1
|
Zhou C, He S, Gao S, Huang Z, Wang W, Hong P, Jia RB. Effects of Ultrasound-Assisted Treatment on Physicochemical Properties and Biological Activities of Polysaccharides from Sargassum. Foods 2024; 13:3941. [PMID: 39683013 DOI: 10.3390/foods13233941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this study was to investigate the effect of ultrasonic treatment on the physicochemical properties and bioactivities of polysaccharides from Sargassum samples (SPs) extracted with different solvents. The alkali-assisted extraction of polysaccharide (SPA), acid-assisted extraction of polysaccharides from (SPB), and hot water extraction of polysaccharides (SPCs) were perofrmed on Sargassum. Ultrasonic treatment was performed with the SPA, SPB, and SPC in turn, and named USPA, USPB, and UPSC, respectively. The results showed that SPs mainly consisted of mannose, glucose, xylose, rhamnose, galactose, fucose, glucuronic acid, mannuronic acid and guluronic acid. The molecular weight of SPA (434.590 kDa) was the lowest under different solvent extractions, and the molecular weights of SPA, SPB, and SPC were reduced after sonication. SPA had a high carbohydrate content of (52.59 ± 5.16)%, and SPC possessed a high sulfate content of (3.90 ± 0.33)%. After ultrasonic treatment, the biological activities of SPs were significantly increased. The α-glucosidase inhibition assay reflected that the IC50 values of the ultrasonic treatment SPs were significantly reduced, and USPA showed the best activity, with an IC50 of (0.058 ± 0.05) mg/mL. Antioxidant assays demonstrated that USPC exhibited greater DPPH- and ABTS-scavenging capacity. In the anti-glycosylation assay, SPs after sonication demonstrated excellent inhibition of glycosylation products and protein oxidation products, with USPA showing the highest inhibition rate. In conclusion, the biological activities of SPs were enhanced after ultrasonic treatment. This study provides a theoretical reference for their use in food and medicines.
Collapse
Affiliation(s)
- Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shanshan He
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shang Gao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Zirui Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenduo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Rui-Bo Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| |
Collapse
|
2
|
Liu W, Qin YM, Shi JY, Wu DL, Liu CY, Liang J, Xie SZ. Effect of ultrasonic degradation on the physicochemical characteristics, GLP-1 secretion, and antioxidant capacity of Polygonatum cyrtonema polysaccharide. Int J Biol Macromol 2024; 274:133434. [PMID: 38936570 DOI: 10.1016/j.ijbiomac.2024.133434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
This study aimed to evaluate the influence of ultrasonic degradation on the physicochemical and biological characteristics of Polygonatum cyrtonema polysaccharide (PCP, 8.59 kDa). PCP was subjected to ultrasonic treatment for 8, 16, and 24 h and yielded the degraded fractions PCP-8, PCP-16, and PCP-24 (5.06, 4.13, and 3.69 kDa), respectively. Compared with the intact PCP, PCP-8, PCP-16 and PCP-24 had a reduced particle size (decrements of 28.03 %, 46.15 % and 62.54 %, respectively). Although ultrasonic degradation did not alter the primary structure of PCP, its triple helical and superficial structures were disrupted, with degraded fractions demonstrating reduced thermal stability and apparent viscosities compared with those of the intact PCP. Furthermore, the functional properties of the degraded fractions were different. PCP-16 most favourably affected GLP-1 secretion, while PCP-8 and PCP-24 exhibited the strongest antioxidant and enzyme inhibitory activities, respectively. Hence, controlled ultrasound irradiation is an appealing approach for partially degrading PCP and enhancing its bioactivity as a functional agent.
Collapse
Affiliation(s)
- Wang Liu
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Ya-Min Qin
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jin-Yang Shi
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - De-Ling Wu
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China.
| | - Chun-Yang Liu
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Juan Liang
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Song-Zi Xie
- School of Pharmacy, Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China.
| |
Collapse
|
3
|
Xie F, Zhu Z, Zeng J, Xia Y, Zhang H, Wu Y, Song Z, Ai L. Fabrication of zein-tamarind seed polysaccharide-curcumin nanocomplexes: their characterization and impact on alleviating colitis and gut microbiota dysbiosis in mice. Food Funct 2024; 15:2563-2576. [PMID: 38353040 DOI: 10.1039/d3fo04594c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
In this work, a zein-tamarind seed polysaccharide (TSP) co-delivery system was fabricated using an anti-solvent precipitation method. The formation mechanism, characterization, and effect on alleviating colitis and gut microbiota dysbiosis in mice of zein-TSP-curcumin (Z/T-Cur) nanocomplexes were investigated. Hydrogen bonding and the hydrophobic effect played a key role in the formation of Z/T-Cur nanocomplexes, and the interactions were spontaneous and driven by enthalpy. The encapsulation efficiency, loading capacity, and bioavailability increased from 60.8% (Zein-Cur) to 91.7% (Z/T-Cur1:1), from 6.1% (Zein-Cur) to 18.3% (Z/T-Cur1:1), and from 4.7% (Zein-Cur) to 20.0% (Z/T-Cur1:1), respectively. The Z/T-Cur significantly alleviated colitis symptoms in DSS-treated mice. Additionally, the prepared nanocomplexes rebalanced the gut microbiota composition of colitis mice by increasing the abundance of Akkermansia. Odoribacter and Monoglobus were rich in the Z-T-Cur treatment group, and Turicibacter and Bifidobacterium were rich in the zein-TSP treatment group. This study demonstrated that the TSP could be helpful in the targeted drug delivery system.
Collapse
Affiliation(s)
- Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zengjin Zhu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jingyi Zeng
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd, Yuxi 653100, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
4
|
Lin Q, Qiu C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Tian Y, Jin Z. The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Crit Rev Food Sci Nutr 2023; 63:12126-12135. [PMID: 35822304 DOI: 10.1080/10408398.2022.2098687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes is caused by persistently high blood sugar levels, which leads to metabolic dysregulation and an increase in the risk of chronic diseases such as diabetes and obesity. High levels of rapidly digestible starches within foods may contribute to high blood sugar levels. Amylase inhibitors can reduce amylase activity, thereby inhibiting starch hydrolysis, and reducing blood sugar levels. Currently, amylase inhibitors are usually chemically synthesized substances, which can have undesirable side effects on the human body. The development of amylase inhibitors from food-grade ingredients that can be incorporated into the human diet is therefore of great interest. Several classes of phytochemicals, including polyphenols and flavonoids, have been shown to inhibit amylase, including certain types of food-grade nanoparticles. In this review, we summarize the main functions and characteristics of amylases within the human body, as well as their interactions with amylase inhibitors. A strong focus is given to the utilization of nanoparticles as amylase inhibitors. The information covered in this article may be useful for the design of functional foods that can better control blood glucose levels, which may help reduce the risk of diabetes and other diet-related diseases.
Collapse
Affiliation(s)
- Qianzhu Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Liu K, Liu Y, Lu J, Liu X, Hao L, Yi J. Nanoparticles prepared by polysaccharides extracted from Biyang floral mushroom loaded with resveratrol: Characterization, bioactivity and release behavior under in vitro digestion. Food Chem 2023; 426:136612. [PMID: 37348397 DOI: 10.1016/j.foodchem.2023.136612] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/30/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
Resveratrol (RES) is a common active factor in the functional food field, but poor water solubility and low bioavailability have limited its application. In the present study, the novel nanoparticles (RES-CBFMP NPs) using floral mushroom polysaccharide as the wall material have been developed for delivering RES, aiming to overcome its application shortcomings. After ratio optimization, RES-CBFMP NPs (RES-CBFMP,1:8 w/w), which combined through the hydrogen bonds between RES and CBFMP, showed the best overall performance, with the encapsulation efficiency (EE) of 49.74 ± 0.16%, loading efficiency (LE) of 5.53 ± 0.02%, particle size of 158.56 ± 1.97 nm and zeta-potential of -17.56 ± 0.24 mV. In addition, RES-CBFMP NPs exhibited good physicochemical stabilities, sustained gastrointestinal digestive release property, as well as improved in vitro antioxidant and anticancer activities. This study may contribute to the development of RES oral delivery systems and the application of hydrophobic active molecules in the functional food field.
Collapse
Affiliation(s)
- Keke Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, China
| | - Yongqi Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, China
| | - Limin Hao
- Systems Engineering Institute, Academy of Military Sciences (AMS), Beijing, China.
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Food Laboratory of Zhongyuan, Zhengzhou University, China.
| |
Collapse
|
6
|
Song Z, Xiong X, Huang G. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. ULTRASONICS SONOCHEMISTRY 2023; 95:106416. [PMID: 37094477 PMCID: PMC10160789 DOI: 10.1016/j.ultsonch.2023.106416] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Antitumor, antioxidant, hypoglycemic, and immunomodulatory properties are all exhibited by maize polysaccharides. With the increasing sophistication of maize polysaccharide extraction methods, enzymatic method is no longer limited to a single enzyme to extract polysaccharides, and is more often used in combination with ultrasound or microwave, or combination with different enzymes. Ultrasound has a good cell wall-breaking effect, making it easier to dislodge lignin and hemicellulose from the cellulose surface of the maize husk. The "water extraction and alcohol precipitation" method is the simplest but most resource- and time-consuming process. However, the "ultrasound-assisted extraction" and "microwave-assisted extraction" methods not only compensate for the shortcoming, but also increase the extraction rate. Herein, the preparation, structural analysis, and activities of maize polysaccharides were analyzed and discussed.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
7
|
Wang Q, Li N, Wang Y, Li R, Jia Y, Zhou J, Liu J, Zhang M, Zhuang P, He C, Chen H. Studies on the key constituents and the related mechanisms of Clerodendranthus spicatus in the treatment of diabetes based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115949. [PMID: 36435408 DOI: 10.1016/j.jep.2022.115949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clerodendranthus spicatus is a traditional Chinese medicine and has been used to treat diabetes and some kidney diseases for a long history. AIM OF THE STUDY The research aimed to study the active constituents, the potential targets and the related mechanisms of C. spicatus in the treatment of diabetes through network pharmacology method and verify the antidiabetic activity by molecular biology experiments. MATERIALS AND METHODS A comprehensive network pharmacology strategy was used to predict the key active constituents, the key targets and the related mechanisms and pathways of C. spicatus in the treatment of diabetes. The strategy mainly included screening and predicting potential active constituents and targets by network construction, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Based on the predicted results, C. spicatus was extracted by ultrasonic method with 50% ethanol and enriched by using macroporous resin. The compounds with potential antidiabetic effects were separated through silica-gel column chromatography and HPLC (high performance liquid chromatography), and then identified by MS (mass spectrum) and NMR (nuclear magnetic resonance). The C. spicatus extract and isolated compounds were tested by in-vitro and cell experiments to verify their antidiabetic activities, including antioxidant activities, inhibition activities on α-glucosidase and α-amylase, the influence on glucose uptake in cell experiments and the Western blot of PI3K and Akt expression levels. RESULTS A total of 18 active constituents and 16 key targets of C. spicatus in the treatment of diabetes were screened out through network pharmacology method. Phenolic acids might be the main target compounds for the next research. After extraction, enrichment and separation, the phenolic acids-enriched fraction of C. spicatus and four phenolic acid compounds (helisterculin C, salvianolic acid B, orthosiphoic acid E and ethyl caffeate) were obtained. Among them, salvianolic acid B was isolated from C. spicatus for the first time and orthosiphoic acid E was isolated from natural products for the first time. In experiment verification, the crude extract of C. spicatus, the phenolic acids-enriched fraction and the four compounds all showed antidiabetic potentials. The phenolic acids in C. spicatus had antioxidant activities, inhibitory activities on α-amylase and α-glucosidase and promoted glucose uptake in L6 cells through PI3K/Akt signaling pathway. CONCLUSIONS This study showed that C. spicatus had antidiabetic activities with the mechanism of the mode of multi-compounds acting on multi-targets and multi-pathways. The main active phenolic acid compounds were also identified. It provided theoretical basis for further development and utilization of C. spicatus.
Collapse
Affiliation(s)
- Qirou Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yanan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin, 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
8
|
Zhang K, Chen C, Huang Q, Li C, Fu X. Preparation and characterization of Sargassum pallidum polysaccharide nanoparticles with enhanced antioxidant activity and adsorption capacity. Int J Biol Macromol 2022; 208:196-207. [PMID: 35307461 DOI: 10.1016/j.ijbiomac.2022.03.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 12/17/2022]
Abstract
Sargassum pallidum polysaccharide nanoparticle (nSPP-30) was prepared via antisolvent precipitation method and the preparation conditions were optimized. The effects of nanocrystallization on the structure and biological activities of S. pallidum polysaccharide were investigated. Under the optimal preparation condition, the average particle size, polydispersity index (PDI), and ξ-potential of nSPP-30 were 229.63 nm, 0.407, and -28.43 mV, respectively. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analyses indicated that nanocrystallization did not change primary and crystal structures of S. pallidum polysaccharide. However, nanocrystallization could improve the swelling, thermodynamic, and antioxidant properties of S. pallidum polysaccharide. In addition, the thymol adsorption capacity of nSPP-30 was enhanced as compared to the corresponding polysaccharide. These results suggest that nSPP-30 can be developed as a potential antioxidant or natural nano-carrier to encapsulate thymol for practical applications.
Collapse
Affiliation(s)
- Ke Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Chao Li
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Wang B, Yan L, Guo S, Wen L, Yu M, Feng L, Jia X. Structural Elucidation, Modification, and Structure-Activity Relationship of Polysaccharides in Chinese Herbs: A Review. Front Nutr 2022; 9:908175. [PMID: 35669078 PMCID: PMC9163837 DOI: 10.3389/fnut.2022.908175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 01/10/2023] Open
Abstract
Chinese herbal polysaccharides (CHPs) are natural polymers composed of monosaccharides, which are widely found in Chinese herbs and work as one of the important active ingredients. Its biological activity is attributed to its complex chemical structure with diverse spatial conformations. However, the structural elucidation is the foundation but a bottleneck problem because the majority of CHPs are heteropolysaccharides with more complex structures. Similarly, the studies on the relationship between structure and function of CHPs are even more scarce. Therefore, this review summarizes the structure-activity relationship of CHPs. Meanwhile, we reviewed the structural elucidation strategies and some new progress especially in the advanced structural analysis methods. The characteristics and applicable scopes of various methods are compared to provide reference for selecting the most efficient method and developing new hyphenated techniques. Additionally, the principle structural modification methods of CHPs and their effects on activity are summarized. The shortcomings, potential breakthroughs, and developing directions of the study of CHPs are discussed. We hope to provide a reference for further research and promote the application of CHPs.
Collapse
|