1
|
Wang H, Luan F, Shi Y, Yan S, Xin B, Zhang X, Guo D, Sun J, Zou J. Extraction, structural features, and pharmacological effects of the polysaccharides from Porphyra yezoensis: A review. Int J Biol Macromol 2024; 279:134745. [PMID: 39147347 DOI: 10.1016/j.ijbiomac.2024.134745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Porphyra yezoensis, an important medicinal seaweed extensively cultivated and consumed in China, Japan, and South Korea, is traditionally considered a precious healthy food and food additive. Published studies showed that the polysaccharides are major bioactive macromolecules from P. yezoensis with great potential for the development of nutraceuticals and functional foods. As an important component of P. yezoensis, P. yezoensis polysaccharide (PYP) is mainly extracted by hot water extraction, ultrasonic-assisted extraction, and microwave-assisted extraction methods. Subsequently obtained by decolorization, deproteinization, removal of other small molecules, and separation on various chromatographic columns. The main structural components of PYP were (1 → 3)-linked β-D-galactose and (1 → 4)-linked 3,6-anhydro-α-L-galactose. Accumulating evidence has revealed that PYP has diverse biological activities, such as antioxidant, suppressing kidney stones, immunomodulatory, etc. This review systematically summarizes the recent preparation progress, chemical structures, bioactivities, and the underlying mechanisms of PYP. Information from this review provides insights into the further development of PYP as therapeutic agents and functional foods. Although there have been extensive studies on PYP, there are gaps in establishing quality standard, toxicological research, clinical application and other aspects. To enhance the utility of P. yezoensis, it is necessary to strengthen the research on these aspects.
Collapse
Affiliation(s)
- He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Shuguang Yan
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
2
|
Lee ZJ, Xie C, Ng K, Suleria HAR. Unraveling the bioactive interplay: seaweed polysaccharide, polyphenol and their gut modulation effect. Crit Rev Food Sci Nutr 2023; 65:382-405. [PMID: 37991467 DOI: 10.1080/10408398.2023.2274453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Seaweed is rich in many unique bioactive compounds such as polyphenols and sulfated polysaccharides that are not found in terrestrial plant. The discovery of numerous biological activities from seaweed has made seaweed an attractive functional food source with the potential to be exploited for human health benefits. During food processing and digestion, cell wall polysaccharide and polyphenols commonly interact, and this may influence the nutritional properties of food. Interactions between cell wall polysaccharide and polyphenols in plant-based system has been extensively studied. However, similar interactions in seaweed have received little attention despite the vast disparity between the structural and chemical composition of plant and seaweed cell wall. This poses a challenge in extracting seaweed bioactive compounds with intact biological properties. This review aims to summarize the cell wall polysaccharide and polyphenols present in brown, red and green seaweed, and current knowledge on their potential interactions. Moreover, this review gives an overview of the gut modulation effect of seaweed polysaccharide and polyphenol.
Collapse
Affiliation(s)
- Zu Jia Lee
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Cundong Xie
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| | - Hafiz A R Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Zang L, Baharlooeian M, Terasawa M, Shimada Y, Nishimura N. Beneficial effects of seaweed-derived components on metabolic syndrome via gut microbiota modulation. Front Nutr 2023; 10:1173225. [PMID: 37396125 PMCID: PMC10311452 DOI: 10.3389/fnut.2023.1173225] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolic syndrome comprises a group of conditions that collectively increase the risk of abdominal obesity, diabetes, atherosclerosis, cardiovascular diseases, and cancer. Gut microbiota is involved in the pathogenesis of metabolic syndrome, and microbial diversity and function are strongly affected by diet. In recent years, epidemiological evidence has shown that the dietary intake of seaweed can prevent metabolic syndrome via gut microbiota modulation. In this review, we summarize the current in vivo studies that have reported the prevention and treatment of metabolic syndrome via seaweed-derived components by regulating the gut microbiota and the production of short-chain fatty acids. Among the surveyed related articles, animal studies revealed that these bioactive components mainly modulate the gut microbiota by reversing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria, such as Bacteroides, Akkermansia, Lactobacillus, or decreasing the abundance of harmful bacteria, such as Lachnospiraceae, Desulfovibrio, Lachnoclostridium. The regulated microbiota is thought to affect host health by improving gut barrier functions, reducing LPS-induced inflammation or oxidative stress, and increasing bile acid production. Furthermore, these compounds increase the production of short-chain fatty acids and influence glucose and lipid metabolism. Thus, the interaction between the gut microbiota and seaweed-derived bioactive components plays a critical regulatory role in human health, and these compounds have the potential to be used for drug development. However, further animal studies and human clinical trials are required to confirm the functional roles and mechanisms of these components in balancing the gut microbiota and managing host health.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
4
|
Sharma A, Kaur I, Dheer D, Nagpal M, Kumar P, Venkatesh DN, Puri V, Singh I. A propitious role of marine sourced polysaccharides: Drug delivery and biomedical applications. Carbohydr Polym 2023; 308:120448. [PMID: 36813329 DOI: 10.1016/j.carbpol.2022.120448] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Numerous compounds, with extensive applications in biomedical and biotechnological fields, are present in the oceans, which serve as a prime renewable source of natural substances, further promoting the development of novel medical systems and devices. Polysaccharides are present in the marine ecosystem in abundance, promoting minimal extraction costs, in addition to their solubility in extraction media, and an aqueous solvent, along with their interactions with biological compounds. Certain algae-derived polysaccharides include fucoidan, alginate, and carrageenan, while animal-derived polysaccharides comprise hyaluronan, chitosan and many others. Furthermore, these compounds can be modified to facilitate their processing into multiple shapes and sizes, as well as exhibit response dependence to external conditions like temperature and pH. All these properties have promoted the use of these biomaterials as raw materials for the development of drug delivery carrier systems (hydrogels, particles, capsules). The present review enlightens marine polysaccharides providing its sources, structures, biological properties, and its biomedical applications. In addition to this, their role as nanomaterials is also portrayed by the authors, along with the methods employed to develop them and associated biological and physicochemical properties designed to develop suitable drug delivery systems.
Collapse
Affiliation(s)
- Ameya Sharma
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; University of Glasgow, College of Medical, Veterinary and Life Sciences, Glasgow, United Kingdom, G12 8QQ
| | - Divya Dheer
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - D Nagasamy Venkatesh
- JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Vivek Puri
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India.
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
5
|
Pyropia yezoensis-derived porphyran attenuates acute and chronic colitis by suppressing dendritic cells. Int J Biol Macromol 2023; 231:123148. [PMID: 36639074 DOI: 10.1016/j.ijbiomac.2023.123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
Porphyran is known to inhibit immune cell function. Previously, porphyran was shown to prevent lipopolysaccharide-induced sepsis in mice. However, studies on the inhibitory effects of porphyran during colitis are currently lacking. In this study, we evaluated the effects of Pyropia yezoensis-derived porphyran on dextran sodium sulfate (DSS)-induced acute and chronic colitis. The oral or intraperitoneal administration of porphyran inhibited the progression of DSS-induced colitis in mice, with the former also preventing immune cell infiltration in the colon. The levels of intracellular interferon-γ and interleukin-17 in T cells decreased when porphyran was administered orally. Porphyran inhibited T cell activation by suppressing dendritic cells (DCs) and macrophages. Porphyran prevented pathogen-associated molecular pattern and damage-associated molecular pattern-dependent DC and macrophage activation. Finally, porphyran attenuated chronic colitis caused via the long-term administration of DSS. These findings indicate that the oral administration of porphyran can inhibit DSS-induced colitis by suppressing DC and macrophage activation.
Collapse
|