1
|
Shi K, Nokhodchi A, Ghafourian T. Magnetic microscale polymeric nanocomposites in drug delivery: advances and challenges. Drug Discov Today 2025; 30:104276. [PMID: 39736462 DOI: 10.1016/j.drudis.2024.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025]
Abstract
Magnetic polymeric nanocomposites are a modern class of materials in which magnetic nanoparticles are embedded in a polymeric matrix. This combination of magnetic responsiveness and tuneable properties bestows versatility on this class of polymer nanocomposite material, which has potentially broad applications in drug delivery, imaging, environmental remediation and beyond. This review covers the uses of magnetic polymeric nanocomposites in drug delivery, discussing magnetic micelles, magnetic liposomes, magnetic hydrogels, magnetic sponges, magnetic mesoporous silica nanoparticles, magnetic microrobots, magnetic elastomers and magnetic scaffolds. The focus is on the role that might be played by magnetic nanocomposites as an interface between the magnetic and polymeric domains in the establishment of a new generation of advanced materials.
Collapse
Affiliation(s)
- Kejing Shi
- Department for Bioscience, School of Health, Sport and Bioscience, University of East London, Water Lane, London E15 4LZ, UK.
| | - Ali Nokhodchi
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Taravat Ghafourian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA.
| |
Collapse
|
2
|
Lanna MF, Resende LA, De Luca PM, Goes WM, Zaldívar MF, Costa AT, Dutra WO, Reis AB, Martins-Filho OA, Gollob KJ, de Moura SAL, Dias ES, Monteiro ÉM, Silveira-Lemos D, Giunchetti RC. Application of the Sponge Model Implants in the Study of Vaccine Memory in Mice Previously Immunized with LBSap. Vaccines (Basel) 2024; 12:1322. [PMID: 39771984 PMCID: PMC11680354 DOI: 10.3390/vaccines12121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Considering the large number of candidates in vaccine-testing studies against different pathogens and the amount of time spent in the preclinical and clinical trials, there is a pressing need to develop an improved in vivo system to quickly screen vaccine candidates. The model of a polyester-polyurethane sponge implant provides a rapid analysis of the specific stimulus-response, allowing the study of a compartmentalized microenvironment. The sponge implant's defined measurements were standardized as a compartment to assess the immune response triggered by the vaccinal antigen. The LBSap vaccine (composed of Leishmania braziliensis antigens associated with saponin adjuvant) was used in the sponge model to assess the antigen-specific immunological biomarker, including memory generation after initial contact with the antigen. METHODS Mice strains (Swiss, BALB/c, and C57BL/6) were previously immunized using LBSap vaccine, followed by an antigenic booster performed inside the sponge implant. The sponge implants were assessed after 72 h, and the immune response pattern was analyzed according to leukocyte immunophenotyping and cytokine production. RESULTS After LBSap vaccination, the innate immune response of the antigenic booster in the sponge implants demonstrated higher levels in the Ly+ neutrophils and CD11c+ dendritic cells with reduced numbers of F4/80+ macrophages. Moreover, the adaptive immune response in Swiss mice demonstrated a high CD3+CD4+ T-cell frequency, consisting of an effector memory component, in addition to a cytoxicity response (CD3+CD8+ T cells), displaying the central memory biomarker. The major cell surface biomarker in the BALB/c mice strain was related to CD3+CD4+ effector memory, while the increased CD3+CD8+ effector memory was highlighted in C57/BL6. The cytokine profile was more inflammatory in Swiss mice, with the highest levels of IL-6, TNF, IFN-g, and IL-17, while the same cytokine was observed in in C57BL/6 yet modulated by enhanced IL-10 levels. Similar to Swiss mice, BALB/c mice triggered an inflammatory environment after the antigenic booster in the sponge implant with the increased levels in the ILL-6, TNF, and IFN-g. CONCLUSIONS The findings emphasized the impact of genetic background on the populations engaged in immune responses, suggesting that this model can be utilized to enhance and track both innate and adaptive immune responses in vaccine candidates. Consequently, these results may inform the selection of the most suitable experimental model for biomolecule testing, taking into account how the unique characteristics of each mouse strain affect the immune response dynamics.
Collapse
Affiliation(s)
- Mariana Ferreira Lanna
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
- Immunopathology Laboratory, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Lucilene Aparecida Resende
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Paula Mello De Luca
- Instituto Oswaldo Cruz (IOC), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, RJ, Brazil
| | - Wanessa Moreira Goes
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Maykelin Fuentes Zaldívar
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - André Tetzl Costa
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Alexandre Barbosa Reis
- Immunopathology Laboratory, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil
| | - Kenneth Jhon Gollob
- Albert Einstein Israeli Institute of Education and Research, Albert Einstein Hospital, São Paulo 05652-900, SP, Brazil
| | - Sandra Aparecida Lima de Moura
- Biomaterials and Experimental Pathology Laboratory, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Edelberto Santos Dias
- Taxonomy of Phlebotomines/Epidemiology, Diagnosis and Control of Leishmaniasis Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil; (E.S.D.); (É.M.M.)
| | - Érika Michalsky Monteiro
- Taxonomy of Phlebotomines/Epidemiology, Diagnosis and Control of Leishmaniasis Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil; (E.S.D.); (É.M.M.)
| | - Denise Silveira-Lemos
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
- Department of Medicine, José Rosário Vellano University, Belo Horizonte Campus, Belo Horizonte 31270-020, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| |
Collapse
|
3
|
Fialho SL, Silva-Cunha A. Two Decades of Research in Drug Delivery Systems for the Treatment of Diseases of the Posterior Segment of the Eye. J Ocul Pharmacol Ther 2024; 40:545-549. [PMID: 39206558 DOI: 10.1089/jop.2024.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Sílvia L Fialho
- Pharmaceutical and Biotechnological Development, Fundação Ezequiel Dias (FUNED), Belo Horizonte, Brazil
| | - Armando Silva-Cunha
- Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
4
|
Nadaf S, Savekar P, Bhagwat D, Gurav S. Polyurethane-Based Drug Delivery Applications: Current Progress and Future Prospectives. ACS SYMPOSIUM SERIES 2023:191-214. [DOI: 10.1021/bk-2023-1454.ch009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Sameer Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagaon, Site: Chinchewadi 416503, Maharashtra, India
| | - Pranav Savekar
- Shivraj College of Pharmacy, Gadhinglaj 416502, Maharashtra, India
| | | | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa 403001, India
| |
Collapse
|
5
|
Pothupitiya JU, Zheng C, Saltzman WM. Synthetic biodegradable polyesters for implantable controlled-release devices. Expert Opin Drug Deliv 2022; 19:1351-1364. [PMID: 36197839 DOI: 10.1080/17425247.2022.2131768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Implantable devices can be designed to release drugs to localized regions of tissue at sustained and reliable rates. Advances in polymer engineering have led to the design and development of drug-loaded implants with predictable, desirable release profiles. Biodegradable polyesters exhibit chemical, physical, and biological properties suitable for developing implants for pain management, cancer therapy, contraception, antiviral therapy, and other applications. AREAS COVERED : This article reviews the use of biodegradable polyesters for drug-loaded implants by discussing the properties of commonly used polymers, techniques for implant formulation and manufacturing, mechanisms of drug release, and clinical applications of implants as drug delivery devices. EXPERT OPINION : Drug delivery implants are unique systems for safe and sustained drug release, providing high bioavailability and low toxicity. Depending on the implant design and tissue site of deployment, implants can offer either localized or systemic drug release. Due to the long history of use of degradable polyesters in medical devices, polyester-based implants represent an important class of controlled release technologies. Further, polyester-based implants are the largest category of drug delivery implants to reach the point of testing in humans or approval for human use.
Collapse
Affiliation(s)
- Jinal U Pothupitiya
- Department of Biomedical Engineering, Yale University; New Haven, CT 06511, USA
| | - Christy Zheng
- Department of Biomedical Engineering, Yale University; New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University; New Haven, CT 06511, USA
| |
Collapse
|
6
|
Chen YC, Gad SF, Chobisa D, Li Y, Yeo Y. Local drug delivery systems for inflammatory diseases: Status quo, challenges, and opportunities. J Control Release 2021; 330:438-460. [PMID: 33352244 DOI: 10.1016/j.jconrel.2020.12.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Inflammation that is not resolved in due course becomes a chronic disease. The treatment of chronic inflammatory diseases involves a long-term use of anti-inflammatory drugs such as corticosteroids and nonsteroidal anti-inflammatory drugs, often accompanied by dose-dependent side effects. Local drug delivery systems have been widely explored to reduce their off-target side effects and the medication frequency, with several products making to the market or in development over the years. However, numerous challenges remain, and drug delivery technology is underutilized in some applications. This review showcases local drug delivery systems in different inflammatory diseases, including the targets well-known to drug delivery scientists (e.g., joints, eyes, and teeth) and other applications with untapped opportunities (e.g., sinus, bladder, and colon). In each section, we start with a brief description of the disease and commonly used therapy, introduce local drug delivery systems currently on the market or in the development stage, focusing on polymeric systems, and discuss the remaining challenges and opportunities in future product development.
Collapse
Affiliation(s)
- Yun-Chu Chen
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Sheryhan F Gad
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Dhawal Chobisa
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Integrated product development organization, Innovation plaza, Dr. Reddy's Laboratories, Hyderabad 500090, India
| | - Yongzhe Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Gulmez F, Yercan A, Kocaaga B, Guner FS. pH-sensitive castor oil/PEG-based polyurethane films for drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Johnson AR, Forster SP, White D, Terife G, Lowinger M, Teller RS, Barrett SE. Drug eluting implants in pharmaceutical development and clinical practice. Expert Opin Drug Deliv 2021; 18:577-593. [PMID: 33275066 DOI: 10.1080/17425247.2021.1856072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Drug eluting implants offer patient convenience and improved compliance through less frequent dosing, eliminating repeated, painful injections and providing localized, site specific delivery with applications in contraception, ophthalmology, and oncology.Areas covered: This review provides an overview of available implant products, design approaches, biodegradable and non-biodegradable polymeric materials, and fabrication techniques with a focus on commercial applications and industrial drug product development. Developing trends in the field, including expanded availability of suitable excipients, development of novel materials, scaled down manufacturing process, and a wider understanding of the implant development process are discussed and point to opportunities for differentiated drug eluting implant products.Expert opinion: In the future, long-acting implants will be important clinical tools for prophylaxis and treatment of global health challenges, especially for infectious diseases, to reduce the cost and difficulty of treating chronic indications, and to prolong local delivery in difficult to administer parts of the body. These products will help improve patient safety, adherence, and comfort.
Collapse
Affiliation(s)
- Ashley R Johnson
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | - Seth P Forster
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | | | - Graciela Terife
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | - Michael Lowinger
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | | | - Stephanie E Barrett
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
9
|
Lanna MF, Resende LA, Aguiar-Soares RDDO, de Miranda MB, de Mendonça LZ, Melo Júnior OADO, Mariano RMDS, Leite JC, Silveira P, Corrêa-Oliveira R, Dutra WO, Reis AB, Martins-Filho OA, de Moura SAL, Silveira-Lemos D, Giunchetti RC. Kinetics of Phenotypic and Functional Changes in Mouse Models of Sponge Implants: Rational Selection to Optimize Protocols for Specific Biomolecules Screening Purposes. Front Bioeng Biotechnol 2020; 8:538203. [PMID: 33344427 PMCID: PMC7738572 DOI: 10.3389/fbioe.2020.538203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
The sponge implant has been applied as an important in vivo model for the study of inflammatory processes as it induces the migration, proliferation, and accumulation of inflammatory cells, angiogenesis, and extracellular matrix deposition in its trabeculae. The characterization of immune events in sponge implants would be useful in identifying the immunological events that could support the selection of an appropriate experimental model (mouse strain) and time post-implant analysis in optimized protocols for novel applications of this model such as in biomolecules screening. Here, the changes in histological/morphometric, immunophenotypic and functional features of infiltrating leukocytes (LEU) were assessed in sponge implants for Swiss, BALB/c, and C57BL/6 mice. A gradual increase of fibrovascular stroma and a progressive decrease in LEU infiltration, mainly composed of polymorphonuclear cells with progressive shift toward mononuclear cells at late time-points were observed over time. Usually, Swiss mice presented a more prominent immune response with late mixed pattern (pro-inflammatory/anti-inflammatory: IL-2/IFN-γ/IL-4/IL-10/IL-17) of cytokine production. While BALB/c mice showed an early activation of the innate response with a controlled cytokine profile (low inflammatory potential), C57BL/6 mice presented a typical early pro-inflammatory (IL-6/TNF/IFN-γ) response with persistent neutrophilic involvement. A rational selection of the ideal time-point/mouse-lineage would avoid bias or tendentious results. Criteria such as low number of increased biomarkers, no recruitment of cytotoxic response, minor cytokine production, and lower biomarker connectivity (described as biomarker signature analysis and network analysis) guided the choice of the best time-point for each model (Day5/Swiss; Day7/BALB/c; Day6/C57BL/6) with wide application for screening purposes, such as identification of therapeutic biomolecules, selection of antigens/adjuvants, and follow-up of innate and adaptive immune response to vaccines candidates.
Collapse
Affiliation(s)
- Mariana Ferreira Lanna
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Pesquisas Clínicas, Programa de Pós-Graduação de Ciências Farmacêuticas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Lucilene Aparecida Resende
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratório de Pesquisas Clínicas, Programa de Pós-Graduação de Ciências Farmacêuticas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Marina Barcelos de Miranda
- Laboratório de Biomateriais e Patologia Experimental, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Ludmila Zanandreis de Mendonça
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Reysla Maria da Silveira Mariano
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jaqueline Costa Leite
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patricia Silveira
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Corrêa-Oliveira
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre Barbosa Reis
- Laboratório de Pesquisas Clínicas, Programa de Pós-Graduação de Ciências Farmacêuticas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto de Pesquisa René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Sandra Aparecida Lima de Moura
- Laboratório de Biomateriais e Patologia Experimental, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | | | - Rodolfo Cordeiro Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
10
|
Da Silva GR, Lima TH, Fernandes-Cunha GM, Oréfice RL, Da Silva-Cunha A, Zhao M, Behar-Cohen F. Ocular biocompatibility of dexamethasone acetate loaded poly(ɛ-caprolactone) nanofibers. Eur J Pharm Biopharm 2019; 142:20-30. [DOI: 10.1016/j.ejpb.2019.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 01/14/2023]
|
11
|
Martens B, Drebert Z. Glucocorticoid-mediated effects on angiogenesis in solid tumors. J Steroid Biochem Mol Biol 2019; 188:147-155. [PMID: 30654109 DOI: 10.1016/j.jsbmb.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 12/28/2022]
Abstract
Angiogenesis is essential in tumor development to maintain the oxygen and nutrient supply. Glucocorticoids have shown both direct and indirect angiostatic properties in various types of solid cancers. In most of the reported cases glucocorticoid-mediated actions involved suppression of multiple pro-angiogenic factors expression by cancer cells. The anti-angiogenic properties of glucocorticoids correlated with diminished tumor vasculature and reduced tumor growth in multiple in vivo studies. However, when glucocorticoid treatment is considered, possible adverse events should be taken into account. Additional research is needed to further test the use of these steroidal drugs in cancer therapy.
Collapse
Affiliation(s)
- Broes Martens
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Zuzanna Drebert
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
12
|
Lowinger MB, Barrett SE, Zhang F, Williams RO. Sustained Release Drug Delivery Applications of Polyurethanes. Pharmaceutics 2018; 10:E55. [PMID: 29747409 PMCID: PMC6027189 DOI: 10.3390/pharmaceutics10020055] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/18/2022] Open
Abstract
Since their introduction over 50 years ago, polyurethanes have been applied to nearly every industry. This review describes applications of polyurethanes to the development of modified release drug delivery. Although drug delivery research leveraging polyurethanes has been ongoing for decades, there has been renewed and substantial interest in the field in recent years. The chemistry of polyurethanes and the mechanisms of drug release from sustained release dosage forms are briefly reviewed. Studies to assess the impact of intrinsic drug properties on release from polyurethane-based formulations are considered. The impact of hydrophilic water swelling polyurethanes on drug diffusivity and release rate is discussed. The role of pore formers in modulating drug release rate is examined. Finally, the value of assessing mechanical properties of the dosage form and approaches taken in the literature are described.
Collapse
Affiliation(s)
- Michael B Lowinger
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
- MRL, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA.
| | | | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| | - Robert O Williams
- College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
13
|
Soto RJ, Hall JR, Brown MD, Taylor JB, Schoenfisch MH. In Vivo Chemical Sensors: Role of Biocompatibility on Performance and Utility. Anal Chem 2017; 89:276-299. [PMID: 28105839 PMCID: PMC6773264 DOI: 10.1021/acs.analchem.6b04251] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robert J. Soto
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Jackson R. Hall
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - James B. Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
14
|
Sun H, Zhang L, Xia W, Chen L, Xu Z, Zhang W. Fabrication of graphene oxide-modified chitosan for controlled release of dexamethasone phosphate. APPLIED PHYSICS A 2016; 122:632. [DOI: 10.1007/s00339-016-0029-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1511-22. [PMID: 27013131 PMCID: PMC4949379 DOI: 10.1016/j.nano.2016.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 01/28/2016] [Accepted: 02/14/2016] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRNAs) directly regulate gene expression at a post-transcriptional level and represent an attractive therapeutic target for a wide range of diseases. Here, we report a novel strategy for delivering miRNAs to endothelial cells (ECs) to regulate angiogenesis, using polymer functionalized carbon nanotubes (CNTs). CNTs were coated with two different polymers, polyethyleneimine (PEI) or polyamidoamine dendrimer (PAMAM), followed by conjugation of miR-503 oligonucleotides as recognized regulators of angiogenesis. We demonstrated a reduced toxicity for both polymer-coated CNTs, compared with pristine CNTs or polymers alone. Moreover, polymer-coated CNT stabilized miR-503 oligonucleotides and allowed their efficient delivery to ECs. The functionality of PAMAM-CNT-miR-503 complexes was further demonstrated in ECs through regulation of target genes, cell proliferation and angiogenic sprouting and in a mouse model of angiogenesis. This comprehensive series of experiments demonstrates that the use of polyamine-functionalized CNTs to deliver miRNAs is a novel and effective means to regulate angiogenesis.
Collapse
|
16
|
De Oliveira LG, Figueiredo LA, Fernandes-Cunha GM, Marina Barcelos DM, Machado LA, Dasilva GR, Sandra Aparecida Lima DM. Methotrexate Locally Released from Poly(e-Caprolactone) Implants: Inhibition of the Inflammatory Angiogenesis Response in a Murine Sponge Model and the Absence of Systemic Toxicity. J Pharm Sci 2015; 104:3731-42. [DOI: 10.1002/jps.24569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/10/2015] [Accepted: 06/15/2015] [Indexed: 01/15/2023]
|
17
|
Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants. J Control Release 2015. [PMID: 26216396 DOI: 10.1016/j.jconrel.2015.07.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dexamethasone-releasing PLGA poly(lactic-co-glycolic acid) microsphere/PVA (polyvinyl alcohol) hydrogel composite coatings have been shown to prevent the foreign body reaction (FBR) to subcutaneous implants in small and large animal models. Such coatings were developed to extend the lifetime of implantable biosensors. However, long-term exposure of tissue to low levels of dexamethasone results in a reduction in blood vessel density due to the anti-angiogenic effect of dexamethasone. This mild effect, while not threatening to the subject's health, may interfere with analyte detection and the sensor response time over the long-term. The present work is focused on the development of coatings that deliver combinations of three tissue response modifiers (TRMs): dexamethasone, VEGF (vascular endothelial growth factor) and PDGF (platelet derived growth factor). Dexamethasone, VEGF and PDGF prevent the FBR, increase angiogenesis and promote blood vessel maturation (which increases blood flow), respectively. To minimize any potential interference among these three TRMs (for example, PDGF increases fibrosis), the relative doses of dexamethasone, VEGF and PDGF were adjusted. It was determined that: a) all three TRMs are required for maximum promotion of angiogenesis, blood vessel maturation and prevention of the FBR; b) VEGF has to be administered at higher doses than PDGF; c) an increase in dexamethasone dosing must be accompanied by a proportional increase in growth factor dosing; and d) modification of the TRM ratio can achieve a constant capillary density throughout the implantation period which is important for applications such as biosensors to maintain sensitivity and a stable sensor baseline. Moreover, an osmosis-driven process for encapsulation of proteins in PLGA microspheres that showed low burst release was developed.
Collapse
|
18
|
Effect of recombinant human bone morphogenetic protein-2 and Ling Zhi-8 on osteogenesis: a comparative study using a rabbit sinus model. J Oral Maxillofac Surg 2014; 72:1703.e1-1703.e10. [PMID: 24836420 DOI: 10.1016/j.joms.2014.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 11/20/2022]
Abstract
PURPOSE This study evaluated the osteogenetic capability of Ling Zhi-8 (LZ-8; a protein purified from traditional Chinese medicine [lingzhi]) compared with recombinant human bone morphogenic protein-2 (rhBMP-2) in a standardized bony defect using a rabbit sinus model. MATERIALS AND METHODS Twelve male New Zealand white rabbits (18 to 24 weeks old, 3.3 to 3.8 kg) were included in the study. Implants of normal saline 0.1 mg, rhBMP-2 0.1 mg, and LZ-8 0.1 mg were each mixed with a uniform biodegradable polyurethane-based material (Nasopore). The implants were inserted in a standardized bony defect of the nasal bone created by a 2.5-mm trephine bur. The rabbits were sacrificed at 1, 2, 4, and 8 weeks postoperatively. Volume computerized tomographic and histomorphometric examinations were used to evaluate the quantity and quality of regenerated bone. RESULTS At postoperative week 4, radiography showed that the new bone volume was significantly larger in the rhBMP-2 group compared with the LZ-8 group (P = .041) and the control group (P = .015). Histomorphometrically, better wound healing of the rhBMP-2 group was found during the healing phase compared with the other 2 groups. CONCLUSION The biomaterial implants using rhBMP-2 and LZ-8 had good biocompatibility and osteogenetic capabilities in the rabbit sinus model. Bone healing in rhBMP-2-treated defects was excellent and showed a significant difference compared with LZ-8. However, LZ-8-treated defects also exhibited bone regeneration, and this traditional Chinese medicine may possess osteogenic potential. Further investigations of the mechanism and application of this protein in osteogenesis are needed.
Collapse
|
19
|
Pereira ADF, Pereira LGR, Barbosa LADO, Fialho SL, Pereira BG, Patricio PSDO, Pinto FCH, Da Silva GR. Efficacy of methotrexate-loaded poly(ε-caprolactone) implants in Ehrlich solid tumor-bearing mice. Drug Deliv 2013; 20:168-79. [DOI: 10.3109/10717544.2013.801052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Cherng JY, Hou TY, Shih MF, Talsma H, Hennink WE. Polyurethane-based drug delivery systems. Int J Pharm 2013; 450:145-62. [DOI: 10.1016/j.ijpharm.2013.04.063] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 01/21/2023]
|
21
|
Paula JS, Ribeiro VRC, Chahud F, Cannellini R, Monteiro TC, Gomes ECDL, Reinach PS, Rodrigues MDLV, Silva-Cunha A. Bevacizumab-loaded polyurethane subconjunctival implants: effects on experimental glaucoma filtration surgery. J Ocul Pharmacol Ther 2013; 29:566-73. [PMID: 23391327 DOI: 10.1089/jop.2012.0136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
PURPOSE Vascular endothelial growth factor (VEGF) may contribute to the scarring process resulting from glaucoma filtration surgery, since this cytokine may stimulate fibroblast proliferation. The aim of this study was to describe a new bevacizumab-loaded polyurethane implant (BPUI) and to evaluate its effectiveness as a new drug delivery system of anti-VEGF antibody in a rabbit model of glaucoma filtration surgery. METHODS An aqueous dispersion of polyurethane was obtained via the conventional process. Bevacizumab (1.5 mg) was then incorporated into the dispersion and was subsequently dried to form the polymeric films. Films with dimensions of 3×3×1 mm that either did (group BPUI, n=10) or did not contain bevacizumab (group PUI, n=10) were implanted in the subconjunctival space, at the surgical site in 1 eye of each rabbit. The in vitro bevacizumab release was evaluated using size-exclusion high-performance liquid chromatography (HPLC), and the in vivo effects of the drug were investigated in a rabbit experimental trabeculectomy model by examining the bleb characteristics and collagen accumulation, and by performing immunohistological analyses of VEGF expression. RESULTS HPLC showed that only 10% of the bevacizumab in the implants had been released by postoperative day 5. In vivo studies demonstrated that the drug had no adverse effects; however, no significant differences in either the bleb area score or the collagen deposit intensity between the group PUI and the group that BPUI were observed. Moreover, the group BPUI presented a significantly lower proportion of VEGF-expressing fibroblasts than group PUI (0.17±0.03 vs. 0.35±0.05 cells/field, P=0.005). CONCLUSIONS This study demonstrated that bevacizumab release from the BPUIs only occurred for a short time probably from the surface of the films. Nevertheless, they were well tolerated in rabbit eyes and reduced the number of VEGF-expressing fibroblasts.
Collapse
Affiliation(s)
- Jayter Silva Paula
- Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, School of Medicine of Ribeirão Preto-University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu Z, Cao L, Bao C, Dong S, Dai K, Zhu L. Cross-linked vegetable oil with covalently loaded dexamethasone: linear drug release for osteogenic induction of hBMSCs in vitro. SOFT MATTER 2013; 9:5609. [DOI: 10.1039/c3sm50271f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|