1
|
Rani MH, Hasibuzzaman ASM, Begum SN. Development of genetically diverse breeding lines through induced mutagenesis for the improvement of Chinigura and Kataribhog aromatic rice ( Oryza sativa L.) landraces. Int J Radiat Biol 2025:1-14. [PMID: 40343866 DOI: 10.1080/09553002.2025.2498982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/08/2024] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
PURPOSE In Bangladesh, Chinigura and Kataribhog stand out as two of the most popular short-grained aromatic rice cultivars, particularly in the northern regions. Their unique grain characteristics and delightful fragrance make them highly sought after. However, these cultivars suffer from low yield potential (<2.5 t/ha) and are prone to lodging due to their tall plant height (>140 cm). The narrow genetic base and hybrid sterility issues with non-scented rice varieties make improving these cultivars through traditional breeding methods challenging. We applied induced mutation to these cultivars to address these challenges and enhance the yield potential and lodging tolerance. MATERIALS AND METHODS To induce mutations, we exposed Chinigura and Kataribhog dry seeds with a moisture content of 12% to gamma rays at five doses: 100, 200, 250, 300, and 400 Gy. We conducted the process in a controlled environment with strict safety measures to ensure our safety and that of the environment. Putative mutants with shorter plant height and growth duration were isolated from the segregating M2 population, and then the putative mutants were validated in the M3 and M4 generations. Finally, we conducted a replicated yield trial with 21 selected mutants. RESULTS Our study revealed that the Kataribhog cultivar was more responsive to gamma irradiation than Chinigura. The 250 Gy irradiated Kataribhog population exhibited the highest mutation frequency. We validated the mutants selected from the M2 population based on plant height and growth duration in the M3 and M4 generations. Ten mutants from Chinigura and 11 from the Kataribhog population, selected from the M4 generation, were advanced to the replicated trial. These mutants exhibited semi-dwarfism, lodging resistance, higher grain yield, and aromatic properties. Ultimately, we successfully identified 12 semi-dwarf lodging resistant, seven with higher grain yield, and three aromatic mutants for the subsequent breeding programs, demonstrating the effectiveness of induced mutation in creating desired traits. CONCLUSION First, the report will discuss the development of semi-dwarf mutants in Chinigura and Kataribhog aromatic rice cultivars through gamma irradiation.
Collapse
Affiliation(s)
| | | | - Shamsun Nahar Begum
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymenbsingh, Bangladesh
| |
Collapse
|
2
|
Yang C, Huang L, Wang BC, Zhong Y, Ma X, Zhang C, Sun Q, Wu Y, Yao Y, Liu Q. Enhancing quality traits in staple crops: current advances and future perspectives. J Genet Genomics 2025:S1673-8527(25)00132-8. [PMID: 40348082 DOI: 10.1016/j.jgg.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Staple crops such as rice, wheat and maize are crucial for global food security; however, improving their quality remains a significant challenge. This review summarizes recent advances in enhancing crop quality, focusing on key areas such as the molecular mechanisms underlying endosperm filling initiation, starch granule synthesis, protein body formation, and the interactions between carbon and nitrogen metabolism. It also highlights ten unresolved questions related to starch-protein spatial distribution, epigenetic regulation, and the environmental impacts on quality traits. The integration of multi-omics approaches, and rational design strategies presents opportunities to develop high-yield "super-crop" varieties with enhanced nutritional value, better processing characteristics, and attributes preferred by consumers. Addressing these challenges is crucial to promote sustainable agriculture and achieve the dual objectives of food security and environmental conservation.
Collapse
Affiliation(s)
- Changfeng Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lichun Huang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China
| | - Bai-Chen Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yingxin Zhong
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China.
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Narula K, Choudhary P, Sengupta A, Chakraborty N, Chakraborty S. Comprehensive multi-layered analyses of genotype-dependent proteo-metabolic networks reveal organellar crosstalk and biochemical pathways regulating aroma formation in rice. Food Chem 2024; 459:139949. [PMID: 38986209 DOI: 10.1016/j.foodchem.2024.139949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 07/12/2024]
Abstract
Molecular basis of rice aroma formation is sparsely known and developmental programs driving biochemical pathways towards aroma is in infancy. Here, discovery and targeted proteo-metabolome of non-aromatic and aromatic rice seeds across developmental stages identified a total of 442 aroma-responsive proteins (ARPs) and 824 aroma-responsive metabolites (ARMs) involved in metabolism, calcium and G-protein signaling. Biochemical examination revealed ARM/Ps were linked to 2-acetylpyrrolidine, γ-aminobutyrate, anthocyanin, tannins, flavonoids and related enzymes. Pairwise correlation and clustering showed positive correlation among ARM/Ps. Consistent with aroma-related QTLs, ARPs were mapped on chromosomes 3,4,5,8 and were mainly compartmentalized in cytoplasm and mitochondria. ARM/P-correlation network identified associations related to metabolism and signaling. Multiple reaction monitoring (MRM) confirmed role of catechins, quinic acid and quercetin in aroma formation. Pathway enrichment, multivariate analysis and qRT-PCR validated that calcium and G-protein signaling, aromatic/branched-chain aminoacid, 2-acetylpyrrolidine, oxylipin, melvonate and prenylpyrophosphate pathways, indole, phenylacetate, flavonoid, cinnamoic ester govern aroma formation in rice.
Collapse
Affiliation(s)
- Kanika Narula
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pooja Choudhary
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Atreyee Sengupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
4
|
Xie LH, Shao GN, Sheng ZH, Hu SK, Wei XJ, Jiao GA, Ling-Wang, Tang SQ, Hu PS. Rapid identification of fragrant rice using starch flavor compound via NIR spectroscopy coupled with GC-MS and Badh2 genotyping. Int J Biol Macromol 2024; 281:136547. [PMID: 39401626 DOI: 10.1016/j.ijbiomac.2024.136547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
The identification of fragrant rice varieties using near-infrared reflectance spectroscopy (NIRS) models has attracted extensive attention from regulatory authorities worldwide. In this study, 138 fragrant and 54 nonfragrant rice varieties were planted in the same region and distinguished using sensory evaluation, gas chromatography-mass spectrometry analysis, and betaine aldehyde dehydrogenase 2 (Badh2) genotyping. Then, the 2-acetyl-1-pyrroline (2-AP) content was assessed based on partial least-squares discriminant (PLS-DA) models generated after 2nd individually or combined with SNV/MSC/smoothing preprocessing successfully classified fragrant rice both in the calibration and predictive sets. Moreover, design of experiments (DoE)-based preprocessing selection was employed as an effective strategy to optimize the calibration models compared with the one variable at a time (OVAT) method. Further, Badh2 genotype sample screening assisted with identifying authentic fragrant rice and guaranteed the NIRS model's prediction accuracy in identifying fragrant rice. In conclusion, the high throughput PLS-DA multivariate method coupled with NIRS data was applied to identify fragrant rice varieties in routine monitoring and was effective, accurate, and rapid.
Collapse
Affiliation(s)
- Li-Hong Xie
- State Key Laboratory of Rice Biology/ Chinese National Center for Rice improvement, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Gao-Neng Shao
- State Key Laboratory of Rice Biology/ Chinese National Center for Rice improvement, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Zhong-Hua Sheng
- State Key Laboratory of Rice Biology/ Chinese National Center for Rice improvement, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Shi-Kai Hu
- State Key Laboratory of Rice Biology/ Chinese National Center for Rice improvement, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Xiang-Jin Wei
- State Key Laboratory of Rice Biology/ Chinese National Center for Rice improvement, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Gui-Ai Jiao
- State Key Laboratory of Rice Biology/ Chinese National Center for Rice improvement, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ling-Wang
- State Key Laboratory of Rice Biology/ Chinese National Center for Rice improvement, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Shao-Qing Tang
- State Key Laboratory of Rice Biology/ Chinese National Center for Rice improvement, China National Rice Research Institute, Hangzhou 310006, PR China.
| | - Pei-Song Hu
- State Key Laboratory of Rice Biology/ Chinese National Center for Rice improvement, China National Rice Research Institute, Hangzhou 310006, PR China.
| |
Collapse
|
5
|
Wu J, Wang Q, Zhang D, Duan X, Sun H. The Effect of Reduced Nitrogen Fertilizer Application on japonica Rice Based on Volatile Metabolomics Analysis. Foods 2024; 13:3310. [PMID: 39456372 PMCID: PMC11507305 DOI: 10.3390/foods13203310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Nitrogen is critical for rice yield and quality, but its overuse can be detrimental to efficiency and the environment. To identify changes in the quality of rice in response to the reduced application of nitrogen fertilizer, we carried out a comprehensive metabolomics study of SuiJing 18 using volatile metabolomics methods. Our results showed that SuiJing 18 had a total of 358 volatile metabolites, mainly lipids (16.25%), terpenoids (15.41%), heterocyclic compounds (15.13%), and hydrocarbons (13.45%). SuiJing 18 underwent significant changes in response to the reduced application of nitrogen fertilizer. Key sweet volatile compounds such as 4-methyl-benzeneacetaldehyde, hexyl acetate, and 2-methylnaphthalene were present at significantly higher levels when nitrogen fertilizer was applied at a rate of 68 kg of pure nitrogen per hectare, and their flavor characteristics also differed significantly from the compounds resulting from the other two treatments. Focusing on 16 differential volatile metabolites, we further investigated their effects on flavor and quality, thus laying the foundation for a greater understanding of the biomarkers associated with changes in rice quality. This study contributes to a better understanding of the mechanisms underlying changes in rice quality after reduced nitrogen fertilizer application.
Collapse
Affiliation(s)
- Jiahao Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Q.W.); (D.Z.); (X.D.)
| | - Qian Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Q.W.); (D.Z.); (X.D.)
| | - Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Q.W.); (D.Z.); (X.D.)
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Q.W.); (D.Z.); (X.D.)
| | - Hui Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (Q.W.); (D.Z.); (X.D.)
| |
Collapse
|
6
|
Huang Y, Huang L, Cheng M, Li C, Zhou X, Ullah A, Sarfraz S, Khatab A, Xie G. Progresses in biosynthesis pathway, regulation mechanism and potential application of 2-acetyl-1-pyrroline in fragrant rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109047. [PMID: 39153390 DOI: 10.1016/j.plaphy.2024.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The formation of rice aroma is a complex process that is influenced by genetic and environmental factors. More than 500 fragrance compounds have been documented in fragrant rice, among which 2-AP dominates the aroma of rice. This paper introduced the identification of OsBadh2 in the biosynthesis of 2-AP in rice. Then, non-enzymatic and enzymatic pathways of the 2-AP biosynthesis have been comprehensively investigated. In detail, 2-AP biosynthesis-associated enzyme, such as OsBADH2, OsP5CS, OsGAD, OsGAPDH, OsProDH, OsOAT, OsODC and OsDAO, have been summarized, while MG and fatty acids are also implicated in modulating the biosynthesis of 2-AP by providing the acetyl groups. Moreover, extensive collections of traditional fragrant rice varieties have been collated, together with the OsBadh2 haplotypes of 312 fragrant rice germplasm in China. And finally, genetic engineering of OsBadh2 and other genes in the 2-AP biosynthesis to develop fragrant rice are discussed.
Collapse
Affiliation(s)
- Yajing Huang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Huang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The People's Government of Zougang Town, Xiaochang County, Xiaogan City, Hubei, 432910, China
| | - Maozhi Cheng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanhao Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaofeng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aman Ullah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Samina Sarfraz
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Rice Research and Training Center, 33717, Sakha, Kafr El-Sheikh, Egypt
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
7
|
Chen X, Cao Y, Lan W, Gu Z, He W, He J, Zhao L. Quality-Driven Design of Pandan-Flavored Sponge Cake: Unraveling the Role of Thermal Processing on Typical Pandan Aroma. Foods 2024; 13:3074. [PMID: 39410110 PMCID: PMC11475937 DOI: 10.3390/foods13193074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Pandan (Pandanus amaryllifolius Roxb.) has been used in the production of bakery goods either as a functional ingredient or a natural flavoring that, when roasted, exerts a fragrant rice-like aroma and an attractive green color. This study elucidated the typical aroma compounds from pandan leaves and explored the influence of thermal treatments on their aroma profiles using GC-O-MS, E-nose, and GC-IMS analyses. The effects of formulation and baking conditions on the qualities of pandan-flavored sponge cake were comprehensively evaluated through a holistic approach covering several aspects including cake batter gravity, color, texture, and sensory characteristics. The baking treatment introduced more types of pleasant aromas (9 aromas vs. 17 aromas) and increased the odor intensities of the original volatile compounds, especially for the roasted and steamed rice-like odors. The increased amount of pandan flavoring reshaped the color of the cake crumb (especially for the L* and a* spaces) and significantly decreased the hardness (3.87 N to 1.01 N), gumminess (3.81 N to 0.67 N), and chewiness (13.22 mJ to 4.56 mJ) of the sponge cake. The perceived intensities of bitterness and sweetness can be adjusted by modulating the levels of 2-phenylethanol, 2-methyl-1-butanol, hexyl alcohol, and decanal, along with the total alcohols and aldehydes, due to their significant correlations revealed by correlation heatmap analyses.
Collapse
Affiliation(s)
- Xiao Chen
- Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (X.C.); (W.L.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Cao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijie Lan
- Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (X.C.); (W.L.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixuan Gu
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Wenjia He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (W.H.); (J.H.)
| | - Jianfei He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (W.H.); (J.H.)
| | - Liyan Zhao
- Sanya Institute of Nanjing Agricultural University, Sanya 572024, China; (X.C.); (W.L.)
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Prodhan ZH, Samonte SOPB, Sanchez DL, Talukder SK. Profiling and Improvement of Grain Quality Traits for Consumer Preferable Basmati Rice in the United States. PLANTS (BASEL, SWITZERLAND) 2024; 13:2326. [PMID: 39204762 PMCID: PMC11359321 DOI: 10.3390/plants13162326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Basmati rice is a premium aromatic rice that consumers choose primarily because of its distinct aroma and excellent grain quality. The grain quality of Basmati rice (GQBR) reflects the perspectives of producers, processors, sellers, and consumers related to the production, processing, marketing, and consumption of Basmati rice. Consumers, an invaluable part of the production demand and value chain of the Basmati rice industry, have the freedom to choose from different types of aromatic rice. Consumers expect their preferred Basmati rice to possess all superior rice grain qualities, including the physical, biochemical, and physiological properties. Gene functional analysis explained that a 10-base pair deletion in the promoter region of the OsSPL16 gene causes the slender grains in Basmati rice, whereas an 8-base-pair deletion in exon 7 of the OsBadh2 gene (located in the fgr region on rice chromosome 8) results in the distinct aroma. Furthermore, a combination of the genetic characteristics of the gw8 and gs3 genes has led to the creation of a long-grain Basmati-type rice cultivar. It has also been demonstrated that agricultural, genetic, and environmental conditions significantly influence GQBR. Hence, research on improving GQBR requires a multidimensional approach and sophisticated elements due to the complexity of its nature and preference diversity. This review covers the basic definitions of grain quality traits, consumer preference criteria, influencing factors, and strategies for producing superior-quality Basmati rice in the United States. This knowledge will be useful in improving the grain quality of Basmati and Basmati-type rice, as well as developing appropriate breeding programs that will meet the preferences of different countries and cultures.
Collapse
Affiliation(s)
- Zakaria Hossain Prodhan
- Texas A&M AgriLife Research Center, 1509 Aggie Drive, Beaumont, TX 77713, USA; (D.L.S.); (S.K.T.)
| | | | | | | |
Collapse
|
9
|
Imran M, Junaid M, Shafiq S, Liu S, Chen X, Wang J, Tang X. Multiomics analysis reveals a substantial decrease in nanoplastics uptake and associated impacts by nano zinc oxide in fragrant rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134640. [PMID: 38810581 DOI: 10.1016/j.jhazmat.2024.134640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) have emerged as global environmental pollutants with concerning implications for sustainable agriculture. Understanding the underlying mechanisms of NPs toxicity and devising strategies to mitigate their impact is crucial for crop growth and development. Here, we investigated the nanoparticles of zinc oxide (nZnO) to mitigate the adverse effects of 80 nm NPs on fragrant rice. Our results showed that optimized nZnO (25 mg L-1) concentration rescued root length and structural deficits by improving oxidative stress response, antioxidant defense mechanism and balanced nutrient levels, compared to seedlings subjected only to NPs stress (50 mg L-1). Consequently, microscopy observations, Zeta potential and Fourier transform infrared (FTIR) results revealed that NPs were mainly accumulated on the initiation joints of secondary roots and between cortical cells that blocks the nutrients uptake, while the supplementation of nZnO led to the formation of aggregates with NPs, which effectively impedes the uptake of NPs by the roots of fragrant rice. Transcriptomic analysis identified a total of 3973, 3513 and 3380 differentially expressed genes (DEGs) in response to NPs, nZnO and NPs+nZnO, respectively, compared to the control. Moreover, DEGs were significantly enriched in multiple pathways including biosynthesis of secondary metabolite, phenylpropanoid biosynthesis, amino sugar and nucleotide sugar metabolism, carotenoid biosynthesis, plant-pathogen interactions, MAPK signaling pathway, starch and sucrose metabolism, and plant hormone signal transduction. These pathways could play a significant role in alleviating NPs toxicity and restoring fragrant rice roots. Furthermore, metabolomic analysis demonstrated that nZnO application restored 2-acetyl-1-pyrroline (2-AP) pathways genes expression, enzymatic activities, and the content of essential precursors related to 2-AP biosynthesis under NPs toxicity, which ultimately led to the restoration of 2-AP content in the leaves. In conclusion, this study shows that optimized nZnO application effectively alleviates NPs toxic effects and restores both root structure and aroma production in fragrant rice leaves. This research offers a sustainable and practical strategy to enhance crop production under NPs toxicity while emphasizing the pivotal role of essential micronutrient nanomaterials in agriculture.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Sarfraz Shafiq
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyuan Chen
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
10
|
Mondal S, Pradhan P, Das B, Kumar D, Paramanik B, Yonzone R, Barman R, Saha D, Karforma J, Basak A, Dey P, Seleiman MF. Genetic characterization and diversity analysis of indigenous aromatic rice. Heliyon 2024; 10:e31232. [PMID: 38813207 PMCID: PMC11133840 DOI: 10.1016/j.heliyon.2024.e31232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Gangetic old alluvial zone in India has conserved many locally adapted aromatic rice landraces. In order to determine the extent of genetic divergence of ten morphological characters, the study was conducted to examine forty-eight aromatic rice genotypes for six Kharif seasons (2016-2021) at the Instructional Farm of Regional Research Station (Old Alluvial Zone), Uttar Banga Krishi Viswavidyalaya, Majhian, West Bengal, India. The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. A considerable degree of variation was noted for all the traits being investigated. It was found that the total number of tillers per plant, panicle numbers per plant, number of grains per panicle, fertility percentage, test weight, and grain length/breadth ratio had significantly positive correlated with seed yield per plant. Based on D2 analysis values, all the genotypes were grouped into six clusters. Cluster III (Tulaipanji, Patnai, Basmati 1121, Jugal, and Bahurupi) and Cluster VI (Kanakchur), containing genotypes were found most divergent with maximum inter-cluster distance (6941.51). According to the cluster means, Cluster II had the largest intra-cluster distance (1937.52), and important attributes including test weight, number of grains per panicle, seed yield per plant, and fertility percentage made remarkably significant contributions to this cluster. In terms of principal component analysis, maximum variability was found in PC1 (23.88 %), with high positive loading values for tillers per plant (0.459), panicle number per plant (0.441), seed yield per plant (0.408), fertility percentage (0.364), test weight (0.264), and grain length/breadth (L/B) ratio (0.263). On the basis of biplot analysis, four genotypes, namely Shakbhati, Sugandhi, Bahurupi and Kanakchur, were identified as the most divergent types for the yield-attributing traits of aromatic rice. The diverse genotypes could be used as potential donors in future breeding programmes.
Collapse
Affiliation(s)
- Sourav Mondal
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Coochbehar, West Bengal, India
| | - Prajjwal Pradhan
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Coochbehar, West Bengal, India
| | - Bimal Das
- College of Agriculture (Extended Campus), Uttar Banga Krishi Viswavidyalaya, Majhian, 733133, Dakshin Dinajpur, West Bengal, India
| | - Deepak Kumar
- College of Agriculture (Extended Campus), Uttar Banga Krishi Viswavidyalaya, Majhian, 733133, Dakshin Dinajpur, West Bengal, India
| | - Bappa Paramanik
- Dakshin Dinajpur Krishi Vigyan Kendra, Uttar Banga Krishi Viswavidyalaya, Majhian, 733133, Dakshin Dinajpur, West Bengal, India
| | - Rakesh Yonzone
- College of Agriculture (Extended Campus), Uttar Banga Krishi Viswavidyalaya, Majhian, 733133, Dakshin Dinajpur, West Bengal, India
| | - Ratul Barman
- Regional Research Station (OAZ), Uttar Banga Krishi Viswavidyalaya Majhian, 733133, Dakshin Dinajpur, West Bengal, India
| | - Debraj Saha
- Dakshin Dinajpur Krishi Vigyan Kendra, Uttar Banga Krishi Viswavidyalaya, Majhian, 733133, Dakshin Dinajpur, West Bengal, India
| | - Jyotirmay Karforma
- College of Agriculture (Extended Campus), Uttar Banga Krishi Viswavidyalaya, Majhian, 733133, Dakshin Dinajpur, West Bengal, India
- Regional Research Station (OAZ), Uttar Banga Krishi Viswavidyalaya Majhian, 733133, Dakshin Dinajpur, West Bengal, India
| | - Achyuta Basak
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Pundibari, 736165, Coochbehar, West Bengal, India
| | - Prithwiraj Dey
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Mahmoud F. Seleiman
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Saudi Arabia
| |
Collapse
|
11
|
Wimonmuang K, Lee YS. Absolute contents of aroma-affecting volatiles in cooked rice determined by one-step rice cooking and volatile extraction coupled with standard-addition calibration using HS-SPME/GC-MS. Food Chem 2024; 440:138271. [PMID: 38150906 DOI: 10.1016/j.foodchem.2023.138271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
To quantify volatiles in cooked rice, analysis methods for one-step rice cooking and volatile extraction in a single headspace vial, combined with standard addition calibration using solid-phase microextraction and GC-MS were developed and applied to 41 rice varieties with various fragrances and palatability. The newly developed methods significantly improved the qualitative and quantitative recovery of volatiles compared with conventional methods. Among 29 aroma-affecting volatiles, the highest average contents (ng/g) were observed for nonanal (39.30), octanal (13.29), and 1-octen-3-ol (13.18); the total volatile contents of aldehyde, base, and alcohol groups were 4156, 2481, and 1739 ng/g, respectively. Fifteen rice varieties contained 2-acetyl-1-pyrroline in range of 41.37-421.70 ng/g. Although there were no linear correlations among volatiles and the Toyo taste-score, multivariate PLS-DA analysis of the volatile could discriminate between low- and high-palatability rice varieties. The results indicated the accuracy and practicality of the newly developed methods for quantifying volatiles in cooked rice.
Collapse
Affiliation(s)
- Kanphassorn Wimonmuang
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Republic of Korea; Research and Education Group for Innovative Bio-health Industry, Soonchunhyang University, Asan 31538, Republic of Korea.
| | - Young-Sang Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Republic of Korea.
| |
Collapse
|
12
|
Chan-in P, Jamjod S, Prom-u-thai C, Rerkasem B, Russell J, Pusadee T. Application of Silicon Influencing Grain Yield and Some Grain Quality Features in Thai Fragrant Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1336. [PMID: 38794407 PMCID: PMC11125221 DOI: 10.3390/plants13101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Silicon (Si) is a beneficial nutrient that has been shown to increase rice productivity and grain quality. Fragrant rice occupies the high end of the rice market with prices at twice to more than three times those of non-fragrant rice. Thus, this study evaluated the effects of increasing Si on the yield and quality of fragrant rice. Also measured were the content of proline and the expression of the genes associated with 2AP synthesis and Si transport. The fragrant rice varieties were found to differ markedly in the effect of Si on their quality, as measured by the grain 2AP concentration, while there were only slight differences in their yield response to Si. The varieties with low 2AP when the Si supply is limited are represented by either PTT1 or BNM4 with only slight increases in 2AP when Si was increased. Si affects the gene expression levels of the genes associated with 2AP synthesis, and the accumulation of 2AP in fragrant rice mainly occurred through the upregulation of Badh2, DAO, OAT, ProDH, and P5CS genes. The findings suggest that Si is a potential micronutrient that can be utilized for improving 2AP and grain yield in further aromatic rice breeding programs.
Collapse
Affiliation(s)
- Phukjira Chan-in
- Plant Genetic Resource and Nutrition Lab (CMUPNLab), Division of Agronomy, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.-i.); (S.J.); (C.P.-u.-t.)
| | - Sansanee Jamjod
- Plant Genetic Resource and Nutrition Lab (CMUPNLab), Division of Agronomy, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.-i.); (S.J.); (C.P.-u.-t.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chanakan Prom-u-thai
- Plant Genetic Resource and Nutrition Lab (CMUPNLab), Division of Agronomy, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.-i.); (S.J.); (C.P.-u.-t.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Benjavan Rerkasem
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD25DA, UK;
| | - Tonapha Pusadee
- Plant Genetic Resource and Nutrition Lab (CMUPNLab), Division of Agronomy, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.-i.); (S.J.); (C.P.-u.-t.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Agrobiodiversity in Highland and Sustainable Utilization Research Group, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Luo H, Zhang Q, Lai R, Zhang S, Yi W, Tang X. Regulation of 2-Acetyl-1-pyrroline Content in Fragrant Rice under Different Temperatures at the Grain-Filling Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10521-10530. [PMID: 38656141 DOI: 10.1021/acs.jafc.3c08637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
2-Acetyl-1-pyrroline (2-AP) is a key volatile organic compound in fragrant rice aroma. However, the effects of temperature on 2-AP biosynthesis in fragrant rice and its regulation mechanism have been rarely reported. In the present study, three fragrant rice varieties were used as plant materials, and four temperature treatments during the grain-filling stage, i.e., (T1) 22/17 °C, (T2) 27/22 °C, (T3) 32/27 °C, and (T4) 37/32 °C, were adopted. The results showed that grain contents of 2-AP, proline, and γ-aminobutyric acid (GABA) significantly (P < 0.05) increased with decreased temperature, while the lowest and highest 2-AP contents were recorded in the T4 and T1 treatments, respectively. Higher pyrroline-5-carboxylic acid (P5C) content was recorded in low-temperature treatments (T1 and T2) than in high-temperature treatments (T3 and T4). The transcript levels of genes BADH2, PRODH, and OAT significantly (P < 0.05) decreased with decreased temperature. Lower transcript levels of genes P5CR, P5CS2, DAO2, DAO4, and DAO5 were recorded in low-temperature treatments (T1 and T2) than in high-temperature treatments (T3 and T4). In conclusion, low temperature increased 2-AP content and high temperature decreased 2-AP content in fragrant rice. We deduced that temperature regulated 2-AP biosynthesis through the metabolism of proline and GABA.
Collapse
Affiliation(s)
- Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou 510642, China
| | - Qianqian Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou 510642, China
| | - Rifang Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou 510642, China
| | - Simin Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wentao Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou 510642, China
| |
Collapse
|
14
|
Cheng S, Liu H, Li K, Zheng L, Su M, Lin X, Huang G, Ren Y. Riboflavin improves grain yield, 2-acetyl-1-pyrroline accumulation, and antioxidative properties of fragrant rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1178-1189. [PMID: 37743545 DOI: 10.1002/jsfa.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Riboflavin, a vital water-soluble vitamin with antioxidative activity, plays a critical role in maintaining overall bodily health and defense responses. However, its impact on fragrant rice yield and aroma remains unexplored. RESULTS In a 2022 pot experiment with Meixiangzhan and Yuxiangyouzhan fragrant rice cultivars, we applied riboflavin foliar treatments at concentrations of 0 (CK), 10 (R10), 20 (R20), and 40 (R40) mg L-1 during the initial heading stage. Riboflavin increased rice yield, 2-acetyl-1-pyrroline (2-AP) content, and antioxidative properties. It boosted 2-AP level by 13.1-50.1% for Meixiangzhan and 22.3-35.3% for Yuxiangyouzhan, with the highest levels in R20 and R10 treatments. This increase is significantly correlated with elevated levels of proline, pyrroline-5-carboxylic acid, pyrroline, and methylglyoxal, as well as heightened enzyme activities, including those of proline dehydrogenase, ornithine aminotransferase, and pyrroline-5-carboxylic acid synthetase (P5CS). The R20 treatment resulted in the highest yield due to an improved seed-setting rate. Importantly, a positive correlation emerged between 2-AP content and yield, both significantly linked to superoxide dismutase, proline, hydrogen peroxide, P5CS, catalase, and pyrroline. CONCLUSION Riboflavin maintained enzyme activities, regulated substance synthesis pathways, and increased 2-AP and yield, especially in the R20 treatment. These insights advance fragrant rice production theory by uncovering riboflavin's role in the development of fragrant rice. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Siren Cheng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, China
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, China
| | - Haidong Liu
- Hezhou Academy of Agricultural Science, Hezhou, China
| | - Keqing Li
- Zhaoqing Academy of Agricultural Science, Zhaoqing, China
| | - Likai Zheng
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Meilin Su
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Xueer Lin
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Guobao Huang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, China
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, China
| | - Yong Ren
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, China
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
- Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, China
| |
Collapse
|
15
|
Zhang Y, He Z, Xing P, Luo H, Yan Z, Tang X. Effects of paclobutrazol seed priming on seedling quality, photosynthesis, and physiological characteristics of fragrant rice. BMC PLANT BIOLOGY 2024; 24:53. [PMID: 38229011 DOI: 10.1186/s12870-023-04683-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Paclobutrazol is widely used in the agricultural field. This study investigated the effects of seed priming with different concentrations of paclobutrazol on seedling quality, 2-acetyl-1-pyrroline (2-AP, a key aroma component of fragrant rice) biosynthesis, and related physiological and biochemical indicators in fragrant rice seedlings. RESULTS The experiment is being conducted at the College of Agriculture, South China Agricultural University. In the experiment, three concentrations of paclobutrazol (Pac 1: 20 mg·L-1; Pac 2: 40 mg·L-1; Pac 3: 80 mg·L-1) were used to initiate the treatment of fragrant rice seeds, while water treatment was used as a control (CK). The results showed that compared with CK, paclobutrazol treatment reduced plant height, increased stem diameter, and increased fresh and dry weight of aromatic rice seedlings. Moreover, paclobutrazol treatment also increased the seedlings' photosynthetic pigment content and net photosynthetic rate. CONCLUSIONS This study demonstrates that paclobutrazol primarily increases the content of proline by reducing the content of glutamate and down-regulating the expression of P5CS2, thereby promoting the conversion of proline to the aromatic substance 2-AP. Under the appropriate concentration of paclobutrazol (40 mg·L-1~80 mg·L-1), the seedling quality, stress resistance, and aroma of fragrant rice can be improved.
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Zhenzhen He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Zhuosheng Yan
- Guangzhou Golden Rice Agricultral Science and Technology Co, Ltd, Guangzhou, 510900, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China.
| |
Collapse
|
16
|
Sachdeva S, Singh R, Maurya A, Singh VK, Singh UM, Kumar A, Singh GP. Multi-model genome-wide association studies for appearance quality in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1304388. [PMID: 38273959 PMCID: PMC10808671 DOI: 10.3389/fpls.2023.1304388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
Improving the quality of the appearance of rice is critical to meet market acceptance. Mining putative quality-related genes has been geared towards the development of effective breeding approaches for rice. In the present study, two SL-GWAS (CMLM and MLM) and three ML-GWAS (FASTmrEMMA, mrMLM, and FASTmrMLM) genome-wide association studies were conducted in a subset of 3K-RGP consisting of 198 rice accessions with 553,831 SNP markers. A total of 594 SNP markers were identified using the mixed linear model method for grain quality traits. Additionally, 70 quantitative trait nucleotides (QTNs) detected by the ML-GWAS models were strongly associated with grain aroma (AR), head rice recovery (HRR, %), and percentage of grains with chalkiness (PGC, %). Finally, 39 QTNs were identified using single- and multi-locus GWAS methods. Among the 39 reliable QTNs, 20 novel QTNs were identified for the above-mentioned three quality-related traits. Based on annotation and previous studies, four functional candidate genes (LOC_Os01g66110, LOC_Os01g66140, LOC_Os07g44910, and LOC_Os02g14120) were found to influence AR, HRR (%), and PGC (%), which could be utilized in rice breeding to improve grain quality traits.
Collapse
Affiliation(s)
- Supriya Sachdeva
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources (NBPGR), New Delhi, India
| | - Vikas Kumar Singh
- International Rice Research Institute, South Asia Hub, International Crop Reseach Institute for Semi Arid Tropics (ICRISAT), Hyderabad, India
| | - Uma Maheshwar Singh
- International Rice Research Institute, South Asia Regional Centre (ISARC), Varanasi, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
17
|
Fayaz U, Hussain SZ, Naseer B, Mahdi SS, Mir JI, Ghosh A, Jana A, Wani NR, Jabeen A, Wani FJ, Manzoor S. Flavor profiling and gene expression studies of indigenous aromatic rice variety (Mushk Budiji) grown at different altitudes of Highland Himalayan regions. Sci Rep 2024; 14:1010. [PMID: 38200065 PMCID: PMC10781667 DOI: 10.1038/s41598-024-51467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
Mushk Budiji-an indigenous aromatic rice variety is usually grown at an altitude ranging from 5000 to 7000 ft above mean sea level in Highland Himalayas. This study was conducted to investigate the effects of altitude, soil nitrogen content and climatic conditions (temperature) of the selected locations on the flavor profile of Mushk Budiji using gas chromatography-mass spectroscopy (GC-MS) and electronic nose (E-nose). E-nose being rapid and non-destructive method was used to validate the results of volatile aromatic compounds obtained using GC-MS in Mushk Budiji. Around 35 aromatic compounds were identified in Mushk Budiji rice samples. Highest volatile peak area percentage (105.41%) was recorded for Mushk Budji grown at an altitude of 5216.53 ft. Highest E-nose score (2.52) was obtained at an altitude of 6299.21 ft. Over-expression of fatty acid degradation and linoleic acid metabolism genes was observed at higher altitudes, whereas lipid biosynthesis was negatively influenced by higher altitude. Fatty acid degradation and linoleic acid metabolism is responsible for the synthesis of volatile aromatic compounds in Mushk Budiji. This study will therefore be the path finder for investigating the intricate mechanism behind the role of altitude on aroma development in Mushk Budiji rice for future studies.
Collapse
Affiliation(s)
- Ufaq Fayaz
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India
| | - Syed Zameer Hussain
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India.
| | - Bazila Naseer
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India.
| | - Syed Sheraz Mahdi
- Division of Agronomy, Faculty of Agriculture, SKUAST-Kashmir, Wadura, J&K, India
| | - Javid Iqbal Mir
- Central Institute of Temperate Horticulture, Kashmir, Rangreth, J&K, 190005, India
| | - Alokesh Ghosh
- Centre for Development of Advanced Computing (C-DAC), Kolkata, 700001, India
| | - Arun Jana
- Centre for Development of Advanced Computing (C-DAC), Kolkata, 700001, India
| | - Nazrana Rafique Wani
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India
| | - Abida Jabeen
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India
| | - Fehim J Wani
- Division of Agricultural Economics & Statistics, Faculty of Agriculture, SKUAST-Kashmir, Wadura, J&K, India
| | - Sobiya Manzoor
- Division of Food Science and Technology, Sher-E-Kashmir University of Agriculture Sciences and Technology of Kashmir, Shalimar, 190025, India
| |
Collapse
|
18
|
Liao Y, Li M, Wu H, Liao Y, Xin J, Yuan X, Li Y, Wei A, Zou X, Guo D, Xue Z, Zhu G, Wang Z, Xu P, Zhang H, Chen X, Du K, Zhou H, Xia D, Ali A, Wu X. Generation of aroma in three-line hybrid rice through CRISPR/Cas9 editing of BETAINE ALDEHYDE DEHYDROGENASE2 (OsBADH2). PHYSIOLOGIA PLANTARUM 2024; 176:e14206. [PMID: 38356346 DOI: 10.1111/ppl.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Aroma or fragrance in rice is a genetically controlled trait; Its high appreciation by consumers increases the rice market price. Previous studies have revealed that the rice aroma is controlled by a specific gene called BETAINE ALDEHYDE DEHYDROGENASE (OsBADH2), and mutation of this gene leads to the accumulation of an aromatic substance 2-acetyl-1-pyrroline (2-AP). The use of genetic engineering to produce aroma in commercial and cultivated hybrids is a contemporary need for molecular breeding. The current study reports the generation of aroma in the three-line hybrid restorer line Shu-Hui-313 (SH313). We created knock-out (KO) lines of OsBADH2 through the CRISPR/Cas9. The analysis of KO lines revealed a significantly increased content of 2AP in the grains compared with the control. However, other phenotypic traits (plant height, seed setting rate, and 1000-grain weight) were significantly decreased. These KO lines were crossed with a non-aromatic three-line hybrid rice male sterile line (Rong-7-A) to produce Rong-7-You-626 (R7Y626), R7Y627 and R7Y628. The measurement of 2-AP revealed significantly increased contents in these cross combinations. We compared the content of 2-AP in tissues at the booting stage. Data revealed that young spike stalk base contained the highest content of 2-AP and can be used for identification (by simple chewing) of aromatic lines under field conditions. In conclusion, our dataset offers a genetic source and illustrates the generation of aroma in non-aromatic hybrids, and outlines a straightforward identification under field conditions.
Collapse
Affiliation(s)
- Yongxiang Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mengyuan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hezhou Wu
- Hu Nan Tao Hua Yuan Agriculture Technology Co., LTD, Changde, China
| | - Yingxiu Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jialu Xin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinmiao Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Aiji Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Daiming Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhenzhen Xue
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoxu Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhaoning Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoqiong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kangxi Du
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Duo Xia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
19
|
Bao G, Ashraf U, Li L, Qiao J, Wang C, Zheng Y. Transcription Factor OsbZIP60-like Regulating OsP5CS1 Gene and 2-Acetyl-1-pyrroline (2-AP) Biosynthesis in Aromatic Rice. PLANTS (BASEL, SWITZERLAND) 2023; 13:49. [PMID: 38202357 PMCID: PMC10780308 DOI: 10.3390/plants13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
The most important volatile in determining the aroma of fragrant rice is 2-Acetyl-1-pyrroline (2-AP); however, the transcriptional regulation mechanism of 2-AP biosynthesis in fragrant rice is still unclear. In this study, Osp5cs1 knockout mutant lines and OsP5CS1 over-expression lines were constructed by the genetic transformation of the Indica rice cultivar, i.e., 'Zhonghua11', which knocks out OsBADH2 to produce fragrance in aromatic rice. The OsP5CS1 gene was also identified as a key gene in the 2-AP biosynthesis pathway of aromatic rice. The OsP5CS1 promoter was used as bait, and the OsbZIP60-like transcription factor was screened by yeast one-hybrid assays. The OsbZIP60-like transcription factor specifically bound to the OsP5CS1 gene. The dual luciferase reporting system found that the OsbZIP60-like transcription factor promoted the transcriptional activation of OsP5CS1. Compared with the wild type, OsP5CS1 gene expression was significantly down-regulated in the Osbzip60-like mutant and resulted in a substantial reduction in 2-AP biosynthesis. Moreover, the OsP5CS1 gene expression was significantly up-regulated in OsbZIP60-like over-expressed plants, and the 2-AP concentrations were also increased, whereas the Osbzip60-like mutants were found to be sensitive to Zn deficiency. Overall, the OsbZIP60-like transcription factor promoted the 2-AP accumulation. This study provides a theoretical basis for the transcriptional regulation mechanism of 2-AP biosynthesis and explores the function of the OsbZIP transcription factor in fragrant rice.
Collapse
Affiliation(s)
- Gegen Bao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (L.L.); (J.Q.)
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan;
| | - Lin Li
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (L.L.); (J.Q.)
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Jingxuan Qiao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (L.L.); (J.Q.)
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Chunling Wang
- College of Life Science, Huizhou University, Huizhou 516007, China;
| | - Yixiong Zheng
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| |
Collapse
|
20
|
Zehra A, Dhondge HV, Barvkar VT, Singh SK, Nadaf AB. Evidence of polyamines mediated 2-acetyl-1-pyrroline biosynthesis in aromatic rice rhizospheric fungal species Aspergillus niger. Braz J Microbiol 2023; 54:3073-3083. [PMID: 37702923 PMCID: PMC10689589 DOI: 10.1007/s42770-023-01124-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Rhizosphere soil of aromatic rice inhabits different fungal species that produce many bioactive metabolites including 2-acetyl-1-pyrroline (2AP). The mechanism for the biosynthesis of 2AP in the fungal system is still elusive. Hence, the present study investigates the role of possible nitrogen (N) precursors such as some amino acids and polyamines as well as the enzymes involved in 2AP synthesis in the fungal species isolated from the rhizosphere of aromatic rice varieties. Three fungal isolates were found to synthesize 2AP (0.32-1.07 ppm) and maximum 2AP was synthesized by Aspergillus niger (1.07 ppm) isolated from rhizosphere of Dehradun Basmati (DB). To determine the N source for 2AP synthesis, various N sources such as proline, glutamate, ornithine putrescine, spermine, and spermidine were used in place of putrescine in the synthetic medium (Syn18). The results showed that maximum 2AP synthesis was found with putrescine (1.07 ppm) followed by spermidine (0.89 ppm) and spermine (0.84 ppm). Further, LC-QTOF-MS analysis revealed the mobilization of spermine and spermidine into the putrescine, indicating that putrescine is the key N source for 2AP synthesis. Moreover, higher enzyme activity of DAO, PAO, and ODC as well as higher content of methylglyoxal metabolite in the A. niger NFCCI 5060 as compared to A. niger NFCCI 4064 (control) suggests the prominent role of these enzymes in the synthesis of 2AP. In conclusion, this study showed evidence of the polyamines mediated 2AP biosynthesis in A. niger NFCCI 5060.
Collapse
Affiliation(s)
- Andleeb Zehra
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Harshal V Dhondge
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India.
| | - Sanjay K Singh
- Mycology and Plant Pathology Group, Agharkar Research Institute, Pune, 411004, India
| | - Altafhusain B Nadaf
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
21
|
Aznan A, Gonzalez Viejo C, Pang A, Fuentes S. Review of technology advances to assess rice quality traits and consumer perception. Food Res Int 2023; 172:113105. [PMID: 37689840 DOI: 10.1016/j.foodres.2023.113105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
The increase in rice consumption and demand for high-quality rice is impacted by the growth of socioeconomic status in developing countries and consumer awareness of the health benefits of rice consumption. The latter aspects drive the need for rapid, low-cost, and reliable quality assessment methods to produce high-quality rice according to consumer preference. This is important to ensure the sustainability of the rice value chain and, therefore, accelerate the rice industry toward digital agriculture. This review article focuses on the measurements of the physicochemical and sensory quality of rice, including new and emerging technology advances, particularly in the development of low-cost, non-destructive, and rapid digital sensing techniques to assess rice quality traits and consumer perceptions. In addition, the prospects for potential applications of emerging technologies (i.e., sensors, computer vision, machine learning, and artificial intelligence) to assess rice quality and consumer preferences are discussed. The integration of these technologies shows promising potential in the forthcoming to be adopted by the rice industry to assess rice quality traits and consumer preferences at a lower cost, shorter time, and more objectively compared to the traditional approaches.
Collapse
Affiliation(s)
- Aimi Aznan
- Digital Agriculture, Food and Wine Group, School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia; Department of Agrotechnology, Faculty of Mechanical Engineering and Technology, Universiti Malaysia Perlis, 02600 Perlis, Malaysia
| | - Claudia Gonzalez Viejo
- Digital Agriculture, Food and Wine Group, School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexis Pang
- Digital Agriculture, Food and Wine Group, School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sigfredo Fuentes
- Digital Agriculture, Food and Wine Group, School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia; Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México 64849, Mexico.
| |
Collapse
|
22
|
Imran M, Farooq MA, Batool A, Shafiq S, Junaid M, Wang J, Tang X. Impact and mitigation of lead, cadmium and micro/nano plastics in fragrant rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122224. [PMID: 37479167 DOI: 10.1016/j.envpol.2023.122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/27/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Heavy metals (HMs) and micro(nano)plastics (MNPs), represent a significant risk to global food supply as well as a potential risk to humankind. Over 50% of the worldwide population eat rice every day, and rice aroma is a significant qualitative trait that is highly valued by consumers and fetches premium prices in the global market. Despite the huge commercial importance of fragrant rice, limited studies were directed to investigate the influence of HMs and MNPs on yield related traits and 2-Acetyl-1-pyrroline (2-AP) compound, mainly responsible for aroma production in fragrant rice. In this review, we found that the interaction of HMs and MNPs in fragrant rice is complex and accumulation of HMs and MNPs was higher in root as compared to the grains. Nutrients and phytohormones mediated mitigation of HMs and MNPs were most effective sustainable strategies. In addition, monitoring the checkpoints of 2-AP biosynthesis and its interaction with HMs and MNPs is challenging. Finally, we explained the potential challenges that fragrant rice faces considering the continuous rise in environmental pollutants and discussed the future avenues of research to improve fragrant rice's yield and qualitative traits.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Ayesha Batool
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Sarfraz Shafiq
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
23
|
Wang R, Mi K, Yuan X, Chen J, Pu J, Shi X, Yang Y, Zhang H, Zhang H. Zinc Oxide Nanoparticles Foliar Application Effectively Enhanced Zinc and Aroma Content in Rice (Oryza sativa L.) Grains. RICE (NEW YORK, N.Y.) 2023; 16:36. [PMID: 37599294 PMCID: PMC10440332 DOI: 10.1186/s12284-023-00653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The search for an effective zinc fertilizer and its application method to effectively increase zinc content and enhance aroma in rice grains is a crucial objective. In this study, a 2-year field plot experiment was conducted to investigate the influence of ZnO NPs foliar spraying on rice quality, grain zinc and aroma content, along with exploring the physiological mechanisms underlying these effects. Our results demonstrated that the rice breakdown value and taste value of foliar spraying zinc oxide nanoparticles were improved by 31.0-41.7% and 8.2-13.0% compared with CK (control treatment involved spraying water), improving the tasting and steaming quality of rice. While Fe and Cu content in grains decreased for the application of zinc oxide nanoparticles, zinc oxide nanoparticles foliar spraying significantly increased the zinc content and accumulation of grains by 33.6-65.1% and 37.8-74.7%, respectively. Further analysis showed that the sprayed zinc oxide nanoparticles achieved effective enrichment of zinc in edible parts and increased the final bioavailability of Zn. In addition, foliar spraying of zinc oxide nanoparticles significantly increased activities of nitrate reductase and glutamine synthetase in leaves, which elevated nitrogen content in leaves and grains, and ultimately enhanced 2-acetyl-1-pyrroline (2-AP) content in grains at maturity by 6.1-21.4% compared to CK. Our findings indicated that zinc oxide nanoparticles can be practically applied as a foliar fertilizer at the gestation for quality improvement, zinc enrichment and aroma enhancement of rice grains.
Collapse
Affiliation(s)
- Rui Wang
- Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kailiang Mi
- Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xijun Yuan
- Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jie Chen
- Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jialing Pu
- Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xinyan Shi
- Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yanju Yang
- Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hongcheng Zhang
- Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haipeng Zhang
- Innovation Center of Rice Cultivation Technology in Yangtze Valley, Ministry of Agriculture/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
24
|
Lu Y. Gene Genealogy-Based Mutation Analysis Reveals Emergence of Aus, Tropical japonica, and Aromatic of Oryza sativa during the Later Stage of Rice Domestication. Genes (Basel) 2023; 14:1412. [PMID: 37510316 PMCID: PMC10379336 DOI: 10.3390/genes14071412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Asian rice (Oryza sativa L.) has become a model for understanding gene functions and domestication in recent decades; however, its own diversification is still controversial. Although the division of indica and japonica and five subgroups (aus, indica (sensu stricto), japonica (sensu stricto), tropical japonica, and aromatic) are broadly accepted, how they are phylogenetically related is not transparent. To clarify their relationships, a sample of 121 diverse genes was chosen here from 12 Oryza genomes (two parental and ten O. sativa (Os)) in parallel to allow gene genealogy-based mutation (GGM) analysis. From the sample, 361 Os mutations were shared by two or more subgroups (referred to here as trans mutations) from 549 mutations identified at 51 Os loci. The GGM analysis and related tests indicates that aus diverged from indica at a time significantly earlier than when tropical japonica split from japonica. The results also indicate that aromatic was selected from hybrid progeny of aus and tropical japonica and that all five subgroups share a significant number of the early mutations identified previously. The results suggest that aus, tropical japonica, and aromatic emerged sequentially within the most recent 4-5 millennia of rice domestication after the split of indica and japonica.
Collapse
Affiliation(s)
- Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Imran M, Hussain S, Iqbal A, Saleem MH, Rehman NU, Mo Z, Chen X, Tang X. Nitric oxide confers cadmium tolerance in fragrant rice by modulating physio-biochemical processes, yield attributes, and grain quality traits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115078. [PMID: 37285677 DOI: 10.1016/j.ecoenv.2023.115078] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd) stress causes serious disruptions in plant metabolism, physio-biochemical processes, crop yield, and quality characters. Nitric oxide (NO) improves the quality features and nutritional contents of fruit plants. However, how NO confers Cd toxicity in fragrant rice plants, is sparse. Hence, the present study investigated the effects of 50 µM NO donor sodium nitroprusside (SNP) on physio-biochemical processes, plant growth attributes, grain yield, and quality traits of fragrant rice under Cd stress (100 mg kg-1 soil). The results revealed that Cd stress diminished rice plant growth, impaired photosynthetic apparatus and antioxidant defense system, and deteriorated the grain quality traits. However, foliar application of SNP mitigated Cd stress by improving plant growth and gas exchange attributes. Higher electrolyte leakage (EL) was accompanied with elevated levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) under Cd stress; however, exogenous application of SNP reduced them. The activities and relative expression levels of enzymatic antioxidants; superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) and non-enzymatic antioxidants, glutathione (GSH) contents were reduced by Cd stress, while SNP application regulated their activity and transcript abundances. SNP application improved fragrant rice grain yield and 2-acetyl-1-pyrroline content by 57.68 % and 75.54 % respectively, which is concomitant with higher biomass accumulation, photosynthetic efficiency, photosynthetic pigment contents, and an improved antioxidant defense system. Collectively, our results concluded that SNP application regulated the fragrant rice plant physio-biochemical processes, yield traits and grain quality characters under Cd-affected soil.
Collapse
Affiliation(s)
- Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, PR China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, 38040 Punjab, Pakistan
| | - Anas Iqbal
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Naveed Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, PR China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
26
|
Lu L, Hu Z, Fang C, Hu X. Characteristic Flavor Compounds and Functional Components of Fragrant Rice with Different Flavor Types. Foods 2023; 12:foods12112185. [PMID: 37297429 DOI: 10.3390/foods12112185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Fragrant rice has various flavor types, mainly the popcorn flavor, corn flavor and lotus root flavor. Chinese fragrant rice from China and Thai fragrant rice from Thailand were analyzed. GC-MS was used to determine the volatile compounds of fragrant rice. It was found that there were 28 identical volatile compounds between Chinese and Thai fragrant rice. The key compounds of different flavor types of fragrant rice were obtained by comparing the common volatile compounds. The key compounds of the popcorn flavor were 2-butyl-2-octenal, 4-methylbenzaldehyde, ethyl 4-(ethyloxy)-2-oxobut-3-enoate and methoxy-phenyl-oxime. The key compounds of the corn flavor were 2,2',5,5'-tetramethyl-1,1'-biphenyl, 1-hexadecanol, 5-ethylcyclopent-1-enecarboxaldehyde and cis-muurola-4(14), 5-diene. By using a combination of GC-MS and GC-O, the flavor spectrogram of fragrant rice was constructed, and the characteristic flavor compounds of each flavor type were identified. It was found that the characteristic flavor compounds of the popcorn flavor were 2-butyl-2-octenal, 2-pentadecanone, 2-acetyl-1-pyrroline, 4-methylbenzaldehyde, 6,10,14-trimethyl-2-pentadecanone, phenol and methoxy-phenyl-oxime. The characteristic flavor compounds of the corn flavor were 1-octen-3-ol, 2-acetyl-1-pyrroline, 3-methylbutyl 2-ethylhexanoate, methylcarbamate, phenol, nonanal and cis-muurola-4(14), 5-diene. The characteristic flavor compounds of the lotus root flavor were 2-acetyl-1-pyrroline, 10-undecenal, 1-nonanol, 1-undecanol, phytol and 6,10,14-trimethyl-2-pentadecanone. The resistant starch content of lotus root flavor rice was relatively high (0.8%). The correlation between flavor volatiles and functional components was analyzed. It was found that the fat acidity of fragrant rice was highly correlated (R = 0.86) with the characteristic flavor compounds, such as 1-octen-3-ol, 2-butyl-2-octenal and 3-methylbutyl-2-ethylhexanoate. The characteristic flavor compounds had an interactive contribution to the production of the different flavor types of fragrant rice.
Collapse
Affiliation(s)
- Lin Lu
- China National Rice Research Institute, Hangzhou 310006, China
| | - Zhanqiang Hu
- China National Rice Research Institute, Hangzhou 310006, China
| | - Changyun Fang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Xianqiao Hu
- China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
27
|
Shuochen J, Lihe Z, Fenqin H, Xiangru T, Bin D. Zinc supplementation and light intensity affect 2-acetyl-1-pyrroline (2AP) formation in fragrant rice. BMC PLANT BIOLOGY 2023; 23:194. [PMID: 37041465 PMCID: PMC10088174 DOI: 10.1186/s12870-022-03954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/21/2022] [Indexed: 06/19/2023]
Abstract
BACKGROUND Improving the yield and aroma content of fragrant rice is the focus of fragrant rice research. Light and Zinc (Zn) management generally cause regulations in the 2-acetyl-1-pyrroline (2AP) accumulation in fragrant rice. In addition, Zn promotes rice growth and improves rice yield, which has the potential to compensate for the negative impact of low light on fragrant rice yield. However, the potential of Zn to improve fragrant rice yield and 2AP content under shading conditions has not been verified. METHODS Field experiments were conducted in the rice season (May-September) in 2019 to 2021. Two light i.e., normal light (NL) and low light (LL) and four Zn levels i.e., 0 kg Zn ha- 1 (N0), 1 kg Zn ha- 1 (Zn1), 2 kg Zn ha- 1(Zn2), and 3 kg Zn ha- 1 (Zn3), which applied at booting stage was set up. The grain yield, 2AP contents, Zn content in polished rice, photosynthesis related indicators, MDA content, antioxidant enzyme activity and the biochemical parameters related to 2AP formation were investigated. RESULTS Shading reduced yield by 8.74% and increased 2AP content by 24.37%. In addition, shading reduced net photosynthetic rate (Pn), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and increased proline, γ-aminobutyric acid (GABA), and pyrroline-5-carboxylic acid (P5C), proline dehydrogenase (PDH), △1-pyrroline-5-carboxylic acid synthetase (P5CS), malondialdehyde (MDA). With increasing Zn application levels, yield, 2AP, Zn content in polished rice, Pn, proline, P5C, GABA, PDH, P5CS, SOD, CAT and POD increased, and MDA decreased. Significant Light and Zn interaction effect on 2AP content was detected, and both shading and increasing Zn application increased the 2AP content. CONCLUSION Shading can increase the 2AP content but reduce the yield of fragrant rice. Increasing Zn application under shading conditions can further promote the biosynthesis of 2AP, but the effect of improving yield is limited.
Collapse
Affiliation(s)
- Jiang Shuochen
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhang Lihe
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 434007, Guangdong, China
| | - Hu Fenqin
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Tang Xiangru
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Du Bin
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
28
|
Zhang C, Yun P, Xia J, Zhou K, Wang L, Zhang J, Zhao B, Yin D, Fu Z, Wang Y, Ma T, Li Z, Wu D. CRISPR/Cas9-mediated editing of Wx and BADH2 genes created glutinous and aromatic two-line hybrid rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:24. [PMID: 37313522 PMCID: PMC10248662 DOI: 10.1007/s11032-023-01368-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/02/2023] [Indexed: 06/15/2023]
Abstract
Amylose content (AC) is one of the physicochemical indexes of rice quality, which is largely determined by the Waxy (Wx) gene. Fragrance in rice is favored because it adds good flavor and a faint scent. Loss of function of the BADH2 (FGR) gene promotes the biosynthesis of 2-acetyl-1-pyrroline (2AP), which is the main compound responsible for aroma in rice. Here, we used a CRISPR/Cas9 system to simultaneously knock out Wx and FGR genes in 1892S and M858, which are the parents of an indica two-line hybrid rice, Huiliangyou 858 (HLY858). Four T-DNA-free homozygous mutants (1892Swxfgr-1, 1892Swxfgr-2, M858wxfgr-1, and M858wxfgr-2) were obtained. The 1892Swxfgr and M858wxfgr were crossed to generate double mutant hybrid lines HLY858wxfgr-1 and HLY858wxfgr-2. Size-exclusion chromatography (SEC) data indicated that true AC of the wx mutant starches ranged from 0.22 to 1.63%, much lower than those of the wild types (12.93 to 13.76%). However, the gelatinization temperature (GT) of the wx mutants in backgrounds of 1892S, M858, and HLY858 were still high, and showed no significant differences with the wild type controls. The aroma compounds 2AP content in grains of HLY858wxfgr-1 and HLY858wxfgr-2 were 153.0 μg/kg and 151.0 μg/kg, respectively. In contrast, 2AP was not detected in grains of HLY858. There were no significant differences in major agronomic traits between the mutants and HLY858. This study provides guidelines for cultivation of ideal glutinous and aromatic hybrid rice by gene editing.
Collapse
Affiliation(s)
- Caijuan Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Peng Yun
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Jiafa Xia
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Kunneng Zhou
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Lili Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Jingwen Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Bo Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Daokun Yin
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Zhe Fu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Yuanlei Wang
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Tingchen Ma
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Zefu Li
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
29
|
Peng J, Zhu Y, Lin F, Qi T, Yang Y, Hu Y, Li T, Zhao H. Direct Determination of 2-Acetyl-1-Pyrroline in Rice by Ultrasound-Assisted Solvent Extraction Coupled with Ultra-performance Liquid Chromatography-Tandem Mass Spectrometry. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
30
|
Zhang Y, Ren Y, Yang D, Liu H, Zhang Y, Wang X, Bai F, Cheng S. Foliar methyl jasmonate (MeJA) application increased 2-acetyl-1-Pyrroline (2-AP) content and modulated antioxidant attributes and yield formation in fragrant rice. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153946. [PMID: 36812722 DOI: 10.1016/j.jplph.2023.153946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Endogenous methyl jasmonate (MeJA) mediates abiotic and biotic stresses in plants. Exogenous MeJA application can stimulate and defend plant gene expression and induce plant chemical defense. The effects of foliar MeJA application on yield and 2-acetyl-1-pyrroline (2-AP) biosynthesis of fragrant rice are scarcely investigated. The pot experiment was conducted by spraying different concentrations of MeJA (0, 1, and 2 μM; denoted as CK, MeJA-1, and MeJA-2) at the initial heading stage of two fragrant rice cultivars, Meixiangzhan and Yuxiangyouzhan. The results showed that foliar MeJA application significantly increased the grain 2-AP content by 32.1% and 49.7%, respectively, following MeJA-1 and MeJA-2 treatments, and the two cultivars showed the highest 2-AP content upon MeJA-2 treatment. However, the grain yield was increased in MeJA-1 as compared with MeJA-2 treatment for all rice cultivars and no significant differences were observed in yield and yield-related traits compared with CK. The aroma was improved by foliar MeJA application which was strongly associated with the regulation of the precursors and enzymes involved in 2-AP biosynthesis. In particular, the contents of proline, pyrroline-5-carboxylic acid, and pyrroline at maturity, as well as the activities of proline dehydrogenase, ornithine aminotransferase, and pyrroline-5-carboxylic acid synthetase, were positively correlated with grain 2-AP content. On the other hand, foliar MeJA application improved the contents of soluble protein, chlorophyll a and b, and carotenoid, and increased the activity of antioxidant enzymes. Moreover, peroxidase activity and leaf chlorophyll contents were significantly positively correlated to 2-AP content following foliar MeJA application. Therefore, our results implied that foliar MeJA application increased aroma and influenced yield by regulating the physio-biochemistry characters and resistance, and suggested that the optimal concentration of MeJA for the best positive effect on the yield and aroma was 1 μM. However, further study is required to evaluate the metabolic level and molecular basis of the regulatory mechanism of foliar MeJA application on 2-AP in fragrant rice.
Collapse
Affiliation(s)
- Yuanxia Zhang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, 537000, People's Republic of China; College of Computer Science and Engineering of Yulin Normal University, Yulin, 537000, People's Republic of China
| | - Yong Ren
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, 537000, People's Republic of China; College of Biology and Pharmacy of Yulin Normal University, Yulin, 537000, People's Republic of China; Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, 537000, People's Republic of China
| | - Dongyue Yang
- Safety and Security Office of Yulin Normal University, Yulin, 537000, People's Republic of China
| | - Haidong Liu
- Hezhou Academy of Agricultural Science, Hezhou, 542899, People's Republic of China
| | - Yushen Zhang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, 537000, People's Republic of China
| | - Xingjie Wang
- College of Biology and Pharmacy of Yulin Normal University, Yulin, 537000, People's Republic of China
| | - Fujing Bai
- College of Biology and Pharmacy of Yulin Normal University, Yulin, 537000, People's Republic of China
| | - Siren Cheng
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, 537000, People's Republic of China; College of Biology and Pharmacy of Yulin Normal University, Yulin, 537000, People's Republic of China; Key Laboratory for Conservation and Utilization of Subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, 537000, People's Republic of China.
| |
Collapse
|
31
|
Adak T, Mahanty A, Sarkar S, Basak N, Kumar G, Sanghamitra P, Bagchi TB, Chakraborti M. Development and validation of HS-SPME-GCMS/MS method for quantification of 2-acetyl-1-pyrroline in rice cultivars. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1185-1194. [PMID: 36908367 PMCID: PMC9998778 DOI: 10.1007/s13197-023-05674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
The commercial significance of accurate and simple quantification of 2-Acetyl-1-pyrroline (2-AP) cannot be overstated. Present study was carried out to standardize a method for extraction and accurate quantitation of 2-AP from rice grain using GC-MS/MS equipped with HS-SPME auto sampler. The effect of sample quantity, addition of solvent, grinding process, sample particle size, head space parameters and SPME fiber incubation parameters, were optimized in the developed method. Dehusked rice powder (2 g) prepared under liquid nitrogen, and passed through the 80-mesh sieve, incubated for 40 min at 80 °C in headspace, followed by fiber (DVB/Carbon WR/PDMS) saturation time of 15 min, could produce the maximum response. The recovery of 2-AP from fortified sample ranged between 7.02 and 9.02% at 50-200 ng g-1 fortification irrespective of the grain matrices used. Standard addition method was appropriate to overcome the matrix effect and recovery of 2-AP was more than 90% using this method. The developed method was further utilized for quantification of 2-AP in four Basmati and two non-Basmati aromatic rice samples. The content of 2-AP ranged between 57.17 and 147.10 ng g-1 of rice and varied with geographical location. This fully automated method could improve the work efficiency and reduce error during the volatile extraction and adsorption phase. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05674-7.
Collapse
Affiliation(s)
- Totan Adak
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Arabinda Mahanty
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Sutapa Sarkar
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Nabaneeta Basak
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | - Gaurav Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India
| | | | | | | |
Collapse
|
32
|
Xing P, Luo H, He Z, He L, Zhao H, Tang X, Duan M. Trans-Zeatin induce regulation the biosynthesis of 2-acetyl-1-pyrroline in fragrant rice (Oryza sativa L.) seedlings. BMC PLANT BIOLOGY 2023; 23:88. [PMID: 36765297 PMCID: PMC9921689 DOI: 10.1186/s12870-023-04106-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In plants, cytokinin is activated into trans-zeatin to fight abiotic stresses. However, the mechanism of the effect of trans-zeatin on 2-acetyl-1-pyrroline (2-AP) biosynthesis in fragrant rice has yet to be studied. The present study was conducted to explore the effects of exogenous trans-zeatin on enzymes activities, genes expression, and precursors involved in 2-AP biosynthesis and 2-AP contents as well as the seedling quality of a fragrant rice cultivar viz., Meixiangzhan2. Four concentrations of trans-zeatin solutions at 20, 40, and 80 μmol L- 1 (ZT1, ZT2, and ZT3) were sprayed onto rice seedlings. RESULTS Compared to the control, trans-zeatin treatments showed significantly higher 2-AP contents of fragrant rice seedlings. Increased plant height and stem width were observed due to trans-zeatin treatments. The trans-zeatin application increased 1-pyrroline, methylglyoxal, proline, and P5C contents, enhanced P5CS and OAT activities, and reduced glutamic acid contents. In addition, expressions of ProDH, P5CS2, and DAO4 were comparatively higher under trans-zeatin treatments than CK in fragrant rice seedlings. CONCLUSIONS Overall, up-regulation of P5C, 1-pyrroline, and proline and down-regulation of glutamic acid under appropriate trans-zeatin concentrations (20 and 40 μmol L- 1) resulted in enhanced 2-AP biosynthesis in fragrant rice seedlings and 20-40 μmol L- 1 was considered as the suggested concentrations of trans-zeatin application in fragrant rice seedling.
Collapse
Affiliation(s)
- Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Zhenzhen He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Longxin He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China
| | - Hua Zhao
- Key Laboratory of Modern Biological Seed Industry in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China.
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
- Guangzhou Key Laboratory for Science and Technology of Fragrant rice, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Basanagouda G, Ramesh S, Siddu CB, Chandana BR, Kalpana MP, Rotti K, Sathish H. A non-synonymous SNP in homolog of BADH2 gene is associated with fresh pod fragrance in dolichos bean ( Lablab purpureus var. lignosus (Prain) Kumari). GENETIC RESOURCES AND CROP EVOLUTION 2023; 70:373-380. [PMID: 36628131 PMCID: PMC9817452 DOI: 10.1007/s10722-022-01535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Fresh pods are harvestable and marketable economic product in dolichos bean. Fresh pod fragrance is one of the 'farmers' and 'consumers' preferred traits in dolichos bean varieties. The pods with high fragrance fetch a premium price in the market. In breeding programmes, pod fragrance is routinely assessed by organoleptic (sensory) means, which is highly relative and subjective. Identification of linked DNA markers not only offer an objective means but also enable selection of fragment genotypes at seedling stage itself. Betaine aldehyde dehydrogenase (BADH) is known to be the key gene responsible for fragrance in other legumes such as vegetable soybean and mung bean. Taking cues from highly conserved domains in proteins coded by BADH genes, we isolated dolichos bean homolog (LpBADH2) of soybean GmBADH2 gene using reported degenerate primers designed to conserved domains. Analysis of the translated amino acid sequence of LpBADH2 showed high degree of similarity (97.30%) with those of soybean homolog (GmBADH2). Conserved amino acid sequence of aldehyde dehydrogenase-super family were also identified in LpBADH2. Multiple sequence alignment of nucleotide sequences of LpBADH2 with those of related legumes using "ClustalW" revealed the presence of a single non-synonymous single nucleotide polymorphic (SNPs) and three synonymous SNP sites in LpBADH2. The substitution of the amino acid tyrosine in (fragrant genotypes) with phenyl alanine (non-fragrant genotypes) in protein coded by LpBADH2 appeared to be the cause for switch over from fragrance to non-fragrance in dolichos bean. These results are discussed in relation to strategies to breed dolichos bean cultivars with desired level of pod fragrance.
Collapse
Affiliation(s)
- Gonal Basanagouda
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, Karnataka India
| | - Sampangi Ramesh
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, Karnataka India
| | - Chindi Basavaraj Siddu
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, Karnataka India
| | - Basalapura Rangegowda Chandana
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, Karnataka India
| | - Mugali Pundalik Kalpana
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, Karnataka India
| | - Kirankumar Rotti
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, Karnataka India
| | - Hosakoti Sathish
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, Karnataka India
| |
Collapse
|
34
|
Fan H, Liu H, Li W, Su W, Wang D, Zhang S, Liu T, Zhang Y. Effect of Tremella fuciformis polysaccharide on the stalling and flavor of tteok during storage. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Combined Metabolomic and Quantitative RT-PCR Analyses Revealed the Synthetic Differences of 2-Acetyl-1-pyrroline in Aromatic and Non-Aromatic Vegetable Soybeans. Int J Mol Sci 2022; 23:ijms232314529. [PMID: 36498856 PMCID: PMC9738111 DOI: 10.3390/ijms232314529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Aroma is an important economic trait of vegetable soybeans, which greatly influences their market value. The 2-acetyl-1-pyrroline (2AP) is considered as an important substance affecting the aroma of plants. Although the 2AP synthesis pathway has been resolved, the differences of the 2AP synthesis in the aromatic and non-aromatic vegetable soybeans are unknown. In this study, a broad targeted metabolome analysis including measurement of metabolites levels and gene expression levels was performed to reveal pathways of aroma formation in the two developmental stages of vegetable soybean grains [35 (S5) and 40 (S6) days after anthesis] of the 'Zhexian No. 8' (ZX8, non-aromatic) and ZK1754 (aromatic). The results showed that the differentially accumulated metabolites (DAMs) of the two varieties can be classified into nine main categories including flavonoids, lipids, amino acids and derivatives, saccharides and alcohols, organic acids, nucleotides and derivatives, phenolic acids, alkaloids and vitamin, which mainly contributed to their phenotypic differences. Furthermore, in combination with the 2AP synthesis pathway, the differences of amino acids and derivatives were mainly involved in the 2AP synthesis. Furthermore, 2AP precursors' analysis revealed that the accumulation of 2AP mainly occurred from 1-pyrroline-5-carboxylate (P5C), not 4-aminobutyraldehyde (GABald). The quantitative RT-PCR showed that the associated synthetic genes were 1-pyrroline-5-carboxylate dehydrogenase (P5CDH), ∆1-pyrroline-5-carboxylate synthetase (P5CS), proline dehydrogenase (PRODH) and pyrroline-5-carboxylate reductase (P5CR), which further verified the synthetic pathway of 2AP. Furthermore, the betaine aldehyde dehydrogenase 2 (GmBADH2) mutant was not only vital for the occurrence of 2AP, but also for the synthesis of 4-aminobutyric acid (GABA) in vegetable soybean. Therefore, the differences of 2AP accumulation in aromatic and non-aromatic vegetable soybeans have been revealed, and it also provides an important theoretical basis for aromatic vegetable soybean breeding.
Collapse
|
36
|
Bao G, Huang S, Ashraf U, Qiao J, Zheng A, Zhou Q, Li L, Wan X. Insights of Improved Aroma under Additional Nitrogen Application at Booting Stage in Fragrant Rice. Genes (Basel) 2022; 13:2092. [PMID: 36421767 PMCID: PMC9691032 DOI: 10.3390/genes13112092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 03/08/2024] Open
Abstract
Plant mineral nutrition substantially affects the growth, yield and quality of rice, whereas nitrogen (N) application contributes significantly in this regard. Undoubtedly, N application improves rice aroma biosynthesis; however, the molecular mechanism underlying the regulation of grain 2-acetyl-1-pyrroline (2-AP) biosynthesis in the presence of nitrogen application at the booting stage has remained largely unexplored. The present study examined the effects of three N levels, i.e., 0 g per pot (N0), 0.43 g per pot (N1) and 0.86 g per pot (N2) on intermediates, enzymes and genes involved in 2-AP biosynthesis, as well as on the yield of two fragrant rice cultivars viz, Meixiangzhan2 and Xiangyaxiangzhan. N was additionally applied at the booting stage. The results depicted that the levels of precursor, such as proline, and the activity of enzymes involved in 2-AP biosynthesis, such as Δ1-pyrroline-5-carboxylate synthetase (P5CS) and diamine oxidase (DAO), and P5CS1 gene expression were comparatively higher under N1 than N0 in both fragrant rice cultivars. Moreover, the N2 treatment increased the grain panicle-1, filled grain percentage and grain yield of both rice cultivars, while the grain yield of Meixiangzhan2 and Xiangyaxiangzhan was increased by 15.87% and 12.09%, respectively, under N2 compared to N1 treatment. Hence, 0.43 g per pot of N showed positive performances in yield and aroma accumulation in fragrant rice and should be further employed in the practice and production for better cultivation in the rice market.
Collapse
Affiliation(s)
- Gegen Bao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Innovative Institute for Modern Seed Industry, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Suihua Huang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Jingxuan Qiao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Innovative Institute for Modern Seed Industry, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Axiang Zheng
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China
| | - Qi Zhou
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Innovative Institute for Modern Seed Industry, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lin Li
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Innovative Institute for Modern Seed Industry, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Innovative Institute for Modern Seed Industry, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
37
|
Ruan S, Luo H, Wu F, He L, Lai R, Tang X. Organic cultivation induced regulation in yield formation, grain quality attributes, and volatile organic compounds of fragrant rice. Food Chem 2022; 405:134845. [DOI: 10.1016/j.foodchem.2022.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
38
|
Zheng Z, Zhang C, Liu K, Liu Q. Volatile Organic Compounds, Evaluation Methods and Processing Properties for Cooked Rice Flavor. RICE (NEW YORK, N.Y.) 2022; 15:53. [PMID: 36309628 PMCID: PMC9617995 DOI: 10.1186/s12284-022-00602-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/14/2022] [Indexed: 05/13/2023]
Abstract
Rice (Oryza sativa L.), as the main refined grain in China, has attracted much attention in terms of quality. Rice is usually consumed after cooking, and it is a commonly staple food. Nowdays, people's requirements for cooked rice focus more on the taste characteristics and quality. Furthermore, aroma is one of the primary sensory reference points, which is the most intuitive way for people to judge cooked rice. By integrating and analyzing the researches of cooked rice aroma identification in recent five years, this paper expounds the extraction and identification methods (sensory evaluation method, GC-MS, SPME, MOS sensors, electronic nose, etc.) of the flavor substances in cooked rice, as the processing methods and properties of cooked rice, and the volatile organic compounds of cooked rice under different conditions are summarized as well.
Collapse
Affiliation(s)
- Zichen Zheng
- College of Mechanical Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou, 225127, Jiangsu Province, People's Republic of China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou, 225127, Jiangsu Province, People's Republic of China.
| | - Kewei Liu
- College of Mechanical Engineering, Yangzhou University, 196 West Huayang Road, Yangzhou, 225127, Jiangsu Province, People's Republic of China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
39
|
Chaubey T, Sagar V, Singh RK, Chanotiya CS, Pandey S, Singh PM, Karmakar P, Singh J, Singh B, Singh DP, Pandey KK, Behera TK. Volatile Compounds Governed by Single Recessive Gene Impart Aroma in Sponge Gourd ( Luffa cylindrica L. Roem). PLANTS (BASEL, SWITZERLAND) 2022; 11:2881. [PMID: 36365333 PMCID: PMC9656515 DOI: 10.3390/plants11212881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
As a vegetable crop, sponge gourd is widely consumed worldwide due to its health promoting and nutraceutical value. This study describes genetics of an aromatic genotype VRSG-7-17 and deciphers the genetic control and volatile compound composition of sponge gourd. To study the inheritance of this trait, a cross was made between aromatic light-green-fruited VRSG-7-17 and non-aromatic dark-green-fruited VRSG-194 genotypes. The F1s were found to be non-aromatic and have a green fruit colour. Chi-square (χ2) analysis of backcross and F2 population segregating for aroma suggested that the inheritance of aroma in VRSG-7-17 is governed by a single recessive gene in a simple Mendelian fashion. The SPME-GC/MS analysis of the volatile compounds suggested that the compounds responsible for Basmati rice-like aroma were mainly hexanal, 1-octen-3-ol, 3-octanone and limonene. The aroma persists in the cooked VRSG-7-17 fruits, that did not lose fragrance traits at high temperatures. The inheritance of fruit colour was found to be controlled by a single gene with incomplete dominance. The segregation analysis showed that the aroma and fruit colour were not linked, and they segregated independently. The findings will lead to understanding the inheritance of the aromatic compounds in the sponge gourd and may be utilised in the breeding programmes for developing improved aromatic varieties.
Collapse
Affiliation(s)
- Tribhuvan Chaubey
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Vidya Sagar
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Ramesh Kumar Singh
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | | | - Sudhakar Pandey
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Prabhakar M. Singh
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Pradip Karmakar
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Jagdish Singh
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| | - Bijendra Singh
- Acharya Narendra Deva University of Agriculture & Technology, Kumarganj, Ayodhya 224229, India
| | | | | | - Tusar Kanti Behera
- ICAR-Indian Institute of Vegetable Research (IIVR), Varanasi 221305, India
| |
Collapse
|
40
|
Prodhan ZH, Islam SA, Alam MS, Li S, Jiang M, Tan Y, Shu Q. Impact of OsBadh2 Mutations on Salt Stress Response in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:2829. [PMID: 36365282 PMCID: PMC9656462 DOI: 10.3390/plants11212829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Mutations in the Betaine aldehyde dehydrogenase 2 (OsBadh2) gene resulted in aroma, which is a highly preferred grain quality attribute in rice. However, research on naturally occurring aromatic rice has revealed ambiguity and controversy regarding aroma emission, stress tolerance, and response to salinity. In this study, mutant lines of two non-aromatic varieties, Huaidao#5 (WT_HD) and Jiahua#1 (WT_JH), were generated by targeted mutagenesis of OsBadh2 using CRISPR/Cas9 technology. The mutant lines of both varieties became aromatic; however, WT_HD mutants exhibited an improved tolerance, while those of WT_JH showed a reduced tolerance to salt stress. To gain insight into the molecular mechanism leading to the opposite effects, comparative analyses of the physiological activities and expressions of aroma- and salinity-related genes were investigated. The WT_HD mutants had a lower mean increment rate of malondialdehyde, superoxide dismutase, glutamate, and proline content, with a higher mean increment rate of γ-aminobutyric acid, hydrogen peroxide, and catalase than the WT_JH mutants. Fluctuations were also detected in the salinity-related gene expression. Thus, the response mechanism of OsBadh2 mutants is complicated where the genetic makeup of the rice variety and interactions of several genes are involved, which requires more in-depth research to explore the possibility of producing highly tolerant aromatic rice genotypes.
Collapse
Affiliation(s)
- Zakaria H. Prodhan
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
- College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Shah A. Islam
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
- Agronomy Division, Bangladesh Rice Research Institute, Gazipur 1701, Bangladesh
| | - Mohammad S. Alam
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| | - Shan Li
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| | - Meng Jiang
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Tan
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, The Advanced Seed Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
41
|
Imran M, Shafiq S, Ilahi S, Ghahramani A, Bao G, Dessoky ES, Widemann E, Pan S, Mo Z, Tang X. Post-transcriptional regulation of 2-acetyl-1-pyrroline (2-AP) biosynthesis pathway, silicon, and heavy metal transporters in response to Zn in fragrant rice. FRONTIERS IN PLANT SCIENCE 2022; 13:948884. [PMID: 36061781 PMCID: PMC9428631 DOI: 10.3389/fpls.2022.948884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Fragrant rice (Oryza sativa L.) has a high economic and nutritional value, and the application of micronutrients regulates 2-acetyl-1-pyrroline (2-AP) production, which is responsible for aroma in fragrant rice. Alternative splicing (AS) is an important post-transcriptional regulatory mechanism to generate transcript variability and proteome diversity in plants. However, no systematic investigation of AS events in response to micronutrients (Zn) has been performed in fragrant rice. Furthermore, the post-transcriptional regulation of genes involved in 2-AP biosynthesis is also not known. In this study, a comprehensive analysis of AS events under two gradients of Zn treatment in two different fragrant rice cultivars (Meixiangzhan-2 and Xiangyaxiangzhan) was performed based on RNA-seq analysis. A total of 386 and 598 significant AS events were found in Meixiangzhan-2 treated with low and high doses of Zn, respectively. In Xiangyaxiangzhan, a total of 449 and 598 significant AS events were found in low and high doses of Zn, respectively. Go analysis indicated that these genes were highly enriched in physiological processes, metabolism, and cellular processes in both cultivars. However, genotype and dose-dependent AS events were also detected in both cultivars. By comparing differential AS (DAS) events with differentially expressed genes (DEGs), we found a weak overlap among DAS and DEGs in both fragrant rice cultivars indicating that only a few genes are post-transcriptionally regulated in response to Zn treatment. We further report that Zn differentially regulates the expression of 2-AP biosynthesis-related genes in both cultivars and Zn treatment altered the editing frequency of single nucleotide polymorphism (SNPs) in the genes involved in 2-AP biosynthesis. Finally, we showed that epigenetic modifications associated with active gene transcription are generally enriched over 2-AP biosynthesis-related genes. Similar to the 2-AP pathway, we found that heavy metal transporters (genes related to silicon, iron, Zn and other metal transport) are also regulated at transcriptional and post-transcriptional levels in response to Zn in fragrant rice. Taken together, our results provide evidence of the post-transcriptional gene regulation in fragrant rice in response to Zn treatment and highlight that the 2-AP biosynthesis pathway and heavy metal transporters may also be regulated through epigenetic modifications. These findings will serve as a cornerstone for further investigation to understand the molecular mechanisms of 2-AP biosynthesis and regulation of heavy metal transporters in fragrant rice.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Sara Ilahi
- Department of Economics, Lahore College for Women University, Lahore, Pakistan
| | - Alireza Ghahramani
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON, Canada
| | - Gegen Bao
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| | - Eldessoky S. Dessoky
- Department of Plant Genetic Transformation, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, CNRS-Université de Strasbourg, Strasbourg, France
| | - Shenggang Pan
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| | - Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
42
|
Luo H, Duan M, Xing P, Xie H, Tang X. Foliar application of procyanidins enhanced the biosynthesis of 2-acetyl-1-pyrroline in aromatic rice (Oryza sativa L.). BMC PLANT BIOLOGY 2022; 22:376. [PMID: 35906561 PMCID: PMC9336028 DOI: 10.1186/s12870-022-03775-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Procyanidins is a polyphenolic compound with multiple properties. However, the application of exogenous procyanidins in crops has not been reported. Aromatic rice is a high-quality rice with a special aroma and popular with consumers. The 2-acetyl-1-pyrroline (2-AP) is a key compound of aromatic rice aroma. In the current study, aromatic rice plants were sprayed with procyanidins solutions at 0.25 (Pr0.25), 0.50 (Pr0.50), 1.00 (Pr1.00), 2.00 (Pr2.00) g L-1, respectively and treatment sprayed with distilled water was taken as control (CK). The effects of exogenous procyanidins on growth and 2-AP biosynthesis of aromatic rice plants were explored. RESULTS Compared with CK, Pr1.00 and Pr2.00 treatments significantly increased 2-AP content by 16.67% and 37.68%, respectively. Higher proline, 1-pyrroline-5-carboxylic acid (P5C), 1-pyrroline, methylglyoxal contents, and lower γ- aminobutyric acid (GABA) content were recorded in Pr1.00 and Pr2.00 treatments than CK. Compared with CK, Pr1.00 and Pr2.00 treatments significantly improved the activities of P5CS and OAT and diminished the activity of BADH. Furthermore, compared with CK, Pr1.00 and Pr2.00 treatments significantly up-regulated the transcript levels of P5CS2, P5CR, OAT, DAO4 and down-regulated the transcript levels of BADH2. Exogenous procyanidins had no substantial effects on plant height, stem diameter, fresh weight, and dry weight of aromatic rice plants. CONCLUSIONS In conclusion, our findings reported the increment of 2-AP content in aromatic rice under exogenous procyanidins. Our results indicated that the application of exogenous procyanidins enhanced 2-AP biosynthesis by improving proline biosynthesis and inhibiting GABA formation.
Collapse
Affiliation(s)
- Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, 510642, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, 510642, China
| | - Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, 510642, China
| | - Huifang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, 510642, China.
| |
Collapse
|
43
|
Beaulieu J, Grimm C, Obando‐Ulloa J, McClung A. Volatiles recovered in novel, diverse and uncharacterized rice varieties. Cereal Chem 2022. [DOI: 10.1002/cche.10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- J.C. Beaulieu
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Food Processing & Sensory Quality Research Unit1100 Allen Toussaint BlvdNew OrleansLAUSA70124
| | - C.C. Grimm
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, Food Processing & Sensory Quality Research Unit1100 Allen Toussaint BlvdNew OrleansLAUSA70124
| | - J.M. Obando‐Ulloa
- Doctorate Program on Natural Science for the Development and Agronomy Engineering School. Technology Institute of Costa Rica (ITCR)San Carlos Technology Local Campus, Alajuela, CiudadQuesadaCosta Rica
| | - A.M. McClung
- United States Department of Agriculture, Agricultural Research Service, Dale Bumpers National Rice Research Center2890 Hwy 130 E.StuttgartAR72160
| |
Collapse
|
44
|
Kaewkla O, Sukpanoa S, Suriyachadkun C, Chamroensaksi N, Chumroenphat T, Franco CMM. Streptomyces spinosus sp. nov. and Streptomyces shenzhenensis subsp. oryzicola subsp. nov. endophytic actinobacteria isolated from Jasmine rice and their genome mining for potential as antibiotic producers and plant growth promoters. Antonie van Leeuwenhoek 2022; 115:871-888. [PMID: 35597859 DOI: 10.1007/s10482-022-01741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/15/2022] [Indexed: 11/25/2022]
Abstract
Two endophytic actinobacteria, strains SBTS01T and W18L9T, were isolated from leaf sheath and leaf tissue, respectively, of Jasmine rice (Oryza sativa KDML 105) grown in a rice paddy field in Roi Et Province, Thailand. A polyphasic taxonomic study showed that both strains belong to the genus Streptomyces; they are aerobic, forming well-developed substrate mycelia and aerial mycelia with long chains of spores. Strain SBTS01T shares high 16S rRNA gene sequence similarity with Streptomyces rochei NRRL B-2410 T (99.0%) and Streptomyces naganishii NRRL ISP-5282 T (99.0%). Strain W18L9T shares high 16S rRNA gene sequence similarity with Streptomyces shenzhenensis DSM 42034 T (99.7%). The genotypic and phenotypic properties of strains SBTS01T and W18L9T distinguish these two strains from the closely related species with validly published names. The genome analysis showed the dDDH, ANIb and ANIm values of the draft genome between strain SBTS01T and its close neighbour in the phylogenomic tree, Streptomyces corchorusii DSM 40340T to be 54.1, 92.6, and 94.3%, respectively; similarly for strain W18L9T and the closely related species S. shenzhenensis DSM 42034 T values were 72.5, 95.1 and 97.0%. The name proposed for the new species represented by the type strain SBTS01T is Streptomyces spinosus (= NRRL B-65636 T = TBRC 15052T). The name proposed for the novel subspecies of strain W18L9T is Streptomyces shenzhenensis subsp. oryzicola (= NRRL B-65635 T = TBRC 15051T). Recognition of this subspecies also permits the description of Streptomyces shenzhenensis subsp. shenzhenensis. Strains SBTS01T and W18L9T can produce antibiotic against rice and human pathogens and showed plant growth promoting properties such as production of indole acetic acid, cytokinin, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, siderophores and cellulase. Genomic data mining of these two strains confirmed their potential as antibiotic producers and plant growth promoters. Their genomes contain multiple biosynthetic gene clusters including those for terpene, type 1, 2 and 3 polyketide synthase, Non-ribosomal peptide synthetase and lanthipeptides. Genes encoding plant growth promoting traits such; nitrogen fixation, ACC deaminase, siderophore production and stress-related adaption may have ecological significance.
Collapse
Affiliation(s)
- Onuma Kaewkla
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham Province, 44150, Thailand.
- Department of Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia.
| | - Sudarat Sukpanoa
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham Province, 44150, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Science and Technology Development Agency, Klong Luang, Pathumthani, 12120, Thailand
| | - Nitcha Chamroensaksi
- National Biobank of Thailand (NBT), National Science and Technology Development Agency, Klong Luang, Pathumthani, 12120, Thailand
| | - Theeraphan Chumroenphat
- Laboratory Equipment Center, Mahasarakham University, Maha Sarakham Province, 44150, Thailand
| | | |
Collapse
|
45
|
Imran M, Liu Y, Shafiq S, Abbas F, Ilahi S, Rehman N, Ahmar S, Fiaz S, Baran N, Pan S, Mo Z, Tang X. Transcriptional cascades in the regulation of 2-AP biosynthesis under Zn supply in fragrant rice. PHYSIOLOGIA PLANTARUM 2022; 174:e13721. [PMID: 35598224 DOI: 10.1111/ppl.13721] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Transcription factors (TFs) regulate gene expression to control certain genetic programs, such as growth and development, phytohormone regulation, and environmental stresses. 2-acetyl-1-pyrroline (2-AP) is the key element involved in aroma biosynthesis pathway, and the application of micronutrients can increase the 2-AP levels. However, little is known about the micronutrient-induced TFs involved in 2-AP biosynthesis. Here, we identify a number of TF families in two fragrant rice varieties, "Meixiangzhan-2" (M) and "Xiangyaxiangzhan" (X), in response to Zinc (Zn) application through transcriptomic analysis. A total of ~678 TFs were identified and grouped into 26 TF families, each of which was found to be involved in numerous signaling pathways. The WRKY TF family was found to be the most abundant, followed by bHLH and MYB. Furthermore, members of the WRKY, bHLH, MYB, ERF, HSF, MADS-box, NFY, and AP2 TF families were significantly upregulated and may be involved in the transcriptional regulation of aroma biosynthesis. In brief, this study enhances our understanding of the molecular mechanism of 2-AP biosynthesis and highlights the key TFs potentially involved in the production of aroma in fragrant rice.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, People's Republic of China
| | - Yanhua Liu
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, People's Republic of China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, College of Horticulture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Sara Ilahi
- Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Naveed Rehman
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Nurettin Baran
- Bitkisel Uretim ve Teknolojileri Bolumu, Uygulamali Bilimler Faku Itesi, Mus Alparslan Universitesi, Mus, Turkey
| | - Shenggang Pan
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, People's Republic of China
| | - Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, People's Republic of China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, People's Republic of China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, People's Republic of China
| |
Collapse
|
46
|
A SNP of betaine aldehyde dehydrogenase (BADH) enhances an aroma (2-acetyl-1-pyrroline) in sponge gourd (Luffa cylindrica) and ridge gourd (Luffa acutangula). Sci Rep 2022; 12:3718. [PMID: 35260602 PMCID: PMC8904516 DOI: 10.1038/s41598-022-07478-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
Luffa is a genus of tropical and subtropical vines belonging to the Cucurbitaceae family. Sponge gourd (Luffa cylindrica) and ridge gourd (Luffa acutangula) are two important species of the genus Luffa and are good sources of human nutrition and herbal medicines. As a vegetable, aromatic luffa is more preferred by consumers than nonaromatic luffa. While the aroma trait is present in the sponge gourd, the trait is not present in the ridge gourd. In this study, we identified Luffa cylindrica’s betaine aldehyde dehydrogenase (LcBADH) as a gene associated with aroma in the sponge gourd based on a de novo assembly of public transcriptome data. A single nucleotide polymorphism (SNP: A > G) was identified in exon 5 of LcBADH, causing an amino acid change from tyrosine to cysteine at position 163, which is important for the formation of the substrate binding pocket of the BADH enzyme. Based on the identified SNP, a TaqMan marker, named AroLuff, was developed and validated in 370 F2 progenies of the sponge gourd. The marker genotypes were perfectly associated with the aroma phenotypes, and the segregation ratios supported Mendelian’s simple recessive inheritance. In addition, we demonstrated the use of the AroLuff marker in the introgression of LcBADH from the aromatic sponge gourd to the ridge gourd to improve aroma through interspecific hybridization. The marker proved to be useful in improving the aroma characteristics of both Luffa species.
Collapse
|
47
|
Phitaktansakul R, Kim KW, Aung KM, Maung TZ, Min MH, Somsri A, Lee W, Lee SB, Nam J, Kim SH, Lee J, Kwon SW, Nawade B, Chu SH, Park SW, Kang KK, Cho YH, Lee YS, Chung IM, Park YJ. Multi-omics analysis reveals the genetic basis of rice fragrance mediated by betaine aldehyde dehydrogenase 2. J Adv Res 2021; 42:303-314. [PMID: 36513420 PMCID: PMC9788947 DOI: 10.1016/j.jare.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/15/2021] [Accepted: 12/11/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Fragrance is an important economic and quality trait in rice. The trait is controlled by the recessive gene betaine aldehyde dehydrogenase 2 (BADH2) via the production of 2-acetyl-1-pyrroline (2AP). OBJECTIVES Variation in BADH2 was evaluated at the population, genetic, transcriptional, and metabolic levels to obtain insights into fragrance regulation in rice. METHODS Whole-genome resequencing of the Korean World Rice Collection of 475 rice accessions, including 421 breeding lines and 54 wild accessions, was performed. Transcriptome analyses of a subset of 279 accessions, proteome analyses of 64 accessions, and volatile profiling of 421 breeding lines were also performed. RESULTS We identified over 3.1 million high-quality single nucleotide polymorphisms (SNPs) in Korean rice collection. Most SNPs were present in intergenic regions (79%), and 190,148 SNPs (6%) were located in the coding sequence, of which 53% were nonsynonymous. In total, 38 haplotypes were identified in the BADH2 coding region, including four novel haplotypes (one in cultivated and three in wild accessions). Tajima's D values suggested that BADH2 was under balancing selection in japonica rice. Furthermore, we identified 316 expression quantitative trait loci (eQTL), including 185 cis-eQTLs and 131 trans-eQTLs, involved in BADH2 regulation. A protein quantitative trait loci (pQTL) analysis revealed the presence of trans-pQTLs; 13 pQTLs were mapped 1 Mbp from the BADH2 region. Based on variable importance in projection (VIP) scores, 15 volatile compounds, including 2AP, discriminated haplotypes and were potential biomarkers for rice fragrance. CONCLUSION We generated a catalog of haplotypes based on a resequencing analysis of a large number of rice accessions. eQTLs and pQTLs associated with BADH2 gene expression and protein accumulation are likely involved in the regulation of 2AP variation in fragrant rice. These data improve our understanding of fragrance and provide valuable information for rice breeding.
Collapse
Affiliation(s)
- Rungnapa Phitaktansakul
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Kyu-Won Kim
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Republic of Korea
| | - Kyaw Myo Aung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Thant Zin Maung
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Myeong-Hyeon Min
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Aueangporn Somsri
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Wondo Lee
- Seedpia, 85 Maesil-ro, Kwonsun-ku, Suwon 16395, Republic of Korea
| | - Sang-Beom Lee
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Jungrye Nam
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Republic of Korea
| | - Seung-Hyun Kim
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Republic of Korea
| | - Joohyun Lee
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Pusan National University, Pusan 46241, Republic of Korea
| | - Bhagwat Nawade
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea
| | - Sang-Ho Chu
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Republic of Korea
| | - Sang-Won Park
- Chemical Safety Division, National Institute of Agriculture Science (NIAS), Wanju 55365, Republic of Korea
| | - Kwon Kyoo Kang
- Department of Horticultural Life Science, Hankyong National University, Anseong 17579, Republic of Korea
| | - Yoo-Hyun Cho
- Seedpia, 85 Maesil-ro, Kwonsun-ku, Suwon 16395, Republic of Korea
| | - Young-Sang Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Ill-Min Chung
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Republic of Korea,Corresponding authors at: Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea (Yong-Jin Park); Department of Applied Bioscience, Konkuk University, Seoul 05029, Korea (Ill-Min Chung).
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Republic of Korea,Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Republic of Korea,Corresponding authors at: Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea (Yong-Jin Park); Department of Applied Bioscience, Konkuk University, Seoul 05029, Korea (Ill-Min Chung).
| |
Collapse
|
48
|
Luo H, Duan M, Kong L, He L, Chen Y, Wang Z, Tang X. The Regulatory Mechanism of 2-Acetyl-1-Pyrroline Biosynthesis in Fragrant Rice ( Oryza sativa L.) Under Different Soil Moisture Contents. FRONTIERS IN PLANT SCIENCE 2021; 12:772728. [PMID: 34899799 PMCID: PMC8660968 DOI: 10.3389/fpls.2021.772728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
2-acetyl-1-pyrroline (2-AP) is the key compound of rice aroma. However, the responses of 2-AP biosynthesis in fragrant rice under different soil moisture and the corresponding mechanism are little known. The present study evaluated the effects of different soil moisture on 2-AP biosynthesis through a pot experiment. Four soil moisture contents, that is, 50% (SM50), 40% (SM40), 30% (SM30), and 20% (SM20), were adopted, and SM50 treatment was taken as control. The pots were weighed and watered to maintain the corresponding soil moisture content. The results showed no significant difference in growth parameters (plant height, stem diameter, and plant dry weight) among all treatments. Compared with SM50, SM40, SM30, and SM20 treatments significantly (p<0.05) increased 2-AP content by 32.81, 23.18, and 53.12%, respectively. Between 20 to 90% higher proline content was observed in SM40, SM30, and SM20 treatments than in SM50. Enzymes including proline dehydrogenase, ornithine transaminase, and 1-pyrroline-5-carboxylate synthetase exhibited lower activities with soil moisture declined. Higher diamine oxidase activity was observed in SM40, SM30, and SM20 treatments compared with SM50, and real-time PCR analyses showed that transcript level of DAO1 was greatly increased under low soil moisture treatments, especially in SM20 treatment. Transcript levels of PRODH, DAO2, DAO4, DAO5, OAT, P5CS1, and P5CS2 decreased or maintained in SM40, SM30, and SM20 treatments compared with SM50. We deduced that low soil moisture content enhanced 2-AP biosynthesis mainly by upregulating the expression of DAO1 to promote the conversion from putrescine to 2-AP.
Collapse
Affiliation(s)
- Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Leilei Kong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Longxin He
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Yulin Chen
- College of Natural Resources and Environment, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhimin Wang
- College of Engineering, South China Agricultural University, Guangzhou, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| |
Collapse
|
49
|
Enhancement of the Aroma Compound 2-Acetyl-1-pyrroline in Thai Jasmine Rice ( Oryza sativa) by Rhizobacteria under Salt Stress. BIOLOGY 2021; 10:biology10101065. [PMID: 34681166 PMCID: PMC8533629 DOI: 10.3390/biology10101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Simple Summary The major aroma compound (2-acetyl-1-pyrroline) of the world-famous Thai jasmine rice, variety KDML105, has declined due to high soil salinity and agrochemical input. In this work, the rhizobacteria from rice were investigated for the aroma compound’s production, as well as their potential for increasing the compound content in Thai jasmine rice seedlings under saline conditions. Our results provide evidence that the addition of aroma compound-producing rhizobacteria increases the aroma content in the rice seedlings under salt stress. Sinomonas sp. strain ORF15-23 which colonize the rice roots, is a promising rhizobacteria in promoting the aroma level of the Thai jasmine rice grown under salt stress and could be developed as a bioinoculant for Thai jasmine rice cultivation in a salt-affected area. Abstract Thai jasmine rice (Oryza sativa L. KDML105), particularly from inland salt-affected areas in Thailand, is both domestically and globally valued for its unique aroma and high grain quality. The key aroma compound, 2-acetyl-1-pyrroline (2AP), has undergone a gradual degradation due to anthropogenic soil salinization driven by excessive chemical input and climate change. Here, we propose a cheaper and an ecofriendly solution to improve the 2AP levels, based on the application of plant growth-promoting rhizobacteria (PGPR). In the present study, nine PGPR isolates from rice rhizosphere were investigated for the 2AP production in liquid culture and the promotion potential for 2AP content in KDML105 rice seedlings under four NaCl concentrations (0, 50, 100, and 150 mM NaCl). The inoculation of 2AP-producing rhizobacteria resulted in an increase in 2AP content in rice seedling leaves with the maximum enhancement from Sinomonas sp. ORF15-23 at 50 mM NaCl (19.6 µg·kg−1), corresponding to a 90.2% increase as compared to the control. Scanning electron microscopy confirmed the colonization of Sinomonas sp. ORF15-23 in the roots of salinity-stressed KDML105 seedlings. Our results provide evidence that Sinomonas sp. ORF15-23 could be a promising PGPR isolate in promoting aroma level of Thai jasmine rice KDML105 under salt stress.
Collapse
|
50
|
Müller A, Coradi PC, Nunes MT, Grohs M, Bressiani J, Teodoro PE, Anschau KF, Flores EMM. Effects of cultivars and fertilization levels on the quality of rice milling: A diagnosis using near-infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. Food Res Int 2021; 147:110524. [PMID: 34399502 DOI: 10.1016/j.foodres.2021.110524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/28/2021] [Accepted: 06/11/2021] [Indexed: 11/19/2022]
Abstract
Cultivars and fertilization levels influence rice productivity and can be associated with grain quality. Thus, it is possible to make decisions regarding the choice of cultivars and application of fertilizer levels based on the type of milling, a necessary post-harvest process that may minimize the nutrient load in the grains and result in loss in quality. This study relates the physicochemical composition and morphological quality of brown and polished milled rice grains, cultivar types, and different levels of soil fertilization using near-infrared spectroscopy analysis, X-ray diffraction and scanning electron microscopy. Statistical tools were used to test the various treatments and identify the relationship between factors and variables. A high fertilization level is related to increasing crude protein composition and starch for cultivar IRGA 431 CL associated with polished rice. However, the combination of cultivar IRGA 424 RI and brown rice demonstrated a higher grain resistance, and different percentages of whole, chalky, and damaged rice. The correlation between ash × crude protein and starch × crude fiber was found to be positive for brown rice and negative for the polished rice. Further, an increase in starch content was inversely proportional to the ash content, whereas an increase in crude protein was inversely proportional to the low-fat content in milled rice. The crystalline characteristics of rice starch were preserved at high fertilization levels associated with polished grains that demonstrated high starch content. Polished grains, however, showed more pores and cavities, and consequently greater permeabilities in the surface. It is recommended that batches of grains produced from cultivar IRGA 431 CL with high levels of fertilization be subjected to polished rice milling to achieve high protein and starch quality. However, grains from cultivar IRGA 424 RI with high levels of fertilization are recommended for brown rice milling owing to the high percentage of physical defects observed.
Collapse
Affiliation(s)
- Amanda Müller
- Department Rural Science Center, Postgraduate Program in Agricultural Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Paulo Carteri Coradi
- Department Rural Science Center, Postgraduate Program in Agricultural Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Camobi, 97105-900 Santa Maria, RS, Brazil; Department of Agricultural Engineering, Campus Cachoeira do Sul, Federal University of Santa Maria, Cachoeira do Sul, 96503-205 RS, Brazil.
| | - Marcela Trojahn Nunes
- Department Rural Science Center, Postgraduate Program in Agricultural Engineering, Federal University of Santa Maria, Avenue Roraima, 1000, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - Mara Grohs
- Rio-Grandense Rice Institute-IRGA, Cachoeira do Sul, 96506-750 RS, Brazil
| | - Joseane Bressiani
- Department of Food Science and Technology, University of Passo Fundo, Passo Fundo, 99052-900 RS, Brazil
| | - Paulo Eduardo Teodoro
- Department of Agronomy, Campus de Chapadão do Sul, Federal University of Mato Grosso do Sul, Chapadão do Sul, 79560-000 MS, Brazil
| | - Kellen Francine Anschau
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900 RS, Brazil
| | - Erico Marlon Moraes Flores
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900 RS, Brazil
| |
Collapse
|