1
|
Zhang X, Diao X, Li L, Zhang Y, Liao M, Zhang G, Zhang L. Identification of metabolites of Ginkgolide B in vivo and in vitro using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. J Sep Sci 2022; 45:2458-2477. [PMID: 35543088 DOI: 10.1002/jssc.202101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/09/2022]
Abstract
Ginkgolide B is a dietary diterpene with multiple pharmacological activities. However, current research on ginkgolide B is not comprehensive. The current study analyzed the metabolic profile of ginkgolide B in vivo and in vitro using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry . To detect and identify the different metabolites in ginkgolide B, a novel data processing method was used as an assistant tool. A total of 53 different metabolites of ginkgolide B (38 phase I metabolites and 15 phase II metabolites) were detected relative to blank samples. The biotransformation route of ginkgolide B was identified as oxidation, dehydroxylation, hydrogenation, decarbonylation, demethylation, sulfate conjugation, glucose conjugation, methylation and acetylation. The current study demonstrated a method for rapidly detecting and identifying metabolites and provided useful information to further characterize the pharmacology and mechanism of ginkgolide B. A method for the analysis of other diterpene metabolic components in vivo and in vitro was also established. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaowei Zhang
- The Second Hospital of Hebei Medical University, No.215, Heping West Road, Shijiazhuang, Hebei, 050000, P. R. China
| | - Xinpeng Diao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, No.361, Zhongshan East Road, Shijiazhuang, Hebei, 050017, P. R. China
| | - Luya Li
- Department of Pharmacy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, P. R. China
| | - Yuqian Zhang
- The Second Hospital of Hebei Medical University, No.215, Heping West Road, Shijiazhuang, Hebei, 050000, P. R. China
| | - Man Liao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, No.361, Zhongshan East Road, Shijiazhuang, Hebei, 050017, P. R. China
| | - Guohua Zhang
- The Second Hospital of Hebei Medical University, No.215, Heping West Road, Shijiazhuang, Hebei, 050000, P. R. China
| | - Lantong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, No.361, Zhongshan East Road, Shijiazhuang, Hebei, 050017, P. R. China
| |
Collapse
|
2
|
Zhabinskii VN, Drasar P, Khripach VA. Structure and Biological Activity of Ergostane-Type Steroids from Fungi. Molecules 2022; 27:2103. [PMID: 35408501 PMCID: PMC9000798 DOI: 10.3390/molecules27072103] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022] Open
Abstract
Mushrooms are known not only for their taste but also for beneficial effects on health attributed to plethora of constituents. All mushrooms belong to the kingdom of fungi, which also includes yeasts and molds. Each year, hundreds of new metabolites of the main fungal sterol, ergosterol, are isolated from fungal sources. As a rule, further testing is carried out for their biological effects, and many of the isolated compounds exhibit one or another activity. This study aims to review recent literature (mainly over the past 10 years, selected older works are discussed for consistency purposes) on the structures and bioactivities of fungal metabolites of ergosterol. The review is not exhaustive in its coverage of structures found in fungi. Rather, it focuses solely on discussing compounds that have shown some biological activity with potential pharmacological utility.
Collapse
Affiliation(s)
- Vladimir N. Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| | - Pavel Drasar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technicka 5, CZ-166 28 Prague, Czech Republic;
| | - Vladimir A. Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus;
| |
Collapse
|
3
|
Zhang Y, Zhao M, Liu T, Zhu W, Zhao C, Wang M. Rapid characterization of the chemical constituents of Yinchen Wuling Powder by UPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. J Pharm Biomed Anal 2021; 198:114022. [PMID: 33744466 DOI: 10.1016/j.jpba.2021.114022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Yinchen Wuling Powder (YCWLP) is a classic Chinese medicine prescription with a long history and has been commonly used for treating jaundice hepatitis, liver fibrosis, hyperlipidemia and early diabetes in clinical applications. However, the chemical composition of YCWLP is still unclear. In order to obtain the chemical profile of YCWLP, a systematic ultra-performance liquid chromatography coupled with fourier transform ion cyclotron resonance mass spectrometry (UPLC-FT-ICR-MS) method was developed in this study. As a result, a total of 138 compounds including terpenoid acids, organic acids, flavonoids, sesquiterpenes, coumarins and anthraquinones were identified by comparing the retention time, molecular ions and fragmentation behaviors with the reference compounds or the in-house database. This study comprehensively elucidated the chemical basis of YCWLP and provided a scientific basis for further quality control and pharmacology research.
Collapse
Affiliation(s)
- Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Tingting Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Wenjing Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| | - Miao Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Chen Z, Wang M, Yang Y, Cui X, Hu J, Li Y, Zhao F. Promotion of a quality standard for Porana sinensis Hemsl. based on the efficacy-oriented Effect-Constituent Index. Biomed Chromatogr 2019; 34:e4726. [PMID: 31654585 DOI: 10.1002/bmc.4726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
Multicompound determination for the quality control of traditional Chinese medicine (TCM) may often be inadequate, since these compounds may not be associated with, or fully represent, the clinical effects of TCM. Moreover, the individual contributions of each constituent to the pharmacological effect are often not considered. In China, Porana sinensis is widely used as a substitute for Erycibe sources to treat joint pain and rheumatoid arthritis. The existing quality control methods for P. sinensis neither consider the individual contributions of various compounds nor control the actual quality associated with different clinical efficacies. In the present study, a novel efficacy-oriented approach, named the effect-constituent index (ECI), was established for P. sinensis. Analyses of the spectrum-effect relationship and components in rat plasma were conducted to systematically and scientifically select quality markers. Quantitative analysis of multicomponents via a single marker method was introduced to enhance the practical application value of the established ECI. The established ECI shows a good ability to distinguish and predict the bioeffect-based quality of P. sinensis. The present study also provides a reference for the establishment and application of ECI as a quality control method for TCMs.
Collapse
Affiliation(s)
- Zhiyong Chen
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Mengmeng Wang
- Clinical Pharmacology Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Yang
- Xi'an Institute for Food and Drug Control, Xi'an, China
| | - Xiaomin Cui
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Jing Hu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Ye Li
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Feng Zhao
- Xi'an Traditional Chinese Medicine Hospital, Xi'an, China
| |
Collapse
|
5
|
Chen DQ, Hu HH, Wang YN, Feng YL, Cao G, Zhao YY. Natural products for the prevention and treatment of kidney disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:50-60. [PMID: 30466992 DOI: 10.1016/j.phymed.2018.09.182] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) is one of the common causes resulting in a high morbidity and mortality. Renal fibrosis is the main pathological features of CKD. Natural products have begun to gain widely popularity worldwide for promoting healthcare and preventing CKD, and have been used as a conventional or complementary therapy for CKD treatment. PURPOSE The present paper reviewed the therapeutic effects of natural products on CKD and revealed the molecular mechanisms of their anti-fibrosis. METHODS All the available information on natural products against renal fibrosis was collected via a library and electronic search (using Web of Science, Pubmed, ScienceDirect, Splinker, etc.). RESULTS Accumulated evidence demonstrated that natural products exhibited the beneficial effects for CKD treatment and against renal fibrosis. This review presents an overview of the molecular mechanism of CKD and natural products against renal fibrosis, followed by an in-depth discussion of their molecular mechanism of natural products including isolated compounds and crude extracts against renal fibrosis in vitro and in vivo. A number of isolated compounds have been confirmed to retard renal fibrosis. CONCLUSION The review provides comprehensive insights into pathophysiological mechanisms of CKD and natural products against renal fibrosis. Particular challenges are presented and placed within the context of future applications of natural products against renal fibrosis.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - He-He Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Yan-Ni Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
6
|
Schreiber L, Halko R, Hutta M. Fast ultra-high-performance liquid chromatography with diode array and mass spectrometry method for determination of tadalafil drug substance and its impurities. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.4020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/03/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ludovit Schreiber
- Comenius University in Bratislava; Faculty of Natural Science, Department of Analytical Chemistry; Bratislava Slovakia
| | - Radoslav Halko
- Comenius University in Bratislava; Faculty of Natural Science, Department of Analytical Chemistry; Bratislava Slovakia
| | - Milan Hutta
- Comenius University in Bratislava; Faculty of Natural Science, Department of Analytical Chemistry; Bratislava Slovakia
| |
Collapse
|
7
|
Wang K, Chai L, Ding L, Qiu F. Identification of metabolites of palmatine in rats after oral administration using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:523-537. [PMID: 28044413 DOI: 10.1002/rcm.7819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/16/2016] [Accepted: 01/01/2017] [Indexed: 06/06/2023]
Abstract
RATIONALE Palmatine (PAL), a protopalmatine alkaloid, is an active constituent in a number of medicinal plants. In order to obtain a comprehensive and systematic metabolic profile of PAL, we investigated its metabolites in plasma, liver tissue, bile, urine, and feces samples after intragastrical administration to Sprague-Dawley rats with a dose of 100 mg/kg/day. METHODS In this study, a rapid and sensitive method by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/QTOF-MS), and Metabolynx™ software with the mass defect filter (MDF) technique was developed for screening and identification of the metabolites. The structural elucidation of the metabolites was performed by comparing their molecular weights and fragment ions with those of the parent drug. RESULTS As a result, a total of 58 metabolites were identified in rat biological samples including 46 metabolites in urine, 18 metabolites in plasma, 34 metabolites in bile, 26 metabolites in liver tissue, and 10 metabolites in feces. Among them, six major metabolites were fully confirmed using reference standards and others were identified by retention time, accurate mass and fragment ions. CONCLUSIONS These results indicated that phase I reactions (demethylation and hydroxylation) and phase II reaction (glucuronidation and sulfation) were the main metabolic pathways of PAL in vivo. This research enhances our understanding of metabolism of PAL in rats, and provides useful information on the action mechanism of PAL. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kun Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P.R. China
| | - Liwei Chai
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P.R. China
| | - Liqin Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P.R. China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P.R. China
| |
Collapse
|
8
|
Mumtaz MW, Hamid AA, Akhtar MT, Anwar F, Rashid U, AL-Zuaidy MH. An overview of recent developments in metabolomics and proteomics – phytotherapic research perspectives. FRONTIERS IN LIFE SCIENCE 2017. [DOI: 10.1080/21553769.2017.1279573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Muhammad Waseem Mumtaz
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Chemistry, Faculty of Science, University of Gujrat, Gujrat, Pakistan
| | - Azizah Abdul Hamid
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Muhammad Tayyab Akhtar
- Institute of Bioscience, Laboratory of Natural Products, Universiti Putra Malaysia, Serdang, Malaysia
| | - Farooq Anwar
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Umer Rashid
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mizher Hezam AL-Zuaidy
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
9
|
Su D, Li W, Xu Q, Liu Y, Song Y, Feng Y. New metabolites of acteoside identified by ultra-performance liquid chromatography/quadrupole-time-of-flight MSE in rat plasma, urine, and feces. Fitoterapia 2016; 112:45-55. [DOI: 10.1016/j.fitote.2016.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 01/17/2023]
|
10
|
Zhao YY, Chen H, Tian T, Chen DQ, Bai X, Wei F. A pharmaco-metabonomic study on chronic kidney disease and therapeutic effect of ergone by UPLC-QTOF/HDMS. PLoS One 2014; 9:e115467. [PMID: 25535749 PMCID: PMC4275224 DOI: 10.1371/journal.pone.0115467] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/23/2014] [Indexed: 11/25/2022] Open
Abstract
Chronic kidney disease (CKD) is an important public health problem. Ergone has been proved to prevent the progression of CKD. UPLC-QTOF/HDMS was employed for metabolic profiling of adenine-induced CKD and to investigate the nephroprotective effects of ergone. Pharmacology parameters including blood biochemistry, histopathological evaluation and Western blot analysis were performed concurrently. The UPLC-MS data were analyzed by partial least squares-discriminate analysis, correlation analysis, heatmap analysis and mapped to KEGG pathways. Blood and serum biochemistry were observed to be significantly different in the CKD group than in the control group. In conjunction with biochemistry, histopathology and protein expression results, identified metabolites indicated perturbations in fatty acid metabolism, purine metabolism and amino acid metabolism as changes associated with adenine-induced CKD and the interventions of ergone. Upregulated expression of TGF-β1, ED-1, CTGF, bFGF and collagen I was observed in the CKD group. However, downregulated expression of these proteins was observed after oral administration of ergone. These results suggest that expression changes in these proteins had implications for fatty acid metabolism, purine metabolism and amino acid metabolism in the development of CKD and that ergone treatment could delay the development of CKD by normalizing or blocking abnormal changes in biomarker metabolites and protein expression in the CKD group.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, China
| | - Ting Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, China
| | - Xu Bai
- Solution Centre, Waters Technologies (Shanghai) Ltd., Shanghai, China
| | - Feng Wei
- National Institutes for Food and Drug Control, State Food and Drug Administration, Beijing, China
| |
Collapse
|
11
|
Percy AJ, Simon R, Chambers AG, Borchers CH. Enhanced sensitivity and multiplexing with 2D LC/MRM-MS and labeled standards for deeper and more comprehensive protein quantitation. J Proteomics 2014; 106:113-24. [PMID: 24769237 DOI: 10.1016/j.jprot.2014.04.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Mass spectrometry (MS)-based protein quantitation is increasingly being employed to verify candidate protein biomarkers. Multiple or selected reaction monitoring-mass spectrometry (MRM-MS or SRM-MS) with isotopically labeled internal standards has proven to be a successful approach in that regard, but has yet to reach its full potential in terms of multiplexing and sensitivity. Here, we report the development of a new MRM method for the quantitation of 253 disease-associated proteins (represented by 625 interference-free peptides) in 13 LC fractions. This 2D RPLC/MRM-MS approach extends the depth and breadth of the assay by 2 orders of magnitude over pre-fractionation-free assays, with 31 proteins below 10 ng/mL and 41 proteins above 10 ng/mL now quantifiable. Standard flow rates are used in both chromatographic dimensions, and up-front depletion or antibody-based enrichment is not required. The LC separations utilize high and low pH conditions, with the former employing an ammonium hydroxide-based eluent, instead of the conventional ammonium formate, resulting in improved LC column lifetime and performance. The high sensitivity (determined concentration range: 15 mg/mL to 452 pg/mL) and robustness afforded by this method makes the full MRM panel, or subsets thereof, useful for the verification of disease-associated plasma protein biomarkers in patient samples. BIOLOGICAL SIGNIFICANCE The described research extends the breadth and depth of protein quantitation in undepleted and non-enriched human plasma by employing standard-flow 2D RPLC/MRM-MS in conjunction with a complex mixture of isotopically labeled peptide standards. The proteins quantified are mainly putative biomarkers of non-communicable (i.e., non-infectious) disease (e.g., cardiovascular or cancer), which require pre-clinical verification and validation before clinical implementation. Based on the enhanced sensitivity and multiplexing, this quantitative plasma proteomic method should prove useful in future candidate biomarker verification studies.
Collapse
Affiliation(s)
- Andrew J Percy
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Romain Simon
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Andrew G Chambers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Vancouver Island Technology Park, #3101-4464 Markham St., Victoria, BC V8Z 7X8, Canada; Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
12
|
Hu Y, Zhang M, Tong C, Wu J, Liu W. Enrichment of steroid hormones in water with porous and hydrophobic polymer-based SPE followed by HPLC-UV determination. J Sep Sci 2013; 36:3321-9. [DOI: 10.1002/jssc.201300663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Yinfen Hu
- MOE Key Laboratory of Environmental Remediation and Ecological Health; College of Environmental and Resource Sciences; Zhejiang University; Hangzhou China
| | - Man Zhang
- MOE Key Laboratory of Environmental Remediation and Ecological Health; College of Environmental and Resource Sciences; Zhejiang University; Hangzhou China
| | - Changlun Tong
- MOE Key Laboratory of Environmental Remediation and Ecological Health; College of Environmental and Resource Sciences; Zhejiang University; Hangzhou China
| | - Jianmin Wu
- Department of Chemistry, Institute of Microanalytical System; Zhejiang University; Hangzhou China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecological Health; College of Environmental and Resource Sciences; Zhejiang University; Hangzhou China
| |
Collapse
|
13
|
Zhao YY. Traditional uses, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus (Pers.) Fries: a review. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:35-48. [PMID: 23811047 DOI: 10.1016/j.jep.2013.06.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyporus umbellatus (Pers.) Fries (Polyporaceae, Zhuling ) has been commonly used in medicine for a wide range of ailments related to the edema, scanty urine, vaginal discharge, urinary dysfunction, as well as jaundice and diarrhea. AIM OF THE REVIEW The present paper reviewed the traditional uses, propagation, phytochemistry, pharmacology, pharmacokinetics and quality control of Polyporus umbellatus. MATERIALS AND METHODS All the available information on Polyporus umbellatus was collected via a library and electronic search (using Web of Science, Pubmed, ScienceDirect, Splinker, Google Scholar, etc.). RESULTS Phytochemical studies showed the presence of many valuable secondary metabolites such as steroids, polysaccharides, anthraquinones and nucleosides. Crude extracts and isolated compounds showed a wide spectrum of pharmacological activities including diuretic, nephroprotective, anti-cancer, immuno-enhancing, hepatoprotective, anti-inflammatory and antioxidative activities. The pharmacokinetic studies demonstrated that the ergosterol and ergone had a high distribution and absorption in the plasma and the two main components of Polyporus umbellatus were mainly excreted by faeces. The determination of multiple chemical components was successfully applied to the quality control of Polyporus umbellatus. CONCLUSIONS Modern phytochemical, pharmacological and metabonomic investigations showed that the crude extracts and isolated compounds from Polyporus umbellatus possess many kinds of biological functions, especially in the diuretic activities and the treatment of kidney diseases as well as anti-cancer, immuno-enhancing and hepatoprotective activities. The pathways of the distribution, absorption, metabolism and excretion of main steroidal compounds were clarified by pharmacokinetic studies. Most of the pharmacological studies were conducted using crude and poorly characterized extracts of Polyporus umbellatus in animals especially in case of diuretic activities and the treatment of kidney diseases. Thus, more bioactive components especially diuretic compounds should be identified using bioactivity-guided isolation strategies and the possible mechanism of action as well as potential synergistic or antagonistic effects of multi-component mixtures derived from Polyporus umbellatus need to be evaluated integrating pharmacological, pharmacokinetic, bioavailability-centered and physiological approaches. In addition, more experiments including in vitro, in vivo and clinical studies should be encouraged to identify any side effects or toxicity. These achievements will further expand the existing therapeutic potential of Polyporus umbellatus and provide a beneficial support to its future further clinical use in modern medicine.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, PR China.
| |
Collapse
|
14
|
Zhao YY. Metabolomics in chronic kidney disease. Clin Chim Acta 2013; 422:59-69. [PMID: 23570820 DOI: 10.1016/j.cca.2013.03.033] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/23/2013] [Accepted: 03/27/2013] [Indexed: 12/24/2022]
Abstract
Chronic kidney disease (CKD) represents a major challenge to public healthcare. Traditional clinical biomarkers of renal function (blood urea nitrogen and serum creatinine) are not sensitive or specific enough and only increase significantly after the presence of substantial CKD. Therefore, more sensitive biomarkers of CKD are needed. CKD-specific biomarkers at an early disease stage and early diagnosis of specific renal diseases would enable improved therapeutic treatment and reduced the personal and financial burdens. The goal of metabolomics is to identify non-targeted, global small-molecule metabolite profiles of complex samples, such as biofluids and tissues. This method offers the potential for a holistic approach to clinical medicine, as well as improvements in disease diagnoses and the understanding of pathological mechanisms. This review article presents an overview of the recent developments in the field of metabolomics, followed by an in-depth discussion of its application to the study of CKD (primary, chronic glomerulonephritis such as IgA nephropathy; secondary, chronic renal injury such as diabetic nephropathy; chronic renal failure including end-stage kidney disease with and without undergoing replacement therapies, etc), including metabolomic analytical technologies, chemometrics, and metabolomics in experimental and clinical research. We describe the current status of the identification of metabolic biomarkers in CKD. Several markers have been confirmed across multiple studies to detect CKD earlier than traditional clinical chemical and histopathological methods. The application of metabolomics in CKD studies provides researchers the opportunity to gain new insights into metabolic profiling and pathophysiological mechanisms. Particular challenges in the field are presented and placed within the context of future applications of metabolomic approaches to the studies of CKD.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China.
| |
Collapse
|
15
|
Chen DQ, An JM, Feng YL, Tian T, Qin XY, Zhao YY. Cloud-point extraction combined with liquid chromatography for the determination of ergosterol, a natural product with diuretic activity, in rat plasma, urine, and faeces. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2013; 2013:479056. [PMID: 23691436 PMCID: PMC3649294 DOI: 10.1155/2013/479056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/07/2013] [Indexed: 06/02/2023]
Abstract
Ergosterol from many medicinal fungi has been demonstrated to possess a variety of pharmacological activities in vivo and in vitro. A new method based on cloud-point extraction has been developed, optimized and validated for the determination of ergosterol in rat plasma, urine and faeces by liquid chromatography. The non-ionic surfactant Triton X-114 was chosen as the extract solvent. The chromatographic separation was performed on an Inertsil ODS-3 analytical column with a mobile phase consisting of methanol and water (98 : 2, v/v) at a flow rate of 1 mL/min. The methodology was validated completely. The results indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. The method was successfully applied to the pharmacokinetic studies of ergosterol in rats. The results indicate that the ergosterol levels in feces are much higher than those in plasma and urine of the rat.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Jun-Min An
- Department of Nephrology, Xi'an No. 4 Hospital, No. 21 Jiefang Road, Xi'an, Shaanxi 710004, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ting Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Xiang-Yang Qin
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| |
Collapse
|
16
|
Yin Q, Wang P, Zhang A, Sun H, Wu X, Wang X. Ultra-performance LC-ESI/quadrupole-TOF MS for rapid analysis of chemical constituents of Shaoyao-Gancao decoction. J Sep Sci 2013; 36:1238-46. [DOI: 10.1002/jssc.201201198] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/31/2012] [Accepted: 01/12/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Quanwei Yin
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| | - Ping Wang
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| | - Aihua Zhang
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| | - Hui Sun
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| | - Xiuhong Wu
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| | - Xijun Wang
- Department of Pharmaceutical Analysis; Heilongjiang University of Chinese Medicine; National TCM Key Lab of Serum Pharmacochemistry; Harbin China
| |
Collapse
|
17
|
Zhao YY, Zhang L, Feng YL, Chen DQ, Xi ZH, Du X, Bai X, Lin RC. Pharmacokinetics of 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside in rat using ultra-performance LC-quadrupole TOF-MS. J Sep Sci 2013; 36:863-871. [PMID: 23371758 DOI: 10.1002/jssc.201200668] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 08/29/2023]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG) from Polygoni multiflori has been demonstrated to possess a variety of pharmacological activities, including antioxidant, anti-inflammatory and hepatoprotective activities. Ultra-performance LC-quadrupole TOF-MS with MS Elevated Energy data collection technique and rapid resolution LC with diode array detection and ESI multistage MS(n) methods were developed for the pharmacokinetics, tissue distribution, metabolism, and excretion studies of THSG in rats following a single intravenous or oral dose. The three metabolites were identified by rapid resolution LC-MS(n). The concentrations of the THSG in rat plasma, bile, urine, feces, or tissue samples were determined by ultra-performance LC-MS. The results showed that THSG was rapidly distributed and eliminated from rat plasma. After the intravenous administration, THSG was mainly distributing in the liver, heart, and lung. For the rat, the major distribution tissues after oral administration were heart, kidney, liver, and lung. There was no long-term storage of THSG in rat tissues. Total recoveries of THSG within 24 h were low (0.1% in bile, 0.007% in urine, and 0.063% in feces) and THSG was excreted mainly in the forms of metabolites, which may resulted from biotransformation in the liver.
Collapse
Affiliation(s)
- Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, the College of Life Sciences, Northwest University, Xi'an, Shaanxi, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|