1
|
Yarmolinsky L, Nakonechny F, Haddis T, Khalfin B, Dahan A, Ben-Shabat S. Natural Antimicrobial Compounds as Promising Preservatives: A Look at an Old Problem from New Perspectives. Molecules 2024; 29:5830. [PMID: 39769919 PMCID: PMC11728848 DOI: 10.3390/molecules29245830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/14/2025] Open
Abstract
Antimicrobial compounds of natural origin are of interest because of the large number of reports regarding the harmfulness of food preservatives. These natural products can be derived from plants, animal sources, microorganisms, algae, or mushrooms. The aim of this review is to consider known antimicrobials of natural origin and the mechanisms of their action, antimicrobial photodynamic technology, and ultrasound for disinfection. Plant extracts and their active compounds, chitosan and chitosan oligosaccharide, bioactive peptides, and essential oils are highly potent preservatives. It has been experimentally proven that they possess strong antibacterial capabilities against bacteria, yeast, and fungi, indicating the possibility of their use in the future to create preservatives for the pharmaceutical, agricultural, and food industries.
Collapse
Affiliation(s)
- Ludmila Yarmolinsky
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Faina Nakonechny
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel; (F.N.); (T.H.)
| | - Tigabu Haddis
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel; (F.N.); (T.H.)
| | - Boris Khalfin
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Arik Dahan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| | - Shimon Ben-Shabat
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (L.Y.); (B.K.)
| |
Collapse
|
2
|
Zagorska J, Ruska D, Radenkovs V, Juhnevica-Radenkova K, Kince T, Galoburda R, Gramatina I. The Impact of Biotechnologically Produced Lactobionic Acid on Laying Hens' Productivity and Egg Quality during Early Laying Period. Animals (Basel) 2024; 14:2966. [PMID: 39457896 PMCID: PMC11506111 DOI: 10.3390/ani14202966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Lactobionic acid (Lba), an oligosaccharide aldonic acid, has demonstrated various health-promoting benefits and applications in diverse areas. Lba has been recognized for its multifunctional properties, such as metal ion chelation and calcium sequestration. This study aimed to evaluate the effects of supplementing the diet of early-laying hens with Lba (EXP group) on their performance and the physical-chemical properties, and nutritional quality of eggs. The 12-week study involved 700 Sonja breed hens per group, with the EXP group's diet enriched with 2% of biotechnologically produced Lba, while the control group (CON) received no Lba supplementation. Lba supplementation influenced both the hen's performance and egg quality, particularly in terms of egg production and fatty acid accumulation. Performance in the EXP group was significantly improved (p < 0.05), showing a 4.6-8.9% increase compared to the CON group at all experiment stages. Lba also promoted an increase in monounsaturated fatty acid (MUFA) content, particularly palmitoleic and vaccenic acids. Overall, Lba supplementation enhanced both the productivity of laying hens and the nutritional value of eggs during the early laying period.
Collapse
Affiliation(s)
- Jelena Zagorska
- Food Institute, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (J.Z.); (T.K.); (I.G.)
| | - Diana Ruska
- Institute of Animal Sciences, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia;
| | - Vitalijs Radenkovs
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia;
- Research Laboratory of Biotechnology, Division of Smart Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | | | - Tatjana Kince
- Food Institute, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (J.Z.); (T.K.); (I.G.)
| | - Ruta Galoburda
- Food Institute, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (J.Z.); (T.K.); (I.G.)
| | - Ilze Gramatina
- Food Institute, Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (J.Z.); (T.K.); (I.G.)
| |
Collapse
|
3
|
Holmes ZC, Koivusaari K, O'Brien CE, Richeson KV, Strickland LI. Untargeted metabolomic analysis of human milk from healthy mothers reveals drivers of metabolite variability. Sci Rep 2024; 14:20827. [PMID: 39242646 PMCID: PMC11379717 DOI: 10.1038/s41598-024-71677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Understanding the human milk metabolome can help inform infant nutrition and health. Untargeted metabolomics was used to study breast milk from 31 healthy participants to assess the shared metabolites in milk from participants with various backgrounds and understand how different demographic, health, and environmental factors impact the milk metabolome. Breast milk samples were analyzed by four separate UPLC-MS/MS methods. Metabolite Set Enrichment Analysis was used to study the most and least variable metabolites. The associations between participant factors and the metabolome were assessed with redundancy analyses. Among all 31 participants and between each untargeted UPLC-MS/MS method, 731 metabolites were detected, of which 389 were shared among all participants. Of the shared metabolites, lactose was the least and lactobionate the most variable metabolite. In the biological super pathway analysis, xenobiotics were the most variable metabolites. Infant age, maternal age, number of live births, and pre-pregnancy BMI were associated with the milk metabolome. In conclusion, the most variable metabolites originate from environmental exposures while the well-conserved core metabolites are linked to cell metabolism or are crucial for infant nutrition and osmoregulation. Understanding the variability of the breast milk metabolome can help identify components that are crucial for infant nutrition, growth, and development.
Collapse
|
4
|
Vencato AA, Clerici NJ, Juchem ALM, Veras FF, Rolla HC, Brandelli A. Electrospun nanofibers incorporating lactobionic acid as novel active packaging materials: biological activities and toxicological evaluation. DISCOVER NANO 2024; 19:135. [PMID: 39215943 PMCID: PMC11365877 DOI: 10.1186/s11671-024-04084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
In this study, lactobionic acid (LBA) was incorporated into poly(vinyl alcohol) (PVA) and poly(ε-caprolactone) (PCL) by electrospinning. The antimicrobial effects of the nanofibers were tested using the agar diffusion method. Only the PVA formulations showed antimicrobial activity against Staphylococcus aureus. The PVA and PCL nanofibers containing LBA showed antioxidant activity ranging from 690.33 to 798.67 µM TEAC when tested by the ABTS method. The characterization of nanofibers was performed by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and mechanical analysis. The nanofibers showed a uniform morphology and their average diameters ranged from 295.5 to 2778.2 nm. The LBA addition induced a decrease in the enthalpy of fusion (ΔHm) of PVA and PCL nanofibers, while the Young's modulus was reduced from 20 to 10 MPa in PCL and PCL-LBA nanofibers, respectively. No relevant differences were observed between the FTIR spectra of the control nanofibers and the nanofibers containing LBA. All nanofibers presented hemolysis rate below 2%, thus can be considered as non-hemolytic materials. Further toxicological assessment was performed with the selected formulation PVA10 + LBA. The evaluations by mutagenicity assay, cell survival measurement, cell viability analysis and agar diffusion cytotoxicity test indicated that there are no significant toxic effects. Electrospun nanofibers PVA-LBA and PCL-LBA were successfully produced, showing good thermal and mechanical properties and non-toxic effects. Furthermore, the nanofibers showed antimicrobial activity and antioxidant activity. The findings of this study indicate that PVA and PCL electrospun nanofibers incorporating LBA are promising for use in packaging applications.
Collapse
Affiliation(s)
- Aline Aniele Vencato
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | - Naiara Jacinta Clerici
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | | | - Flavio Fonseca Veras
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil
| | | | - Adriano Brandelli
- Laboratório de Nanobiotecnologia e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, 91501-970, Brazil.
| |
Collapse
|
5
|
Yang Z, Ni J, Sun X, Cui Q, Zhang X, Zhang M, Zhu X, Wu Z, Tang C, Zhu J, Mao H, Liu K, Wang C, Xing C, Zhu J. The prevention effect of Limosilactobacillus reuteri on acute kidney injury by regulating gut microbiota. Microbiol Immunol 2024; 68:213-223. [PMID: 38747013 DOI: 10.1111/1348-0421.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 07/09/2024]
Abstract
Acute kidney injury (AKI) has considerably high morbidity and mortality but we do not have proper treatment for it. There is an urgent need to develop new prevention or treatment methods. Gut microbiota has a close connection with renal diseases and has become the new therapy target for AKI. In this study, we found the oral administration of the probiotic Limosilactobacillus reuteri had a prevention effect on the AKI induced by lipopolysaccharide (LPS). It reduced serum concentration of creatinine and urea nitrogen and protected the renal cells from necrosis and apoptosis. Meanwhile, L. reuteri improved the gut barrier function, which is destroyed in AKI, and modulated the gut microbiota and relevant metabolites. Compared with the LPS group, L. reuteri increased the proportion of Proteobacteria and reduced the proportion of Firmicutes, changing the overall structure of the gut microbiota. It also influenced the fecal metabolites and changed the metabolite pathways, such as tyrosine metabolism, pentose and glucuronate interconversions, galactose metabolism, purine metabolism, and insulin resistance. These results showed that L. reuteri is a potential therapy for AKI as it helps in sustaining the gut barrier integrity and modulating gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Zhan Yang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Juan Ni
- Huadong Medical Institute of Biotechniques, Nanjing, China
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Xuewei Sun
- Huadong Medical Institute of Biotechniques, Nanjing, China
- Binzhou Medical University, Yantai, China
| | - Qian Cui
- Air Force Hospital of Eastern Theater, Nanjing, China
| | - Xinrui Zhang
- Huadong Medical Institute of Biotechniques, Nanjing, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingyan Zhang
- Huadong Medical Institute of Biotechniques, Nanjing, China
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojing Zhu
- Department of Pathlogy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zihan Wu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | | | - Jingfeng Zhu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Huijuan Mao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Kang Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Chunhui Wang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
- Basic Medical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
O'Donoghue LT, Murphy EG. Nondairy food applications of whey and milk permeates: Direct and indirect uses. Compr Rev Food Sci Food Saf 2023; 22:2652-2677. [PMID: 37070222 DOI: 10.1111/1541-4337.13157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
Permeates are generated in the dairy industry as byproducts from the production of high-protein products (e.g., whey or milk protein isolates and concentrates). Traditionally, permeate was disposed of as waste or used in animal feed, but with the recent move toward a "zero waste" economy, these streams are being recognized for their potential use as ingredients, or as raw materials for the production of value-added products. Permeates can be added directly into foods such as baked goods, meats, and soups, for use as sucrose or sodium replacers, or can be used in the production of prebiotic drinks or sports beverages. In-direct applications generally utilize the lactose present in permeate for the production of higher value lactose derivatives, such as lactic acid, or prebiotic carbohydrates such as lactulose. However, the impurities present, short shelf life, and difficulty handling these streams can present challenges for manufacturers and hinder the efficiency of downstream processes, especially compared to pure lactose solutions. In addition, the majority of these applications are still in the research stage and the economic feasibility of each application still needs to be investigated. This review will discuss the wide variety of nondairy, food-based applications of milk and whey permeates, with particular focus on the advantages and disadvantages associated with each application and the suitability of different permeate types (i.e., milk, acid, or sweet whey).
Collapse
Affiliation(s)
| | - Eoin G Murphy
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
7
|
Agwa MM, Elmotasem H, Elsayed H, Abdelsattar AS, Omer AM, Gebreel DT, Mohy-Eldin MS, Fouda MMG. Carbohydrate ligands-directed active tumor targeting of combinatorial chemotherapy/phototherapy-based nanomedicine: A review. Int J Biol Macromol 2023; 239:124294. [PMID: 37004933 DOI: 10.1016/j.ijbiomac.2023.124294] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Phototherapies or light mediated therapies, including mutually photothermal and photodynamic therapy that encompass irradiation of the target organs with light, have been widely employed as minimally invasive approach associated with negligible drug resistance for eradicating multiple tumors with minimal hazards to normal organs. Despite all these advantages, many obstacles in phototherapy hinder progress toward clinical application. Therefore, researchers have developed nano-particulate delivery systems integrated with phototherapy and therapeutic cytotoxic drugs to overcome these obstacles and achieve maximum efficacy in cancer treatment. Active targeting ligands were integrated into their surfaces to improve the selectivity and tumor targeting ability, enabling easy binding and recognition by cellular receptors overexpressed on the tumor tissue compared to normal ones. This enhances intratumoral accumulation with minimal toxicity on the adjacent normal cells. Various active targeting ligands, including antibodies, aptamers, peptides, lactoferrin, folic acid and carbohydrates, have been explored for the targeted delivery of chemotherapy/phototherapy-based nanomedicine. Among these ligands, carbohydrates have been applied due to their unique features that ameliorate the bioadhesive, noncovalent conjugation to biological tissues. In this review, the up-to-date techniques of employing carbohydrates active targeting ligands will be highlighted concerning the surface modification of the nanoparticles for ameliorating the targeting ability of the chemo/phototherapy.
Collapse
Affiliation(s)
- Mona M Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Behooth St., Dokki, Giza 12622, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Behooth St., Dokki, Giza 12622, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Abdallah S Abdelsattar
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza 12578, Egypt; Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Doaa T Gebreel
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Moustafa M G Fouda
- Pre-Treatment and Finishing of Cellulosic Fabric Department, Textile Research and Technology Institute (TRT), National Research Center, 33 El-Behooth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
8
|
Antibacterial mechanism of lactobionic acid against Shewanella baltica and Shewanella putrefaciens and its application on refrigerated shrimp. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|