1
|
Nicolescu A, Bunea CI, Mocan A. Total flavonoid content revised: An overview of past, present, and future determinations in phytochemical analysis. Anal Biochem 2025; 700:115794. [PMID: 39894144 DOI: 10.1016/j.ab.2025.115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Flavonoids represent an important research topic in the analytical chemistry of secondary plant metabolites. During habitual laboratory determinations, preliminary quantitative analysis is often associated with in vitro colorimetric assessment. Total flavonoid content (TFC) is used as screening method with high relevance in the chemical analysis of plants and derived products, being typically applied before HPLC-MS phytochemical profiling. Its importance stems from affordability, simplicity, rapidity, and low cost. The AlCl3 assay, with or without NaNO2 addition, is the most used method in the present, although less frequently used methods (using 2,4-dinitrophenylhydrazine, dimethylamino-cinnamaldehyde, or diethylene glycol) show potential for complementary and specific determinations. Given the prevalence of research papers focusing on a single method for "total flavonoid" determination, we identified the need for an objective and critical comparison of existing methodologies. Moreover, a special notice is dedicated to the past and the future of in vitro TFC determinations, in the context of recent advances in flavonoid research. The focal point of this review is to serve as a basis for laboratory protocol reorganization regarding TFC determination, as a powerful tool before mass spectrometry, as well as to present a potential complementary analysis protocol applicable to biological samples. Among the methods found in the literature, SBC was the only assay providing accurate determinations of TFC.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăștur Street, Cluj-Napoca, 400372, Romania
| | - Claudiu Ioan Bunea
- Department of Viticulture and Oenology, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, 400372, Romania
| | - Andrei Mocan
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăștur Street, Cluj-Napoca, 400372, Romania; Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Kannouma RE, Kamal AH, Hammad MA, Mansour FR. Fabrication of Highly Fluorescent Nitrogen and Phosphorus Dual-Doped Carbon Dots for Selective Sensing of Rutin. LUMINESCENCE 2025; 40:e70089. [PMID: 39823174 DOI: 10.1002/bio.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 12/04/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Based on nitrogen and phosphorus co-doped carbon dots (NP-CDs), a direct, quick, and selective sensing probe for fluorometric detection of rutin has been developed. Utilizing ethylene diamine tetra acetic acid (EDTA) as a carbon and nitrogen source and diammonium hydrogen phosphate (NH4)2HPO4 as a nitrogen and phosphorus source. The NP-CDs were synthesized in less than 3 min with a straightforward one-step microwave pyrolysis process with a high quantum yield (63.8%). After being excited at λ = 360 nm, the produced NP-CDs displayed a maximum bluish fluorescence at λem of 420 nm. Rutin quenched the fluorescence of the produced NP-CDs based on the inner filter effect and static quenching processes. Along with the International Council of Harmonization (ICH) requirements, the developed spectrofluorometric method was validated. The linearity range was 0.50-35.00 μg/mL of rutin. The developed NP-CDs were successfully employed to determine rutin concentrations in marketed tablets. The developed method is quick, simple, consistent, sensitive, and selective, and it does not require expensive chemicals or specialized instruments. This study paves the path for future application of NP-CD in pharmaceutical analysis.
Collapse
Affiliation(s)
- Reham E Kannouma
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Amira H Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mohamed A Hammad
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Fotouh R Mansour
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Ren F, Li Y, Luo H, Gao S, Jiang S, Yang J, Rao C, Chen Y, Peng C. Extraction, detection, bioactivity, and product development of luteolin: A review. Heliyon 2024; 10:e41068. [PMID: 39759280 PMCID: PMC11700251 DOI: 10.1016/j.heliyon.2024.e41068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Luteolin is a kind of natural flavonoid, widely existing in a variety of plants, has been revealed to have a wide range of biological activities. In recent years, the research results of luteolin are abundant. Here we review the latest research results of luteolin in order to provide new ideas for further research and development of luteolin. In this paper, the focus of the search was published between 2010 and 2024 on the extraction and determination of luteolin, biological activities, and the development and application of luteolin products. A comprehensive search using the keyword "luteolin" was conducted in the PubMed, Web of Science and WIPO databases. Through the collection of related literature, this paper summarized a variety of extraction techniques of luteolin, including immersion extraction, solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction and so on. The determination methods include: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), electrochemical method (ED) and so on. In addition, the biological activities of luteolin, including antioxidant, anti-inflammatory, anti-tumor, antibacterial, analgesic and so on, were described. And luteolin as the main component of the product is being gradually developed, and has been used in the field of food, medicine and cosmetics. This paper provides a reference for further study of luteolin.
Collapse
Affiliation(s)
- Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ying Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jian Yang
- Chuan-chu UNITED INTERNATIONAL Engineering Co., LTD, Chengdu, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 611137, China
| |
Collapse
|
4
|
Tang T, Xu Z, Wang Y, Li X, Li L, Cheng H, Tian Y, Huang W, Feng J. Effective enrichment and separation of three flavonoids from Ohwia caudata (Thunberg) H. Ohashi using magnetic layered double hydroxide/ZIF-8 composites and pCEC. J Pharm Biomed Anal 2024; 245:116161. [PMID: 38714135 DOI: 10.1016/j.jpba.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/09/2024]
Abstract
In this study, Fe3O4@ZnCr-layered double hydroxide/zeolitic imidazolate frameworks-8 (MLDH/ZIF-8) magnetically functionalized composites were synthesized by co-precipitation and in situ growth based on the advantages of LDHs and ZIF-8 using Fe3O4 nanoparticles as a magnetic substrate to obtain adsorbents with excellent performance. Moreover, the composite was used for the efficient enrichment of flavonoids in Chinese herbal medicines. The internal structures and surface properties were characterized by SEM, Fourier transform infrared spectroscopy, X-ray diffraction and so on. MLDH/ZIF-8 exhibited a large specific surface area and good paramagnetic properties. The MLDH/ZIF-8 magnetic composite was used as a magnetic solid-phase extraction (MSPE) adsorbent, and a MLDH/ZIF-8 MSPE-pressurized capillary electrochromatography coupling method was developed for the separation and detection of flavonoids (luteolin, kaempferol and apigenin) in a sample of the Chinese herb Ohwia caudata (Thunberg) H. Ohashi. The relevant parameters affecting the extraction efficiency were optimized to determine the ideal conditions for MSPE. 5 mg of adsorbent in sample solution at pH 6, vortex extraction for 5 min, elution with 1.5 mL of ethyl acetate for 15 min. The method showed good linearity in the concentration range of 3-50 μg mL-1 with correlation coefficients of 0.9934-0.9981, and displayed a relatively LODs of 0.07-0.09 μg mL-1. The spiked recoveries of all analytes ranged from 84.5% to 122.0% with RSDs (n=3) between 4.5% and 7.7%. This method is straightforward and efficient, with promising potential in the separation and analysis of active ingredients in various Chinese herbal medicines.
Collapse
Affiliation(s)
- Tingfan Tang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China
| | - Ziwei Xu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Ying Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Xuesong Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China
| | - Yuhong Tian
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China; Provine and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, Guangxi 530004, PR China.
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine/College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, PR China.
| |
Collapse
|
5
|
Yang YQ, Zhang Y, Liu Y, Lin F, Zhang H. White-Light Emission from a Host-Guest Composite between Carboxylatopillar[5]arene-Modified N-Doped Carbon Dots and Rhodamine 6G for Rutin Detection. ACS OMEGA 2024; 9:14429-14435. [PMID: 38559962 PMCID: PMC10975606 DOI: 10.1021/acsomega.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The construction of tunable white-light-emitting materials has garnered increasing attention in the scientific community. In this study, N-doped carbon dots (N-CDs) were surface-modified with carboxylatopillar[5]arene (CP[5]) using an EDC-NHS coupling reaction to create CCDs. CCDs were then conjugated with rhodamine 6G (R6G) through host-guest interactions to fabricate the CCDs-R6G composites. These composites produced two-color fluorescence emission peaks at 447 and 557 nm when excited by a wavelength of 340 nm. Excitingly, white-light emission (0.28, 0.30) can be readily achieved by varying the R6G concentration. To further explore potential applications, a new detection method for rutin (RT) based on the inner filter effect (IFE) was developed. Experimental results verify the practicality and reliability of the fluorescence sensor based on CCDs-R6G composites for RT detection in real samples.
Collapse
Affiliation(s)
- Yun-qiong Yang
- School of Environmental and
Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Yuan Zhang
- School of Environmental and
Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Yang Liu
- School of Environmental and
Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Feier Lin
- School of Environmental and
Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Hao Zhang
- School of Environmental and
Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| |
Collapse
|
6
|
Wu F, Yang J, Ye Y, Wu R, Wang H. Chlorine-doped MoS 2 quantum dots embedded in a molecularly imprinted polymer for highly selective and sensitive optosensing of quercetin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:269-275. [PMID: 38112593 DOI: 10.1039/d3ay01656k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chlorine-doped MoS2 quantum dots (Cl-MoS2 QDs) embedded in a SiO2 molecularly imprinted polymer (Cl-MoS2 QDs@SiO2@MIP) have been successfully synthesized and can be used for highly selective and sensitive optosensing of quercetin. The novel environmentally friendly sensor integrated the advantages of the Cl-MoS2 QDs and MIP, high sensitivity and specific recognition for quercetin. The as-fabricated sensor is used to detect trace amounts of quercetin, and its fluorescence intensity showed a good linear decline with the increasing concentration of quercetin from 2 ng mL-1 to 200 ng mL-1 with a detection limit of 1.2 ng mL-1 (S/N = 3). The Cl-MoS2 QDs@SiO2@MIP probe was employed to assay the content of quercetin of real onion extract with good performance, which is in fine agreement with the result obtained by high performance liquid chromatography. The developed Cl-MoS2 QDs@SiO2@MIP sensor exhibits promising potential in the detection of quercetin.
Collapse
Affiliation(s)
- Fengyi Wu
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China
| | - Jiliang Yang
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China
| | - Yousheng Ye
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China
| | - Rong Wu
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China
| | - Haiyan Wang
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China
| |
Collapse
|
7
|
Alkahtani SA, Mahmoud AM, Alqahtani YS, Ali AMBH, El-Wekil MM. Selective detection of rutin at novel pyridinic-nitrogen-rich carbon dots derived from chicken feet biowaste: The role of bovine serum albumin during the assay. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123252. [PMID: 37579662 DOI: 10.1016/j.saa.2023.123252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
A simple fluorescence method is described for measuring rutin dependent on the nitogen-doped carbon dots (NCDs) prepared via simple pyrolysis method from chicken feet biowaste. The as-fabricated NCDs have unique advantages including cost-effectiveness and high quantum yield (42.9 %). The as-prepared NCDs explore an optimal emission band at 430 nm following exciting NCDs at 330 nm. Addition of rutin to blue-emissive NCDs quenched their fluorescence emission by inner-filtration effect (IFE) and static quenching. Under optimized conditions, the fluorescence responses increased as the rutin amount was raised from 100 to 1000 nmol/L with 5.3 nmol/L as a detection limit (S/N = 3). The probe selectivity was improved by adding bovine serum albumin (BSA), which binds other structurally-related compounds (other flavonoids). The as-synthesized NCDs exhibited some advantages towards rutin detection such as: lower LOD value, satisfactorily reproducibility, simplicity, rapidity, selectivity, and stability. The sensing probe was efficiently utilized for determining rutin in different real samples with acceptable results. The sensor offers an efficient biowaste-based approach for the determination of (bio) molecules.
Collapse
Affiliation(s)
- Saad A Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
8
|
Hao W, Gan H, Wang L, Huang J, Chen J. Polyphenols in edible herbal medicine: targeting gut-brain interactions in depression-associated neuroinflammation. Crit Rev Food Sci Nutr 2023; 63:12207-12223. [PMID: 35838146 DOI: 10.1080/10408398.2022.2099808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Supplementing with edible herbal medicine is an important strategy because of its role in nutrition. Many polyphenols, which are universal components in edible herbal medicines, have low bioavailability. Therefore, gut microbiota is a key determinant of polyphenol bioactivity. Polyphenols can alter the abundance of flora associated with neuroinflammation by reversing intestinal microbiota dysbiosis. Intestinal flora-mediated chemical modification of polyphenols can result in their conversion into active secondary metabolites. The current review summarizes the main edible medicines used in anti-depression and details the interactions between polyphenols and gut microbiota; in addition, it provides insights into the mechanisms underlying the possible suppression of neuroinflammation associated with depression, by polyphenols in edible herbal medicine. A better understanding of polyphenols with bioactivities that are crucial in edible herbal medicine may facilitate their use in the prevention and treatment of neuroinflammation associated with depression.
Collapse
Affiliation(s)
- Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lu Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Zhang S, Ning J, Wang Q, Wang W. Fluorescence enhancement of flavonoids and its application in ingredient determination for some traditional Chinese medicines by CE-LIF. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37309583 DOI: 10.1039/d3ay00486d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flavonoids are widely used in the treatment of various diseases due to their antioxidant, anti-inflammatory, anticancer and antiviral properties. Fluorescence detection is rarely applied for the determination of flavonoids because of their weak fluorescence. In this work, a method of fluorescence enhancement of flavonoids was firstly introduced by using sodium acetate for flavonoid derivatization. The study discovered that flavonoids, with a hydroxyl at the C3 position, had the ability to emit strong fluorescence after derivatization. Five flavonoids, kaempferide, galangin, isorhamnetin, kaempferol and quercetin, having a special structure, were selected, derivatized and analyzed by capillary electrophoresis with laser-induced fluorescence detection. Under the optimal conditions, the five flavonoids could be completely separated within 3 minutes. Good linear relationships were obtained for all analytes and the limits of detection for the five flavonoids were in the range of 1.18-4.67 × 10-7 mol L-1. Finally, the method was applied to the determination of flavonoids in five traditional Chinese medicines: aster, chamomile, galangal, tangerine peel and cacumen biotae. Flavonoids were successfully found in all these medicines by the developed method. The recoveries were in the range of 84.2-111%. The method developed in this study was fast, sensitive and reliable for the determination of flavonoids.
Collapse
Affiliation(s)
- Shaoyan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Jinfeng Ning
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Qingqing Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
10
|
Liang Y, Zhang L, Wang H, Cai X, Zhang L, Xu Y, Yao C, Si W, Huang Z, Shi G. Fabrication of a Novel Electrochemical Sensor Based on Tin Disulfide/Multi-walled Carbon Nanotubes-modified Electrode for Rutin Determination in Natural Vegetation. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
11
|
Noreldeen HAA, Huang KY, Wu GW, Zhang Q, Peng HP, Deng HH, Chen W. Feature Selection Assists BLSTM for the Ultrasensitive Detection of Bioflavonoids in Different Biological Matrices Based on the 3D Fluorescence Spectra of Gold Nanoclusters. Anal Chem 2022; 94:17533-17540. [PMID: 36473730 DOI: 10.1021/acs.analchem.2c03814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and on-site qualitative and quantitative analysis of small molecules (including bioflavonoids) in biofluids are of great importance in biomedical applications. Herein, we have developed two deep learning models based on the 3D fluorescence spectra of gold nanoclusters as a single probe for rapid qualitative and quantitative analysis of eight bioflavonoids in serum. The results proved the efficiency and stability of the random forest-bidirectional long short-term memory (RF-BLSTM) model, which was used only with the most important features after deleting the unimportant features that might hinder the performance of the model in identifying the selected bioflavonoids in serum at very low concentrations. The optimized model achieves excellent overall accuracy (98-100%) in the qualitative analysis of the selected bioflavonoids. Next, the optimized model was transferred to quantify the selected bioflavonoids in serum at nanoscale concentrations. The transferred model achieved excellent accuracy, and the overall determination coefficient (R2) value range was 99-100%. Furthermore, the optimized model achieved excellent accuracies in other applications, including multiplex detection in serum and model applicability in urine. Also, LOD in serum at nanoscale concentration was considered. Therefore, this approach opens the window for qualitative and quantitative analysis of small molecules in biofluids at nanoscale concentrations, which may help in the rapid inclusion of sensor arrays in biomedical and other applications.
Collapse
Affiliation(s)
- Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.,National Institute of Oceanography and Fisheries, NIOF, Cairo 4262110, Egypt
| | - Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Gang-Wei Wu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.,Department of Pharmacy, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qi Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
12
|
Huang Y, Si X, Han M, Bai C. Rapid and Sensitive Detection of Rutin in Food Based on Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probe. Molecules 2022; 27:molecules27248834. [PMID: 36557970 PMCID: PMC9784171 DOI: 10.3390/molecules27248834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to establish a rapid detection method of rutin in food based on nitrogen-doped carbon quantum dots (N-CDs) as the fluorescent probe. N-CDs were prepared via a single-step hydrothermal process using citric acid as the carbon source and thiourea as the nitrogen source. The optical properties of N-CDs were characterized using an electron transmission microscope, X-ray diffractometer, Fourier-transform infrared spectrometer, and nanoparticle size potential analyzer. The UV/Vis absorption property and fluorescence intensity of N-CDs were also characterized using the respective spectroscopy techniques. On this basis, the optimal conditions for the detection of rutin by N-CDs fluorescent probes were also explored. The synthesized N-CDs were amorphous carbon structures with good water solubility and optical properties, and the quantum yield was 24.1%. In phosphate-buffered solution at pH = 7.0, Rutin had a strong fluorescence-quenching effect on N-CDs, and the method showed good linearity (R2 = 0.9996) when the concentration of Rutin was in the range of 0.1-400 μg/mL, with a detection limit of 0.033 μg/mL. The spiked recoveries in black buckwheat tea and wolfberry were in the range of 93.98-104.92%, the relative standard deviations (RSD) were in the range of 0.35-4.11%. The proposed method is simple, rapid, and sensitive, and it can be used for the rapid determination of rutin in food.
Collapse
|
13
|
Li F, Wang M, Zhou J, Yang M, Wang T. Nanocomposites of boronic acid-functionalized magnetic multi-walled carbon nanotubes with flexible branched polymers as a novel desorption/ionization matrix for the capture and direct detection of cis-diol-flavonoid compounds coupled with MALDI-TOF-MS. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128055. [PMID: 35236020 DOI: 10.1016/j.jhazmat.2021.128055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Novel boronic acid-functionalized magnetic multi-walled carbon nanotubes with flexible branched polymer (Fe3O4@MWCNTs@ε-PL@BA) nanocomposites were fabricated and applied as the desorption/ionization matrix for the MALDI-TOF-MS determination of low molecular weight flavonoids. The prepared nanocomposite was systematically characterized by various techniques. Compared to the traditional organic matrix, the proposed Fe3O4@MWCNTs@ε-PL@BA matrix has excellent ionization efficiency and low-background noise interference due to the MWCNTs unique electron-phonon interaction and the high introduction density of boronic acid functional groups. Good sensitivity and ultra-high salt tolerance of the Fe3O4@MWCNTs@ε-PL@BA-assisted MALDI-TOF-MS were permitted for the determination and quantification of flavonoids in actual samples. Noticeably, the limits of detection (LODs) for the target flavonoids were in the range 17-33 nM. The relative standard deviations (RSDs) of spot-to-spot and sample-to-sample (n = 10) were ≤ 9.8% and ≤ 10.1%, respectively. Furthermore, the wide linear ranges (0.1 - 500 µg/mL) and satisfactory calibration plot coefficients (R2 > 0.99) of flavonoids were achieved by MALDI-TOF-MS with the Fe3O4@MWCNTs@ε-PL@BA matrix. Good recoveries (92-105.5%) were achieved for the target flavonoids in practical food samples. Hence, the prepared Fe3O4@MWCNTs@ε-PL@BA nanocomposites have applications in the selective and efficient capture of target flavonoids active biomolecules coupled with MALDI-TOF-MS determination in actual samples.
Collapse
Affiliation(s)
- FuKai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Jian Zhou
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - MengRui Yang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - TongTong Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| |
Collapse
|
14
|
Zhang S, Wang Z, Yan W, Guo Y. Novel luteolin sensor of tannic acid-stabilized copper nanoclusters with blue-emitting fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119887. [PMID: 33971442 DOI: 10.1016/j.saa.2021.119887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/30/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
In this work, the fluorescent copper nanoclusters (Cu NCs) were firstly adopted to detect luteolin with excellent performance. The blue-emitting Cu NCs was successfully prepared through a facile one-pot approach by protection of tannic acid (TA) and chemical reduction of ascorbic acid (AA). The water-soluble nanoclusters possessed uniform size and displayed good stability. The TA-Cu NCs showed maximum luminescence at 434 nm when excited at 366 nm. Based on the static quenching and inner filter effect (IFE) mechanism, the TA-Cu NCs was efficiently and selectively quenched by luteolin. The detection limit was 0.12 μM and linear relationship existed in the range of 0.2-100 μM. Moreover, the TA-Cu NCs probe was successfully employed to detect luteolin in bovine serum samples with satisfactory recoveries. This novel platform was expected to expand the possible detection method based on fluorescence properties.
Collapse
Affiliation(s)
- Shen Zhang
- Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, Shanxi, China
| | - Zhuo Wang
- Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, Shanxi, China
| | - Wenyu Yan
- Department of Chemistry, Taiyuan Normal University, Jinzhong, 030619, Shanxi, China
| | - Yuyu Guo
- College of Arts, Taiyuan University of Technology, Jinzhong, 030600, Shanxi, China.
| |
Collapse
|
15
|
Cao Y, Xie L, Liu K, Liang Y, Dai X, Wang X, Lu J, Zhang X, Li X. The antihypertensive potential of flavonoids from Chinese Herbal Medicine: A review. Pharmacol Res 2021; 174:105919. [PMID: 34601080 DOI: 10.1016/j.phrs.2021.105919] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
With the coming of the era of the aging population, hypertension has become a global health burden to be dealt with. Although there are multiple drugs and procedures to control the symptoms of hypertension, the management of it is still a long-term process, and the side effects of conventional drugs pose a burden on patients. Flavonoids, common compounds found in fruits and vegetables as secondary metabolites, are active components in Chinese Herbal Medicine. The flavonoids are proved to have cardiovascular benefits based on a plethora of animal experiments over the last decade. Thus, the flavonoids or flavonoid-rich plant extracts endowed with anti-hypertension activities and probable mechanisms were reviewed. It has been found that flavonoids may affect blood pressure in various ways. Moreover, despite the substantial evidence of the potential for flavonoids in the control of hypertension, it is not sufficient to support the clinical application of flavonoids as an adjuvant or core drug. So the synergistic effects of flavonoids with other drugs, pharmacokinetic studies, clinical trials and the safety of flavonoids are also incorporated in the discussion. It is believed that more breakthrough studies are needed. Overall, this review may shed some new light on the explicit recognition of the mechanisms of anti-hypertension actions of flavonoids, pointing out the limitations of relevant research at the current stage and the aspects that should be strengthened in future researches.
Collapse
Affiliation(s)
- Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xumin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
16
|
Gackowski M, Przybylska A, Kruszewski S, Koba M, Mądra-Gackowska K, Bogacz A. Recent Applications of Capillary Electrophoresis in the Determination of Active Compounds in Medicinal Plants and Pharmaceutical Formulations. Molecules 2021; 26:4141. [PMID: 34299418 PMCID: PMC8307982 DOI: 10.3390/molecules26144141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022] Open
Abstract
The present review summarizes scientific reports from between 2010 and 2019 on the use of capillary electrophoresis to quantify active constituents (i.e., phenolic compounds, coumarins, protoberberines, curcuminoids, iridoid glycosides, alkaloids, triterpene acids) in medicinal plants and herbal formulations. The present literature review is founded on PRISMA guidelines and selection criteria were formulated on the basis of PICOS (Population, Intervention, Comparison, Outcome, Study type). The scrutiny reveals capillary electrophoresis with ultraviolet detection as the most frequently used capillary electromigration technique for the selective separation and quantification of bioactive compounds. For the purpose of improvement of resolution and sensitivity, other detection methods are used (including mass spectrometry), modifiers to the background electrolyte are introduced and different extraction as well as pre-concentration techniques are employed. In conclusion, capillary electrophoresis is a powerful tool and for given applications it is comparable to high performance liquid chromatography. Short time of execution, high efficiency, versatility in separation modes and low consumption of solvents and sample make capillary electrophoresis an attractive and eco-friendly alternative to more expensive methods for the quality control of drugs or raw plant material without any relevant decrease in sensitivity.
Collapse
Affiliation(s)
- Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL–85089 Bydgoszcz, Poland; (A.P.); (M.K.)
| | - Anna Przybylska
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL–85089 Bydgoszcz, Poland; (A.P.); (M.K.)
| | - Stefan Kruszewski
- Biophysics Department, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellońska 13 Street, PL–85067 Bydgoszcz, Poland;
| | - Marcin Koba
- Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, PL–85089 Bydgoszcz, Poland; (A.P.); (M.K.)
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland;
| | - Artur Bogacz
- Department of Otolaryngology and Oncology, Faculty of Medicine, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Skłodowskiej Curie 9 Street, PL–85094 Bydgoszcz, Poland;
| |
Collapse
|
17
|
Jiang W, Xia T, Liu C, Li J, Zhang W, Sun C. Remodeling the Epigenetic Landscape of Cancer-Application Potential of Flavonoids in the Prevention and Treatment of Cancer. Front Oncol 2021; 11:705903. [PMID: 34235089 PMCID: PMC8255972 DOI: 10.3389/fonc.2021.705903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics, including DNA methylation, histone modification, and noncoding RNA regulation, are physiological regulatory changes that affect gene expression without modifying the DNA sequence. Although epigenetic disorders are considered a sign of cell carcinogenesis and malignant events that affect tumor progression and drug resistance, in view of the reversible nature of epigenetic modifications, clinicians believe that associated mechanisms can be a key target for cancer prevention and treatment. In contrast, epidemiological and preclinical studies indicated that the epigenome is constantly reprogrammed by intake of natural organic compounds and the environment, suggesting the possibility of utilizing natural compounds to influence epigenetics in cancer therapy. Flavonoids, although not synthesized in the human body, can be consumed daily and are common in medicinal plants, vegetables, fruits, and tea. Recently, numerous reports provided evidence for the regulation of cancer epigenetics by flavonoids. Considering their origin in natural and food sources, few side effects, and remarkable biological activity, the epigenetic antitumor effects of flavonoids warrant further investigation. In this article, we summarized and analyzed the multi-dimensional epigenetic effects of all 6 subtypes of flavonoids (including flavonols, flavones, isoflavones, flavanones, flavanols, and anthocyanidin) in different cancer types. Additionally, our report also provides new insights and a promising direction for future research and development of flavonoids in tumor prevention and treatment via epigenetic modification, in order to realize their potential as cancer therapeutic agents.
Collapse
Affiliation(s)
- Weiyi Jiang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
18
|
A novel multicomponent TMDC, MoS2–WS2–CoSx, as an effective electrocatalyst for simultaneous detection ultra-levels of prednisolone and rutin in human body fluids. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
An HPLC-DAD Method to Quantify Flavonoids in Sonchus arvensis and Able to Classify the Plant Parts and Their Geographical Area through Principal Component Analysis. SEPARATIONS 2021. [DOI: 10.3390/separations8020012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A simple and efficient method has been developed for the simultaneous determination of eight flavonoids (orientin, hyperoside, rutin, myricetin, luteolin, quercetin, kaempferol, and apigenin) in Sonchus arvensis by high-performance liquid chromatography diode array detector (HPLC-DAD). This method was utilized to differentiate S. arvensis samples based on the plant parts (leaves, stems, and roots) and the plant’s geographical origin. The chromatographic separation was carried out on a reverse-phase C18 column by eluting at a flow rate of 1 mL/min using a gradient with methanol and 0.2% aqueous formic acid. In the optimum conditions, the developed method’s system suitability has met the criteria of good separation. The calibration curve shows a linear relationship between the peak area and analyte concentration with a correlation coefficient (r2) > 0.9990. The ranges for the analytes’ limits of detection and quantitation were 0.006–0.015 and 0.020–0.052 µg/mL, respectively. Intra-day and inter-day precision expressed in terms of RSD values were <2%, and the accuracy range based on recovery was 97–105%. The stability of all analytes within 48 h was about 2%. By combining HPLC-DAD fingerprint analysis with chemometrics, the developed method can classify S. arvensis samples based on the plant parts and geographical origin.
Collapse
|
20
|
Xu Q, Chen S, Xu J, Duan X, Lu L, Tian Q, Zhang X, Cai Y, Lu X, Rao L, Yu Y. Facile synthesis of hierarchical MXene/ZIF-67/CNTs composite for electrochemical sensing of luteolin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Chan K, Leung HCM, Tsoi JKH. Predictive QSAR model confirms flavonoids in Chinese medicine can activate voltage-gated calcium (CaV) channel in osteogenesis. Chin Med 2020; 15:31. [PMID: 32256687 PMCID: PMC7106815 DOI: 10.1186/s13020-020-00313-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/19/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Flavonoids in Chinese Medicine have been proven in animal studies that could aid in osteogenesis and bone formation. However, there is no consented mechanism for how these phytochemicals action on the bone-forming osteoblasts, and henceforth the prediction model of chemical screening for this specific biochemical function has not been established. The purpose of this study was to develop a novel selection and effective approach of flavonoids on the prediction of bone-forming ability via osteoblastic voltage-gated calcium (CaV) activation and inhibition using molecular modelling technique. METHOD Quantitative structure-activity relationship (QSAR) in supervised maching-learning approach is applied in this study to predict the behavioral manifestations of flavonoids in the CaV channels, and developing statistical correlation between the biochemical features and the behavioral manifestations of 24 compounds (Training set: Kaempferol, Taxifolin, Daidzein, Morin, Scutellarein, Quercetin, Apigenin, Myricetin, Tamarixetin, Rutin, Genistein, 5,7,2'-Trihydroxyflavone, Baicalein, Luteolin, Galangin, Chrysin, Isorhamnetin, Naringin, 3-Methyl galangin, Resokaempferol; test set: 5-Hydroxyflavone, 3,6,4'-Trihydroxyflavone, 3,4'-Dihydroxyflavone and Naringenin). Based on statistical algorithm, QSAR provides a reasonable basis for establishing a predictive correlation model by a variety of molecular descriptors that are able to identify as well as analyse the biochemical features of flavonoids that engaged in activating or inhibiting the CaV channels for osteoblasts. RESULTS The model has shown these flavonoids have high activating effects on CaV channel for osteogenesis. In addition, scutellarein was ranked the highest among the screened flavonoids, and other lower ranked compounds, such as daidzein, quercetin, genistein and naringin, have shown the same descending order as previous animal studies. CONCLUSION This predictive modelling study has confirmed and validated the biochemical activity of the flavonoids in the osteoblastic CaV activation.
Collapse
Affiliation(s)
- Ki Chan
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR PRC
| | - Henry Chi Ming Leung
- Department of Computer Science, Faculty of Engineering, University of Hong Kong, Pokfulam, Hong Kong SAR PRC
| | - James Kit-Hon Tsoi
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR PRC
| |
Collapse
|
22
|
Li S, Liu X, Liu Q, Chen Z. Colorimetric Differentiation of Flavonoids Based on Effective Reactivation of Acetylcholinesterase Induced by Different Affnities between Flavonoids and Metal Ions. Anal Chem 2020; 92:3361-3365. [PMID: 31983197 DOI: 10.1021/acs.analchem.9b05378] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flavonoids are closely related to human health, and the distinguishiment of flavonoids is an important but difficult issue. We herein unveil a novel colorimetric sensor array for the rapid identification of 7 flavonoids (e.g., gallocatechin (GC), morin hydrate (MH), puerarin (Pu), epigallocatechin gallate (EGCG), catechin (C), rac Naringenin (rN), and Flavone (Fla)) for the first time. The colorimetric performances of gold nanoparticles (AuNPs) are characteristically correlated with thiocholine, which is issued from the enzymatic hydrolysis of acetylcholine (AcCh). Therefore, as a proof-of-concept design, three sensors (Cu2+/acetylcholinesterase (AcChE)/AcCh/AuNPs, Zn2+/AcChE/AcCh/AuNPs, and Mn2+/AcChE/AcCh/AuNPs) were constructed to form our sensor array. The distinct affinities between flavonoids and metal ions would cause varying degrees of effective reactivation of AcChE, leading to unique colorimetric response patterns upon being challenged with the seven flavonoids for their pattern recognition, enabling an excellent identification of the seven flavonoids at a concentration of 20 nM and different concentrations of individual flavonoids, as well as mixtures of them.
Collapse
Affiliation(s)
- Siqun Li
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
| | - Xueyan Liu
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
| | - Qingyun Liu
- College of Chemistry and Environmental Engineering , Shandong University of Science and Technology , Qingdao , 266510 , China
| | - Zhengbo Chen
- Department of Chemistry , Capital Normal University , Beijing , 100048 , China
| |
Collapse
|
23
|
Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles. Mikrochim Acta 2020; 187:130. [PMID: 31938866 DOI: 10.1007/s00604-019-4106-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Thiolated β-cyclodextrin functionalized gold nanoparticles (Au-β-CDs) with layered wrinkled flower structure were prepared. Au-β-CDs were electrostatically combined with protonated aminated graphene quantum dots (NH2-GQDs) to form a nanocomposite with better supramolecular recognition, conductivity, catalysis and dispersion properties. For constructing a quercetin (QU) sensor, the nanocomposites were one-step electrodeposited by a cyclic voltammetry (CV) method onto a glassy carbon electrode to form a stable film. Under optimized conditions, the sensor showed a wide linear response range of 1-210 nM, with a lower detection limit of 285 pM. At the same time, flavonoids with similar structures hardly interfere with the determination of QU. The sensor has been used to determine QU in honey, tea, honeysuckle and human serum with satisfactory results. Graphical abstractSchematic representation of the fabrication of an ultrasensitive quercetin electrochemical sensor based on aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles (NH2-GQDs/Au-β-CD/GCE).
Collapse
|
24
|
Zhu Z, Pan T, Hsieh C, Wu R. Fabrication of novel Ag/g‐C
3
N
4
electrode for resveratrol sensors. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhen Zhu
- School of Environmental Science and Safety EngineeringTianjin University of Technology Tianjin China
| | - Tzu‐Ying Pan
- Department of Applied ChemistryProvidence University Taichung Taiwan R.O.C
| | - Chia‐Ying Hsieh
- Department of Applied ChemistryProvidence University Taichung Taiwan R.O.C
| | - Ren‐Jang Wu
- Department of Applied ChemistryProvidence University Taichung Taiwan R.O.C
| |
Collapse
|
25
|
Pedro AC, Maciel GM, Rampazzo Ribeiro V, Haminiuk CWI. Fundamental and applied aspects of catechins from different sources: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alessandra Cristina Pedro
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL) Universidade Federal do Paraná Curitiba CEP (81531‐980) PR Brasil
| | - Giselle Maria Maciel
- Departamento de Química e Biologia (DAQBi) Programa de Pós‐Graduação em Ciência e Tecnologia Ambiental (PPGCTA) Universidade Tecnológica Federal do Paraná Câmpus Curitiba CEP (81280‐340) PR Brasil
| | - Valéria Rampazzo Ribeiro
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL) Universidade Federal do Paraná Curitiba CEP (81531‐980) PR Brasil
| | - Charles Windson Isidoro Haminiuk
- Departamento de Química e Biologia (DAQBi) Programa de Pós‐Graduação em Ciência e Tecnologia Ambiental (PPGCTA) Universidade Tecnológica Federal do Paraná Câmpus Curitiba CEP (81280‐340) PR Brasil
| |
Collapse
|
26
|
Extraction of Flavonoids from the Saccharification of Rice Straw Is an Integrated Process for Straw Utilization. Appl Biochem Biotechnol 2019; 189:249-261. [DOI: 10.1007/s12010-019-03002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
|
27
|
Chen C, Liu W, Tian S, Hong T. Novel Surface-Enhanced Raman Spectroscopy Techniques for DNA, Protein and Drug Detection. SENSORS 2019; 19:s19071712. [PMID: 30974797 PMCID: PMC6480126 DOI: 10.3390/s19071712] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/15/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopic technique in which the Raman scattering signal strength of molecules, absorbed by rough metals or the surface of nanoparticles, experiences an exponential growth (10³-10⁶ times and even 1014-1015 times) because of electromagnetic or chemical enhancements. Nowadays, SERS has attracted tremendous attention in the field of analytical chemistry due to its specific advantages, including high selectivity, rich informative spectral properties, nondestructive testing, and the prominent multiplexing capabilities of Raman spectroscopy. In this review, we present the applications of state-of-the-art SERS for the detection of DNA, proteins and drugs. Moreover, we focus on highlighting the merits and mechanisms of achieving enhanced SERS signals for food safety and clinical treatment. The machine learning techniques, combined with SERS detection, are also indicated herein. This review concludes with recommendations for future studies on the development of SERS.
Collapse
Affiliation(s)
- Chuanpin Chen
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Wenfang Liu
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Sanping Tian
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| | - Tingting Hong
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
28
|
Zhou DD, Zhang Q, Li SP, Yang FQ. Capillary electrophoresis in phytochemical analysis (2014-2017). SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dong-Dong Zhou
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences; University of Macau; Macao SAR P. R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering; Chongqing University; Chongqing P. R. China
| |
Collapse
|
29
|
Wang WF, Yang JL, Shi YP. Quality evaluation of six bioactive constituents in goji berry based on capillary electrophoresis field amplified sample stacking. Electrophoresis 2018; 39:2117-2124. [PMID: 29704253 DOI: 10.1002/elps.201800102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/11/2018] [Accepted: 04/22/2018] [Indexed: 11/08/2022]
Abstract
Goji berry, fruits of the plant Lycium barbarum L., has long been used as traditional medicine and functional food in China. In this work, a simple and easy-operation on-line concentration capillary electrophoresis (CE) for detection flavonoids in goji berry was developed by coupling of field amplified sample stacking (FASS) with an electroosmotic (EOF) pump driving water removal process. Due to the EOF pump and electrokinetic injection showing different influence on the concentration, the analytes injection condition should be systemically studied. Thereafter, the verification of the analytes injection conditions was achieved using response surface experimental design. Under the optimum conditions, 86-271 folds sensitivity enhancement upon normal capillary zone electrophoresis (CZE, 50 mbar × 5 s) were achieved for six flavonoids, and the detection limits ranged from 0.35 to 1.82 ng/mL; the LOQ ranged from 1.20 to 6.01 ng/mL. Eventually, the proposed method was applied to detect flavonoids in 30 goji berry samples from different habitats of China; and the results indicated that the flavonoids were rich in the eluent of 30-60% methanol, which provided a reference for extraction of goji berry flavonoids.
Collapse
Affiliation(s)
- Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, P. R. China
| |
Collapse
|
30
|
Sinduja B, Abraham John S. Sensitive determination of rutin by spectrofluorimetry using carbon dots synthesized from a non-essential amino acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:486-491. [PMID: 29291577 DOI: 10.1016/j.saa.2017.12.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/06/2017] [Accepted: 12/26/2017] [Indexed: 05/28/2023]
Abstract
The present study describes the synthesis of carbon dots (CDs) using a non-essential amino acid, asparagine as a precursor. The HR-TEM image shows that the size of the prepared CDs was 2.9±0.2nm with a spherical morphology. The UV-visible spectrum of CDs exhibits a major band at 307nm along with a shoulder band around 207nm corresponding to n-π* and π-π* transitions, respectively. Further, the CDs show emission maximum at 441nm when excited at 348nm. The synthesized CDs were then exploited for the determination of rutin by spectrofluorimetry based on the decrease in emission intensity at 441nm. It was found that emission intensity of CDs at 441nm was decreased while adding 0.5μM rutin to CDs. On the other hand, addition of other metal ions and anions including 5mM Mg2+, K+, Ca2+, Na+, NO3- and oxalate, 2.5mM Cu2+ and Fe3+ and 3mM glycine, glucose, histidine, proline and cysteine does not affect the emission intensity at 441nm. A good linearity was observed for the emission intensity against 0.5-15μM rutin with a correlation coefficient of 0.997 and the limit of detection was found to be 1×10-7M (61μg/L) (S/N=3). The real sample analysis was done by determining rutin in a pharmaceutical sample.
Collapse
Affiliation(s)
- B Sinduja
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram 624 302, Dindigul, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute, Gandhigram 624 302, Dindigul, India.
| |
Collapse
|
31
|
Red-emitting BSA-stabilized copper nanoclusters acted as a sensitive probe for fluorescence sensing and visual imaging detection of rutin. Talanta 2018; 178:1006-1010. [DOI: 10.1016/j.talanta.2017.08.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/23/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022]
|
32
|
Wang Y, Zhong J, Ding F, Zhao Q, Zhang Z, Liu X, Liu Y, Rao H, Zou P, Wang X. A bifunctional NiCo2S4/reduced graphene oxide@polyaniline nanocomposite as a highly-efficient electrode for glucose and rutin detection. NEW J CHEM 2018. [DOI: 10.1039/c8nj00663f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel NiCo2S4/reduced graphene oxide@polyaniline (NiCo2S4/rGO@PANI) composite was synthesized by a facile two-step hydrothermal treatment and calcination, which was coupled with an in situ polymerization process.
Collapse
Affiliation(s)
- Yanying Wang
- College of Science
- Sichuan Agricultural University
- Ya’an 625014
- P. R. China
| | - Ji Zhong
- College of Science
- Sichuan Agricultural University
- Ya’an 625014
- P. R. China
| | - Fang Ding
- Suzhou Institute of Systems Medicine
- Suzhou
- China
- Center for Systems Medicine
- Institute of Basic Medical Sciences
| | - Qingbiao Zhao
- Key Laboratory of Polar Materials and Devices
- Ministry of Education
- Department of Electronic Engineering
- East China Normal University
- Shanghai
| | - Zhaoyi Zhang
- College of Science
- Sichuan Agricultural University
- Ya’an 625014
- P. R. China
| | - Xin Liu
- College of Science
- Sichuan Agricultural University
- Ya’an 625014
- P. R. China
| | - Yiting Liu
- College of Science
- Sichuan Agricultural University
- Ya’an 625014
- P. R. China
| | - Hanbing Rao
- College of Science
- Sichuan Agricultural University
- Ya’an 625014
- P. R. China
| | - Ping Zou
- College of Science
- Sichuan Agricultural University
- Ya’an 625014
- P. R. China
| | - Xianxiang Wang
- College of Science
- Sichuan Agricultural University
- Ya’an 625014
- P. R. China
| |
Collapse
|
33
|
Gullón B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.07.008] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Yu J, Jin H, Gui R, Lv W, Wang Z. A facile strategy for ratiometric electrochemical sensing of quercetin in electrolyte solution directly using bare glassy carbon electrode. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.04.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Xin L, Li Y, Wu L, Zhao J, Song Z. Quantitative Monitoring of Rutin in Human Urine by Flow Injection-Chemiluminescence Analysis. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201600884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ladi Xin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Yajuan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Lingmin Wu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Jingchan Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| | - Zhenghua Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science; Northwest University; Xi'an 710127 China
| |
Collapse
|
36
|
Simultaneous Determination and Pharmacokinetic Study of Quercetin, Luteolin, and Apigenin in Rat Plasma after Oral Administration of Matricaria chamomilla L. Extract by HPLC-UV. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8370584. [PMID: 28373891 PMCID: PMC5360941 DOI: 10.1155/2017/8370584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 02/20/2017] [Indexed: 11/17/2022]
Abstract
A simple and sensitive HPLC-UV method has been developed for the simultaneous determination of quercetin, luteolin, and apigenin in rat plasma after oral administration of Matricaria chamomilla L. extract. The flow rate was set at 1.0 ml/min and the detection wavelength was kept at 350 nm. The calibration curves were linear in the range of 0.11–11.36 μg/ml for quercetin, 0.11–11.20 μg/ml for luteolin, and 0.11–10.60 μg/ml for apigenin, respectively. The intraday and interday precisions (RSD) were less than 8.32 and 8.81%, respectively. The lower limits of quantification (LLOQ) of the three compounds were 0.11 μg/ml. The mean recoveries for quercetin, luteolin, and apigenin were 99.11, 95.62, and 95.21%, respectively. Stability studies demonstrated that the three compounds were stable in the preparation and analytical process. The maximum plasma concentration (Cmax) was 0.29 ± 0.06, 3.04 ± 0.60, and 0.42 ± 0.10 μg/ml, respectively. The time to reach the maximum plasma concentration (Tmax) was 0.79 ± 0.25, 0.42 ± 0.09, and 0.51 ± 0.13 h, respectively. The validated method was successfully applied to investigate the pharmacokinetics study of quercetin, luteolin, and apigenin in rat plasma after oral administration of M. chamomilla extract.
Collapse
|
37
|
Cui S, Li L, Ding Y, Zhang J, Yang H, Wang Y. Mesoporous NiCo2O4-decorated reduced graphene oxide as a novel platform for electrochemical determination of rutin. Talanta 2017; 164:291-299. [DOI: 10.1016/j.talanta.2016.10.109] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 01/26/2023]
|
38
|
Li G, Ahn WS, Row KH. Hybrid molecularly imprinted polymers modified by deep eutectic solvents and ionic liquids with three templates for the rapid simultaneous purification of rutin, scoparone, and quercetin fromHerba Artemisiae Scopariae. J Sep Sci 2016; 39:4465-4473. [DOI: 10.1002/jssc.201600892] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Guizhen Li
- Department of Chemistry and Chemical Engineering; Inha University; Incheon Korea
| | - Wha Seung Ahn
- Department of Chemistry and Chemical Engineering; Inha University; Incheon Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering; Inha University; Incheon Korea
| |
Collapse
|
39
|
Ji Z, Sun W, Sun G, Zhang J. Monitoring the quality consistency of Fufang Danshen Pills using micellar electrokinetic chromatography fingerprint coupled with prediction of antioxidant activity and chemometrics. J Sep Sci 2016; 39:3019-27. [DOI: 10.1002/jssc.201600334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/08/2016] [Accepted: 05/26/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Zhengchao Ji
- College of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| | - Wanyang Sun
- College of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| | - Guoxiang Sun
- College of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| | - Jin Zhang
- College of Pharmacy; Shenyang Pharmaceutical University; Shenyang P. R. China
| |
Collapse
|
40
|
Johnson RT, Lunte CE. A Capillary Electrophoresis Electrospray Ionization-Mass Spectrometry Method using a Borate Background Electrolyte for the Fingerprinting Analysis of Flavonoids in Ginkgo biloba Herbal Supplements. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 16:3325-3332. [PMID: 27688816 PMCID: PMC5036526 DOI: 10.1039/c6ay00463f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A laboratory-built sheath liquid capillary electrophoresis-mass spectrometry interface was used to develop a qualitative method for fingerprinting analysis of 14 structurally similar flavones, flavonols, flavonones, and several representative glycosides in plant samples. The migration order of the flavonoids was dependent on a the number of hydroxyl groups present on the flavonoid B-ring, extent of conjugation, number of glycosidic functionalities, and ability of the flavonoid to form stable borate complexes with the background electrolyte. Parent ion scans of the flavonoids yielded [M-H]-, except for catechol containing flavonoids, which were detected as borate adducts. These adducts can be used diagnostically to determine the presence or absence of catechol groups on unknown polyphenolic compounds. Product ion scans of the flavonoid glycosides and borate adducts typically yielded the deprotonated aglycone fragment as the base peak, which could be used to confirm the base structure of the flavonoid. This method's utility was demonstrated by analyzing flavonoids present in ethanolic extracts of Ginkgo biloba herbal supplements.
Collapse
Affiliation(s)
- Ryan T Johnson
- Department of Chemistry, Ralph N. Adams Institute for Bioanalytical Chemistry, Lawrence, KS 66047 ; University of Kansas, Lawrence, KS 66047
| | - Craig E Lunte
- Department of Chemistry, Ralph N. Adams Institute for Bioanalytical Chemistry, Lawrence, KS 66047 ; University of Kansas, Lawrence, KS 66047
| |
Collapse
|