cell endocytosis was measured in vitro in the presence of Solutol® HS15 using a membrane probe, FM 2–10. Results This work initially confirms surfactant-like behaviour of Solutol® HS15 in aqueous media, while subsequent experiments demonstrate that the effect of Solutol® HS15 on epithelial tight junctions is different from a ‘classical’ tight junction opening agent and illustrate the effect of Solutol® HS15 on the cell membrane (endocytosis rate) and F-actin cytoskeleton. Conclusion Solutol® HS15 is the principle component of CriticalSorb™ that has shown an enhancement in permeability of medium sized biological drugs across epithelia. This study suggests that its mechanism of action arises primarily from effects on the cell membrane and consequent impacts on the cell cytoskeleton in terms of actin organisation and tight junction opening.
Collapse
Affiliation(s)
- Saif Shubber
- Division of Drug Delivery and Tissue Engineering, School of Pharmacy Boots Science Building, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
25
|
Stuurman FE, Nuijen B, Beijnen JH, Schellens JHM. Oral anticancer drugs: mechanisms of low bioavailability and strategies for improvement. Clin Pharmacokinet 2013; 52:399-414. [PMID: 23420518 DOI: 10.1007/s40262-013-0040-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of oral anticancer drugs has increased during the last decade, because of patient preference, lower costs, proven efficacy, lack of infusion-related inconveniences, and the opportunity to develop chronic treatment regimens. Oral administration of anticancer drugs is, however, often hampered by limited bioavailability of the drug, which is associated with a wide variability. Since most anticancer drugs have a narrow therapeutic window and are dosed at or close to the maximum tolerated dose, a wide variability in the bioavailability can have a negative impact on treatment outcome. This review discusses mechanisms of low bioavailability of oral anticancer drugs and strategies for improvement. The extent of oral bioavailability depends on many factors, including release of the drug from the pharmaceutical dosage form, a drug's stability in the gastrointestinal tract, factors affecting dissolution, the rate of passage through the gut wall, and the pre-systemic metabolism in the gut wall and liver. These factors are divided into pharmaceutical limitations, physiological endogenous limitations, and patient-specific limitations. There are several strategies to reduce or overcome these limitations. First, pharmaceutical adjustment of the formulation or the physicochemical characteristics of the drug can improve the dissolution rate and absorption. Second, pharmacological interventions by combining the drug with inhibitors of transporter proteins and/or pre-systemic metabolizing enzymes can overcome the physiological endogenous limitations. Third, chemical modification of a drug by synthesis of a derivative, salt form, or prodrug could enhance the bioavailability by improving the absorption and bypassing physiological endogenous limitations. Although the bioavailability can be enhanced by various strategies, the development of novel oral products with low solubility or cell membrane permeability remains cumbersome and is often unsuccessful. The main reasons are unacceptable variation in the bioavailability and high investment costs. Furthermore, novel oral anticancer drugs are frequently associated with toxic effects including unacceptable gastrointestinal adverse effects. Therefore, compliance is often suboptimal, which may negatively influence treatment outcome.
Collapse
Affiliation(s)
- Frederik E Stuurman
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
26
|
Abstract
INTRODUCTION Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. AREAS COVERED Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. EXPERT OPINION Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients.
Collapse
Affiliation(s)
- Takayuki Yoshida
- Drug Delivery, Pharmaceutical Research and Technology Labs, Astellas Pharma, Inc. , 180 Ozumi, Yaizu, Shizuoka 425-0072 , Japan +81 54 627 6861 ; +81 54 627 9918 ;
| | | | | | | |
Collapse
|
27
|
Seventy-two-hour release formulation of the poorly soluble drug silybin based on porous silica nanoparticles: In vitro release kinetics and in vitro/in vivo correlations in beagle dogs. Eur J Pharm Sci 2013; 48:64-71. [DOI: 10.1016/j.ejps.2012.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 12/13/2022]
|
28
|
Illum L, Jordan F, Lewis AL. CriticalSorb: a novel efficient nasal delivery system for human growth hormone based on Solutol HS15. J Control Release 2012; 162:194-200. [PMID: 22709592 DOI: 10.1016/j.jconrel.2012.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/07/2012] [Accepted: 06/09/2012] [Indexed: 12/31/2022]
Abstract
The absorption enhancing efficiency of CriticalSorb for human growth hormone (MW 22 kDa) was investigated in the conscious rat model. The principle absorption enhancing component of CriticalSorb, Solutol HS15, comprises polyglycol mono- and di-esters of 12-hydroxystearic acid combined with free polyethylene glycol. When administering hGH nasally in rats with increasing concentrations of Solutol HS15, it was found that for a 10%w/v solution formulation a bioavailability of 49% was obtained in the first 2h after administration. Furthermore it was shown that the most effective ratio of Solutol HS15 to hGH was 4:1 on a mg to mg basis. Histopathology studies in rats after 5 days repeated nasal administration showed that Solutol HS15 had no toxic effect on the nasal mucosa. These results have been confirmed in a 6 month repeat nasal toxicity study in rats. It can be concluded that the principle absorption enhancing component of CriticalSorb - Solutol HS15 - is a potent and non- toxic nasal absorption enhancer that warrants further development.
Collapse
Affiliation(s)
- Lisbeth Illum
- Critical Pharmaceuticals Ltd., BioCity, Nottingham, Pennyfoot Street, Nottingham NG1 1GF, UK
| | | | | |
Collapse
|
29
|
CriticalSorb™ Promotes Permeation of Flux Markers Across Isolated Rat Intestinal Mucosae and Caco-2 Monolayers. Pharm Res 2012; 29:2543-54. [DOI: 10.1007/s11095-012-0785-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/14/2012] [Indexed: 01/06/2023]
|
30
|
Fenyvesi F, Kiss T, Fenyvesi É, Szente L, Veszelka S, Deli MA, Váradi J, Fehér P, Ujhelyi Z, Tósaki Á, Vecsernyés M, Bácskay I. Randomly methylated β‐cyclodextrin derivatives enhance taxol permeability through human intestinal epithelial Caco‐2 cell monolayer. J Pharm Sci 2011; 100:4734-44. [DOI: 10.1002/jps.22666] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/23/2011] [Accepted: 05/25/2011] [Indexed: 11/10/2022]
|