1
|
Carvalho A, Dinis LT, Luzio A, Bernardo S, Moutinho-Pereira J, Lima-Brito J. Cytogenetic and Molecular Effects of Kaolin's Foliar Application in Grapevine ( Vitis vinifera L.) under Summer's Stressful Growing Conditions. Genes (Basel) 2024; 15:747. [PMID: 38927683 PMCID: PMC11202698 DOI: 10.3390/genes15060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Grapevine varieties from "Douro Superior" (NE Portugal) experience high temperatures, solar radiation, and water deficit during the summer. This summer's stressful growing conditions induce nucleic acids, lipids, and protein oxidation, which cause cellular, physiological, molecular, and biochemical changes. Cell cycle anomalies, mitosis delay, or cell death may occur at the cellular level, leading to reduced plant productivity. However, the foliar application of kaolin (KL) can mitigate the impact of abiotic stress by decreasing leaf temperature and enhancing antioxidant defence. Hence, this study hypothesised that KL-treated grapevine plants growing in NE Portugal would reveal, under summer stressful growing conditions, higher progression and stability of the leaf mitotic cell cycle than the untreated (control) plants. KL was applied after veraison for two years. Leaves, sampled 3 and 5 weeks later, were cytogenetically, molecularly, and biochemically analysed. Globally, integrating these multidisciplinary data confirmed the decreased leaf temperature and enhanced antioxidant defence of the KL-treated plants, accompanied by an improved regularity and completion of the leaf cell cycle relative to the control plants. Nevertheless, the KL efficacy was significantly influenced by the sampling date and/or variety. In sum, the achieved results confirmed the hypothesis initially proposed.
Collapse
Affiliation(s)
- Ana Carvalho
- Plant Cytogenomics Laboratory, Department of Genetics and Biotechnology, Laboratorial Complex, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Lia-Tânia Dinis
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Sara Bernardo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
| | - José Moutinho-Pereira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - José Lima-Brito
- Plant Cytogenomics Laboratory, Department of Genetics and Biotechnology, Laboratorial Complex, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal; (L.-T.D.); (A.L.); (S.B.); (J.M.-P.)
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Zhan Z, Wang N, Chen Z, Zhang Y, Geng K, Li D, Wang Z. Effects of water stress on endogenous hormones and free polyamines in different tissues of grapevines ( Vitis vinifera L. cv. 'Merlot'). FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:993-1009. [PMID: 37788830 DOI: 10.1071/fp22225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
Water stress can affect plant ecological distribution, crop growth and carbohydrate distribution, impacting berry quality. However, previous studies mainly focused on short-term water stress or osmotic stress and few studies paid attention to the responses of grape to long-term water stresses. Grapevines were subjected to no water stress (CK), mild water stress (T1) and moderate water stress (T2). Hundred-berry weight and malic acid content were reduced under T1 and T2; however, glucose and fructose content showed the opposite trend. Endogenous hormones and polyamines (PAs) can regulate plant growth and development as well as physiological metabolic processes. T1 and T2 could increase abscisic acid content, however, indole-3-acetic acid, jasmonate, gibberellins 3 and 4, cytokinin and trans -zeatin contents were slightly decreased. Three species of PAs (putrescine, spermidine and spermine) were detected, presenting obvious tissue specificity. Furthermore, there was a statistically positive correlation relating spermidine content in the pulp with glucose and fructose contents of grape berries; and a negative correlation with organic acid. In summary, water stress had a profound influence on hormonally-driven changes in physiology and berry quality, indicating that endogenous hormones and the PAs play a critical role in the development and ripening of grape berries under water stress.
Collapse
Affiliation(s)
- Zhennan Zhan
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Ning Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Zumin Chen
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Yanxia Zhang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Kangqi Geng
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Dongmei Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| | - Zhenping Wang
- School of Life Science, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China; and School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, People's Republic of China
| |
Collapse
|
3
|
Hera O, Sturzeanu M, Vîjan LE, Tudor V, Teodorescu R. Biochemical Evaluation of Some Fruit Characteristics of Blueberry Progenies Obtained from 'Simultan × Duke'. ACS OMEGA 2023; 8:18603-18616. [PMID: 37273613 PMCID: PMC10233668 DOI: 10.1021/acsomega.3c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023]
Abstract
The popularity of Vaccinium corymbosum blueberry cv. has increased over time because its fruits are highly valued for their taste, aroma, and multiple ways of use. A field trial with two genotypes and their hybrids was organized during 2021-2022 at the Research Institute for Fruit Growing Pitesti-Maracineni, Romania. This paper proposes a comparative analysis of the quality of berries in 17 hybrids of the 'Simultan' and 'Duke' cultivars, selected by the size and the soluble solid content, in agreement with the objectives of the blueberry breeding program. The genotype influence on berry weight, total soluble solids, pH, vitamin C, total polyphenols, total flavonoids, total anthocyanins, lycopene, β-carotene, and antioxidant activity was determined considering the climatic factors. The results showed that fruit weight varied between 1.22 and 2.47 g, total soluble solids reached a maximum of 19.22 °Brix, and the pH oscillated between 3.14 and 3.89. Vitamin C content varied from 9.52 to 18.69 mg in 100 g fresh weight, with an average of 14.35 mg/100 g. Total polyphenol, flavonoid, and anthocyanin contents averaged 709.92 mg gallic acid equivalent in 100 g fresh weight, 165.48 mg catechin equivalent in 100 g fresh weight, and 81.88 mg cyanidin-3-O-glucoside equivalent in 100 g fresh weight, respectively. Results show that the strategy of growers to produce blueberries with a large diameter, visually attractive for traders and consumers, is not sufficient for repeat sales. Our study proves that large fruits do not have the highest content of bioactive compounds. Smaller berries had higher polyphenol, lycopene, and β-carotene contents. It is recommended that the selection of the hybrid in the breeding program also takes into account the content of bioactive compounds.
Collapse
Affiliation(s)
- Oana Hera
- Research
Institute for Fruit Growing Pitesti-Maracineni, 402 Marului Street, Pitesti-Maracineni, Arges 117450, Romania
- University
of Agronomic Sciences and Veterinary
Medicine of Bucharest, 59 Marasti Boulevard, District 1, Bucharest 011464, Romania
| | - Monica Sturzeanu
- Research
Institute for Fruit Growing Pitesti-Maracineni, 402 Marului Street, Pitesti-Maracineni, Arges 117450, Romania
| | - Loredana Elena Vîjan
- University
of Pitesti, Faculty of Sciences, Physical
Education and Computer Science, 1 Targu din Vale Street, Pitesti, Arges 110142, Romania
| | - Valerica Tudor
- University
of Agronomic Sciences and Veterinary
Medicine of Bucharest, 59 Marasti Boulevard, District 1, Bucharest 011464, Romania
| | - Răzvan Teodorescu
- University
of Agronomic Sciences and Veterinary
Medicine of Bucharest, 59 Marasti Boulevard, District 1, Bucharest 011464, Romania
| |
Collapse
|
4
|
Petoumenou DG. Enhancing Yield and Physiological Performance by Foliar Applications of Chemically Inert Mineral Particles in a Rainfed Vineyard under Mediterranean Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1444. [PMID: 37050068 PMCID: PMC10096938 DOI: 10.3390/plants12071444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
One of the biggest environmental challenges that most of the traditional and modern grape-growing areas are facing is the frequency, severity, and unpredictability of extreme weather events as a result of climate change. Sustainable tools such as chemically inert mineral particles could be a valid alternative for the promotion of environmentally-friendly viticultural techniques to enhance yield, improve physiological processes, and increase tolerance to biotic/abiotic stressors and grape quality. In regard to this concept, the effects of kaolin (KL) and zeolite (ZL) application was tested in the rosé grapevine cultivar Roditis, field-and rainfed, under the Mediterranean conditions of central Greece. In a two-year trial, the whole vine canopy was sprayed with kaolin and zeolite until runoff at a dose of 3% (w/v) twice throughout the growing season; the first at the beginning of veraison and the second one week later; treatment of the untreated control plants was also performed (C). The assimilation rate in morning and midday, the stomatal conductance, and the WUEi of the leaves of the treated and untreated plants were monitored one day after each application and at harvest. During the same time period of the day (i.e., morning and midday) in July, August, and September, the leaf temperature near the fruit zone was also recorded. At harvest, the yield parameters, cluster characteristics, grape composition, and incidence (%) of sunburned and dehydrated berries as well as berries infected by Plasmopara viticola and Lobesia botrana were recorded. The results showed that KL and ZL application decreased leaf temperature during the growing season until harvest compared to the control treatment, which resulted in an improvement in physiological parameters such as net photosynthesis and intrinsic water use efficiency. At harvest, the KL- and ZL-treated vines showed increased yield due to an increasing cluster and berry fresh weight. On the other hand, the KL and ZL application did not affect the sugar concentration and pH of the must and increased the total acidity and decreased the total phenolic compound content, but only in the first year of the experiments. Furthermore, the incidence of sunburn necrosis, dehydrated berries, and infected berries was significantly lower in the treated vines compared to the control vines. These results confirm the promising potential of kaolin and zeolite applications as a stress mitigation strategy during the summer period, with the ability to protect grapevine plants, enhance yield, and maintain or improve fruit quality in rainfed Mediterranean vineyards.
Collapse
Affiliation(s)
- Despoina G Petoumenou
- Laboratory of Viticulture, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| |
Collapse
|
5
|
Sunscreen Based on Dicarboxylic Acid Salts Applications to Blueberries (Vaccinium corymbosum L.) Plants: Effects on Water Stress Tolerance and Productivity. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Recently, antitranspirant or radiation-reflective products have been studied in several crops to mitigate the negative effects of global warming in Mediterranean climates. Nevertheless, to our knowledge, there is a scarce availability of information studying their effects on blueberries and much less from applications of sunscreens elaborated based on a mixture of dicarboxylic acids. Methods: Controls and three treatments were performed in ‘Duke’ and ‘Star’ blueberries as follows: (i) control without water stress (T1 = 100% ETc); (ii) foliar application of sunscreen in plants without water stress (T2 = 100% ETc + sunscreen); (iii) water stress in plants without foliar application of sunscreen (T3 = 50% ETc); (iv) foliar application of the sunscreen in plants with water stress (T4 = 50% ETc + sunscreen). Stem water potential (Ψs), stomatal conductance (gs), yield, berry weight and berry total soluble solids were determined. (3) Results: As expected, the decrease in irrigation frequency in water stress treatments (T3 and T4) allowed for a decrease in the water applied at 25% compared to non-stressed plants (T1 and T2). This resulted in an increase in the Ψs on the days closest to harvest in both varieties, decreasing gs in blueberries plants subjected to water stress conditions. Sunscreen applications to Duke plants subjected to water stress (T4) induced higher total berry soluble solids than the treatments performed in non-stressed plants (T1 and T2). Sunscreen applications to Star plants subjected to water stress (T4) promoted similar gs levels and did not affect total soluble solids concerning irrigated plants (T1 and T2). (4) Conclusions: The results suggest that the response to water stress to sunscreen application based on dicarboxylic acid salts depended on the cultivar. Therefore, despite the novelty of this research, it is necessary to perform long-term studies to establish accurate conclusions.
Collapse
|
6
|
Effect of Shading Nets on Yield, Leaf Biomass and Petiole Nutrients of a Muscat of Alexandria Vineyard Growing under Hyper-Arid Conditions. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Currently, viticulture is exposed to extreme weather fluctuations and global warming, thus the implementation of short-term adaptation strategies to mitigate climate change impacts will be of a wide importance for the sustainability and competitiveness of wine industry. This research aimed to study the effect of shading nets on the viticultural performance of a Muscat of Alexandria vineyard growing under hyper-arid conditions. Methods: Three treatments were randomly arranged in the vineyard: (i) a control (without shading), (ii) a white shading net (25% of shading), and (iii) a black shading net (40% of shading). Subsequently, yield, vine vigor, berry composition, leaf biomass and petiole nutrient content were assessed. Results: Both shading nets decreased the incidence of solar radiation in vines. The application of white shading nets induced a high bunch weight and a higher number of berries per bunch than the black shading nets. Black shading nets increased pruning weight, decreased Ravaz index and induced a considerably accumulation of soluble solids in grapes. This treatment also decreased bunch weight and the number of berries per bunch, and increased rachis length compared to control. Black shading nets decreased Mg petiole content, leaf dry weight and leaf biomass at flowering compared to uncovered vines. Conclusions: Shading considerably affected the viticultural performance of Muscat of Alexandria vines growing under hyper-arid conditions, modifying yield, leaf biomass and petiole nutrients.
Collapse
|