1
|
Shaharyar MA, Banerjee T, Sengupta M, Bhowmik R, Sarkar A, Mandal P, Alzarea SI, Ghosh N, Akhtar J, Kazmi I, Karmakar S. Monotherapy or Combination Therapy of Oleanolic Acid? From Therapeutic Significance and Drug Delivery to Clinical Studies: A Comprehensive Review. PLANTA MEDICA 2025; 91:306-319. [PMID: 39776052 DOI: 10.1055/a-2510-9958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Oleanolic acid is a pentacyclic triterpenoid molecule widely distributed throughout medicinal plants. This naturally occurring oleanolic acid has attracted considerable interest due to its wide range of pharmacological characteristics, notably its cytotoxic effects on various human cancer cell lines, making it a potential candidate for extensive therapeutic uses. In vivo studies have shown that oleanolic acid possesses hepatoprotective, cardioprotective, anti-inflammatory, and antimicrobial properties. The inherent obstacles of oleanolic acid, such as low permeability, limited bioavailability, and poor water solubility, have restricted its therapeutic applicability. However, recent developments in drug delivery techniques have given oleanolic acid an additional advantage by overcoming issues with its solubility, stability, and bioavailability. This review briefly summarises the signalling pathways involved in the pharmacological activities of oleanolic acid as a monotherapy and in combination with other drugs. The review devotes a substantial portion to explaining the formulation developments, emphasising nanotechnology as a key factor in the improvement of the therapeutic potential of oleanolic acid. Several investigated novel formulations have been discussed, including liposomes, nanoemulsions, phospholipids, and polymeric nanoparticles, emerging synergistically as an efficient delivery of oleanolic acid and several other drugs. Based on our literature evaluation, it can be inferred that combination therapy had a more favourable outcome than using oleanolic acid alone in in vivo trials, primarily due to its synergistic effects. However, it is essential to note that this finding was inconsistent across all investigations. The combination of oleanolic acid with other drugs has not yet been considered for clinical trials. However, it is interesting that neither therapy has obtained approval from the U. S. Food and Drug Administration.
Collapse
Affiliation(s)
- Md Adil Shaharyar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Tanmoy Banerjee
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Monalisha Sengupta
- Ajanta Pharma Limited, Ajanta House, Charkop, Kandivali (W), Mumbai, India
| | - Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Arnab Sarkar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Pallab Mandal
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Nilanjan Ghosh
- Molecular Pharmacology Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Jamal Akhtar
- The Central Council for Research in Unani Medicine (CCRUM), Ministry of ayush, Government of India, Janakpuri, New Delhi, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Lan Y, Wang X, Yan F, Zhang W, Zhao S, Song Y, Wang S, Zhu Z, Wang Y, Liu X. Quinoa Saponin Ameliorates Lipopolysaccharide-Induced Behavioral Disorders in Mice by Inhibiting Neuroinflammation, Modulating Gut Microbiota, and Counterbalancing Intestinal Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4700-4715. [PMID: 39948027 DOI: 10.1021/acs.jafc.5c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Triterpenoids derived from plants are a promising class of natural antidepressants. This research focused on the therapeutic potential of quinoa saponin (QS) in alleviating lipopolysaccharide (LPS)-induced anxiety and depressive-like behaviors in mice. The most abundant saponin fraction, QS-3, was isolated from QS extracts, and its major saponin components and chemical structure were elucidated. Six pentacyclic triterpene saponins and three tetracyclic triterpene saponins were identified in QS-3, with phytolaccagenin and oleanolic acid being the dominant sapogenins. In vivo studies demonstrated that QS significantly mitigated LPS-induced anxiety and depressive-like behaviors in mice, enhanced the levels of neurotrophic proteins, key synaptic proteins, and neurotransmitters, and restored synaptic function and neuronal damage. Furthermore, QS inhibited neuroinflammation by curtailing the activity of the TLR4/MyD88/NF-κB pathway and modulating microglial phenotypes. Notably, QS also ameliorated colonic inflammation by promoting gut microbiota homeostasis and increasing short-chain fatty acids (SCFAs) production, which contributed to the improvement of anxiety and depressive behaviors in mice. Our findings suggest that QS holds potential as a natural dietary supplement for the treatment and prevention of anxiety and depression, possibly through its modulation of gut-brain axis dynamics and suppression of the activation of the TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinze Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Fanghua Yan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wengang Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Shiyang Zhao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yujie Song
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Shuangxi Wang
- Lanzhou Industrial Research Institute, Lanzhou 730050, China
| | - Zhuofan Zhu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Qiu YT, Luo XY, Deng YF, Zheng X, Qiu JG, Zhang LS, Huang XQ, Zheng XB, Huang HY. Modified Pulsatilla decoction alleviates 5-fluorouracil-induced intestinal mucositis by modulating the TLR4/MyD88/NF-κB pathway and gut microbiota. World J Gastroenterol 2025; 31:98806. [PMID: 39991674 PMCID: PMC11755253 DOI: 10.3748/wjg.v31.i7.98806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/19/2024] [Accepted: 12/25/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Modified Pulsatilla decoction (PD), a PD with licorice and ejiao, is a classic Traditional Chinese Medicine formula with significant efficacy in treating intestinal mucositis (IM) induced by tumor therapy. However, its specific molecular and biological mechanisms remain unclear. AIM To investigate the therapeutic effect and mechanism of modified PD in IM. METHODS This study used an IM mouse model established using 5-fluorouracil injections to investigate the effects of the modified PD (3, 6, and 12 g/kg) in IM. The primary chemical components of the modified PD were identified using liquid chromatography-mass spectrometry. Body weight loss, diarrhea scores, intestinal length, histopathological scores, and inflammatory cytokine levels were measured to evaluate the effects of the modified PD in IM. Effects on the TLR4/MyD88/NF-κB pathway were evaluated using western blot analysis. The intestinal microbiota was characterized using Illumina NovaSeq sequencing. RESULTS The results showed that modified PD significantly improved weight loss and diarrhea and shortened the intestines in IM mice. Mechanistically, modified PD suppressed the TLR4/MyD88/NF-κB pathway and downregulated the expression of reactive oxygen species, lipopolysaccharides, and pro-inflammatory cytokines (IL-1β, TNF-α, IFN-γ, IL-6, IL-8, and IL-17), while increasing the expression of the anti-inflammatory cytokine IL-10. Furthermore, modified PD protected the intestinal mucosal barrier by increasing the expression of tight junction proteins (occludin-1, claudin-1, and ZO-1) and mucin-2. Finally, 16S rDNA sequencing revealed that modified PD improved intestinal dysbiosis. CONCLUSION Our research offers new insights into the potential mechanism of modified PD in alleviating IM and provides experimental evidence supporting its pharmaceutical application in clinical IM treatment.
Collapse
Affiliation(s)
- Yi-Tong Qiu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
| | - Xin-Yi Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
- Druggability Research Team, Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, Guangdong Province, China
| | - Ya-Feng Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
| | - Xue Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
- Druggability Research Team, Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, Guangdong Province, China
| | - Jian-Guo Qiu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
- Institute of Traditional Chinese Medicine, Dongguan Hospital of Traditional Chinese Medicine, Dongguan 523000, Guangdong Province, China
| | - Lin-Sheng Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
| | - Xiao-Qi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
- Druggability Research Team, Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, Guangdong Province, China
| | - Xue-Bao Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 525000, Guangdong Province, China
- Druggability Research Team, Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, Guangdong Province, China
| | - Hai-Yang Huang
- Institute of Traditional Chinese Medicine, Dongguan Hospital of Traditional Chinese Medicine, Dongguan 523000, Guangdong Province, China
| |
Collapse
|
4
|
Tu J, Kang M, Zhao Q, Xue C, Bi C, Dong N. Oleanolic acid improves antioxidant capacity and the abundance of Faecalibacterium prausnitzii in the intestine of broilers. Poult Sci 2024; 103:104340. [PMID: 39520757 PMCID: PMC11585868 DOI: 10.1016/j.psj.2024.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated the effect of dietary oleanolic acid (OA) addition on broiler intestinal morphology, intestinal antioxidant capacity, changes in cecum microbiota, and the relationship between microbiota and antioxidant capacity. A total of 288 Arbor Acres broilers at 1-day-old broilers were reared, and they were randomly divided into four groups. The control and experimental groups were fed the basal diet and the basal diet supplemented with 50, 100, and 150 mg/kg OA for a total of 42 d respectively. The results showed that OA does not affect the performance of broiler chickens. The OA supplementation increased the ratio between jejunum villus height and crypt depth (P < 0.05). The expression of antioxidant enzymes (GSH-PX and CAT) and antioxidant-related genes (HO-1, NQO1, Nrf2, and CAT) was significantly increased in the jejunum and cecum (P < 0.05). In addition, jejunal T-AOC activity (P < 0.05) and cecum antioxidant-related gene GPX-1 expression (P < 0.01) were significantly increased. The expression of oxidation-related genes (NOX and ROMO1) was significantly down-regulated in both jejunum and cecum (P < 0.05). The addition of 150 mg/kg of OA increased the relative abundance of potentially beneficial bacteria and Faecalibacterium prausnitzii was significantly and positively correlated with the expression levels of antioxidant-related genes. In conclusion, the addition of OA to the diet may improve the intestinal antioxidant capacity and modulate the intestinal microbiota of broilers. Moreover, OA improved intestinal antioxidant capacity by increasing the relative abundance of F. prausnitzii.
Collapse
Affiliation(s)
- Jianing Tu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mingxuan Kang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qianwen Zhao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chongpeng Bi
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Deng S, Liu Y, Liu X, Yu J, Chen Y, Huo J. Inhibition of colorectal cancer aggressiveness by Oleanolic acid through Nur77 degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156192. [PMID: 39520953 DOI: 10.1016/j.phymed.2024.156192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second primary malignancy in China with tough treatment challenge. Although Oleanolic acid (OA) protects against various cancers, its mechanisms in CRC are not well defined. Our previously study showed that Nur77 has CRC promoting effect. Thus, we investigated the roles of OA as Nur77 ligand and the regulatory effects on Nur77 degradation in CRC progression. METHODS The proliferative and metastatic phenotypes of OA was examined by CCK-8, EdU, organoid culture, would healing and transwell assays, respectively. Epithelial-mesenchymal transition (EMT) properties were assessed by Western blotting (WB). The interaction between OA and Nur77 was monitored by molecular docking and Molecular Dynamics stimulation (MD). Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene set enrichment analysis (GSEA) were employed to screen the downstream regulatory pathways. The half-time and proteasome degradation of Nur77 were treated with cycloheximide (CHX) and MG132. Co-immunoprecipitation (Co-IP) and ubiquitination assays were employed to detect direct association between Nur77 and PPARγ. Rescued experiments were performed by Nur77 agonist Cytosporone B (Csn-B) treatment. The findings were verified in xenograft and in situ models. RESULTS For the first time, we found the effect of OA on ubiquitination degradation. OA inhibited CRC cell survival and EMT phenotypes by suppressing Nur77. Mechanistically, OA directly bind to Nur77 and facilitated the ubiquitin degradation of Nur77. During this process, PPARγ acted as the ubiquitination activator via interacting with Nur77. Rescued experiments revealed that OA-induced inhibition was recovered by replenishing Nur77. In both subcutaneous and orthotopic CRC models, OA exhibited significant anti-tumor effect together with Nur77 inhibition. CONCLUSION We revealed a new regulatory effect of OA in CRC tumorigenesis via PPARγ-mediated Nur77 ubiquitin degradation.
Collapse
Affiliation(s)
- Shan Deng
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Yuping Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xiyu Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Jialin Yu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yan Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China; Research Center for Multicomponent of Traditional Chinese Medicine and Microecology, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Road, Nanjing, Jiangsu, 210028, People's Republic of China.
| | - Jiege Huo
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China; Department of Oncology, Jiangsu Province Academy of Traditional Chinese Medicine, 100 Shizi Road, Nanjing, Jiangsu, 210028, People's Republic of China.
| |
Collapse
|
6
|
Lachica M, Borrás-Linares I, Borges TH, Nieto R, Seiquer I, García-Contreras C, Lara L, Arráez-Román D, Segura-Carretero A, Pinilla JM, Quintela JC, Fernández-Fígares I. Bioavailability of Supplemented Free Oleanolic Acid and Cyclodextrin-Oleanolic Acid in Growing Pigs, and Effects on Growth Performance, Nutrient Digestibility and Plasma Metabolites. Animals (Basel) 2024; 14:2826. [PMID: 39409775 PMCID: PMC11475709 DOI: 10.3390/ani14192826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Oleanolic acid (OLA) has beneficial health effects in animals, but in vivo efficacy in monogastric animals is questioned due to its low bioavailability. To gain further insight on the nutritional effects of OLA it was administered as part of a diet. We investigated digestibility and plasma OLA in pigs and the associated influence on growth, organs, digestibility of nutrients and plasma biochemical profile. Twenty-four crossbred barrows (23.7 ± 1.0 kg BW) were assigned one of three treatments: Control (basal diet without OLA), OLA-1 (basal diet with 260 mg/free OLA) and OLA-2 (basal diet with 260 mg/kg cyclodextrin-OLA). Diets included chromium oxide to estimate digestibility. Blood samples were collected on day 14 for OLA analysis and feces on days 22-24 for determining digestibility. Pigs were slaughtered on day 31 (39.9 ± 2.43 kg BW) and their blood collected for analysis. Growth and organ weights were not affected (p > 0.05). OLA-1 decreased apparent total tract digestibility (ATTD) of energy (p < 0.05). OLA-2 increased ATTD of dry and organic matter compared with Control pigs (p < 0.05). OLA-1 increased plasma calcium and alkaline phosphatase (p < 0.05). Ileal digestibility of OLA was not affected (0.88), although OLA ATTD increased in OLA-1 compared to Control pigs (0.75 vs. 0.82; p < 0.05). OLA-1 and OLA-2 increased plasma OLA compared to Control pigs (p < 0.05 and p = 0.083). In conclusion, although the OLA was digested and absorbed, plasma concentration was low (4.29 µg/L), and pig growth, organs and plasma parameters were not affected.
Collapse
Affiliation(s)
- Manuel Lachica
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - Isabel Borrás-Linares
- Research and Development Functional Food Centre (CIDAF), Edificio Bioregión, Avenida del Conocimiento, 37, Armilla, 18016 Granada, Spain;
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain; (D.A.-R.); (A.S.-C.)
| | - Thays Helena Borges
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - Rosa Nieto
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - Isabel Seiquer
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - Consolación García-Contreras
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - Luis Lara
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain; (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain; (D.A.-R.); (A.S.-C.)
| | - José María Pinilla
- Natac Biotech S.L.U. Rita Levi Montalcini 14, Getafe, 28906 Madrid, Spain; (J.M.P.); (J.C.Q.)
| | - José Carlos Quintela
- Natac Biotech S.L.U. Rita Levi Montalcini 14, Getafe, 28906 Madrid, Spain; (J.M.P.); (J.C.Q.)
| | - Ignacio Fernández-Fígares
- Department of Nutrition and Sustainable Animal Production, Estación Experimental del Zaidín, CSIC, San Miguel 101, Armilla, 18100 Granada, Spain; (M.L.); (R.N.); (I.S.); (C.G.-C.); (L.L.)
| |
Collapse
|
7
|
Fang X, Liu H, Du Y, Jiang L, Gao F, Wang Z, Chi Z, Shi B, Zhao X. Bacillus siamensis Targeted Screening from Highly Colitis-Resistant Pigs Can Alleviate Ulcerative Colitis in Mice. RESEARCH (WASHINGTON, D.C.) 2024; 7:0415. [PMID: 39015206 PMCID: PMC11249912 DOI: 10.34133/research.0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
Ulcerative colitis (UC) is often accompanied by intestinal inflammation and disruption of intestinal epithelial structures, which are closely associated with changes in the intestinal microbiota. We previously revealed that Min pigs, a native Chinese breed, are more resistant to dextran sulfate sodium (DSS)-induced colitis than commercial Yorkshire pigs. Characterizing the microbiota in Min pigs would allow identification of the core microbes that confer colitis resistance. By analyzing the microbiota linked to the disease course in Min and Yorkshire pigs, we observed that Bacillus spp. were enriched in Min pigs and positively correlated with pathogen resistance. Using targeted screening, we identified and validated Bacillus siamensis MZ16 from Min pigs as a bacterial species with biofilm formation ability, superior salt and pH tolerance, and antimicrobial characteristics. Subsequently, we administered B. siamensis MZ16 to conventional or microbiota-deficient BALB/c mice with DSS-induced colitis to assess its efficacy in alleviating colitis. B. siamensis MZ16 partially counteracted DSS-induced colitis in conventional mice, but it did not mitigate DSS-induced colitis in microbiota-deficient mice. Further analysis revealed that B. siamensis MZ16 administration improved intestinal ecology and integrity and immunological barrier function in mice. Compared to the DSS-treated mice, mice preadministered B. siamensis MZ16 exhibited improved relative abundance of potentially beneficial microbes (Lactobacillus, Bacillus, Christensenellaceae R7, Ruminococcus, Clostridium, and Eubacterium), reduced relative abundance of pathogenic microbes (Escherichia-Shigella), and maintained colonic OCLN and ZO-1 levels and IgA and SIgA levels. Furthermore, B. siamensis MZ16 reduced proinflammatory cytokine levels by reversing NF-κB and MAPK pathway activation in the DSS group. Overall, B. siamensis MZ16 from Min pigs had beneficial effects on a colitis mouse model by enhancing intestinal barrier functions and reducing inflammation in a gut microbiota-dependent manner.
Collapse
Affiliation(s)
- Xiuyu Fang
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Haiyang Liu
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Yongqing Du
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Lin Jiang
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Feng Gao
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Zhengyi Wang
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Zihan Chi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Baoming Shi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Xuan Zhao
- College of Animal Science and Technology,
Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
8
|
He K, Meng X, Su J, Jiang S, Chu M, Huang B. Oleanolic acid inhibits the tumor progression by regulating Lactobacillus through the cytokine-cytokine receptor interaction pathway in 4T1-induced mice breast cancer model. Heliyon 2024; 10:e27028. [PMID: 38449659 PMCID: PMC10915379 DOI: 10.1016/j.heliyon.2024.e27028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
The therapeutic mechanism of oleanolic acid (OA) in breast cancer has been widely reported, but little has been known about the combined effects of transcriptome and gut microbiome. In this study, the phenotypic effect of oleanolic acid on mice was tested at the end of the administration cycle, and RNA sequencing on murine tumor tissue and 16S-rRNA sequencing on intestinal contents were conducted to analyze gene expression profiles and microbial diversity between the control group and OA treated group using 4T1-induced mice breast cancer model. As a result, it has been confirmed that oleanolic acid would play a significant inhibitory effect on the development of breast tumors in mice. Based on the integrative analysis of the transcriptomic and metagenomic data, it was found that the abundance of Lactobacillus in the intestinal flora of mice significantly increased in the OA group. Moreover, the up-regulation of Il10 had a significant effect on inhibiting the tumor progression, which played a role through cytokine-cytokine receptor interaction pathway.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Xia Meng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Shangquan Jiang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Min Chu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Bei Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
- Traditional Chinese Medicine Research Centre, School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
9
|
Zhai Z, Liu Y, Niu K, Zeng W, Wang R, Guo X, Lin C, Hu L. Oleanolic acid alleviate intestinal inflammation by inhibiting Takeda G-coupled protein receptor (TGR) 5 mediated cell apoptosis. Food Funct 2024; 15:1963-1976. [PMID: 38275075 DOI: 10.1039/d3fo04882a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Oleanolic acid (OA) is a bioactive compound present in plant-based foods known for its beneficial impact on gastrointestinal health, specifically in alleviating diarrhea. Nonetheless, the underlying mechanisms by which OA mitigates gut epithelial damage have yet to be elucidated. In this study, OA significantly markedly ameliorated adverse effects induced by Dextran Sulfate Sodium (DSS), including weight loss and epithelial morphological damage in a murine model. Remarkably, compared to normal mice, standalone administration of OA had no discernible impact on the animals. Concurrently, we identified a significant up-regulation in the expression levels of TGR5 and BAX in the intestines of DSS-exposed mice, coupled with a decline in Bcl2 expression. Correlation analyses revealed a robust association between TGR5 and BAX expression. Oral administration of OA efficaciously counteracted these alterations. To probe the role of TGR5 in cellular apoptosis, further, a lentivirus transfection approach was utilized to induce TGR5 overexpression in intestinal epithelial cells (IPEC-J2). RNA sequencing indicated that TGR5 overexpression significantly influenced biological processes, particularly in modulating cellular activation and intercellular adhesion, in contrast to the control group cells. Functional assays substantiated that TGR5 overexpression compromised cell viability and accelerated apoptosis. Notably, OA treatment in TGR5-overexpressed cells restored cell viability, suppressed TGR5 and BAX expression, and augmented Bcl2 expression. In sum, our data suggest that OA mitigates intestinal epithelial apoptosis and bolsters cellular proliferation by downregulating TGR5. This research provides valuable insights into the prospective utility of OA as a functional food supplement or adjunctive therapeutic agent for enhancing gastrointestinal health.
Collapse
Affiliation(s)
- Zhenya Zhai
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Yichun Liu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Kaimin Niu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Weirong Zeng
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Ruxia Wang
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Xiongchang Guo
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Chong Lin
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| | - Linfang Hu
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang, Jiangxi, 330096, China.
| |
Collapse
|
10
|
Langhi C, Vallier M, Bron A, Otero YF, Maura M, Le Joubioux F, Blomberg N, Giera M, Guigas B, Maugard T, Chassaing B, Peltier S, Blanquet-Diot S, Bard JM, Sirvent P. A polyphenol-rich plant extract prevents hypercholesterolemia and modulates gut microbiota in western diet-fed mice. Front Cardiovasc Med 2024; 11:1342388. [PMID: 38317864 PMCID: PMC10839041 DOI: 10.3389/fcvm.2024.1342388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Totum-070 is a combination of five plant extracts enriched in polyphenols to target hypercholesterolemia, one of the main risk factors for cardiovascular diseases. The aim of this study was to investigate the effects of Totum-070 on cholesterol levels in an animal model of diet-induced hypercholesterolemia. Methods C57BL/6JOlaHsd male mice were fed a Western diet and received Totum-070, or not, by daily gavage (1g/kg and 3g/kg body weight) for 6 weeks. Results The Western diet induced obesity, fat accumulation, hepatic steatosis and increased plasma cholesterol compared with the control group. All these metabolic perturbations were alleviated by Totum-070 supplementation in a dose-dependent manner. Lipid excretion in feces was higher in mice supplemented with Totum-070, suggesting inhibition of intestinal lipid absorption. Totum-070 also increased the fecal concentration of short chain fatty acids, demonstrating a direct effect on intestinal microbiota. Discussion The characterization of fecal microbiota by 16S amplicon sequencing showed that Totum-070 supplementation modulated the dysbiosis associated with metabolic disorders. Specifically, Totum-070 increased the relative abundance of Muribaculum (a beneficial bacterium) and reduced that of Lactococcus (a genus positively correlated with increased plasma cholesterol level). Together, these findings indicate that the cholesterol-lowering effect of Totum-070 bioactive molecules could be mediated through multiple actions on the intestine and gut microbiota.
Collapse
Affiliation(s)
| | | | - Auriane Bron
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | | | | | | | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Thierry Maugard
- Equipe BCBS (Biotechnologies et Chimie des Bioressources Pour la Santé), UMR CNRS 7266 LIENSs, La Rochelle Université, La Rochelle, France
| | - Benoit Chassaing
- Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris, France
| | | | - Stéphanie Blanquet-Diot
- UMR 454 Microbiologie Environnement DIgestif et Santé (MEDIS), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jean-Marie Bard
- Laboratoire de Biochimie Générale et Appliquée, UFR de Pharmacie, ISOMer-UE 2160, IUML-Institut Universitaire Mer et Littoral-FR3473 CNRS, Université de Nantes, Nantes, France
| | | |
Collapse
|
11
|
Reyes-Goya C, Santana-Garrido Á, Espinosa-Martín P, Vázquez CM, Mate A. Wild and cultivated olive trees: Nutraceutical insights of extra virgin olive oils in cardiovascular and ocular diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166904. [PMID: 37793462 DOI: 10.1016/j.bbadis.2023.166904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Extra virgin olive oil (EVOO) from Olea europaea (cultivated olive tree) and the oil obtained from the wild olive variety or acebuche (ACE oil from Olea oleaster) contain an extraordinary number of bioactive molecules. These include oleic acid, sterols, tocopherols, triterpene compounds, and polyphenols. Both oils are known for their healthy properties and are considered to be a nutraceutical tool against cardiovascular diseases, including arterial hypertension, preeclampsia, and ocular diseases such as glaucoma or diabetic retinopathy. The benefits of EVOO and ACE oil stem from their anti-inflammatory, antioxidant, and anti-cancer properties. They also have potential as prebiotic compounds. In this update, we synthesise and illustrate the various characteristics and beneficial effects of olive oils from different varieties of olive trees, with special emphasis on Olea oleaster, also known as Olea europaea, L. var. sylvestris.
Collapse
Affiliation(s)
- C Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - Á Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - P Espinosa-Martín
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - C M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain.
| | - A Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| |
Collapse
|
12
|
Hu M, Zhang L, Jia H, Xue C, Zhao L, Dong N, Shan A. Oleanolic acid attenuates hydrogen peroxide-induced apoptosis of IPEC-J2 cells through suppressing c-Jun and MAPK pathway. J Biochem Mol Toxicol 2024; 38:e23538. [PMID: 37706587 DOI: 10.1002/jbt.23538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/14/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Oleanolic acid (OA) is a natural triterpenoid with therapeutic potential for a multitude of diseases. However, the precise mechanism by which OA influences stress-induced apoptosis of intestinal epithelial cells remains elusive. Therefore, the effect of OA on intestinal diseases under stressful conditions and its possible mechanisms have been investigated. In a hydrogen peroxide (H2 O2 )-induced oxidative stress model, OA attenuated H2 O2 -induced apoptosis in a concentration-dependent manner. To investigate the underlying mechanisms, the gene expression profile of OA on IPEC-J2 cells was analyzed using an RNA sequencing system. Results from gene ontology and Kyoto encyclopedia of genes and genomes analysis confirmed that OA may mitigate the cytotoxic effects of H2 O2 by downregulating gene expression through the MAPK signaling pathway. Furthermore, Quantitative real-time polymerase chain reaction results validated the differentially expressed genes data. Western blot analysis further demonstrated that OA effectively suppressed the expression level of c-Jun protein induced by H2 O2 in IPEC-J2 cells. Collectively, our results indicate that OA pretreatment significantly attenuated H2 O2 -induced apoptosis in intestinal epithelial cells through suppressing c-Jun and MAPK pathway.
Collapse
Affiliation(s)
- Mingyang Hu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Lei Zhang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hongpeng Jia
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Lu Zhao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
13
|
Zhang M, Li D, Yang X, Wei F, Wen Q, Feng Y, Jin X, Liu D, Guo Y, Hu Y. Integrated multi-omics reveals the roles of cecal microbiota and its derived bacterial consortium in promoting chicken growth. mSystems 2023; 8:e0084423. [PMID: 38018992 PMCID: PMC10734529 DOI: 10.1128/msystems.00844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE The improvement of chicken growth performance is one of the major concerns for the poultry industry. Gut microbes are increasingly evidenced to be associated with chicken physiology and metabolism, thereby influencing chicken growth and development. Here, through integrated multi-omics analyses, we showed that chickens from the same line differing in their body weight were very different in their gut microbiota structure and host-microbiota crosstalk; microbes in high body weight (HBW) chickens contributed to chicken growth by regulating the gut function and homeostasis. We also verified that a specific bacterial consortium consisting of isolates from the HBW chickens has the potential to be used as chicken growth promoters. These findings provide new insights into the potential links between gut microbiota and chicken phenotypes, shedding light on future manipulation of chicken gut microbiota to improve chicken growth performance.
Collapse
Affiliation(s)
- Meihong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Depeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiu Wen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Wang Y, Zhang M, Jiang L, Gong Y, Liu K, Zhang T. Alterations of gut microbiota in a mouse model with partial small intestinal obstruction. Front Microbiol 2023; 14:1242650. [PMID: 37840748 PMCID: PMC10568644 DOI: 10.3389/fmicb.2023.1242650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Changes in the gut microbiota of patients with partial small intestinal obstruction (PSIO) have not been widely clarified. We aimed to explore bacterial diversity in a PSIO mouse model. Methods A PSIO mouse model was established using male C57BL/6 mice, and feces samples from the distal ileum and ileum epithelium tissues were collected. MiSeq sequencing of the 16S rRNA gene was conducted to characterize microbiota diversity and composition. RNA sequencing for differences in transcriptomic programming of the ileum tissue was performed between the PSIO and (Control) Ctrl groups. Results Bacterial diversity in the PSIO group was significantly lower than that in the controls. Pseudomonadota was predominant in the feces of the PSIO group. Unclassified_Muribaculaceae (p = 0.008) and Akkermansia (p = 0.007) were more abundant in the Ctrl group than those in the PSIO group. Furthermore, Escherichia_Shigella (p = 0.008) was more predominant in the feces of the PSIO group. The Kyoto Encyclopedia of Genes and Genomes pathways related to metabolism were depleted in the PSIO group. Pathways associated with intestinal fibrosis, including extracellular matrix-receptor interaction, focal adhesion, phosphoinositide 3-kinase (PI3K)-Akt signaling pathway and transforming growth factor (TGF)-beta signaling pathway, which were enriched in ileum epithelial tissue in the PSIO group. Conclusion PSIO can lead to changes in the predominant intestinal bacterial groups. Depleted functional profiles of the gut microbiota were identified in the PSIO group. Functional pathways associated with intestinal fibrosis were activated by PSIO. The potential regulation by the microbiota needs to be explored in the future.
Collapse
Affiliation(s)
- Yong Wang
- Department of Pediatric Surgery, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
| | - Minzhong Zhang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Jiang
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yiming Gong
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keqiang Liu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Tian Zhang
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Zhang H, Zhao Z, Guan W, Zhong Y, Wang Y, Zhou Q, Liu F, Luo Q, Liu J, Ni J, He N, Guo D, Li L, Xing Q. Nano-Selenium inhibited antibiotic resistance genes and virulence factors by suppressing bacterial selenocompound metabolism and chemotaxis pathways in animal manure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115277. [PMID: 37499390 DOI: 10.1016/j.ecoenv.2023.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Numerous antibiotic resistance genes (ARGs) and virulence factors (VFs) found in animal manure pose significant risks to human health. However, the effects of graphene sodium selenite (GSSe), a novel chemical nano-Selenium, and biological nano-Selenium (BNSSe), a new bioaugmentation nano-Se, on bacterial Se metabolism, chemotaxis, ARGs, and VFs in animal manure remain unknown. In this study, we investigated the effects of GSSe and BNSSe on ARGs and VFs expression in broiler manure using high-throughput sequencing. Results showed that BNSSe reduced Se pressure during anaerobic fermentation by inhibiting bacterial selenocompound metabolism pathways, thereby lowering manure Selenium pollution. Additionally, the expression levels of ARGs and VFs were lower in the BNSSe group compared to the Sodium Selenite and GSSe groups, as BNSSe inhibited bacterial chemotaxis pathways. Co-occurrence network analysis identified ARGs and VFs within the following phyla Bacteroidetes (genera Butyricimonas, Odoribacter, Paraprevotella, and Rikenella), Firmicutes (genera Lactobacillus, Candidatus_Borkfalkia, Merdimonas, Oscillibacter, Intestinimonas, and Megamonas), and Proteobacteria (genera Desulfovibrio). The expression and abundance of ARGs and VFs genes were found to be associated with ARGs-VFs coexistence. Moreover, BNSSe disruption of bacterial selenocompound metabolism and chemotaxis pathways resulted in less frequent transfer of ARGs and VFs. These findings indicate that BNSSe can reduce ARGs and VFs expression in animal manure by suppressing bacterial selenocompound metabolism and chemotaxis pathways.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Zhigang Zhao
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Weikun Guan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yuhong Zhong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yang Wang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qilong Zhou
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Fuyu Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qi Luo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Junyi Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jian Ni
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Ning He
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Dongsheng Guo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Lizhi Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| | - Qingfeng Xing
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| |
Collapse
|
16
|
Cao X, Du ZR, Liu X, Wang X, Li C, Zhou SN, Liu JR, Xu PY, Ye JL, Zhao Q, Zhao F, Wong KH, Dong XL. Low and high doses of oral maslinic acid protect against Parkinson's disease via distinct gut microbiota-related mechanisms. Biomed Pharmacother 2023; 165:115100. [PMID: 37418977 DOI: 10.1016/j.biopha.2023.115100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
The use of oral agents that can modify the gut microbiota (GM) could be a novel preventative or therapeutic option for Parkinson's disease (PD). Maslinic acid (MA), a pentacyclic triterpene acid with GM-dependent biological activities when it is taken orally, has not yet been reported to be effective against PD. The present study found both low and high dose MA treatment significantly prevented dopaminergic neuronal loss in a classical chronic PD mouse model by ameliorating motor functions and improving tyrosine hydroxylase expressions in the substantia nigra pars compacta (SNpc) and increasing dopamine and its metabolite homovanillic acid levels in the striatum. However, the effects of MA in PD mice were not dose-responsive, since similar beneficial effects for low and high doses of MA were observed. Further mechanism studies indicated that low dose MA administration favored probiotic bacterial growth in PD mice, which helped to increase striatal serotonin, 5-hydroxyindole acetic acid, and γ-aminobutyric acid levels. High dose MA treatment did not influence GM composition in PD mice but significantly inhibited neuroinflammation as indicated by reduced levels of tumor necrosis factor alpha and interleukin 1β in the SNpc; moreover, these effects were mainly mediated by microbially-derived acetic acid in the colon. In conclusion, oral MA at different doses protected against PD via distinct mechanisms related to GM. Nevertheless, our study lacked in-depth investigations of the underlying mechanisms involved; future studies will be designed to further delineate the signaling pathways involved in the interactive actions between different doses of MA and GM.
Collapse
Affiliation(s)
- Xu Cao
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Zhong-Rui Du
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; BioNanotechnology Institute, Ludong University, Yantai, China
| | - Xin Liu
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Xiong Wang
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Chong Li
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sai-Nan Zhou
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jia-Rui Liu
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Ping-Yi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun-Li Ye
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qing Zhao
- Department of Neurology, Linzi Maternal & Child Health Hospital of Zibo, Zibo, China
| | - Fang Zhao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Ka-Hing Wong
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Xiao-Li Dong
- Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
17
|
Lv H, Jia H, Cai W, Cao R, Xue C, Dong N. Rehmannia glutinosa polysaccharides attenuates colitis via reshaping gut microbiota and short-chain fatty acid production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3926-3938. [PMID: 36347632 DOI: 10.1002/jsfa.12326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/23/2022] [Accepted: 11/09/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Ulcerative colitis is a gastrointestinal disease closely related to intestinal epithelial barrier damage and intestinal microbiome imbalance; however, effective treatment methods are currently limited. Rehmannia glutinosa polysaccharide (RGP) is an important active ingredient with a wide range of pharmacological activities, although its protective effect on colitis remains to be explored. In the present study, we verified the in vitro anti-inflammatory effect of RGP, and observed the ameliorating effect of RGP on dextran sulfate sodium-induced colitis in mice. RESULTS The results showed that (i) RGP attenuates lipopolysaccharide-induced overexpression of inflammatory factors in RAW264.7 cells; (ii) RGP improves the pathological damage caused by DSS, including weight loss, increased disease activity index and intestinal tissue ulcers; (iii) RGP improves tight junction proteins to protects the tightness of the intestinal epithelium; (iv) RGP inhibits the expression of inflammatory factors through the nuclear factor-kappa B pathway, and improved the of intestinal tissues inflammation; and (v) RGP can maintain the species diversity of intestinal microbes, increase the content of short-chain fatty acids and then restore the imbalance of intestinal microecology. CONCLUSION RGP can improve the intestinal microbiota to strengthen the intestinal epithelial barrier and protect against DSS-induced colitis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hao Lv
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Hongpeng Jia
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Wenjie Cai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Rujing Cao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
18
|
Sun T, Liu X, Su Y, Wang Z, Cheng B, Dong N, Wang J, Shan A. The efficacy of anti-proteolytic peptide R7I in intestinal inflammation, function, microbiota, and metabolites by multi-omics analysis in murine bacterial enteritis. Bioeng Transl Med 2023; 8:e10446. [PMID: 36925697 PMCID: PMC10013768 DOI: 10.1002/btm2.10446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022] Open
Abstract
Increased antibiotic resistance poses a major limitation in tackling inflammatory bowel disease and presents a large challenge for global health care. Antimicrobial peptides (AMPs) are a potential class of antimicrobial agents. Here, we have designed the potential oral route for antimicrobial peptide R7I with anti-proteolytic properties to deal with bacterial enteritis in mice. The results revealed that R7I protected the liver and gut from damage caused by inflammation. RNA-Seq analysis indicated that R7I promoted digestion and absorption in the small intestine by upregulating transmembrane transporter activity, lipid and small molecule metabolic processes and other pathways, in addition to upregulating hepatic steroid biosynthesis and fatty acid degradation. For the gut microbiota, Clostridia were significantly reduced in the R7I-treated group, and Odoribacteraceae, an efficient isoalloLCA-synthesizing strain, was the main dominant strain, protecting the gut from potential pathogens. In addition, we further discovered that R7I reduced the accumulation of negative organic acid metabolites. Overall, R7I exerted better therapeutic and immunomodulatory potential in the bacterial enteritis model, greatly reduced the risk of disease onset, and provided a reference for the in vivo application of antimicrobial peptides.
Collapse
Affiliation(s)
- Taotao Sun
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Xuesheng Liu
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Yunzhe Su
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Zihang Wang
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Baojing Cheng
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Jiajun Wang
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, the Institute of Animal NutritionNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
19
|
Khalil M, Abdallah H, Razuka-Ebela D, Calasso M, De Angelis M, Portincasa P. The Impact of Za'atar Antioxidant Compounds on the Gut Microbiota and Gastrointestinal Disorders: Insights for Future Clinical Applications. Antioxidants (Basel) 2023; 12:426. [PMID: 36829984 PMCID: PMC9952350 DOI: 10.3390/antiox12020426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Since the gut microbiota plays a pivotal role in host homeostasis and energy balance, changes in its composition can be associated with disease states through the promotion of immune-mediated inflammatory disorders and increasing intestinal permeability, ultimately leading to the impairment of intestinal barrier function. Za'atar is one of the most popular plant-based foods in the Eastern Mediterranean region. Za'atar is a mixture of different plant leaves, fruits, and seeds and contains hundreds of antioxidant compounds, especially polyphenols, and fiber, with pre-clinical and clinical evidence suggesting health-promoting effects in cardiovascular and metabolic disease. Za'atar compounds have also been studied from a gastrointestinal perspective, concerning both gut microbiota and gastrointestinal diseases. Antioxidants such as Za'atar polyphenols may provide beneficial effects in the complex interplay between the diet, gut microbiota, and intestinal permeability. To our knowledge, no studies have reported the effects of the whole Za'atar mixture, however, based on the pre-clinical studies published on components and single compounds found in Za'atar, we provide a clinical overview of the possible effects on the gastrointestinal tract, focusing mainly on carvacrol, rosmarinic acid, gallic acid, and other polyphenols. We also cover the potential clinical applications of Za'atar mixture as a possible nutraceutical in disorders involving the gastrointestinal tract.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Danute Razuka-Ebela
- Institute of Clinical and Preventive Medicine, University of Latvia, 1586 Riga, Latvia
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, via Amendola 165/a, 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Aldo Moro, 70121 Bari, Italy
| |
Collapse
|
20
|
Li Y, Cai W, Ai Z, Xue C, Cao R, Dong N. Protective effects of sinomenine hydrochloride on lead-induced oxidative stress, inflammation, and apoptosis in mouse liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:7510-7521. [PMID: 36038687 DOI: 10.1007/s11356-022-22386-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Lead, one of the most common heavy metal toxins, seriously affects the health of humans and animals. Sinomenine hydrochloride (SH) shows antioxidative, anti-inflammatory, antiviral, and anticancer properties. Hence, this study investigated the protective effects of SH against Pb-induced liver injury and explored the underlying mechanisms. First, a mouse model of lead acetate (0.5 g/L lead acetate in water, 8 weeks) was established, and SH (100 mg/kg bw in water, 8 weeks) intervention was administered by gavage. Then, the protective effect of SH against lead-induced liver injury was evaluated through serum biochemical analysis, histopathological analysis, and determination of malondialdehyde (MDA) and total antioxidant capacity (T-AOC) levels. The messenger RNA (mRNA) expression levels of the cytokines IL-1β and TNF-α and the apoptosis factors Bax, Bcl-2, and Caspase3 in the liver were detected by quantitative real-time PCR. Then, the expression levels of IL-1β and TNF-α in the liver were detected by ELISA. Immunohistochemical determination of the expression of the apoptosis factors Bax, Bcl-2, and Caspase3 was performed. SH treatment reduced the levels of liver alanine aminotransferase, aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and MDA in Pb-treated mice, indicating that SH protected the liver from injury and oxidative stress in Pb-treated mice. SH also increased the liver T-AOC of Pb-treated mice. Quantitative real-time PCR, ELISA, and immunohistochemical analysis showed that SH inhibited apoptosis, as indicated by the regulation of the mRNA expression of Bax and Bcl-2 and the reduced expression of Caspase3 and pro-inflammatory factors (IL-1β and TNF-α) in the livers of Pb-treated mice. These results suggest that SH protects the mouse liver from Pb-induced injury. The underlying mechanism involves antioxidative, anti-inflammatory, and anti-apoptotic processes.
Collapse
Affiliation(s)
- Ying Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Wenjie Cai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zichun Ai
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Rujing Cao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
21
|
Antidepressive Effect of Natural Products and Their Derivatives Targeting BDNF-TrkB in Gut-Brain Axis. Int J Mol Sci 2022; 23:ijms232314968. [PMID: 36499295 PMCID: PMC9737781 DOI: 10.3390/ijms232314968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Modern neurological approaches enable detailed studies on the pathophysiology and treatment of depression. An imbalance in the microbiota-gut-brain axis contributes to the pathogenesis of depression. This extensive review aimed to elucidate the antidepressive effects of brain-derived neurotrophic factor (BDNF)-targeting therapeutic natural products and their derivatives on the gut-brain axis. This information could facilitate the development of novel antidepressant drugs. BDNF is crucial for neuronal genesis, growth, differentiation, survival, plasticity, and synaptic transmission. Signaling via BDNF and its receptor tropomyosin receptor kinase B (TrkB) plays a vital role in the etiopathogenesis of depression and the therapeutic mechanism of antidepressants. This comprehensive review provides information to researchers and scientists for the identification of novel therapeutic approaches for neuropsychiatric disorders, especially depression and stress. Future research should aim to determine the possible causative role of BDNF-TrkB in the gut-brain axis in depression, which will require further animal and clinical research as well as the development of analytical approaches.
Collapse
|
22
|
Bifidobacterium longum, Lactobacillus plantarum and Pediococcus acidilactici Reversed ETEC-Inducing Intestinal Inflammation in Mice. Microorganisms 2022; 10:microorganisms10122350. [PMID: 36557603 PMCID: PMC9783104 DOI: 10.3390/microorganisms10122350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Microecological preparation could relieve Enterotoxigenic Escherichia coli (ETEC) K88-induced diarrhea in piglets, but which bacteria play a key role and the mitigation mechanism have not been fully clarified. In this study, 36 male mice were randomly divided into six groups (CON, K88, BK (Bifidobacterium longum + K88), LK (Lactobacillus plantarum + K88), PK (Pediococcus acidilactici + K88), and MK (mixed strains + K88)) to explore the prevention mechanisms. Three probiotic strains and their mixtures (TPSM) significantly relieved the weight loss and restored the ratio of villus height to crypt depth in the jejunum. Except for Bifidobacterium longum, other strains significantly decreased interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) in mice serum. The TPSM treatment significantly downregulated the mRNA expression of the inflammatory cytokines and the Toll-like receptor and downstream gene (TLR4, MyD88, NF-κB) in jejunum induced by ETEC. Furthermore, the TPSM could restore dysbiosis of the intestinal microbiota caused by ETEC. The intestinal microbiota analysis demonstrated that Bifidobacterium longum enriched the Bifidobacterium genus (p < 0.05), Lactobacillus plantarum enriched the Lactobacillus genus (p < 0.05), Pediococcus acidilactici enriched the Coriobacteriaceae_UCG-002 and Christensenellaceae_R-7_group genus (p < 0.05), mixed bacteria enriched the Akkermansia genus (p < 0.05), but ETEC enriched the Desulfovibrio genus (p < 0.05). Meanwhile, the starch and sucrose metabolism, galactose and fructose metabolism, mannose metabolism and ABC transporters were increased with probiotics pre-treatment (p < 0.05). To sum up, the microecological preparation alleviated ETEC-induced diarrhea by regulating the immune response, rebalancing intestinal microbiota and improving carbohydrate metabolism.
Collapse
|
23
|
Meng Q, Zhang Y, Li J, Shi B, Ma Q, Shan A. Lycopene Affects Intestinal Barrier Function and the Gut Microbiota in Weaned Piglets via Antioxidant Signaling Regulation. J Nutr 2022; 152:2396-2408. [PMID: 36774106 DOI: 10.1093/jn/nxac208] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 09/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In pig production, early and abrupt weaning frequently causes weaning stress, which manifests as oxidative damage, barrier disruption, and digestion and absorption capacity declines. Lycopene exhibits beneficial antioxidant capacity in both humans and other animal models. OBJECTIVES The present study aimed to investigate the effects of lycopene supplementation on early weaning stress in piglets and the underlying mechanisms by examining the oxidative stress state, gut intestinal barrier function, and the gut microbiota. METHODS Twenty-four 21-day-old weaned piglets [Duroc × (Landrace × Yorkshire); castrated males; 5.48 ± 0.10 kg initial body weight] were randomly assigned to 2 treatments. The piglets were fed a basal diet (control treatment) or a basal diet supplemented with 50 mg/kg lycopene (lycopene treatment) for 28 days. The serum lipid levels, serum and jejunum enzyme activities, jejunum morphology, mRNA and protein expression, and gut microbiota were determined. RESULTS Compared with the control treatment, lycopene supplementation increased the serum catalase activity (P = 0.042; 62.0%); serum total cholesterol concentration (P = 0.020; 14.1%); and jejunum superoxide dismutase activity (P = 0.032; 21.4%), whereas it decreased serum (P = 0.039, 23.0%) and jejunum (P = 0.047; 20.9%) hydrogen peroxide concentrations. Additionally, lycopene increased the mRNA and protein expression of NFE2-like bZIP transcription factor 2 (214.0% and 102.4%, respectively) and CD36 (100.8% and 145.2%, respectively) in the jejunum, whereas it decreased the mRNA and protein expression of Kelch-like ECH-associated protein 1 (55.6% and 39.8%, respectively ). Lycopene also improved jejunal morphology, increasing the villus height (P = 0.018; 27.5%) and villus:crypt ratio (P < 0.001; 57.9%). Furthermore, it increased the abundances of potentially beneficial bacterial groups, including Phascolarctobacterium and Parasutterella, and decreased those of potentially pathogenic bacterial groups, including Treponema_2 and Prevotellaceae_unclassified. CONCLUSIONS Lycopene supplementation strengthens the intestinal barrier function and improves the gut microbiota in weaned piglets by regulating intestinal antioxidant signaling.
Collapse
Affiliation(s)
- Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yiming Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jibo Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Qingquan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
24
|
Zhao X, Jiang L, Fang X, Guo Z, Wang X, Shi B, Meng Q. Host-microbiota interaction-mediated resistance to inflammatory bowel disease in pigs. MICROBIOME 2022; 10:115. [PMID: 35907917 PMCID: PMC9338544 DOI: 10.1186/s40168-022-01303-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/07/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Disease resistance phenotypes are associated with immune regulatory functions and immune tolerance and have implications for both the livestock industry and human health. Microbiota plays an essential role in regulating immunity and autoimmunity in the host organism, but the influence of host-microbiota interactions on disease resistance phenotypes remains unclear. Here, multiomics analysis was performed to identify potential regulatory mechanisms of disease resistance at both the microbiome and host levels in two pig breeds. RESULTS Acute colitis models were established in Min pigs and Yorkshire pigs, and control and diseased individuals were compared. Compared with Yorkshire pigs under the same nutritional and management conditions, Min pigs exhibited strong disease resistance, as indicated by a low disease activity index (DAI) and a low histological activity index (HAI). Microbiota sequencing analysis showed that potentially harmful microbes Desulfovibrio, Bacteroides and Streptococcus were enriched in diseased individuals of the two breeds. Notably, potentially beneficial microbes, such as Lactobacillus, Clostridia and Eubacterium, and several genera belonging to Ruminococcaceae and Christensenellaceae were enriched in diseased Min pigs and were found to be positively associated with the microbial metabolites related to intestinal barrier function. Specifically, the concentrations of indole derivatives and short-chain fatty acids were increased in diseased Min pigs, suggesting beneficial action in protecting intestinal barrier. In addition, lower concentrations of bile acid metabolites and short-chain fatty acids were observed in diseased Yorkshire pigs, which were associated with increased potentially harmful microbes, such as Bilophila and Alistipes. Concerning enrichment of the immune response, the increase in CD4+ T cells in the lamina propria improved supervision of the host immunity response in diseased Min pigs, contributing to the maintenance of Th2-type immune superiority and immune tolerance patterns and control of excessive inflammation with the help of potentially beneficial microbes. In diseased Yorkshire pigs, more terms belonging to biological processes of immunity were enriched, including Toll-like receptors signalling, NF-κB signalling and Th1 and Th17-type immune responses, along with the increases of potentially harmful microbes and damaged intestinal barrier. CONCLUSIONS Cumulatively, the results for the two pig breeds highlight that host-microbiota crosstalk promotes a disease resistance phenotype in three ways: by maintaining partial PRR nonactivation, maintaining Th2-type immune superiority and immunological tolerance patterns and recovering gut barrier function to protect against colonic diseases. Video abstract.
Collapse
Affiliation(s)
- Xuan Zhao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lin Jiang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiuyu Fang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiqiang Guo
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoxu Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
25
|
Li G, Yuan X, Chen H, Li B, Shao C, Zhu Y, Lai Z, Shan A. Optimization of Antibacterial Activity in Tibetan Swine α-Helix Peptide TP by Site-Directed Mutagenesis. Front Microbiol 2022; 13:864374. [PMID: 35859740 PMCID: PMC9289672 DOI: 10.3389/fmicb.2022.864374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) have attracted extensive attention because of their broad-spectrum antibacterial activity and low level of induced bacterial resistance. However, the development of some natural AMPs does not consider the perfect balance of structural characteristics, resulting in some empirical and controversial practices still existing. To further explore and complete the relationship between parameters and function of α-helix peptide, in this study, the natural antimicrobial peptide TP secreted from Bacillus strain of Tibetan pigs was selected as a template to investigate the effect of systematic mutations in the hydrogen bond formation site of the α-helical antimicrobial peptide on the activity and cell selectivity of the antimicrobial peptide. The target peptide TP(i+4) 1&2&5 with modification of two pairs of positively charged amino acids and a pair of hydrophobic amino acids showed excellent antibacterial ability and the best selectivity index (SI = 64) in vitro. At the same time, TP(i+4) 1&2&5 remained active in the presence of physiological salts and serum. The results of fluorescence, flow cytometry, and electron microscopy showed that the optimized sequences showed good antibacterial activity by membrane infiltration and membrane destruction. The potential of TP(i+4) 1&2&5 in vivo was tested in a mouse peritonitis model. Organ bacterial loads in the liver, kidney, spleen, and lungs of mice treated with TP(i+4) 1&2&5 were significantly lower compared to the infected group (p < 0.05). Overall, these findings contribute to the design and optimization of antimicrobial peptides with high activity and low toxicity and may accelerate the clinical application of antimicrobial peptides.
Collapse
|
26
|
Li L, Ma L, Wen Y, Xie J, Yan L, Ji A, Zeng Y, Tian Y, Sheng J. Crude Polysaccharide Extracted From Moringa oleifera Leaves Prevents Obesity in Association With Modulating Gut Microbiota in High-Fat Diet-Fed Mice. Front Nutr 2022; 9:861588. [PMID: 35548566 PMCID: PMC9083904 DOI: 10.3389/fnut.2022.861588] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Moringa oleifera is a commonly used plant with high nutritional and medicinal values. M. oleifera leaves are considered a new food resource in China. However, the biological activities of M. oleifera polysaccharides (MOP) in regulating gut microbiota and alleviating obesity remain obscure. In the present study, we prepared the MOP and evaluated its effects on obesity and gut microbiota in high-fat diet (HFD)-induced C57BL/6J mice. The experimental mice were supplemented with a normal chow diet (NCD group), a high-fat diet (HFD group), and HFD along with MOP at a different dose of 100, 200, and 400 mg/kg/d, respectively. Physiological, histological, biochemical parameters, genes related to lipid metabolism, and gut microbiota composition were compared among five experimental groups. The results showed that MOP supplementation effectively prevented weight gain and lipid accumulation induced by HFD, ameliorated blood lipid levels and insulin resistance, alleviated the secretion of pro-inflammatory cytokines, and regulated the expression of genes related to lipid metabolism and bile acid metabolism. In addition, MOP positively reshaped the gut microbiota composition, significantly increasing the abundance of Bacteroides, norank_f_Ruminococcaceae, and Oscillibacter, while decreasing the relative abundance of Blautia, Alistipes, and Tyzzerella, which are closely associated with obesity. These results demonstrated that MOP supplementation has a protective effect against HFD-induced obesity in mice, which was associated with reshaping the gut microbiota. To the best of our knowledge, this is the first report on the potential of MOP to prevent obesity and modulating gut microbiota, which suggests that MOP can be used as a potential prebiotic.
Collapse
Affiliation(s)
- Lingfei Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Li Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yanlong Wen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Liang Yan
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Aibing Ji
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yin Zeng
- Pu'er Institute of Pu-erh Tea, Pu'er, China.,College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China.,Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
27
|
Pre-Administration of Berberine Exerts Chemopreventive Effects in AOM/DSS-Induced Colitis-Associated Carcinogenesis Mice via Modulating Inflammation and Intestinal Microbiota. Nutrients 2022; 14:nu14040726. [PMID: 35215376 PMCID: PMC8879943 DOI: 10.3390/nu14040726] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory activation and intestinal flora imbalance play an essential role in the development and progression of colorectal cancer (CRC). Berberine (BBR) has attracted great attention in recent years due to its heath-related benefits in inflammatory disorders and tumors, but the intricate mechanisms have not been fully elucidated. In this study, the effects and the mechanism of BBR on colon cancer were investigated in an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated carcinogenesis mice model. Our results showed that pre-administration of BBR showed a decrease in weight loss, disease activity index (DAI) score, and the number of colon tumors in mice, compared with the model group. The evidence from pathological examination indicated that the malignancy of intestinal tumors was ameliorated after pre-administration of BBR. Additionally, pre-administration with BBR suppressed the expression of pro-inflammatory factors (interleukin (IL)-6, IL-1β, cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)-α) and the cell-proliferation marker Ki67, while expression of the tight junction proteins (ZO-1 and occludin) were increased in colon tissue. Moreover, the levels of critical pathway proteins involved in the inflammatory process (p-STAT3 and p-JNK) and cell cycle regulation molecules (β-catenin, c-Myc and CylinD1) exhibited lower expression levels. Besides, 16S rRNA sequence analysis indicated that pre-administration of BBR increased the ratio of Firmicutes/Bacteroidetes (F:M) and the relative abundance of potentially beneficial bacteria, while the abundance of cancer-related bacteria was decreased. Gavage with Lactobacillus rhamnosus can improve the anti-tumor effect of BBR. Overall, pre-administration of BBR exerts preventive effects in colon carcinogenesis, and the mechanisms underlying these effects are correlated with the inhibition of inflammation and tumor proliferation and the maintenance of intestinal homeostasis.
Collapse
|
28
|
Dou X, Ma Z, Yan D, Gao N, Li Z, Li Y, Feng X, Meng L, Shan A. Sodium butyrate alleviates intestinal injury and microbial flora disturbance induced by lipopolysaccharides in rats. Food Funct 2022; 13:1360-1369. [DOI: 10.1039/d1fo03183j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sodium butyrate alleviates LPS-induced intestinal inflammation in rats by regulating intestinal injury, inflammatory cytokine levels, and intestinal flora.
Collapse
Affiliation(s)
- Xiujing Dou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Ziwen Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Di Yan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhongyu Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yang Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Lingxue Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
29
|
Liu Y, Yu M, Cui J, Du Y, Teng X, Zhang Z. Heat shock proteins took part in oxidative stress-mediated inflammatory injury via NF-κB pathway in excess manganese-treated chicken livers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112833. [PMID: 34600291 DOI: 10.1016/j.ecoenv.2021.112833] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Manganese (Mn) is an essential metal in humans and animals. However, excess Mn entered environment due to the wide application of Mn in industry and agriculture, and became an environmental pollutant. Exposure to high doses of Mn is toxic to humans and animals (including chickens). Liver is a target organ of Mn poisoning. Nevertheless, there were few studies on whether Mn poisoning damages chicken livers and poisoning mechanism of Mn in chicken livers. Herein, the aim of this study was to explore if oxidative stress, heat shock proteins (HSPs), and inflammatory response were involved in the mechanism of Mn poisoning-caused damage in chicken livers. A chicken Mn poisoning model was established. One hundred and eighty chickens were randomly divided into one control group (containing 127.88 mg Mn kg-1) and three Mn-treated groups (containing 600, 900, and 1800 mg Mn kg-1, respectively). Histomorphological structure was observed via microstructure and ultrastructure. Spectrophotometry was used to detect total antioxidant capacity (T-AOC) and inducible nitric oxide synthase (iNOS) activity, as well as nitric oxide (NO) content. And qRT-PCR was performed to measure mRNA expression of inflammatory genes (nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and iNOS) and heat shock protein (HSP) genes (HSP27, HSP40, HSP60, HSP70, and HSP90). Multivariate correlation analysis, principal component analysis, and cluster analysis were used to demonstrate the reliability of mechanism of Mn poisoning in our experiment. The results indicated that excess Mn led to inflammatory injury at three contents and three time points. Meanwhile, we found that NO content, iNOS activity, and NF-κB, TNF-α, COX-2, PGE2, and iNOS mRNA expression increased after Mn treatment, meaning that exposure to Mn induced inflammatory response via NF-κB pathway in chicken livers. Moreover, excess Mn decreased T-AOC activity, indicating that Mn exposure caused oxidative stress. Furthermore, mRNA expression of above five HSP genes was up-regulated during Mn exposure. Oxidative stress triggered the increase of HSPs and the increase of HSPs mediated inflammatory response induced by Mn. In addition, there were time- and dose-dependent effects on Mn-caused chicken liver inflammatory injury. Taken together, HSPs participated in oxidative stress-mediated inflammatory damage caused by excess Mn in chicken livers via NF-κB pathway. For the first time, we found that oxidative stress can trigger HSP70 and HSPs can trigger poisoning-caused inflammatory damage, which needs to be further explored. This study provided a new insight into environmental pollutants and a reference for further study on molecular mechanisms of poisoning.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Animal Science, Inner Mongolia Agricultural University, Hohhot City 010018, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Meijin Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiawen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ye Du
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China; Electrical and Information Engineering College, Jilin Agricultural Science and Technology University, Jilin 132101, PR China.
| | - Zuozhong Zhang
- School of Animal Science, Inner Mongolia Agricultural University, Hohhot City 010018, PR China.
| |
Collapse
|
30
|
Dietary Curcumin Alleviated Aflatoxin B1-Induced Acute Liver Damage in Ducks by Regulating NLRP3-Caspase-1 Signaling Pathways. Foods 2021; 10:foods10123086. [PMID: 34945637 PMCID: PMC8701407 DOI: 10.3390/foods10123086] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin widely distributed in animal feed and human food; it represents a serious threat to human and animal health. This study investigates the mechanism by which dietary curcumin protected liver against acute damage caused by AFB1 administration in ducks. One-day-old male ducks (n = 450) were randomly assigned to three groups, the control group, the AFB1 group, and the AFB1 + curcumin group; the first group were fed with basic diet, while the third group was fed basic diet containing 500 mg/kg curcumin. Ducks in the AFB1 group and AFB1 + curcumin group were challenged with AFB1 at the age of 70 days. The results show that AFB1 administration caused liver damage, increased CYP450 content and AFB1-DNA adducts in the liver, and induced oxidative stress and inflammatory response in the liver. Dietary curcumin significantly inhibited the generation of H2O2 and MDA in liver, activated the Nrf2-ARE signaling pathway, and suppressed the NLRP3–caspase-1 signaling pathway in the liver of ducks. Conclusively, curcumin in diet could protect duck liver against the generation of AFB1-DNA adducts, toxicity, oxidation stress and inflammatory response induced by AFB1 through regulating the NLRP3–caspase-1 signaling pathways, demonstrating that curcumin is a potential feed additive agent to reduce the serious harmful effects of AFB1 on duck breeding.
Collapse
|
31
|
Jiang Z, Li W, Su W, Wen C, Gong T, Zhang Y, Wang Y, Jin M, Lu Z. Protective Effects of Bacillus amyloliquefaciens 40 Against Clostridium perfringens Infection in Mice. Front Nutr 2021; 8:733591. [PMID: 34746206 PMCID: PMC8566672 DOI: 10.3389/fnut.2021.733591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate the protective effects of Bacillus amyloliquefaciens (BA40) against Clostridium perfringens (C. perfringens) infection in mice. Bacillus subtilis PB6 was utilized as a positive control to compare the protective effects of BA40. In general, a total of 24 5-week-old male C57BL/6 mice were randomly divided into four groups, with six mice each. The BA40 and PB6 groups were orally dosed with resuspension bacteria (1 × 109 CFU/ml) once a day, from day 1 to 13, respectively. In the control and infected groups, the mice were orally pre-treated with phosphate-buffered saline (PBS) (200 μl/day). The mice in the infected groups, PB6 + infected group and BA40 + infected group, were orally challenged with C. perfringens type A (1 × 109 CFU/ml) on day 11, whereas the control group was orally dosed with PBS (200 μl/day). The results showed that the BA40 group ameliorated intestinal structure damage caused by the C. perfringens infection. Furthermore, the inflammatory responses detected in the infected groups which include the concentrations of IL-1β, TNF-α, IL-6, and immunoglobulin G (IgG) in the serum and secretory immunoglobulin (SigA) in the colon, and nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) activity in the jejunum, were also alleviated (P < 0.05) by BA40 treatment. Similarly, cytokines were also detected by quantitative PCR (qPCR) in the messenger RNA (mRNA) levels, and the results were consistent with the enzyme-linked immunosorbent assay (ELISA) kits. Additionally, in the infected group, the mRNA expression of Bax and p53 was increasing and the Bcl-2 expression was decreasing, which was reversed by BA40 and PB6 treatment (P < 0.05). Moreover, the intestinal microbiota imbalance induced by the C. perfringens infection was restored by the BA40 pre-treatment, especially by improving the relative abundance of Verrucomicrobiota (P < 0.05) and decreasing the relative abundance of Bacteroidetes (P < 0.05) in the phyla level, and the infected group increased the relative abundance of some pathogens, such as Bacteroides and Staphylococcus (P < 0.05) in the genus level. The gut microbiota alterations in the BA40 group also influenced the metabolic pathways, and the results were also compared. The purine metabolism, 2-oxocarboxylic acid metabolism, and starch and sucrose metabolism were significantly changed (P < 0.05). In conclusion, our results demonstrated that BA40 can effectively protect mice from C. perfringens infection.
Collapse
Affiliation(s)
- Zipeng Jiang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Wentao Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Chaoyue Wen
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Tao Gong
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Mingliang Jin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
| |
Collapse
|