1
|
Shafi H, Lora AJ, Aggarwal S, Infanger DW, Lawrence BD, Mansour HM. Comprehensive Physicochemical Characterization and in Vitro Human Cell Culture Studies of an Innovative Biocompatible and Biodegradable Silk-Derived Protein Hydrolysate, SDP-4. ACS OMEGA 2025; 10:2762-2777. [PMID: 39895742 PMCID: PMC11780451 DOI: 10.1021/acsomega.4c08514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025]
Abstract
SDP-4 is a soluble silk fibroin-derived protein hydrolysate extracted from the Bombyx mori silkworm cocoon and is a novel first-in-class biopolymer that is biodegradable, biocompatible, and shown to have regenerative properties. SDP-4 is currently used as a commercial wetting agent in topical eye drops, but it has also been shown to have anti-inflammatory properties that could be utilized in other biomedical applications. The purpose of this study was to comprehensively characterize the physicochemical properties that are necessary to design formulations and examine cell viability in response to varying doses of SDP-4 on different human cell types, with a particular attention toward respiratory applications. Lyophilized SDP-4 powder was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, differential scanning calorimetry (DSC), hot-stage microscopy (HSM), Karl Fisher (KF) coulometric titration, Raman spectrometry, confocal Raman microscopy (CRM), and Fourier transform infrared microscopy. The lyophilized powder exhibited a nonuniform, angular glassy flake morphology with uniform chemical composition and minimal moisture uptake when tested under varying humidity conditions. Crystalline character was evident through birefringence at ambient temperature which changed during phase transitions, as evidenced through qualitative and quantitative assessments. Dose ranging SDP-4 biocompatibility studies on different human lung cells, nasal cells, skin cells, and brain cells was assessed by the in vitro cell viability assay. Assay results showed that cell viability was maintained at the various doses studied for different human cell types. The transepithelial resistance (TEER) assay showed that SDP-4 leads to transient fluctuations in cell membrane integrity and barrier tightness, followed by a recovery phase as cells adapt or repair the junctions. These findings demonstrate that SDP-4 is biocompatible with different types of human cells and safe at all of the doses studied. The unique physicochemical properties of SDP-4 revealed in this study demonstrate its favorable formulating ability for a variety of potential therapeutic applications.
Collapse
Affiliation(s)
- Hasham Shafi
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Andrea J. Lora
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Saurabh Aggarwal
- Herbert
Wertheim College of Medicine, Department of Cellular & Molecular
Medicine, Florida International University, Miami, Florida 33199, United States
| | - David W. Infanger
- Silk
Technologies, Ltd., Maple Grove, Minnesota 55369, United States
| | - Brian D. Lawrence
- Silk
Technologies, Ltd., Maple Grove, Minnesota 55369, United States
| | - Heidi M. Mansour
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Herbert
Wertheim College of Medicine, Department of Cellular & Molecular
Medicine, Florida International University, Miami, Florida 33199, United States
- Robert
Stempel College of Public Health and Social Work, Department of Environmental
Health Sciences, Florida International University, Miami, Florida 33174, United States
- College
of Engineering and Computing, Department of Biomedical Engineering, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
2
|
Acosta M, Encinas-Basurto D, Abrahamson MD, Eedara BB, Hayes D, Fineman JR, Black SM, Mansour HM. Innovative Dual Combination Cospray-Dried Rock Inhibitor/l-Carnitine Inhalable Dry Powder Aerosols. ACS BIO & MED CHEM AU 2024; 4:300-318. [PMID: 39712207 PMCID: PMC11659894 DOI: 10.1021/acsbiomedchemau.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
This study introduces novel cospray-dried (Co-SD) formulations of simvastatin, a Nrf2 activator ROCK inhibitor, with l-carnitine as molecular mixtures in various molar ratios for targeted pulmonary inhalation aerosol delivery in pulmonary hypertension, optimized for excipient-free dry powder inhalers (DPIs). The two components were spray-dried at various molar ratios by using different starting feed solution concentrations and process parameters. In addition to comprehensive physicochemical characterization, in vitro aerosol dispersion performance as DPIs using two FDA-approved DPI devices with different shear stress properties, in vitro viability as a function of dose on 2D human pulmonary cellular monolayers and on 3D small airway epithelia human primary cultures at the air-liquid interface (ALI), and in vitro transepithelial electrical resistance (TEER) at the ALI were conducted. Solid-state physicochemical characterization confirmed homogeneous molecular mixtures and the crystalline nature of the Co-SD formulations. In vitro aerosolization dispersion performance demonstrated that all Co-SD dual combination molecular mixtures aerosolized successfully with both human FDA-approved DPI devices, had ∼100% emitted dose, and good fine particle fraction values. The in vitro viability and TEER assays demonstrated that all formulations were safe to the human pulmonary cell as 2D and 3D cultures as a function of dose.
Collapse
Affiliation(s)
- Maria
F. Acosta
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
| | - David Encinas-Basurto
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
- Universidad
de Sonora, Department of Physics, Nanotechnology Program, Hermosillo, Sonora 83000, México
| | - Michael D. Abrahamson
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
| | - Basanth Babu Eedara
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
- Florida
International University, Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Florida
International University, Robert Stempel College of Public Health
and Social Work, Department of Environmental Health Sciences, Miami, Florida 34987, United States
| | - Don Hayes
- The
Ohio State University College of Medicine, the Davis Heart and Lung
Research Institute, Columbus, Ohio 43271, United States
- Cincinnati
Children’s Medical Center, Cincinnati, Ohio 45229, United States
| | - Jeffrey R. Fineman
- University
of California San Francisco School of Medicine, Department of Pediatrics, San Francisco, California 94107, United States
| | - Stephen M. Black
- Florida
International University, Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Florida
International University, Robert Stempel College of Public Health
and Social Work, Department of Environmental Health Sciences, Miami, Florida 34987, United States
- The
University of Arizona College of Medicine, Department of Medicine,
Division of Translational and Regenerative Medicine, Tucson, Arizona 85724, United States
- Florida
International University, Herbert Wertheim College of Medicine, Department
of Cellular & Molecular Medicine, Miami, Florida 33199, United States
| | - Heidi M. Mansour
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
- Florida
International University, Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Florida
International University, Robert Stempel College of Public Health
and Social Work, Department of Environmental Health Sciences, Miami, Florida 34987, United States
- The
University of Arizona College of Medicine, Department of Medicine,
Division of Translational and Regenerative Medicine, Tucson, Arizona 85724, United States
- Florida
International University, Herbert Wertheim College of Medicine, Department
of Cellular & Molecular Medicine, Miami, Florida 33199, United States
- Florida International
University, College of Engineering and Computing,
Department of Biomedical Engineering, Miami, Florida 33174, United States
| |
Collapse
|
3
|
Salústio P, Amaral M, Costa P. Different Carriers for Use in Dry Powder Inhalers: Characteristics of Their Particles. J Aerosol Med Pulm Drug Deliv 2024; 37:307-327. [PMID: 39120712 PMCID: PMC11669763 DOI: 10.1089/jamp.2023.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
In contemporary times, there has been a rise in the utilization of dry powder inhalers (DPIs) in the management of pulmonary and systemic diseases. These devices underwent a swift advancement in terms of both the equipment utilized and the formulation process. In this review, the carrier physicochemical characteristics that influence DPI performance are discussed, focusing its shape, morphology, size distribution, texture, aerodynamic diameter, density, moisture, adhesive and detachment forces between particles, fine carrier particles, and dry powder aerosolization. To promote the deposition of the active principal ingredient deep within the pulmonary system, advancements have been made in enhancing these factors and surface properties through the application of novel technologies that encompass particle engineering. So far, the most used carrier is lactose showing some advantages and disadvantages, but other substances and systems are being studied with the intention of replacing it. The final objective of this review is to analyze the physicochemical and mechanical characteristics of the different carriers or new delivery systems used in DPI formulations, whether already on the market or still under investigation.
Collapse
Affiliation(s)
- P.J. Salústio
- Research Institute for Medicines (iMed.UL), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - M.H. Amaral
- UCIBIO-Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - P.C. Costa
- UCIBIO-Applied Molecular Biosciences Unit, MedTech-Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Shafi H, Lora AJ, Donow HM, Aggarwal S, Fu P, Wang T, Mansour HM. Advanced Spray-Dried Inhalable Microparticles/Nanoparticles of an Innovative Mitophagy Activator for Targeted Lung Delivery: Design, Comprehensive Characterization, Human Lung Cell Culture, and In Vitro Aerosol Dispersion Performance. ACS Pharmacol Transl Sci 2024; 7:3540-3558. [PMID: 39539257 PMCID: PMC11555509 DOI: 10.1021/acsptsci.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Urolithin A (UA) has demonstrated the ability to stimulate mitophagy and enhance mitochondrial and cellular health in skeletal muscles in humans after oral administration. It is hypothesized that targeted delivery of UA as inhaled dry powders to the lungs will enhance mitochondrial health through mitochondrial biogenesis. This study aimed to engineer inhalable excipient-free powders of UA as dry powder inhalers (DPIs) for targeted pulmonary delivery. The particles were designed by particle engineering from dilute organic solutions of UA using the state-of-the-art spray drying technology in a closed mode. Comprehensive physicochemical characterization and advanced microscopy techniques were conducted to examine phase behavior, molecular properties, and particle properties, which are necessary for the rational design of advanced pulmonary inhalation aerosols. Molecular fingerprinting was conducted by using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and Raman spectroscopy. Chemical imaging and mapping were conducted using confocal Raman microscopy (CRM) and IR microscopy. The advanced spray-dried (SD) excipient-free powders were successfully produced at different spraying pump feed rates and exhibited favorable molecular and particle properties. The excipient-free SD powders exhibited outstanding in vitro aerosol dispersion performance with an FDI-approved human DPI device (Neohaler) and correlated with the spray drying pump rate. In vitro, cell viability of various human pulmonary cells from different lung regions demonstrated biocompatibility and safety at different doses of UA. The transepithelial electrical resistance (TEER) assay shows that UA maintains cell membrane integrity and barrier tightness, indicating its potential for safe and effective localized drug delivery without long-term adverse effects. These results demonstrated that UA has favorable physicochemical and in vitro properties for inhalation and can be successfully engineered into excipient-free inhalable microparticles/nanoparticles as DPIs.
Collapse
Affiliation(s)
- Hasham Shafi
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Andrea J. Lora
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Haley M. Donow
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
| | - Saurabh Aggarwal
- Dept.
of Cellular and Molecular Medicine, FIU
Herbert Wertheim College of Medicine, Miami, Florida 33199, United States
| | - Panfeng Fu
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Dept.
of Environmental Health Sciences, FIU Robert
Stempel College of Public Health & Social Work, Miami, Florida 33199, United States
| | - Ting Wang
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Dept.
of Cellular and Molecular Medicine, FIU
Herbert Wertheim College of Medicine, Miami, Florida 33199, United States
- Dept.
of Environmental Health Sciences, FIU Robert
Stempel College of Public Health & Social Work, Miami, Florida 33199, United States
| | - Heidi M. Mansour
- Florida
International University Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Dept.
of Cellular and Molecular Medicine, FIU
Herbert Wertheim College of Medicine, Miami, Florida 33199, United States
- Dept.
of Environmental Health Sciences, FIU Robert
Stempel College of Public Health & Social Work, Miami, Florida 33199, United States
- Dept.
of Biomedical Engineering, FIU College of
Engineering & Computing, Miami, Florida 33199, United States
| |
Collapse
|
5
|
Shafi H, Lora AJ, Donow HM, Dickinson SE, Wondrak GT, Chow HHS, Curiel-Lewandrowski C, Mansour HM. Comprehensive Advanced Physicochemical Characterization and In Vitro Human Cell Culture Assessment of BMS-202: A Novel Inhibitor of Programmed Cell Death Ligand. Pharmaceutics 2024; 16:1409. [PMID: 39598533 PMCID: PMC11597381 DOI: 10.3390/pharmaceutics16111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: BMS-202, is a potent small molecule with demonstrated antitumor activity. The study aimed to comprehensively characterize the physical and chemical properties of BMS-202 and evaluate its suitability for topical formulation, focusing on uniformity, stability and safety profiles. Methods: A range of analytical techniques were employed to characterize BMS-202. Scanning Electron Microscopy (SEM) was used to assess morphology, Differential Scanning Calorimetry (DSC) provided insights of thermal behavior, and Hot-Stage Microscopy (HSM) corroborated these thermal behaviors. Molecular fingerprinting was conducted using Raman spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy, with chemical uniformity of the batch further validated by mapping through FTIR and Raman microscopies. The residual water content was measured using Karl Fisher Coulometric titration, and vapor sorption isotherms examined moisture uptake across varying relative humidity levels. In vitro safety assessments involved testing with skin epithelial cell lines, such as HaCaT and NHEK, and Transepithelial Electrical Resistance (TEER) to evaluate barrier integrity. Results: SEM revealed a distinctive needle-like morphology, while DSC indicated a sharp melting point at 110.90 ± 0.54 ℃ with a high enthalpy of 84.41 ± 0.38 J/g. HSM confirmed the crystalline-to-amorphous transition at the melting point. Raman and FTIR spectroscopy, alongside chemical imaging, confirmed chemical uniformity as well as validated the batch consistency. A residual water content of 2.76 ± 1.37 % (w/w) and minimal moisture uptake across relative humidity levels demonstrated its low hygroscopicity and suitability for topical formulations. Cytotoxicity testing showed dose-dependent reduction in skin epithelial cell viability at high concentrations (100 µM and 500 µM), with lower doses (0.1 µM to 10 µM) demonstrating acceptable safety. TEER studies indicated that BMS-202 does not disrupt the HaCaT cell barrier function. Conclusions: The findings from this study establish that BMS-202 has promising physicochemical and in vitro characteristics at therapeutic concentrations for topical applications, providing a foundation for future formulation development focused on skin-related cancers or localized immune modulation.
Collapse
Affiliation(s)
- Hasham Shafi
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Andrea J. Lora
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Haley M. Donow
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
| | - Sally E. Dickinson
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Department of Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Georg T. Wondrak
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Department of Pharmacology and Toxicology, The University of Arizona College of Pharmacy, Tucson, AZ 85721, USA
| | - H.-H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Division of Hematology and Oncology, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Clara Curiel-Lewandrowski
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA (G.T.W.)
- Division of Dermatology, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85724, USA
- BIO5 Institute, University of Arizona, Tucson, AZ 85724, USA
| | - Heidi M. Mansour
- Florida International University Center for Translational Science, Port St. Lucie, FL 34987, USA
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33174, USA
- Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
6
|
Mansour HM, Muralidharan P, Hayes D. Inhaled Nanoparticulate Systems: Composition, Manufacture and Aerosol Delivery. J Aerosol Med Pulm Drug Deliv 2024; 37:202-218. [PMID: 39172256 PMCID: PMC11465844 DOI: 10.1089/jamp.2024.29117.mk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/15/2024] [Indexed: 08/23/2024] Open
Abstract
An increasing growth in nanotechnology is evident from the growing number of products approved in the past decade. Nanotechnology can be used in the effective treatment of several pulmonary diseases by developing therapies that are delivered in a targeted manner to select lung regions based on the disease state. Acute or chronic pulmonary disorders can benefit from this type of therapy, including respiratory distress syndrome (RDS), chronic obstructive pulmonary disease (COPD), asthma, pulmonary infections (e.g. tuberculosis, Yersinia pestis infection, fungal infections, bacterial infections, and viral infections), lung cancer, cystic fibrosis (CF), pulmonary fibrosis, and pulmonary arterial hypertension. Modification of size and surface property renders nanoparticles to be targeted to specific sites, which can serve a vital role in innovative pulmonary drug delivery. The nanocarrier type chosen depends on the intended purpose of the formulation and intended physiological target. Liquid nanocarriers and solid-state nanocarriers can carry hydrophilic and hydrophobic drugs (e.g. small molecular weight drug molecules, large molecular weight drugs, peptide drugs, and macromolecular biological drugs), while surface modification with polymer can provide cellular targeting, controlled drug release, and/or evasion of phagocytosis by immune cells, depending on the polymer type. Polymeric nanocarriers have versatile architectures, such as linear, branched, and dendritic forms. In addition to the colloidal dispersion liquid state, the various types of nanoparticles can be formulated into the solid state, offering important unique advantages in formulation versatility and enhanced stability of the final product. This chapter describes the different types of nanocarriers, types of inhalation aerosol device platforms, liquid aerosols, respirable powders, and particle engineering design technologies for inhalation aerosols.
Collapse
Affiliation(s)
- Heidi M. Mansour
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, Arizona, USA
- The BIO5 Research Institute, The University of Arizona, Tucson, Arizona, USA
- Institute of the Environment, The University of Arizona, Tucson, Arizona, USA
- National Cancer Institute Comprehensive Cancer Center, The University of Arizona, Tucson, Arizona, USA
| | - Priya Muralidharan
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, Arizona, USA
| | - Don Hayes
- Departments of Pediatrics and Internal Medicine, Lung and Heart-Lung Transplant Programs, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
7
|
Banat H, Csóka I, Paróczai D, Burian K, Farkas Á, Ambrus R. A Novel Combined Dry Powder Inhaler Comprising Nanosized Ketoprofen-Embedded Mannitol-Coated Microparticles for Pulmonary Inflammations: Development, In Vitro-In Silico Characterization, and Cell Line Evaluation. Pharmaceuticals (Basel) 2024; 17:75. [PMID: 38256908 PMCID: PMC10818896 DOI: 10.3390/ph17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering techniques, a combined dry powder inhaler (DPI) comprising nanosized ketoprofen-embedded mannitol-coated microparticles was developed. A nanoembedded microparticle system means a novel advance in pulmonary delivery by enhancing local pulmonary deposition while avoiding clearance mechanisms. Ketoprofen, a poorly water-soluble anti-inflammatory drug, was dispersed in the stabilizer solution and then homogenized by ultraturrax. Following this, a ketoprofen-containing nanosuspension was produced by wet-media milling. Furthermore, co-spray drying was conducted with L-leucine (dispersity enhancer) and mannitol (coating and mucuactive agent). Particle size, morphology, dissolution, permeation, viscosity, in vitro and in silico deposition, cytotoxicity, and anti-inflammatory effect were investigated. The particle size of the ketoprofen-containing nanosuspension was ~230 nm. SEM images of the spray-dried powder displayed wrinkled, coated, and nearly spherical particles with a final size of ~2 µm (nano-in-micro), which is optimal for pulmonary delivery. The mannitol-containing samples decreased the viscosity of 10% mucin solution. The results of the mass median aerodynamic diameter (2.4-4.5 µm), fine particle fraction (56-71%), permeation (five-fold enhancement), and dissolution (80% release in 5 min) confirmed that the system is ideal for local inhalation. All samples showed a significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937 cell line with low cytotoxicity. Hence, developing an innovative combined DPI comprising ketoprofen and mannitol by employing a nano-in-micro approach is a potential treatment for lung inflammations.
Collapse
Affiliation(s)
- Heba Banat
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Dóra Paróczai
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Katalin Burian
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Árpád Farkas
- Centre for Energy Research, Hungarian Academy of Sciences, 1121 Budapest, Hungary;
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| |
Collapse
|
8
|
Henriques P, Fortuna A, Doktorovová S. Spray dried powders for nasal delivery: Process and formulation considerations. Eur J Pharm Biopharm 2022; 176:1-20. [PMID: 35568256 DOI: 10.1016/j.ejpb.2022.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 11/18/2022]
Abstract
Powders for nasal delivery have been recognized as advantageous dosage forms over liquids due to increased stability and residence time on nasal mucosa, with improved bioavailability. They can be manufactured by spray-drying, allowing the optimization of the particle properties that are critical to guarantee nasal deposition, as size and shape. It is also a scalable and flexible method already explored extensively in the pharmaceutical industry. However, it is important to understand how process parameters, particle physical properties and formulation considerations affect the product performance. Hence, this review aims to provide an overview of nasal powder formulation and processing through spray drying, with an emphasis on the variables that impact on performance. To this purpose, we describe the physical, biological and pharmacological phenomena prior to drug absorption as well as the most relevant powder properties. Formulation considerations including qualitative and quantitative composition are then reviewed, as well as manufacturing considerations including spray drying relevant parameters.
Collapse
Affiliation(s)
- Patrícia Henriques
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; R&D, Drug Product Development, Hovione FarmaCiencia SA, Lisbon, Portugal
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | | |
Collapse
|
9
|
Damiański P, Kardas G, Panek M, Kuna P, Kupczyk M. Improving the risk-to-benefit ratio of inhaled corticosteroids through delivery and dose: current progress and future directions. Expert Opin Drug Saf 2021; 21:499-515. [PMID: 34720035 DOI: 10.1080/14740338.2022.1999926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Inhaled corticosteroids (ICS) are known to increase the risk of systemic and local adverse effects, especially with high doses and long-term use. Hence, considerable resources are invested to improve pharmacokinetic/pharmacodynamic (PK/PD) properties of ICS, effective delivery systems and novel combination therapies to enhance the risk-to-benefit ratio of ICS. AREAS COVERED There is an unmet need for new solutions to achieve optimal clinical outcomes with minimal dose of ICS. This paper gives an overview of novel treatment strategies regarding the safety of ICS therapy on the basis of the three most recent molecules introduced to our everyday clinical practice - ciclesonide, mometasone furoate, and fluticasone furoate. Advances in aerosol devices and new areas of inhalation therapy are also discussed. EXPERT OPINION Current progress in improving the risk-to-benefit ratio of ICS through dose and delivery probably established pathways for further developments. This applies both to the improvement of the PK/PD properties of ICS molecules but also includes technical aspects that lead to simplified applicability of the device with simultaneous optimal drug deposition in the lungs. Indubitably, the future of medicine lies not only in the development of new molecules but also in technology and digital revolution.
Collapse
Affiliation(s)
- Piotr Damiański
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Kardas
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Michał Panek
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Piotr Kuna
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Maciej Kupczyk
- Clinical Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Mukhtar M, Szakonyi Z, Farkas Á, Burian K, Kókai D, Ambrus R. Freeze-dried vs spray-dried nanoplex DPIs based on chitosan and its derivatives conjugated with hyaluronic acid for tuberculosis: In vitro aerodynamic and in silico deposition profiles. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
11
|
Alabsi W, Acosta MF, Al-Obeidi FA, Hay M, Polt R, Mansour HM. Synthesis, Physicochemical Characterization, In Vitro 2D/3D Human Cell Culture, and In Vitro Aerosol Dispersion Performance of Advanced Spray Dried and Co-Spray Dried Angiotensin (1-7) Peptide and PNA5 with Trehalose as Microparticles/Nanoparticles for Targeted Respiratory Delivery as Dry Powder Inhalers. Pharmaceutics 2021; 13:1278. [PMID: 34452239 PMCID: PMC8398878 DOI: 10.3390/pharmaceutics13081278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
The peptide hormone Angiotensin (1-7), Ang (1-7) or (Asp-Arg-Val-Tyr-Ile-His-Pro), is an essential component of the renin-angiotensin system (RAS) peripherally and is an agonist of the Mas receptor centrally. Activation of this receptor in the CNS stimulates various biological activities that make the Ang (1-7)/MAS axis a novel therapeutic approach for the treatment of many diseases. The related O-linked glycopeptide, Asp-Arg-Val-Tyr-Ile-His-Ser-(O-β-D-Glc)-amide (PNA5), is a biousian revision of the native peptide hormone Ang (1-7) and shows enhanced stability in vivo and greater levels of brain penetration. We have synthesized the native Ang (1-7) peptide and the glycopeptide, PNA5, and have formulated them for targeted respiratory delivery as inhalable dry powders. Solid phase peptide synthesis (SPPS) successfully produced Ang (1-7) and PNA5. Measurements of solubility and lipophilicity of raw Ang (1-7) and raw PNA5 using experimental and computational approaches confirmed that both the peptide and glycopeptide have high-water solubility and are amphipathic. Advanced organic solution spray drying was used to engineer the particles and produce spray-dried powders (SD) of both the peptide and the glycopeptide, as well as co-spray-dried powders (co-SD) with the non-reducing sugar and pharmaceutical excipient, trehalose. The native peptide, glycopeptide, SD, and co-SD powders were comprehensively characterized, and exhibited distinct glass transitions (Tg) consistent with the amorphous glassy state formation with Tgs that are compatible with use in vivo. The homogeneous particles displayed small sizes in the nanometer size range and low residual water content in the solid-state. Excellent aerosol dispersion performance with a human DPI device was demonstrated. In vitro human cell viability assays showed that Ang (1-7) and PNA5 are biocompatible and safe for different human respiratory and brain cells.
Collapse
Affiliation(s)
- Wafaa Alabsi
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
| | - Maria F. Acosta
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
| | - Fahad A. Al-Obeidi
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
| | - Meredith Hay
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
- Department of Physiology, The University of Arizona, Tucson, AZ 85721, USA
- Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA;
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA;
- Division of Translational & Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
12
|
Al-Obaidi H, Granger A, Hibbard T, Opesanwo S. Pulmonary Drug Delivery of Antimicrobials and Anticancer Drugs Using Solid Dispersions. Pharmaceutics 2021; 13:1056. [PMID: 34371747 PMCID: PMC8309119 DOI: 10.3390/pharmaceutics13071056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023] Open
Abstract
It is well established that currently available inhaled drug formulations are associated with extremely low lung deposition. Currently available technologies alleviate this low deposition problem via mixing the drug with inert larger particles, such as lactose monohydrate. Those inert particles are retained in the inhalation device or impacted in the throat and swallowed, allowing the smaller drug particles to continue their journey towards the lungs. While this seems like a practical approach, in some formulations, the ratio between the carrier to drug particles can be as much as 30 to 1. This limitation becomes more critical when treating lung conditions that inherently require large doses of the drug, such as antibiotics and antivirals that treat lung infections and anticancer drugs. The focus of this review article is to review the recent advancements in carrier free technologies that are based on coamorphous solid dispersions and cocrystals that can improve flow properties, and help with delivering larger doses of the drug to the lungs.
Collapse
Affiliation(s)
- Hisham Al-Obaidi
- The School of Pharmacy, University of Reading, Reading RG6 6AD, UK; (A.G.); (T.H.); (S.O.)
| | | | | | | |
Collapse
|
13
|
Benke E, Winter C, Szabó-Révész P, Roblegg E, Ambrus R. The effect of ethanol on the habit and in vitro aerodynamic results of dry powder inhalation formulations containing ciprofloxacin hydrochloride. Asian J Pharm Sci 2021; 16:471-482. [PMID: 34703496 PMCID: PMC8520052 DOI: 10.1016/j.ajps.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/02/2022] Open
Abstract
In the case of dry powder inhalation systems (DPIs), the development of carrier-free formulations has gained increased attention. Thereby, spray-drying is a promising technology and is widely used to produce carrier-free DPIs. Numerous works have been published about the co-spray-drying of active ingredients with various solid excipients and their effect on the physicochemical characteristics and aerodynamic properties of the formulations. However, only a few studies have been reported about the role of the solvents used in the stock solutions of spray-dried formulations. In the present work, DPI microcomposites containing ciprofloxacin hydrochloride were prepared by spray-drying in the presence of different ethanol concentrations. The work expresses the roughness, depth and width of the dimples for particle size as a novel calculation possibility, and as a correlation between the MMAD/D0.5 ratio and correlating it with cohesion work, these new terms and correlations have not been published – to the best of our knowledge – which has resulted in gap-filling findings. As a result, different proportions of solvent mixtures could be interpreted and placed in a new perspective, in which the influence of different concentrations of ethanol on the habit of the DPI formulations, and thus on in vitro aerodynamic results. Based on these, it became clear why we obtained the best in vitro aerodynamic results for DPI formulation containing 30% ethanol in the stock solution.
Collapse
Affiliation(s)
- Edit Benke
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Christina Winter
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
| | - Eva Roblegg
- Institute of Pharmaceutical Sciences, Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, Graz A-8010, Austria
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz A-8010, Austria
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged H-6720, Hungary
- Corresponding author.
| |
Collapse
|
14
|
Aljalamdeh R, Price R, Jones MD, Bolhuis A. The effect of particle size of inhaled tobramycin dry powder on the eradication of Pseudomonas aeruginosa biofilms. Eur J Pharm Sci 2021; 158:105680. [PMID: 33346008 DOI: 10.1016/j.ejps.2020.105680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa is the predominant opportunistic bacterium that causes chronic respiratory infections in cystic fibrosis (CF) patients. This bacterium can form biofilms, which are structured communities of cells encased within a self-produced matrix. Such biofilms have a high level of resistance to multiple classes of antibiotics. A widely used treatment of P. aeruginosa lung infections in CF patients is tobramycin dry powder inhalation. The behaviour of particles in the lung has been well studied, and dry powder inhalers are optimised for optimal dispersion of the drug into different zones of the lung. However, one question that has not been addressed is whether the size of an antibiotic particle influences the antibiofilm activity against P. aeruginosa. We investigated this by fractionating tobramycin particles using a Next Generation Impactor (NGI). The fractions obtained were then tested in an in vitro model on P. aeruginosa biofilms. The results indicate that the antibiofilm activity of tobramycin dry powder inhaler can indeed be influenced by the particle size. Against P. aeruginosa biofilms of two clinical isolates, smaller tobramycin particles (aerodynamic diameter <2.82 µm) showed better efficacy by approximately 20% as compared to larger tobramycin particles (aerodynamic diameter <11.7 µm) However, this effect was only observed when biofilms were treated for 3 hours, whereas there was no difference after treatment for 24 hours. This suggests that in our model the rate of dissolution of larger particles limits the effectiveness of tobramycin over a 3-hour time period, which is relevant as this is equivalent to the time in which most tobramycin is cleared from the lung.
Collapse
Affiliation(s)
- Reham Aljalamdeh
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Robert Price
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Matthew D Jones
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
15
|
Chen Y, Gui Y, Luo Y, Liu Y, Tu L, Ma Y, Yue P, Yang M. Design and evaluation of inhalable nanocrystals embedded microparticles with enhanced redispersibility and bioavailability for breviscapine. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Alabsi W, Al-Obeidi FA, Polt R, Mansour HM. Organic Solution Advanced Spray-Dried Microparticulate/Nanoparticulate Dry Powders of Lactomorphin for Respiratory Delivery: Physicochemical Characterization, In Vitro Aerosol Dispersion, and Cellular Studies. Pharmaceutics 2020; 13:E26. [PMID: 33375607 PMCID: PMC7824383 DOI: 10.3390/pharmaceutics13010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to formulate Lactomorphin (MMP2200) in its pure state as spray-dried(SD) powders, and with the excipient Trehalose as co-spray-dried(co-SD) powders; for intranasal and deep lung administration with Dry Powder Inhalers (DPI). Lactomorphin is a glycopeptide which was developed for the control of moderate to severe pain. Particles were rationally designed and produced by advanced spray drying particle engineering in a closed mode from a dilute organic solution. Comprehensive physicochemical characterization using different analytical techniques was carried out to analyze the particle size, particle morphology, particle surface morphology, solid-state transitions, crystallinity/non-crystallinity, and residual water content. The particle chemical composition was confirmed using attenuated total reflectance-Fourier-transform infrared (ATR-FTIR), and Confocal Raman Microscopy (CRM) confirmed the particles' chemical homogeneity. The solubility and Partition coefficient (LogP) of Lactomorphin were determined by the analytical and computational methodology and revealed the hydrophilicity of Lactomorphin. A thermal degradation study was performed by exposing samples of solid-state Lactomorphin to a high temperature (62 °C) combined with zero relative humidity (RH) and to a high temperature (62 °C) combined with a high RH (75%) to evaluate the stability of Lactomorphin under these two different conditions. The solid-state processed particles exhibited excellent aerosol dispersion performance with an FDA-approved human DPI device to reach lower airways. The cell viability resazurin assay showed that Lactomorphin is safe up to 1000 μg/mL on nasal epithelium cells, lung cells, endothelial, and astrocyte brain cells.
Collapse
Affiliation(s)
- Wafaa Alabsi
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, AZ 85721, USA
| | - Fahad A. Al-Obeidi
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
| | - Robin Polt
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ 85721, USA; (W.A.); (F.A.A.-O.); (R.P.)
| | - Heidi M. Mansour
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, AZ 85721, USA
- College of Medicine, Division of Translational & Regenerative Medicine, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
17
|
Muralidharan P, Jones B, Allaway G, Biswal SS, Mansour HM. Design and development of innovative microparticulate/nanoparticulate inhalable dry powders of a novel synthetic trifluorinated chalcone derivative and Nrf2 agonist. Sci Rep 2020; 10:19771. [PMID: 33188247 PMCID: PMC7666129 DOI: 10.1038/s41598-020-76585-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/30/2020] [Indexed: 01/21/2023] Open
Abstract
Chalcone derivatives are shown to possess excellent anti-inflammatory and anti-oxidant properties which are of great interest in treating respiratory diseases such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis (PF). This study successfully designed and developed dry powder inhaler (DPI) formulations of TMC (2-trifluoromethyl-2'-methoxychalone), a new synthetic trifluorinated chalcone and Nrf2 agonist, for targeted pulmonary inhalation aerosol drug delivery. An advanced co-spray drying particle engineering technique was used to design and produce microparticulate/nanoparticulate formulations of TMC with a suitable excipient (mannitol) as inhalable particles with tailored particle properties for inhalation. Raw TMC and co-spray dried TMC formulations were comprehensively characterized for the first time using scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, thermal analysis, X-ray powder diffraction (XRPD), and molecular fingerprinting as dry powders by ATR-FTIR spectroscopy and Raman spectroscopy. Further, biocompatibility and suitability of formulations were tested with in vitro cellular transepithelial electrical resistance (TEER) in air-interface culture (AIC) using a human pulmonary airway cell line. The ability of these TMC formulations to perform as aerosolized dry powders was systematically evaluated by design of experiments (DOEs) using three different FDA-approved human inhaler devices followed by interaction parameter analyses. Multiple spray drying pump rates (25%, 75%, and 100%) successfully produced co-spray dried TMC:mannitol powders. Raw TMC exhibited a first-order phase transition temperature at 58.15 ± 0.38 °C. Furthermore, the results demonstrate that these innovative TMC dry powder particles are suitable for targeted delivery to the airways by inhalation.
Collapse
Affiliation(s)
- Priya Muralidharan
- Colleges of Pharmacy and Medicine, University of Arizona, 1703 E. Mabel St, Tucson, AZ, 85721, USA
| | | | | | - Shyam S Biswal
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Heidi M Mansour
- Colleges of Pharmacy and Medicine, University of Arizona, 1703 E. Mabel St, Tucson, AZ, 85721, USA.
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.
- The BIO5 Research Institute, The University of Arizona, Tucson, AZ, USA.
- Institute of the Environment, The University of Arizona, Tucson, AZ, USA.
- National Cancer Institute Comprehensive Cancer Center, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
18
|
Effect of USP induction ports and modified glass sampling apparatus on aerosolization performance of lactose carrier-based fluticasone propionate dry powder inhaler. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Muralidharan P, Mallory EK, Malapit M, Phan H, Ledford JG, Hayes D, Mansour HM. Advanced design and development of nanoparticle/microparticle dual-drug combination lactose carrier-free dry powder inhalation aerosols. RSC Adv 2020; 10:41846-41856. [PMID: 33391731 PMCID: PMC7689944 DOI: 10.1039/d0ra07203f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
Rationale: lactose is the only FDA-approved carrier for dry powder inhaler (DPI) formulations in the US. Lactose carrier-based DPI products are contraindicated in patients with a known lactose allergy. Hence, inhaler formulations without lactose will benefit lactose allergic asthmatics. Objectives: to rationally design and develop lactose carrier-free dry powder inhaler formulations of fluticasone propionate and salmeterol xinafoate that will benefit people with known lactose allergy. The study also aims at improving the aerosol deposition of the dry powder formulation through advanced particle engineering design technologies to create inhalable powders consisting of nanoparticles/microparticles. Methods: advanced DPI nanoparticle/microparticle formulations were designed, developed and optimized using organic solution advanced closed-mode spray drying. The co-spray dried (co-SD) powders were comprehensively characterized in solid-state and in vitro comparative analysis of the aerodynamic performance of these molecularly mixed formulations was conducted with the marketed formulation of Advair® Diskus® interactive physical mixture. Measurements and main results: comprehensive solid-state physicochemical characterization of the powders showed that the engineered co-SD particles were small and spherical within the size range of 450 nm to 7.25 μm. Improved fine particle fraction and lower mass median aerodynamic diameter were achieved by these DPI nanoparticles/microparticles. Conclusions: this study has successfully produced a lactose-free dry powder formulation containing fluticasone propionate and salmeterol xinafoate with mannitol as excipient engineered as inhalable DPI nanoparticles/microparticles by advanced spray drying. Further, co-spray drying with mannitol and using Handihaler® device can generate higher fine particle mass of fluticasone/salmeterol. Mannitol, a mucolytic agent and aerosol performance enhancer, is a suitable excipient that can enhance aerosol dispersion of DPIs.
Collapse
Affiliation(s)
- Priya Muralidharan
- The University of Arizona, College of Pharmacy, 1703 E. Mabel St, Tucson, AZ 85721-0207, USA. ; Tel: +1-520-626-2768
| | - Evan K Mallory
- The University of Arizona, College of Pharmacy, 1703 E. Mabel St, Tucson, AZ 85721-0207, USA. ; Tel: +1-520-626-2768
| | - Monica Malapit
- The University of Arizona, College of Pharmacy, 1703 E. Mabel St, Tucson, AZ 85721-0207, USA. ; Tel: +1-520-626-2768
| | - Hanna Phan
- The University of Arizona, College of Pharmacy, 1703 E. Mabel St, Tucson, AZ 85721-0207, USA. ; Tel: +1-520-626-2768.,The Asthma & Airway Disease Research Center, Tucson, AZ, USA
| | - Julie G Ledford
- The Asthma & Airway Disease Research Center, Tucson, AZ, USA.,The University of Arizona College of Medicine, Department of Cellular & Molecular Medicine, Tucson, AZ, USA
| | - Don Hayes
- The Departments of Pediatrics and Internal Medicine, Lung and Heart-Lung Transplant Programs, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Heidi M Mansour
- The University of Arizona, College of Pharmacy, 1703 E. Mabel St, Tucson, AZ 85721-0207, USA. ; Tel: +1-520-626-2768.,The University of Arizona College of Medicine, Department of Medicine, Division of Translational & Regenerative Medicine, Tucson, AZ, USA.,The University of Arizona, The BIO5 Research Institute, Tucson, AZ, USA.,The University of Arizona, Institute of the Environment, Tucson, AZ, USA
| |
Collapse
|
20
|
Micron-size lactose manufactured under high shear and its dispersion efficiency as carrier for Salbutamol Sulphate. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Teymouri Rad R, Dadashzadeh S, Vatanara A, Alavi S, Ghasemian E, Mortazavi SA. Tadalafil nanocomposites as a dry powder formulation for inhalation, a new strategy for pulmonary arterial hypertension treatment. Eur J Pharm Sci 2019; 133:275-286. [DOI: 10.1016/j.ejps.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/09/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
|
22
|
Kadota K, Yanagawa Y, Tachikawa T, Deki Y, Uchiyama H, Shirakawa Y, Tozuka Y. Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin. Int J Pharm 2019; 555:280-290. [DOI: 10.1016/j.ijpharm.2018.11.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/07/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
23
|
Abstract
This review discusses recent developments in the manufacture of inhalable dry powder formulations. Pulmonary drugs have distinct advantages compared with other drug administration routes. However, requirements of drugs properties complicate the manufacture. Control over crystallization to make particles with the desired properties in a single step is often infeasible, which calls for micronization techniques. Although spray drying produces particles in the desired size range, a stable solid state may not be attainable. Supercritical fluids may be used as a solvent or antisolvent, which significantly reduces solvent waste. Future directions include application areas such as biopharmaceuticals for dry powder inhalers and new processing strategies to improve the control over particle formation such as continuous manufacturing with in-line process analytical technologies.
Collapse
|
24
|
Salade L, Wauthoz N, Vermeersch M, Amighi K, Goole J. Chitosan-coated liposome dry-powder formulations loaded with ghrelin for nose-to-brain delivery. Eur J Pharm Biopharm 2018; 129:257-266. [PMID: 29902517 DOI: 10.1016/j.ejpb.2018.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 01/21/2023]
Abstract
The nose-to-brain delivery of ghrelin loaded in liposomes is a promising approach for the management of cachexia. It could limit the plasmatic degradation of ghrelin and provide direct access to the brain, where ghrelin's specific receptors are located. Anionic liposomes coated with chitosan in either a liquid or a dry-powder formulation were compared. The powder formulation showed stronger adhesion to mucins (89 ± 4% vs 61 ± 4%), higher ghrelin entrapment efficiency (64 ± 2% vs 55 ± 4%), higher enzymatic protection against trypsin (26 ± 2% vs 20 ± 3%) and lower ghrelin storage degradation at 25 °C (2.67 ± 1.1% vs 95.64 ± 0.85% after 4 weeks). The powder formulation was also placed in unit-dose system devices that were able to generate an appropriate aerosol characterized by a Dv50 of 38 ± 6 µm, a limited percentage of particles smaller than 10 µm of 4 ± 1% and a reproducible mass delivery (CV: 1.49%). In addition, the device was able to deposit a large amount of powder (52.04% w/w) in the olfactory zone of a 3D-printed nasal cast. The evaluated combination of the powder formulation and the device could provide a promising treatment for cachexia.
Collapse
Affiliation(s)
- Laurent Salade
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Nathalie Wauthoz
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Karim Amighi
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
25
|
Chaurasiya B, Huang L, Du Y, Tang B, Qiu Z, Zhou L, Tu J, Sun C. Size-based anti-tumoral effect of paclitaxel loaded albumin microparticle dry powders for inhalation to treat metastatic lung cancer in a mouse model. Int J Pharm 2018; 542:90-99. [DOI: 10.1016/j.ijpharm.2018.02.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 11/24/2022]
|
26
|
Mangal S, Nie H, Xu R, Guo R, Cavallaro A, Zemlyanov D, Zhou QT. Physico-Chemical Properties, Aerosolization and Dissolution of Co-Spray Dried Azithromycin Particles with L-Leucine for Inhalation. Pharm Res 2018; 35:28. [PMID: 29374368 DOI: 10.1007/s11095-017-2334-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Inhalation therapy is popular to treat lower respiratory tract infections. Azithromycin is effective against some bacteria that cause respiratory tract infections; but it has poor water solubility that may limit its efficacy when administrated as inhalation therapy. In this study, dry powder inhaler formulations were developed by co-spray drying azithromycin with L-leucine with a purpose to improve dissolution. METHODS The produced powder formulations were characterized regarding particle size, morphology, surface composition and in-vitro aerosolization performance. Effects of L-leucine on the solubility and in-vitro dissolution of azithromycin were also evaluated. RESULTS The spray dried azithromycin alone formulation exhibited a satisfactory aerosol performance with a fine particle fraction (FPF) of 62.5 ± 4.1%. Addition of L-leucine in the formulation resulted in no significant change in particle morphology and FPF, which can be attributed to enrichment of azithromycin on the surfaces of composite particles. Importantly, compared with the spray-dried amorphous azithromycin alone powder, the co-spray dried powder formulations of azithromycin and L-leucine demonstrated a substantially enhanced in-vitro dissolution rate. Such enhanced dissolution of azithromycin could be attributed to the formation of composite system and the acidic microenvironment around azithromycin molecules created by the dissolution of acidic L-leucine in the co-spray dried powder. Fourier transform infrared spectroscopic data showed intermolecular interactions between azithromycin and L-leucine in the co-spray dried formulations. CONCLUSIONS We developed the dry powder formulations with satisfactory aerosol performance and enhanced dissolution for a poorly water soluble weak base, azithromycin, by co-spray drying with an amino acid, L-leucine.
Collapse
Affiliation(s)
- Sharad Mangal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Haichen Nie
- Teva Pharmaceuticals, 145 Brandywine Pkwy, West Chester, Pennsylvania, 19380, USA
| | - Rongkun Xu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.,Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Rui Guo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA
| | - Alex Cavallaro
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, 1205 West State Street, West Lafayette, Indiana, 47907, USA
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
27
|
Malamatari M, Somavarapu S, Kachrimanis K, Buckton G, Taylor KM. Preparation of respirable nanoparticle agglomerates of the low melting and ductile drug ibuprofen: Impact of formulation parameters. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2016.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Kadota K, Senda A, Tagishi H, Ayorinde JO, Tozuka Y. Evaluation of highly branched cyclic dextrin in inhalable particles of combined antibiotics for the pulmonary delivery of anti-tuberculosis drugs. Int J Pharm 2017; 517:8-18. [DOI: 10.1016/j.ijpharm.2016.11.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022]
|
29
|
Chen L, Okuda T, Lu XY, Chan HK. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev 2016; 100:102-15. [PMID: 26780404 DOI: 10.1016/j.addr.2016.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/23/2015] [Accepted: 01/02/2016] [Indexed: 11/25/2022]
Abstract
For inhalation drug delivery, amorphous powder formulations offer the benefits of increased bioavailability for poorly soluble drugs, improved biochemical stability for biologics, and expanded options of using various drugs and their combinations. However, amorphous formulations usually have poor physicochemical stability. This review focuses on inhalable amorphous powders, including the production methods, the active pharmaceutical ingredients and the excipients with a highlight on stabilization of the particles.
Collapse
|
30
|
Muralidharan P, Hayes D, Black SM, Mansour HM. Microparticulate/Nanoparticulate Powders of a Novel Nrf2 Activator and an Aerosol Performance Enhancer for Pulmonary Delivery Targeting the Lung Nrf2/Keap-1 Pathway. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2016; 1:48-65. [PMID: 27774309 PMCID: PMC5072457 DOI: 10.1039/c5me00004a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This systematic and comprehensive study reports for the first time on the successful rational design of advanced inhalable therapeutic dry powders containing dimethyl fumarate, a first-in-class Nrf2 activator drug to treat pulmonary inflammation, using particle engineering design technology for targeted delivery to the lungs as advanced spray dried (SD) one-component DPIs. In addition, two-component co-spray dried (co-SD) DMF:D-Man DPIs with high drug loading were successfully designed for targeted lung delivery as advanced DPIs using organic solution advanced spray drying in closed mode. Regional targeted deposition using design of experiments (DoE) for in vitro predictive lung modeling based on aerodynamic properties was tailored based on composition and spray drying parameters. These findings indicate the significant potential of using D-Man in spray drying to improve particle formation and aerosol performance of small molecule with a relatively low melting point. These respirable microparticles/nanoparticles in the solid-state exhibited excellent aerosol dispersion performance with an FDA-approved human DPI device. Using in vitro predictive lung deposition modeling, the aerosol deposition patterns of these particles show the capability to reach lower airways to treat inflammation in this region in pulmonary diseases such as acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), and pulmonary endothelial disease.
Collapse
Affiliation(s)
- Priya Muralidharan
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA
| | - Don Hayes
- Departments of Pediatrics and Internal Medicine, Lung and Heart-Lung Transplant Programs, The Ohio State University College of Medicine, Columbus, OH 43205, USA; The Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Stephen M Black
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, AZ, 85724, USA
| | - Heidi M Mansour
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA; Institute of the Environment, The University of Arizona, Tucson, AZ 85721, USA; National Cancer Institute Comprehensive Cancer Center, The University of Arizona, Tucson, AZ 85721, USA; The BIO5 Research Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
31
|
Alfagih I, Kunda N, Alanazi F, Dennison SR, Somavarapu S, Hutcheon GA, Saleem IY. Pulmonary Delivery of Proteins Using Nanocomposite Microcarriers. J Pharm Sci 2015; 104:4386-4398. [DOI: 10.1002/jps.24681] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/15/2015] [Accepted: 09/09/2015] [Indexed: 12/26/2022]
|
32
|
Feasibility of highly branched cyclic dextrin as an excipient matrix in dry powder inhalers. Eur J Pharm Sci 2015; 79:79-86. [PMID: 26360838 DOI: 10.1016/j.ejps.2015.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/27/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
We investigated the feasibility of highly branched cyclic dextrin (HBCD) as an excipient matrix in dry powder inhalers (DPIs). The fine particles of HBCD and HBCD/active pharmaceutical ingredients (APIs) were prepared by spray-drying an ethanol-aqueous solution containing HBCD. The particle size of spray-dried HBCD itself was approximately 3.0μm with a wrinkled shape. Solid-state fluorescence emission spectroscopy of 1-naphthoic acid (1-NPA) showed that it was dispersed in a molecular dispersion/solid solution, if the model compound of 1-NPA was spray-dried with HBCD. Powder X-ray diffraction and differential scanning calorimetry indicate that 1-NPA was in the amorphous state after spray-drying with HBCD, which is confirmed by the fluorescence measurements, 1-NPA could be incorporated into HBCD. When the antimycobacterial agent, rifampicin, was spray-dried with HBCD for the purpose of pulmonary administration, the emitted dose and fine-particle fraction of the spray-dried particles of rifampicin with HBCD were 95.7±1.7% and 39.5±5.7%, respectively. The results indicated that HBCD possessed a high potential as an excipient in DPIs, not only by molecular association of API molecules with HBCD, but also by that of API fine crystals.
Collapse
|