1
|
Torres-Cobos B, Tres A, Vichi S, Guardiola F, Rovira M, Romero A, Baeten V, Fernández-Pierna JA. Comparative analysis of spectroscopic methods for rapid authentication of hazelnut cultivar and origin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125367. [PMID: 39531898 DOI: 10.1016/j.saa.2024.125367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Hazelnut market prices fluctuate significantly based on cultivar and provenance, making them susceptible to counterfeiting. To develop an accurate authentication method, we compared the performances of three spectroscopic methods: near infrared (NIR), handheld near infrared (hNIR), and medium infrared (MIR), on over 300 samples from various origins, cultivars, and harvest years. Spectroscopic fingerprints were used to develop and externally validate PLS-DA classification models. Both cultivar and origin models showed high accuracy in external validation. The hNIR model effectively distinguished cultivars but struggled with geographic distinctions due to lower sensitivity. NIR and MIR models showed over 93 % accuracy, with NIR slightly outperforming MIR for geographic origin. NIR proved to be a fast and suitable tool for hazelnut authentication. This study is the first to systematically compare spectroscopic tools for authenticating hazelnut cultivar and origin using the same dataset, offering valuable insights for future food authentication applications.
Collapse
Affiliation(s)
- B Torres-Cobos
- Departament de Nutrició, Ciències de L'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - A Tres
- Departament de Nutrició, Ciències de L'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - S Vichi
- Departament de Nutrició, Ciències de L'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain.
| | - F Guardiola
- Departament de Nutrició, Ciències de L'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona, Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - M Rovira
- Institute of Agrifood Research and Technology (IRTA), Ctra. de Reus - El Morell Km 3.8, Constantí 43120, Spain
| | - A Romero
- Institute of Agrifood Research and Technology (IRTA), Ctra. de Reus - El Morell Km 3.8, Constantí 43120, Spain
| | - V Baeten
- Quality and Authentication of Products Unit, Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre, Chaussée de Namur 24, 5030 Gembloux, Belgium
| | - J A Fernández-Pierna
- Quality and Authentication of Products Unit, Knowledge and Valorization of Agricultural Products Department, Walloon Agricultural Research Centre, Chaussée de Namur 24, 5030 Gembloux, Belgium
| |
Collapse
|
2
|
Torres-Cobos B, Nicotra SB, Rovira M, Romero A, Guardiola F, Tres A, Vichi S. Meeting the challenge of varietal and geographical authentication of hazelnuts through lipid metabolite fingerprinting. Food Chem 2025; 463:141203. [PMID: 39298843 DOI: 10.1016/j.foodchem.2024.141203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Hazelnuts are high-quality products with significant economic importance in many European countries. Their market price depends on their qualitative characteristics, which are driven by cultivar and geographical origin, making hazelnuts susceptible to fraud. This study systematically compared two lipidomic fingerprinting strategies for the simultaneous authentication of hazelnut cultivar and provenance, based on the analysis of the unsaponifiable fraction (UF) and triacylglycerol (TAG) profiles by gas chromatography-mass spectrometry coupled with chemometrics. PLS-DA classification models were developed using a large sample set with high natural variability (n = 309) to discriminate hazelnuts by cultivar and origin. External validation results demonstrated the suitability of the UF fingerprint as a hazelnut authentication tool, both tested models showing a high efficiency (>94 %). The correct classification rate of the TAG fingerprinting method was lower (>80 %), but due to its faster analysis time, it is recommended as a complementary screening tool to UF fingerprinting.
Collapse
Affiliation(s)
- B Torres-Cobos
- Departament de Nutrició, Ciències de L'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - S B Nicotra
- Departament de Nutrició, Ciències de L'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - M Rovira
- Institute of Agrifood Research and Technology (IRTA), Ctra. de Reus - El Morell Km 3.8, Constantí 43120, Spain
| | - A Romero
- Institute of Agrifood Research and Technology (IRTA), Ctra. de Reus - El Morell Km 3.8, Constantí 43120, Spain
| | - F Guardiola
- Departament de Nutrició, Ciències de L'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| | - A Tres
- Departament de Nutrició, Ciències de L'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain.
| | - S Vichi
- Departament de Nutrició, Ciències de L'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de L'Alimentació, Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), Universitat de Barcelona. Av Prat de La Riba, 171, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
3
|
Bozza D, Barboni D, Spadafora ND, Felletti S, De Luca C, Nosengo C, Compagnin G, Cavazzini A, Catani M. Untargeted metabolomics approaches for the characterization of cereals and their derived products by means of liquid chromatography coupled to high resolution mass spectrometry. JOURNAL OF CHROMATOGRAPHY OPEN 2024; 6:100168. [DOI: 10.1016/j.jcoa.2024.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Squara S, Moraglio S, Caratti A, Fina A, Liberto E, Bicchi C, Weinert CH, Soukup ST, Tavella L, Cordero C. Unrevealing the Halyomorpha halys Damage Fingerprint on Hazelnut Metabolome by Multiomic Platforms and AI-Aided Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24109-24129. [PMID: 39413774 DOI: 10.1021/acs.jafc.4c06888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
The brown marmorated stink bug (Halyomorpha halys) poses a significant threat to hazelnut crops by affecting kernel development and causing quality defects, reducing the market value. While previous studies have identified bitter-tasting compounds in affected kernels, the impact of stink bug feeding on the hazelnut metabolome, particularly concerning aroma precursors, remains underexplored. This study aims to map the nonvolatile metabolome and volatilome of hazelnut samples obtained by caging H. halys on different cultivars in two locations to identify markers for diagnosing stink bug damage. Using a multiomic approach involving headspace solid-phase microextraction (HS-SPME), comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOF MS), and liquid chromatography-high-resolution mass spectrometry (LC-HRMS), both raw and roasted hazelnuts are analyzed, with artificial intelligence (AI) and machine learning tools employed to explore data correlations. The study finds that the hazelnut metabolome and volatilome exhibit high chemical complexity with significant classes of compounds such as aldehydes, ketones, alcohols, and terpenes identified in both raw and roasted hazelnuts. Multivariate analysis indicates that the orchard location significantly impacts the metabolome, followed by damage type, with cultivar differences being less pronounced. Partial least-squares discriminant analysis (PLS-DA) models achieve high predictive accuracy for orchard location (99%) and damage type (≈80%), with the roasted volatilome showing the highest predictive accuracy. Correlation matrices reveal significant relationships between raw hazelnut metabolites and aroma compounds in roasted samples, suggesting potential markers for stink bug damage that could guide the quality assessment and mitigation strategies. Data fusion techniques further enhance classification performance, particularly in predicting damage type, underscoring the potential of integrating multiple data sets for comprehensive quality assessment.
Collapse
Affiliation(s)
- Simone Squara
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Silvia Moraglio
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università di Torino, Largo P. Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Andrea Caratti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Angelica Fina
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Erica Liberto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| | - Christoph H Weinert
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Luciana Tavella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università di Torino, Largo P. Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125 Torino, Italy
| |
Collapse
|
5
|
Squara S, Caratti A, Fina A, Liberto E, Koljančić N, Špánik I, Genova G, Castello G, Bicchi C, de Villiers A, Cordero C. Artificial intelligence decision making tools in food metabolomics: Data fusion unravels synergies within the hazelnut (Corylus avellana L.) metabolome and improves quality prediction. Food Res Int 2024; 194:114873. [PMID: 39232512 DOI: 10.1016/j.foodres.2024.114873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
This study investigates the metabolome of high-quality hazelnuts (Corylus avellana L.) by applying untargeted and targeted metabolome profiling techniques to predict industrial quality. Utilizing comprehensive two-dimensional gas chromatography and liquid chromatography coupled with high-resolution mass spectrometry, the research characterizes the non-volatile (primary and specialized metabolites) and volatile metabolomes. Data fusion techniques, including low-level (LLDF) and mid-level (MLDF), are applied to enhance classification performance. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) reveal that geographical origin and postharvest practices significantly impact the specialized metabolome, while storage conditions and duration influence the volatilome. The study demonstrates that MLDF approaches, particularly supervised MLDF, outperform single-fraction analyses in predictive accuracy. Key findings include the identification of metabolites patterns causally correlated to hazelnut's quality attributes, of them aldehydes, alcohols, terpenes, and phenolic compounds as most informative. The integration of multiple analytical platforms and data fusion methods shows promise in refining quality assessments and optimizing storage and processing conditions for the food industry.
Collapse
Affiliation(s)
- Simone Squara
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - Andrea Caratti
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - Angelica Fina
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - Erica Liberto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - Nemanja Koljančić
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy; Institute of Analytical Chemistry, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Ivan Špánik
- Institute of Analytical Chemistry, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Giuseppe Genova
- Soremartec Italia Srl, Piazzale Ferrero 1, Alba, Cuneo 12051, Italy
| | | | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy
| | - André de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Matieland, Stellenbosch, Western Cape 7602, South Africa.
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, Torino 10125, Italy.
| |
Collapse
|
6
|
Liang L, Li Y, Mao X, Wang Y. Metabolomics applications for plant-based foods origin tracing, cultivars identification and processing: Feasibility and future aspects. Food Chem 2024; 449:139227. [PMID: 38599108 DOI: 10.1016/j.foodchem.2024.139227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Metabolomics, the systematic study of metabolites, is dedicated to a comprehensive analysis of all aspects of plant-based food research and plays a pivotal role in the nutritional composition and quality control of plant-based foods. The diverse chemical compositions of plant-based foods lead to variations in sensory characteristics and nutritional value. This review explores the application of the metabolomics method to plant-based food origin tracing, cultivar identification, and processing methods. It also addresses the challenges encountered and outlines future directions. Typically, when combined with other omics or techniques, synergistic and complementary information is uncovered, enhancing the classification and prediction capabilities of models. Future research should aim to evaluate all factors affecting food quality comprehensively, and this necessitates advanced research into influence mechanisms, metabolic pathways, and gene expression.
Collapse
Affiliation(s)
- Lu Liang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China
| | - Yuhao Li
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China.
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 30047, China.
| |
Collapse
|
7
|
Özdemir İS, Firat EÖ, Özturk T, Zomp G, Arici M. Geographical origin determination of the PDO hazelnut (cv. Giresun Tombul) by chemometric analysis of FT-NIR and Raman spectra acquired from shell and kernel. J Food Sci 2024; 89:4806-4822. [PMID: 39013018 DOI: 10.1111/1750-3841.17214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
Turkey is the leading producer of hazelnuts, contributing to 62% of the total global production. Among 18 distinct local hazelnut cultivars, Giresun Tombul is the only cultivar that has received Protected Designation of Origin denomination from the European Comission (EC). However, there is currently no practical objective method to ensure its geographic origin. Therefore, in this study NIR and Raman spectroscopy, along with chemometric methods, such as principal component analysis, PLS-DA (partial least squares-discriminant analysis), and SVM-C (support vector machine-classification), were used to determine the geographical origin of the Giresun Tombul hazelnut cultivar. For this purpose, samples from unique 118 orchards were collected from eight different regions in Turkey during the 2021 and 2022 growing seasons. NIR and Raman spectra were obtained from both the shell and kernel of each sample. The results indicated that hazelnut samples exhibited distinct grouping tendencies based on growing season regardless of the spectroscopic technique and sample type (shell or kernel). Spectral information obtained from hazelnut shells demonstrated higher discriminative power concerning geographical origin compared to that obtained from hazelnut kernels. The PLS-DA models utilizing FT-NIR (Fourier transform near-infrared) and Raman spectra for hazelnut shells achieved validation accuracies of 81.7% and 88.3%, respectively, while SVM-C models yielded accuracies of 90.9% and 86.3%. It was concluded that the lignocellulosic composition of hazelnut shells, indicative of their geographic origin, can be accurately assessed using FT-NIR and Raman spectroscopy, providing a nondestructive, rapid, and user-friendly method for identifying the geographical origin of Giresun Tombul hazelnuts. PRACTICAL APPLICATION: The proposed spectroscopic methods offer a rapid and nondestructive means for hazelnut value chain actors to verify the geographic origin of Giresun Tombul hazelnuts. This could definitely enhance consumer trust by ensuring product authenticity and potentially help in preventing fraud within the hazelnut market. In addition, these methods can also be used as a reference for future studies targeting the authentication of other shelled nuts.
Collapse
Affiliation(s)
- İbrahim Sani Özdemir
- TÜBİTAK Marmara Research Center, Life Sciences, Food Innovation Technologies Research Group, Gebze, Kocaeli, Türkiye
| | - Emel Önder Firat
- TÜBİTAK Marmara Research Center, Life Sciences, Food Innovation Technologies Research Group, Gebze, Kocaeli, Türkiye
- Faculty of Engineering, Food Engineering Department, Yıldız Technical University, Istanbul, Türkiye
| | - Tarık Özturk
- TÜBİTAK Marmara Research Center, Life Sciences, Food Innovation Technologies Research Group, Gebze, Kocaeli, Türkiye
| | - Güray Zomp
- Giresun Commodity Exchange, Giresun, Türkiye
| | - Muhammet Arici
- Faculty of Engineering, Food Engineering Department, Yıldız Technical University, Istanbul, Türkiye
| |
Collapse
|
8
|
Müller MS, Erçetin E, Cvancar L, Oest M, Fischer M. Elemental Profiling for the Detection of Food Mixtures: A Proof of Principle Study on the Detection of Mixed Walnut Origins Using Measured and Calculated Data. Molecules 2024; 29:3350. [PMID: 39064927 PMCID: PMC11279845 DOI: 10.3390/molecules29143350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Element profiling is a powerful tool for detecting fraud related to claims of geographical origin. However, these methods must be continuously developed, as mixtures of different origins in particular offer great potential for adulteration. This study is a proof of principle to determine whether elemental profiling is suitable for detecting mixtures of the same food but from different origins and whether calculated data from walnut mixtures could help to reduce the measurement burden. The calculated data used in this study were generated based on measurements of authentic, unadulterated samples. Five different classification models and three regression models were applied in five different evaluation approaches to detect adulteration or even distinguish between adulteration levels (10% to 90%). To validate the method, 270 mixtures of walnuts from different origins were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Depending on the evaluation approach, different characteristics were observed in mixtures when comparing the calculated and measured data. Based on the measured data, it was possible to detect admixtures with an accuracy of 100%, even at low levels of adulteration (20%), depending on the country. However, calculated data can only contribute to the detection of adulterated walnut samples in exceptional cases.
Collapse
Affiliation(s)
| | | | | | | | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (M.-S.M.); (E.E.); (L.C.); (M.O.)
| |
Collapse
|
9
|
Chavez M, Viscardi S, Ruiz MJ, Sans-Serramitjana E, Durán P. CLI: A new protocol for the isolation of Lactic Acid Bacteria from complex plant samples. J Microbiol Methods 2024; 221:106937. [PMID: 38648958 DOI: 10.1016/j.mimet.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Lactic Acid Bacteria (LAB) are predominantly probiotic microorganisms and the most are Generally Recognized As Safe (GRAS). LAB inhabit in the human gut ecosystem and are largely found in fermented foods and silage. In the last decades, LAB have also has been found in plant microbiota as a new class of microbes with probiotic activity to plants. For this reason, today the scientific interest in the study and isolation of LAB for agronomic application has increased. However, isolation protocols from complex samples such as plant tissues are scarce and inefficient. In this study, we developed a new protocol (CLI, Complex samples LAB Isolation) which yields purified LAB from plants. The sensitivity of CLI protocol was sufficient to isolate representative microorganisms of LAB genera (i.e. Leuconostoc, Lactococcus and Enterococcus). CLI protocol consists on five steps: i) sample preparation and pre-incubation in 1% sterile peptone at 30 °C for 24-48 h; ii) Sample homogenization in vortex by 10 min; iii) sample serial dilution in quarter-strength Ringer solution, iv) incubation in MRS agar plates with 0.2% of sorbic acid, with 1% of CaCO3, O2 < 15%, at pH 5.8 and 37 °C for 48 h.; v) Selection of single colonies with LAB morphology and CaCO3-solubilization halo. Our scientific contribution is that CLI protocol could be used for several complex samples and represents a useful method for further studies involving native LAB.
Collapse
Affiliation(s)
- Mariannys Chavez
- Doctoral Program in Natural Bioresource Sciences, Universidad de La Frontera, Temuco 4811230, Chile; Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sharon Viscardi
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, P.O. Box 15-D, Temuco 4813302, Chile; Laboratorio de Investigación Interdisciplinaria en Microbiología Aplicada, Departamento de Procesos Diagnóstico y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Manuel Montt 56, Temuco, La Araucanía, Chile
| | - María José Ruiz
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Eulàlia Sans-Serramitjana
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Paola Durán
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile; Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile; Facultad de Ciencias Agropecuarias y Medioambiente, Departamento de Producción Agropecuaria, Universidad de La Frontera, Temuco 4811230, Chile.
| |
Collapse
|
10
|
Torres-Cobos B, Quintanilla-Casas B, Rovira M, Romero A, Guardiola F, Vichi S, Tres A. Prospective exploration of hazelnut's unsaponifiable fraction for geographical and varietal authentication: A comparative study of advanced fingerprinting and untargeted profiling techniques. Food Chem 2024; 441:138294. [PMID: 38218156 DOI: 10.1016/j.foodchem.2023.138294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
This study compares two data processing techniques (fingerprinting and untargeted profiling) to authenticate hazelnut cultivar and provenance based on its unsaponifiable fraction by GC-MS. PLS-DA classification models were developed on a selected sample set (n = 176). As test cases, cultivar models were developed for "Tonda di Giffoni" vs other cultivars, whereas provenance models were developed for three origins (Chile, Italy or Spain). Both fingerprinting and untargeted profiling successfully classified hazelnuts by cultivar or provenance, revealing the potential of the unsaponifiable fraction. External validation provided over 90 % correct classification, with fingerprinting slightly outperforming. Analysing PLS-DA models' regression coefficients and tentatively identifying compounds corresponding to highly relevant variables showed consistent agreement in key discriminant compounds across both approaches. However, fingerprinting in selected ion mode extracted slightly more information from chromatographic data, including minor discriminant species. Conversely, untargeted profiling acquired in full scan mode, provided pure spectra, facilitating chemical interpretability.
Collapse
Affiliation(s)
- B Torres-Cobos
- University of Barcelona, Department of Nutrition, Food Sciences and Gastronomy, Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain; University of Barcelona, Institute of Research on Food Nutrition and Safety (INSA-UB), Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain
| | - B Quintanilla-Casas
- University of Copenhagen, Department of Food Science, Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
| | - M Rovira
- Institute of Agrifood Research and Technology (IRTA), Ctra. de Reus - El Morell Km 3.8, Constantí 43120, Spain
| | - A Romero
- Institute of Agrifood Research and Technology (IRTA), Ctra. de Reus - El Morell Km 3.8, Constantí 43120, Spain
| | - F Guardiola
- University of Barcelona, Department of Nutrition, Food Sciences and Gastronomy, Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain; University of Barcelona, Institute of Research on Food Nutrition and Safety (INSA-UB), Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain
| | - S Vichi
- University of Barcelona, Department of Nutrition, Food Sciences and Gastronomy, Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain; University of Barcelona, Institute of Research on Food Nutrition and Safety (INSA-UB), Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain.
| | - A Tres
- University of Barcelona, Department of Nutrition, Food Sciences and Gastronomy, Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain; University of Barcelona, Institute of Research on Food Nutrition and Safety (INSA-UB), Prat de la Riba 171, Santa Coloma de Gramenet 08921, Spain
| |
Collapse
|
11
|
Kim SH, Ochar K, Hwang A, Lee YJ, Kang HJ. Variability of Glucosinolates in Pak Choy ( Brassica rapa subsp. chinensis) Germplasm. PLANTS (BASEL, SWITZERLAND) 2023; 13:9. [PMID: 38202314 PMCID: PMC10780573 DOI: 10.3390/plants13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Glucosinolates are sulfur-containing phytochemicals generally abundant in cruciferous vegetables such as pak choy. Glucosinolates participate in a range of biological activities essential for promoting a healthy human body. In this study, we aimed to elucidate glucosinolate variability present in pak choy germplasm that are under conservation at the Rural Development Administration Genebank, Jeonju, Republic of Korea. The Acquity Ultra-Performance Liquid Chromatography (UHPLC) analytical system was used in profiling the glucosinolate content in leaf samples of various accessions. We identified a total of 17 glucosinolates in the germplasm. Based on principal compoment analysis performed, three separate groups of the accessions were obtained. Group 1 contained the cultivar cheongsacholong which recorded high content of glucobrassicin (an indole), glucoerucin (aliphatic), gluconasturtiin (aromatic) and glucoberteroin (aliphatic). Group 2 consisted of six accessions, BRA77/72, Lu ling gaogengbai, 9041, Wuyueman, RP-75 and DH-10, predominatly high in aliphatic compounds including glucoiberin, glucocheirolin, and sinigrin. Group 3 comprised the majority of the accessions which were characterized by high content of glucoraphanin, epiprogoitrin, progoitrin, and glucotropaeolin. These results revealed the presence of variability among the pak choy germplasm based on their glucosinolate content, providing an excellent opprtunity for future breeding for improved glucosinolate content in the crop.
Collapse
Affiliation(s)
- Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Kingsley Ochar
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana
| | - Aejin Hwang
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Yoon-Jung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea; (K.O.); (A.H.); (Y.-J.L.)
| | - Hae Ju Kang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea;
| |
Collapse
|
12
|
Wang J, Liu Y, Zuo C, Zhang J, Liang W, Liu Y, Yu W, Yu H, Peng C. Different origins and processing methods affect the intrinsic quality of ginger: a novel approach to evaluating ginger quality. Front Chem 2023; 11:1296712. [PMID: 38025052 PMCID: PMC10667423 DOI: 10.3389/fchem.2023.1296712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Ginger (Zingiber officinale Roce.) is a widely consumed food item and a prominent traditional Chinese medicinal herb. The intrinsic quality of ginger may differ due to variations in its origin and processing techniques. To evaluate the quality of ginger, a straightforward and efficient discriminatory approach has been devised, utilizing 6-gingerol, 8-gingerol, and 10-gingerol as benchmarks. Methods: In order to categorize ginger samples according to their cultivated origins with different longitude and latitude (Shandong, Anhui, and Yunnan provinces in China) and processing methods (liquid nitrogen pulverization, ultra-micro grinding, and mortar grinding), similarity analysis (SA), hierarchical cluster analysis (HCA), and principal component analysis (PCA) were employed. Furthermore, there was a quantitative determination of the significant marker compounds gingerols, which has considerable impact on maintaining quality control and distinguishing ginger products accurately. Moreover, discrimination analysis (DA) was utilized to further distinguish and classify samples with unknown membership degrees based on the eigenvalues, with the aim of achieving optimal discrimination between groups. Results: The findings obtained from the high-performance liquid chromatography (HPLC) data revealed that the levels of various gingerols present in all samples exhibited significant variations. The study confirmed that the quality of ginger was primarily influenced by its origin and processing method, with the former being the dominant factor. Notably, the sample obtained from Anhui province and subjected to liquid nitrogen pulverization demonstrated the highest content of gingerols. Conclusion: The results obtained from the analysis of SA, HCA, PCA, and DA were consistent and could be employed to evaluate the quality of ginger. As such, the combination of HPLC fingerprints and chemo metric techniques provided a dependable approach for comprehensively assessing the quality and processing of ginger.
Collapse
Affiliation(s)
- Jie Wang
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yujie Liu
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Chijing Zuo
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Zhang
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wanhui Liang
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Liu
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Weidong Yu
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Yu
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- College of Traditional Chinese Medicine, Bozhou University, Bozhou, China
| | - Can Peng
- A School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China
- Anhui Province Rural Revitalization Collaborative Technology Service Center, Hefei, China
- Anhui Province Modern Chinese Medicine Industry Common Technology Research Center, Heifei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Heifei, Anhui, China
| |
Collapse
|
13
|
Rangsinth P, Sharika R, Pattarachotanant N, Duangjan C, Wongwan C, Sillapachaiyaporn C, Nilkhet S, Wongsirojkul N, Prasansuklab A, Tencomnao T, Leung GPH, Chuchawankul S. Potential Beneficial Effects and Pharmacological Properties of Ergosterol, a Common Bioactive Compound in Edible Mushrooms. Foods 2023; 12:2529. [PMID: 37444267 DOI: 10.3390/foods12132529] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Ergosterol is an important sterol commonly found in edible mushrooms, and it has important nutritional value and pharmacological activity. Ergosterol is a provitamin. It has been well established that edible mushrooms are an excellent food source of vitamin D2 because ergosterol is a precursor that is converted to vitamin D2 under ultraviolet radiation. The pharmacological effects of ergosterol, which include antimicrobial, antioxidant, antimicrobial, anticancer, antidiabetic, anti-neurodegenerative, and other activities, have also been reported. This review aims to provide an overview of the available evidence regarding the pharmacological effects of ergosterol and its underlying mechanisms of action. Their potential benefits and applications are also discussed.
Collapse
Affiliation(s)
- Panthakarn Rangsinth
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Rajasekharan Sharika
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chamaiphron Wongwan
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanin Sillapachaiyaporn
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nichaporn Wongsirojkul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Peng Y, Zheng C, Guo S, Gao F, Wang X, Du Z, Gao F, Su F, Zhang W, Yu X, Liu G, Liu B, Wu C, Sun Y, Yang Z, Hao Z, Yu X. Metabolomics integrated with machine learning to discriminate the geographic origin of Rougui Wuyi rock tea. NPJ Sci Food 2023; 7:7. [PMID: 36928372 PMCID: PMC10020150 DOI: 10.1038/s41538-023-00187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The geographic origin of agri-food products contributes greatly to their quality and market value. Here, we developed a robust method combining metabolomics and machine learning (ML) to authenticate the geographic origin of Wuyi rock tea, a premium oolong tea. The volatiles of 333 tea samples (174 from the core region and 159 from the non-core region) were profiled using gas chromatography time-of-flight mass spectrometry and a series of ML algorithms were tested. Wuyi rock tea from the two regions featured distinct aroma profiles. Multilayer Perceptron achieved the best performance with an average accuracy of 92.7% on the training data using 176 volatile features. The model was benchmarked with two independent test sets, showing over 90% accuracy. Gradient Boosting algorithm yielded the best accuracy (89.6%) when using only 30 volatile features. The proposed methodology holds great promise for its broader applications in identifying the geographic origins of other valuable agri-food products.
Collapse
Affiliation(s)
- Yifei Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Zheng
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuang Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fuquan Gao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaxia Wang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenghua Du
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feng Gao
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Feng Su
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Wenjing Zhang
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Xueling Yu
- Fujian Farming Technology Extension Center, Fuzhou, 350003, China
| | - Guoying Liu
- Wuyishan Institute of Agricultural Sciences, Wuyishan, 354300, China
| | - Baoshun Liu
- Wuyishan Tea Bureau, Wuyishan, 354300, China
| | - Chengjian Wu
- Fujian Vocational College of Agriculture, Fuzhou, 350119, China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenbiao Yang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaomin Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
15
|
Combining untargeted profiling of phenolics and sterols, supervised multivariate class modelling and artificial neural networks for the origin and authenticity of extra-virgin olive oil: A case study on Taggiasca Ligure. Food Chem 2023; 404:134543. [DOI: 10.1016/j.foodchem.2022.134543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
16
|
Identification and Analysis of Metabolites That Contribute to the Formation of Distinctive Flavour Components of Laoxianghuang. Foods 2023; 12:foods12020425. [PMID: 36673517 PMCID: PMC9858094 DOI: 10.3390/foods12020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 01/17/2023] Open
Abstract
In addition to volatile compounds, metabolites also have a great effect on the flavour of food. Fresh finger citron cannot be eaten directly because of its spicy and bitter taste, so it is made into a preserved fruit product known as Laoxianghuang (LXH). To investigate the metabolites that have an effect on the flavour of LXH, untargeted metabolomics was performed using an ultrahigh-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS), and the metabolites of the Laoxianghuang samples from different locations in the Chaoshan area were compared and analysed. A total of 756 metabolites were identified and distinct differences were revealed among the different Laoxianghuang samples. A total of 33 differential metabolites with the most significant changes were screened through further multivariate analytical steps, and each group of samples had unique metabolites. For instance, pomolic acid had the highest content in the JG sample, while L-glycyl-L-isoleucine was rich in the QS sample. Moreover, flavonoid metabolites made the greatest contribution to the unique flavour of Laoxianghuang. The metabolic pathways involved are the biosynthetic pathways of flavonoids, isoflavonoids, flavones, and flavonols. This study can provide some creative information for distinguishing the quality differences of Laoxianghuang from the perspective of metabolites and offer preliminary theoretical support to characterise the formation of flavour substances in Laoxianghuang.
Collapse
|
17
|
Kang MJ, Suh JH. Metabolomics as a tool to evaluate nut quality and safety. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Zhang ZQ, Chen SC, Wei XF, Geng J, Sui ZX, Wang QL, Liu CQ, Xiao JH, Huang DW. Characterization of bioactives and in vitro biological activity from Protaetia brevitarsis larval extracts obtained by different pretreatment extractions. Food Chem 2022; 405:134891. [DOI: 10.1016/j.foodchem.2022.134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
19
|
Ikhalaynen YA, Plyushchenko IV, Rodin IA. Hopomics: Humulus lupulus Brewing Cultivars Classification Based on LC-MS Profiling and Nested Feature Selection. Metabolites 2022; 12:metabo12100945. [PMID: 36295846 PMCID: PMC9609554 DOI: 10.3390/metabo12100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Omics approaches in plant analysis find many different applications, from classification to new bioactive compounds discovery. Metabolomics seems to be one of the most informative ways of describing plants’ phenotypes, since commonly used methods such as liquid chromatography–mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) could provide a huge amount of information about samples. However, due to high efficiency, many disadvantages arise with the complexity of the experimental design. In the present work, we demonstrate an untargeted metabolomics pipeline with the example of a Humulus lupulus classification task. LC-MS profiling of brewing cultivars samples was carried out as a starting point. Hierarchical cluster analysis (HCA)-based classification in combination with nested feature selection was provided for sample discrimination and marker compounds discovery. Obtained metabolome-based classification showed an expected difference compared to genetic-based classification data. Nine compounds were found to have the biggest classification power during nested feature selection. Using database search and molecular network construction, five of them were identified as known hops bitter compounds.
Collapse
Affiliation(s)
| | | | - Igor Alexandrovich Rodin
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Epidemiology and Evidence-Based Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
20
|
Integrated Metabolomic and Transcriptomic Analysis Reveals Differential Flavonoid Accumulation and Its Underlying Mechanism in Fruits of Distinct Canarium album Cultivars. Foods 2022; 11:foods11162527. [PMID: 36010527 PMCID: PMC9407539 DOI: 10.3390/foods11162527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
Canarium album fruit has great potential to be consumed as a raw material not only for food but also medicine. The diverse active metabolites composition and content of C. album fruits greatly affect their pharmacological effects. However, up to now, there has been no report on the global metabolome differences among fruits from distinct C. album cultivars. In our present study, by using non-targeted metabolomics techniques, we identified 87 DAMs (differentially accumulated metabolites) including 17 types of flavonoids from fruits of four different C. album cultivars. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis revealed that the flavone and flavonol biosynthesis- and flavonoid biosynthesis-related DAMs were major factors determining their metabolome differences. Comparative transcriptomic analysis revealed that 15 KEGG pathways were significantly enriched by genes of the identified 3655 DEGs (differentially expressed genes) among different C. album cultivars. Consistent with the metabolome data, flavonoid biosynthesis-related DEGs, including eight key structural genes (such as FLS, CCoAOMT, CHI, C4H, DFR, LAR, and C3′H, etc.) and several regulatory transcription factor (TF) genes (including 32 MYBs and 34 bHLHs, etc.), were found to be significantly enriched (p < 0.01). Our study indicated that the differential expression of flavonoid biosynthesis-related genes and accumulation of flavonoids played dominant roles in the various metabolome compositions of fruits from different C. album cultivars.
Collapse
|
21
|
Peng CY, Ren YF, Ye ZH, Zhu HY, Liu XQ, Chen XT, Hou RY, Granato D, Cai HM. A comparative UHPLC-Q/TOF-MS-based metabolomics approach coupled with machine learning algorithms to differentiate Keemun black teas from narrow-geographic origins. Food Res Int 2022; 158:111512. [DOI: 10.1016/j.foodres.2022.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022]
|
22
|
Mialon N, Roig B, Capodanno E, Cadiere A. Untargeted metabolomic approaches in food authenticity: a review that showcases biomarkers. Food Chem 2022; 398:133856. [DOI: 10.1016/j.foodchem.2022.133856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022]
|
23
|
Vilkickyte G, Motiekaityte V, Vainoriene R, Raudone L. Promising cultivars and intraspecific taxa of lingonberries (Vaccinium vitis-idaea L.): profiling of phenolics and triterpenoids. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Squara S, Stilo F, Cialiè Rosso M, Liberto E, Spigolon N, Genova G, Castello G, Bicchi C, Cordero C. Corylus avellana L. Aroma Blueprint: Potent Odorants Signatures in the Volatilome of High Quality Hazelnuts. FRONTIERS IN PLANT SCIENCE 2022; 13:840028. [PMID: 35310662 PMCID: PMC8929135 DOI: 10.3389/fpls.2022.840028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 05/24/2023]
Abstract
The volatilome of hazelnuts (Corylus avellana L.) encrypts information about phenotype expression as a function of cultivar/origin, post-harvest practices, and their impact on primary metabolome, storage conditions and shelf-life, spoilage, and quality deterioration. Moreover, within the bulk of detectable volatiles, just a few of them play a key role in defining distinctive aroma (i.e., aroma blueprint) and conferring characteristic hedonic profile. In particular, in raw hazelnuts, key-odorants as defined by sensomics are: 2,3-diethyl-5-methylpyrazine (musty and nutty); 2-acetyl-1,4,5,6-tetrahydropyridine (caramel); 2-acetyl-1-pyrroline (popcorn-like); 2-acetyl-3,4,5,6-tetrahydropyridine (roasted, caramel); 3-(methylthio)-propanal (cooked potato); 3-(methylthio)propionaldehyde (musty, earthy); 3,7-dimethylocta-1,6-dien-3-ol/linalool (citrus, floral); 3-methyl-4-heptanone (fruity, nutty); and 5-methyl-(E)-2-hepten-4-one (nutty, fruity). Dry-roasting on hazelnut kernels triggers the formation of additional potent odorants, likely contributing to the pleasant aroma of roasted nuts. Whiting the newly formed aromas, 2,3-pentanedione (buttery); 2-propionyl-1-pyrroline (popcorn-like); 3-methylbutanal; (malty); 4-hydroxy-2,5-dimethyl-3(2H)-furanone (caramel); dimethyl trisulfide (sulfurous, cabbage) are worthy to be mentioned. The review focuses on high-quality hazelnuts adopted as premium primary material by the confectionery industry. Information on primary and secondary/specialized metabolites distribution introduces more specialized sections focused on volatilome chemical dimensions and their correlation to cultivar/origin, post-harvest practices and storage, and spoilage phenomena. Sensory-driven studies, based on sensomic principles, provide insights on the aroma blueprint of raw and roasted hazelnuts while robust correlations between non-volatile precursors and key-aroma compounds pose solid foundations to the conceptualization of aroma potential.
Collapse
Affiliation(s)
- Simone Squara
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Federico Stilo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
- Laemmegroup - A Tentamus Company, Turin, Italy
| | - Marta Cialiè Rosso
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Erica Liberto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | | | | | | | - Carlo Bicchi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - Chiara Cordero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
25
|
Microwave-Assisted Extraction Coupled to HPLC-UV Combined with Chemometrics for the Determination of Bioactive Compounds in Pistachio Nuts and the Guarantee of Quality and Authenticity. Molecules 2022; 27:molecules27041435. [PMID: 35209222 PMCID: PMC8875453 DOI: 10.3390/molecules27041435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
Two novel microwave-assisted extraction (MAE) methods were developed for the isolation of phenols and tocopherols from pistachio nuts. The extracts were analyzed by reversed-phase high-pressure liquid chromatography coupled with a UV detector (RP-HPLC-UV). In total, eighteen pistachio samples, originating from Greece and Turkey, were analyzed and thirteen phenolic compounds, as well as α-tocopherol, (β + γ)-tocopherol, and δ-tocopherol, were identified. The analytical methods were validated and presented good linearity (r2 > 0.990) and a high recovery rate over the range of 82.4 to 95.3% for phenols, and 93.1 to 96.4% for tocopherols. Repeatablility was calculated over the range 1.8–5.8%RSD for intra-day experiments, and reproducibility over the range 3.2–9.4%RSD for inter-day experiments, respectively. Principal component analysis (PCA) was employed to analyze the differences between the concentrations of the bioactive compounds with respect to geographical origin, while agglomerative hierarchical clustering (AHC) was used to cluster the samples based on their similarity and according to the geographical origin.
Collapse
|
26
|
Lanuza F, Zamora-Ros R, Petermann-Rocha F, Martínez-Sanguinetti MA, Troncoso-Pantoja C, Labraña AM, Leiva-Ordoñez AM, Nazar G, Ramírez-Alarcón K, Ulloa N, Lasserre-Laso N, Parra-Soto S, Martorell M, Villagrán M, Garcia-Diaz DF, Andrés-Lacueva C, Celis-Morales C. Advances in Polyphenol Research from Chile: A Literature Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2009508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- F Lanuza
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
- Centro de Epidemiología Cardiovascular y Nutricional (EPICYN), Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - R Zamora-Ros
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - F Petermann-Rocha
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - C Troncoso-Pantoja
- Centro de Investigación en Educación y Desarrollo (CIEDE-UCSC), Departamento de Salud Pública, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - AM Labraña
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - AM Leiva-Ordoñez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - G Nazar
- Departamento de Psicología, Facultad de Ciencias Sociales, y Centro de Vida Saludable. Universidad de Concepción, Concepción, Chile
| | - K Ramírez-Alarcón
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - N Ulloa
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, y Centro de Vida Saludable, Universidad de Concepción, Concepción, Chile
| | - N Lasserre-Laso
- Escuela de Nutrición y Dietética, Facultad de Salud, Universidad Santo Tomás, Los Ángeles, Chile
| | - S Parra-Soto
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M Martorell
- Departamento de Nutrición y Dietética, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - M Villagrán
- Department of Basic Science, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - DF Garcia-Diaz
- Department of Nutrition, School of Medicine, University of Chile, Independencia, 1027 Santiago, Chile
| | - C Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Technology Reference Net (XaRTA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - C Celis-Morales
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Centro de Investigación en Fisiología del Ejercicio (CIFE), Universidad Mayor, Santiago, Chile
- Laboratorio de Rendimiento Humano, Grupo de Estudio en Educación, Actividad Física y Salud (GEEAFyS), Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
27
|
Kalogiouri NP, Samanidou VF. A Validated Ultrasound-Assisted Extraction Coupled with SPE-HPLC-DAD for the Determination of Flavonoids in By-Products of Plant Origin: An Application Study for the Valorization of the Walnut Septum Membrane. Molecules 2021; 26:6418. [PMID: 34770827 PMCID: PMC8588283 DOI: 10.3390/molecules26216418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
Walnut byproducts have been shown to exert functional properties, but the literature on their bioactive content is still scarce. Among walnut byproducts, walnut septum is a dry ligneous diaphragm tissue that divides the two halves of the kernel, exhibiting nutritional and medicinal properties. These functional properties are owing to its flavonoid content, and in order to explore the flavonoid fraction, an ultrasound-assisted (UAE) protocol was combined with solid phase extraction (SPE) and coupled to high-performance liquid chromatography with diode array detection (HPLC-DAD) for the determination of flavonoids in Greek walnut septa membranes belonging to Chandler, Vina, and Franquette varieties. The proposed UAE-SPE-HPLC-DAD method was validated and the relative standard deviations (RSD%) of the within-day and between-day assays were lower than 6.2 and 8.5, respectively, showing good precision, and high accuracy ranging from 90.8 (apigenin) to 97.5% (catechin) for within-day assay, and from 88.5 (myricetin) to 96.2% (catechin) for between-day assay. Overall, seven flavonoids were determined (catechin, rutin, myricetin, luteolin, quercetin, apigenin, and kaempferol) suggesting that the walnut septum is a rich source of bioactive constituents. The quantification results were further processed using ANOVA analysis to examine if there are statistically significant differences between the concentration of each flavonoid and the variety of the walnut septum.
Collapse
Affiliation(s)
| | - Victoria F. Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
28
|
Salem MA, Zayed A, Alseekh S, Fernie AR, Giavalisco P. The integration of MS-based metabolomics and multivariate data analysis allows for improved quality assessment of Zingiber officinale Roscoe. PHYTOCHEMISTRY 2021; 190:112843. [PMID: 34311278 DOI: 10.1016/j.phytochem.2021.112843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Ginger (Zingiber officinale Roscoe) is consumed for health-promoting effects and as a food condiment. Comprehensive phytochemical analysis, other than gingerols and shogaols, has not yet been deeply investigated. Hence, the current research aimed to establish a non-targeted metabolomics approach for the discrimination between fresh ginger rhizome samples collected from four different producing countries, i.e., China, India, Pakistan, and Peru. In addition, lab-dried samples were analyzed to trace drying-induced metabolites. A comprehensive extraction procedure was carried out resulting in production of polar and non-polar fractions. The polar fraction was analyzed by ultra-performance liquid chromatography coupled with Fourier transform tandem mass spectrometry (UPLC-C18-FT-MS/MS) and gas chromatography coupled with time-of-flight mass spectrometry (GC-TOF-MS) post derivatization. UPLC-C8-FT-MS/MS was used for analysis of non-polar fraction. Results revealed for identification of a total of 253 metabolites. In addition, multivariate data analysis (MVDA), including principal component analysis (PCA) demonstrated clustering of Asian specimens. Several metabolites with a characteristic pattern for the origin revealing the highest contents of bioactive metabolites in the Peruvian product. Moreover, chemical markers identified, including [6]-gingerol and [6]-shogaol discriminating between fresh and dried samples. Furthermore, abundances of some primary metabolites, including amino acids and cinnamic acid, have confirmed the biosynthetic pathway of gingerols and their transformation upon drying to shogaols. The proposed approach can be applied as a potential candidate for quality assessment of ginger and other medicinal plants.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin Elkom, 32511, Menoufia, Egypt.
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish Street, Medical Campus, 31527, Tanta, Egypt; Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Str. 49, 67663, Kaiserslautern, Germany.
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph Stelzmann Str. 9b, 50931, Cologne, Germany.
| |
Collapse
|
29
|
Kalogiouri NP, Mitsikaris PD, Klaoudatos D, Papadopoulos AN, Samanidou VF. A Rapid HPLC-UV Protocol Coupled to Chemometric Analysis for the Determination of the Major Phenolic Constituents and Tocopherol Content in Almonds and the Discrimination of the Geographical Origin. Molecules 2021; 26:5433. [PMID: 34576903 PMCID: PMC8464707 DOI: 10.3390/molecules26185433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 01/08/2023] Open
Abstract
Reversed phase-high-pressure liquid chromatographic methodologies equipped with UV detector (RP-HPLC-UV) were developed for the determination of phenolic compounds and tocopherols in almonds. Nineteen samples of Texas almonds originating from USA and Greece were analyzed and 7 phenolic acids, 7 flavonoids, and tocopherols (-α, -β + γ) were determined. The analytical methodologies were validated and presented excellent linearity (r2 > 0.99), high recoveries over the range between 83.1 (syringic acid) to 95.5% (ferulic acid) for within-day assay (n = 6), and between 90.2 (diosmin) to 103.4% (rosmarinic acid) for between-day assay (n = 3 × 3), for phenolic compounds, and between 95.1 and 100.4% for within-day assay (n = 6), and between 93.2-96.2% for between-day assay (n = 3 × 3) for tocopherols. The analytes were further quantified, and the results were analyzed by principal component analysis (PCA), and agglomerative hierarchical clustering (AHC) to investigate potential differences between the bioactive content of almonds and the geographical origin. A decision tree (DT) was developed for the prediction of the geographical origin of almonds proposing a characteristic marker with a concentration threshold, proving to be a promising and reliable tool for the guarantee of the authenticity of the almonds.
Collapse
Affiliation(s)
- Natasa P. Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Petros D. Mitsikaris
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, 57400 Thessaloniki, Greece; (P.D.M.); (A.N.P.)
| | - Dimitris Klaoudatos
- Laboratory of Oceanography, Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece;
| | - Athanasios N. Papadopoulos
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos, 57400 Thessaloniki, Greece; (P.D.M.); (A.N.P.)
| | - Victoria F. Samanidou
- Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
30
|
Fighting food frauds exploiting chromatography-mass spectrometry technologies: Scenario comparison between solutions in scientific literature and real approaches in place in industrial facilities. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Piovesana S, Cavaliere C, Cerrato A, Montone CM, Laganà A, Capriotti AL. Developments and pitfalls in the characterization of phenolic compounds in food: From targeted analysis to metabolomics-based approaches. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Lucini L, Rocchetti G, Trevisan M. Extending the concept of terroir from grapes to other agricultural commodities: an overview. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Chemical and Antifungal Variability of Several Accessions of Azadirachta indica A. Juss. from Six Locations Across the Colombian Caribbean Coast: Identification of Antifungal Azadirone Limonoids. PLANTS 2019; 8:plants8120555. [PMID: 31795367 PMCID: PMC6963471 DOI: 10.3390/plants8120555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Plant materials (i.e., leaves, fruits, and seeds) from 40 trees of Azadirachta indica A. Juss. were collected from six different locations across the Colombian Caribbean coast. Eighty-four ethanolic extracts were prepared and the total limonoid contents (TLiC) and the antifungal activity against Fusarium oxysporum conidia were measured. Their chemical profiles were also recorded via liquid chromatography-electrospray ionization interface-mass spectrometry (LC-ESI-MS) analysis and the top-ranked features were then annotated after supervised multivariate statistics. Inter-location chemical variability within sample set was assessed by sparse partial least squares discriminant analysis (sPLS-DA) and the chemical profiles and biological activity datasets were integrated through single-Y orthogonal partial least squares (OPLS) to identify antifungal bioactives in test extracts. The TLiC and antifungal activity (IC50 values) of the A. indica-derived extracts were found to be ranging from 4.5 to 48.5 mg limonin equivalent per g dry extract and 0.08-44.8 μg/mL, respectively. The presence/abundance of particular limonoids between collected samples influenced the variability among locations. In addition, the integration of chemical and antifungal activity datasets showed five features as markers probably contributing to the bioactivity, annotated as compounds with an azadirone-like moiety. To validate the information provided by the single-Y OPLS model, a high performance liquid chromatography (HPLC)-based microfractionation was then carried out on an active extract. The combined plot of chromatographic profile and microfraction bioactivity also evidenced five signals possessing the highest antifungal activity. The most active limonoid was identified as nimonol 1. Hence, this untargeted metabolite profiling was considered as a convenient tool for identifying metabolites as inter-location markers as well as antifungals against Fusarium oxysporum.
Collapse
|
34
|
Chemical Discrimination of Astragalus mongholicus and Astragalus membranaceus Based on Metabolomics Using UHPLC-ESI-Q-TOF-MS/MS Approach. Molecules 2019; 24:molecules24224064. [PMID: 31717584 PMCID: PMC6891664 DOI: 10.3390/molecules24224064] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
Astragalus mongholicus (MG) and Astragalus membranaceus (MJ), both generally known as Huangqi in China, are two perennial herbals widely used in variety diseases. However, there were still some differences in the chemical ingredients between MG and MJ. In this paper, metabolomics combined with the ultra-high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS/MS) was employed to contrastively analyze the chemical constituents between MG and MJ. As a result, principal component analysis showed that MG and MJ were separated clearly. A total of 53 chemical markers were successfully identified for the discrimination of MG and MJ. Of them, the contents of 36 components including Astragaloside I~III, Astragaloside IV, Agroastragaloside I, etc. in MJ were significantly higher than those in MG. On the contrary, the contents of 17 other components including coumaric acid, formononetin, sophoricoside, etc. in MG were obviously higher than those in MJ. The results showed that the distinctive constituents in MG and MJ were remarkable, and MJ may own stronger pharmacological activities than MG. In a word, MG and MJ may be treated as two different herbs. This paper demonstrated that metabolomics was a vitally credible technology to rapidly screen the characteristic chemical composition of traditional Chinese medicine.
Collapse
|