1
|
Chen X, Ji B, Zhou M, Deng H, Wang M, Xia Z. Affinity Capillary Electrophoresis Based on Receptor Quasi-Immobilization for the Study of Interactions Between Drugs and Serum Albumin. J Sep Sci 2025; 48:e70142. [PMID: 40259547 DOI: 10.1002/jssc.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/23/2025]
Abstract
Herein, a receptor quasi-immobilization affinity capillary electrophoresis strategy was developed for the first time, using metal-organic frameworks with bio-macromolecular loading capacity and excellent separation performance, and for the efficient and accurate determination of the interactions between drugs and serum albumin. As a proof-of-concept demonstration, bovine serum albumin was used as the receptor, and zeolitic imidazole framework-8, a metal-organic framework with good biocompatibility and separation performance, was utilized as the chromatographic stationary phase as well as the substrate for the quasi-stationary phase of protein to investigate the interactions between bovine serum albumin and sulfonamides. Relying on the separation capability of the capillary chromatographic column and the extension of the migration time window by the quasi-immobilized receptor, the binding constants between three sulfonamide drugs and bovine serum albumin were successfully determined. The result was sulfadiazine > sulfadimethoxine > sulfaquinoxaline sodium, which was consistent with those obtained by fluorescence spectrometry and traditional affinity capillary electrophoresis. Furthermore, the binding constants of chiral drugs (omeprazole sodium and D, L-tryptophan) with human serum albumin were successfully determined by applying the capillary electrochromatographic column that had been rinsed with acetonitrile solution. In summary, the method not only enables the simultaneous evaluation of interaction between ligands and a protein within a complex system but also allows the investigation of interactions between different biomacromolecules and multicomponent systems through the substitution of quasi-immobilized receptors. Consequently, the present study provides a novel way to facilitate the rapid and accurate screening of active constituents within complex systems.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Baian Ji
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Meiling Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Hanwen Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Min Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Zhining Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
3
|
Wang M, Liu Y, Liu Y, Xia Z. MOFs and PDA-supported immobilization of BSA in open tubular affinity capillary electrochromatography: Prediction and study on drug-protein interactions. Talanta 2022; 237:122959. [PMID: 34736684 DOI: 10.1016/j.talanta.2021.122959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022]
Abstract
Owing to the satisfactory properties such as high specific surface area, finely tunable chemical composition, large yet adjustable pore sizes, and diverse architecture, metal-organic frameworks (MOFs) have the potential to be used as a stable, efficient, reusable and protective biomacromolecule immobilization carrier in capillary electrophoresis. Herein, a novel immobilized receptor open-tubular affinity capillary electrochromatography (OT-ACEC) strategy was developed for the first time to rapidly investigate the interactions between a set of drugs and bovine serum albumin (BSA). To further increase the amount of immobilized BSA and maintain the bioactivity of BSA, BSA was immobilized on the inner capillary surface by using polydopamine (PDA) as the adhesion layer and surface functionalization agent, a MOF namely dresden university of technology-5 (DUT-5) as supporting platform and biomacromolecule immobilization carrier, respectively. The amount of immobilized BSA on the capillary surface of the BSA@capillary and the PDA/MOFs/BSA@capillary column are separately calculated as 0.00756 nmol and 0.01812 nmol. Besides, the PDA/MOFs/BSA@capillary column was applied to investigate the interactions between BSA and flavonoids, fluoroquinolones. Under the optimal interaction conditions, three flavonoids and three fluoroquinolones are able to achieve baseline separation in the PDA/MOFs/BSA@capillary column (with resolution values of three flavonoids, 5.78 and 4.13; three fluoroquinolones, 1.72 and 1.68). The PDA/MOFs/BSA@capillary column shows good stability and reproducibility over 100 runs (relative standard deviation (RSD)<5%). In addition, the normalized capacity factor (KRCE) in this method replaced the binding constant and was used as an evaluation index to fast predict the activities of 20 drugs, some of which have not yet been reported for their interactions with BSA. Spectroscopy and molecular docking further illuminated the binding mechanism.
Collapse
Affiliation(s)
- Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yi Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China; Chongqing Chemical Industry Vocational College, Chongqing, 401228, China
| | - Yao Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
4
|
Wang T, Yang L, Cheng Y, Zhang Y, Ye J, Chu Q, Cheng G. Evaluation of homochiral zeolitic imidazolate framework-8 supported open-tubular column by miniaturized capillary electrochromatography with amperometric detection. Mikrochim Acta 2021; 188:375. [PMID: 34635945 DOI: 10.1007/s00604-021-05030-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
A novel kind of chiral open-tubular (OT) column was established with homochiral zeolitic imidazolate framework-8 nanomaterials using L-histidine as the chiral carbon center (L-His-ZIF-8). The morphologies of L-His-ZIF-8 nanoparticles and chiral OT column were characterized by scanning electron microscopy. The effects of L-His-ZIF-8 concentrations, pH values, and concentrations of the running buffer on the resolution of the selected chiral compounds were investigated based on miniaturized capillary electrochromatography with amperometric detection system (mini-CEC-AD), respectively. The separation performances of the prepared L-His-ZIF-8@OT chiral columns were explored under the optimal conditions, and the RSDs of run-to-run, day-to-day, and column-to-column reproducibility were less than 6.7% using salbutamol raceme as the model enantiomers. The prepared chiral OT columns have been successfully applied to the enantioseparation of one pair of amino acid enantiomers, two pairs of racemic drugs, and three pairs of neurotransmitter enantiomers. Under the optimum conditions, the prepared OT columns were applied to real-world sample analysis of salbutamol aerosol. The limits of detection of salbutamol raceme were 0.90 μg·mL-1 (S/N = 3), and the recovery was 80.4-82.7%. The assay results indicated that this kind of chiral OT column modified with homochiral L-His-ZIF-8 possesses good reproducibility and stability. This developed mini-OT-CEC-AD system has some attractive characteristics of sensitivity and low cost, providing a potential way for the separation of chiral compounds.
Collapse
Affiliation(s)
- Tingting Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Li Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yuhuan Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yulian Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Guifang Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
5
|
Ji B, Yi G, Gui Y, Zhang J, Long W, You M, Xia Z, Fu Q. High-Efficiency and Versatile Approach To Fabricate Diverse Metal-Organic Framework Coatings on a Support Surface as Stationary Phases for Electrochromatographic Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41075-41083. [PMID: 34420301 DOI: 10.1021/acsami.1c10481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A large number of metal-organic frameworks (MOFs) have exhibited increasingly wide utilization in the field of chromatographic separation owing to their intrinsic fascinating properties. However, the previous studies on supported MOF coating-based chromatographic separation focused only on the synthesis and chromatographic performance of a certain kind of supported MOF coatings as stationary phases using the multiple-step, complicated, and time-consuming modification methods, which severely impeded the widespread application of MOFs in separation science. Herein, a high-efficiency and versatile methodology toward diverse supported MOF coating-based stationary phases to achieve high-efficiency chromatographic separation was first reported based on the immobilized cysteine (Cys)-triggered in situ growth (ICISG) strategy. As a proof-of-concept demonstration, four types of MOF crystals consisting of different ligands and metal ions (Zn2+, Cu2+, Fe3+, and Zr4+) were conveniently and firmly grown on a Cys-modified capillary using the ICISG strategy and employed as the functional stationary phase for electrochromatographic separation. A broad variety of neutral, acidic, and basic compounds were all separated in a highly efficient manner on the developed four MOF-coated columns. The maximum theoretical plate number for Cys-MIL-100(Fe)@capillary was close to 1.0 × 105 plates/m, and the intraday, interday, and column-to-column repeatabilities of retention times for the four MOF-modified columns were all less than 5.25%. More interestingly, the diversified separation performance of the developed MOF-coated columns indicated that the preparation strategy and the skeletal structure of the MOF coating-based stationary phases have a significant influence on the electrochromatographic separation performance and column capacity. Benefiting from the strong universality and high applicability of the developed ICISG strategy, the present study provides an effective route to facilitate the design and fabrication of novel functional MOF-based chromatographic stationary phases.
Collapse
Affiliation(s)
- Baian Ji
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Gaoyi Yi
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanqi Gui
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jiale Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenwen Long
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingyue You
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
6
|
Sui X, Guan J, Li X, Gu L, Yan F, Shi S, Zhang D. Preparation of a polydopamine/β-cyclodextrin coated open tubular capillary electrochromatography column and application for enantioseparation of five proton pump inhibitors. J Sep Sci 2021; 44:3295-3304. [PMID: 34185396 DOI: 10.1002/jssc.202100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
An open tubular capillary electrochromatography column was prepared by immobilizing β-cyclodextrin on the inner wall of pretreated capillary via noncovalent adsorption of polydopamine. The resulting coating layer on the capillary was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Electroosmotic flow was studied to evaluate the variation of the immobilized columns. The prepared columns showed good chiral separation performance toward five proton pump inhibitors including lansoprazole, pantoprazole, tenatoprazole, rabeprazole, and omeprazole. The influences of β-cyclodextrin concentration, coating time, buffer pH, buffer concentration, and applied voltage on separation were investigated. In the optimum conditions, the enantiomers of five analytes were fully resolved within 15 min with high resolutions of 4.57 to 8.13. The method was extensively validated in terms of accuracy, precision, and linearity and proved to be robust. The relative standard deviation values for migration times and peak areas of the analytes representing intraday and interday were less than 1.9 and 3.6%, respectively. Further, the polydopamine/β-cyclodextrin coated capillary column could be successively used over 100 runs without showing significant decrease in the separation efficiency.
Collapse
Affiliation(s)
- Xiuyu Sui
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Jin Guan
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Xiaoyu Li
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Lei Gu
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Feng Yan
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Shuang Shi
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Dongxiang Zhang
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| |
Collapse
|
7
|
Sanaei Y, Zeeb M, Homami SS, Monzavi A, Khodadadi Z. Fabrication of ZIF-71/Fe 3O 4/polythionine nanoarray-functionalized carbon cotton cloth for simultaneous extraction and quantitation of febuxostat and diclofenac. RSC Adv 2021; 11:30361-30372. [PMID: 35480239 PMCID: PMC9041133 DOI: 10.1039/d1ra04670e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022] Open
Abstract
Synthesis of a material based on carbonized cotton cloth/zeolite imidazolate framework was applied to ultrasound-assisted dispersive magnetic solid-phase extraction and high-performance liquid chromatography-ultraviolet to detect diclofenac and febuxostat in human plasma.
Collapse
Affiliation(s)
- Yasaman Sanaei
- Department of Applied Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Mohsen Zeeb
- Department of Applied Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Seyed Saied Homami
- Department of Applied Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Tehran, Iran
| | - Amirhossein Monzavi
- Department of Polymer and Textile Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Khodadadi
- Department of Applied Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Tehran, Iran
| |
Collapse
|
8
|
Ding W, Ma M, Du Y, Chen C, Ma X. Metal organic framework ZIF-90 modified with lactobionic acid for use in improved open tubular capillary electrochromatographic enantioseparation of five basic drugs. Mikrochim Acta 2020; 187:651. [PMID: 33174063 DOI: 10.1007/s00604-020-04611-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/20/2020] [Indexed: 01/05/2023]
Abstract
An in situ zeolite imidazole metal organic framework-90 (ZIF-90) modified capillary was prepared via the method of solvothermal synthesis. The coating of ZIF-90 was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometry, and EOF. Capillary electrochromatography-based enantioseparation of the basic drugs propranolol (PRO), metoprolol (MET), atenolol (ATE), bisoprolol (BIS), and sotalol (SOT) was performed using lactobionic acid (LA) as the chiral selector. Compared with an uncoated silica capillary, the resolutions are greatly improved (PRO 1.40 → 3.23; MET 1.07 → 3.19; ATE 1.07 → 3.15; BIS 1.16 → 3.41; SOT 1.00 → 2.79). Effects of buffer pH values, proportion of organic additives, concentration of lactobionic acid, and applied voltage were investigated. Graphical abstract Schematic presentation of the preparation of zeolitic imidazolate framework-90 (ZIF-90) modified capillary (ZIF-90@capillary) for enantioseparation of drug enantiomers. The capillary was applied to construct capillary electrochromatography system with lactobionic acid for enantioseparation of basic chiral drugs.
Collapse
Affiliation(s)
- Wen Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Xiaofei Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing, 210009, People's Republic of China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| |
Collapse
|
9
|
Li Z, Mao Z, Hu C, Li Q, Chen Z. Fluoro-functionalized stationary phases for electrochromatographic separation of organic fluorides. J Chromatogr A 2020; 1625:461269. [PMID: 32709321 DOI: 10.1016/j.chroma.2020.461269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 11/17/2022]
Abstract
Fluorous affinity means remarkably specific interaction between highly organic fluorides. This work aims to explore the potential of fluoro-functionalized stationary phase for the separation of organic fluorides by means of fluorous-fluorous interaction. Here, by using the Michael addition strategy between 1H,1H,2H,2H-perfluorodecanethiol (PFDT) and polydopamine (PD), a novel fluoro-functionalized stationary phase was synthesized for open-tubular capillary electrochromatography (OT-CEC). The PFDT@PD was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray Photoelectron Spectrometer (XPS). The PFDT@PD@capillary exhibited outstanding separation performance towards neutral compounds (such as alkylbenzenes and chlorobenzenes) and organic fluorides (such as fluorobenzenes and perfluoroalkyl methacrylates etc.) with high resolution and high separation efficiency by hydrophobic interaction and fluorous-fluorous interaction. In addition, the column shows good stability and reproducibility. The relative standard deviations (RSDs) of the retention time for intra-day (n = 5) and inter-day (n = 3) runs and between columns (n = 3) are less than 0.39%, 1.22% and 3.87%, respectively. This novel type of fluoro-functionalized stationary phase represents a great application potential in organic fluorides separation field.
Collapse
Affiliation(s)
- Zhentao Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China
| | - Zhenkun Mao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Changjun Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Qiaoyan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China.
| |
Collapse
|
10
|
Yi G, He J, Ji B, Gao D, Zhang K, Wang L, Zeng J, Xia Z, Fu Q. Solvothermal-assisted in situ rapid growth of octadecylamine functionalized polydopamine-based permanent coating as stationary phase for open-tubular capillary electrochromatography. J Chromatogr A 2020; 1628:461436. [PMID: 32822976 DOI: 10.1016/j.chroma.2020.461436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
In recent years, mussel-inspired polydopamine (PDA) based materials have been widely used as stationary phases for open-tubular capillary electrochromatography (OT-CEC) because of their various excellent properties. Nevertheless, the traditional synthesis routes of functionalized PDA-based capillary columns usually are time-consuming and limited in aqueous solutions. Herein, we report a facile and rapid route to prepare octadecylamine (ODA) functionalized PDA coated OT-CEC columns in organic solvents via a novel one-step in situ solvothermal-assisted coating strategy. Through this developed solvothermal-assisted approach, the growth rate of ODA/PDA coating was significantly speeded up and their hybrid coating process on the capillary inner surface could be rapidly completed in 60 min. The successful preparation of the solvothermal-assisted ODA/PDA hybrid coating were systematically characterized and confirmed by several methods. The influence of the preparation parameters on the formation of hybrid coating and the separation ability of the ODA/PDA modified columns were systematically explored. Consequently, the high-efficiency baseline separation of four kinds of neutral, acidic and basic analytes were achieved based on the ODA/PDA modified columns. The repeatability of the solvothermal-assisted ODA/PDA coated column was also studied, and the relative standard deviations for intra-day, inter-day and column-to-column were all less than 5%. Additionally, the solvothermal-assisted ODA/PDA modified column exhibited good stability and long lifetime.
Collapse
Affiliation(s)
- Gaoyi Yi
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jingxia He
- Research Institute of Chinese Medicine, Shaanxi institute of international trade & commerce, Xianyang 712000, China
| | - Baian Ji
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lujun Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
11
|
Fan S, Guan J, Yan F, Zhang D, Shi S, Wang S. Preparation of open‐tubular CEC column bonded with 6‐O‐monotosyl‐deoxy‐β‐cyclodextrin and its application in the enantioseparation of several related benzimidazoles. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shitong Fan
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| | - Jin Guan
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| | - Feng Yan
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| | - Dongxiang Zhang
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| | - Shuang Shi
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| | - Silin Wang
- School of Applied ChemistryShenyang University of Chemical Technology Shenyang P. R. China
| |
Collapse
|
12
|
Wang T, Wang Y, Zhang Y, Cheng Y, Ye J, Chu Q, Cheng G. Rapid preparation and evaluation of chiral open-tubular columns supported with bovine serum album and zeolite imidazolate framework-8 for mini-capillary electrochromatography. J Chromatogr A 2020; 1625:461284. [PMID: 32709334 DOI: 10.1016/j.chroma.2020.461284] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 11/28/2022]
Abstract
In this work, a class of novel and eco-friendly open-tubular (OT) chiral column was presented for the first time by one step preparation with zeolite imidazolate framework-8 (ZIF-8) and bovine serum album (BSA) based on electrostatic adsorption and adsorption affinity. This stationary phase materials combined the features of large surface areas and adsorption affinity of ZIF-8, and also the multiple chiral binding sites of BSA, which contributes to the π-interaction and hydrophobic interaction with the analytes. The separation performance of BSA@ZIF-8-OT chiral columns was evaluated with a miniaturized capillary electrochromatography and amperometric detection (mini-CEC-AD) system; in particular, nine groups of model molecules, including homologues, structural isomers, and chiral compounds, were baseline separated under the certain optimum conditions. The RSDs of run-to-run, day-to-day, column-to-column, and batch-to-batch reproducibility were less than 13.8 %. Furthermore, the prepared OT columns were successfully applied to fast analysis of ephedrine isomers in Chinese herb ephedra, and the LODs achieved 1.5-2.0 ng mL-1 (S/N=3) by an electrophoretic stacking technique of moving chemical reaction boundary. This mini-CEC-AD system with BSA@ZIF-8-OT chiral columns provides a promising potential in pharmaceutical analysis due to its fast, sensitive, enantioselective, and low-cost characteristics.
Collapse
Affiliation(s)
- Tingting Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ying Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yulian Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuhuan Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Guifang Cheng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
13
|
Kartsova L, Makeeva D, Davankov V. Nano-sized polymer and polymer-coated particles in electrokinetic separations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Ahmed MA, Felisilda BMB, Quirino JP. Recent advancements in open-tubular liquid chromatography and capillary electrochromatography during 2014-2018. Anal Chim Acta 2019; 1088:20-34. [PMID: 31623713 DOI: 10.1016/j.aca.2019.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 12/20/2022]
Abstract
This review critically discusses the developments on open-tubular liquid chromatography (OT-LC) and open-tubular capillary electrochromatography (OT-CEC) during 2014-2018. An appropriate Scopus search revealed 5 reviews, 4 theoretical papers on open-tubular format chromatography, 29 OT-LC articles, 68 OT-CEC articles and 4 OT-LC/OT-CEC articles, indicating a sustained interest in these areas. The open-tubular format typically uses a capillary column with inner walls that are coated with an ample layer or coating of solid stationary phase material. The ratio between the capillary internal diameter and coating thickness (CID/CT) is ideally ≤ 100 for appropriate chromatographic retention. We, therefore, approximated the CID/CT ratios and found that 22 OT-LC papers have CID/CT ratios ≤100. The other 7 OT-LC papers have CID/CT ratio >100 but have clearly demonstrated chromatographic retention. These 29 papers utilised reversed phase or ion exchange mechanisms using known or innovative solid stationary phase materials (e.g. metal organic frameworks), stationary pseudophases from ionic surfactants or porous supports. On the other hand, we found that 68 OT-CEC papers, 7 OT-LC papers and 4 OT-LC & OT-CEC papers have CID/CT ratios >100. Notably, 44 papers (42 OT-CEC and 2 OT-LC & OT-CEC) did not report the retention factor and/or effective electrophoretic mobility of analytes. Considering all covered papers, the most popular activity was on the development of new chromatographic materials as coatings. However, we encourage OT-CEC researchers to not only characterise changes in the electroosmotic flow but also verify the interaction of the analytes with the coating. In addition, the articles reported were largely driven by stationary phase or support development and not by practical applications.
Collapse
Affiliation(s)
- Mohamed Adel Ahmed
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Bren Mark B Felisilda
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, Chemistry, University of Tasmania, Hobart, 7001, Australia.
| |
Collapse
|
15
|
Liu L, Qiao J, Zhang H, Qi L. Separation of antipyretic analgesics by open tubular capillary electrochromatography with homopolymer coatings. J Sep Sci 2019; 42:3016-3022. [DOI: 10.1002/jssc.201900516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Lili Liu
- College of Chemistry and Environmental ScienceHebei University Baoding P. R. China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing P. R. China
| | - Juan Qiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing P. R. China
| | - Hongyi Zhang
- College of Chemistry and Environmental ScienceHebei University Baoding P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences Beijing P. R. China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing P. R. China
| |
Collapse
|
16
|
Li Z, Mao Z, Chen Z. Polydopamine-assisted immobilization of a zinc(II)-derived metal-organic cage as a stationary phase for open-tubular capillary electrochromatography. Mikrochim Acta 2019; 186:449. [DOI: 10.1007/s00604-019-3576-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
|
17
|
Kitte SA, Fereja TH, Halawa MI, Lou B, Li H, Xu G. Recent advances in nanomaterial-based capillary electrophoresis. Electrophoresis 2019; 40:2050-2057. [PMID: 31062878 DOI: 10.1002/elps.201800534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
This review gives a summary of applications of different nanomateials, such as gold nanoparticles (AuNPs), carbon-based nanoparticles, magnetic nanoparticles (MNPs), and nano-sized metal organic frameworks (MOFs), in electrophoretic separations. This review also emphasizes the recent works in which nanoparticles (NPs) are used as pseudostationary phase (PSP) or immobilized on the capillary surface for enhancement of separation in CE, CEC, and microchips electrophoresis.
Collapse
Affiliation(s)
- Shimeles Addisu Kitte
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Mohamed Ibrahim Halawa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Mansoura, 35516, Mansoura, Egypt
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Science and Technology of China, Anhui, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Mansoura, 35516, Mansoura, Egypt
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Science and Technology of China, Anhui, P. R. China
| |
Collapse
|
18
|
Mao Z, Chen Z. Advances in capillary electro-chromatography. J Pharm Anal 2019; 9:227-237. [PMID: 31452960 PMCID: PMC6702421 DOI: 10.1016/j.jpha.2019.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022] Open
Abstract
Capillary electrochromatography (CEC) is a micro-scale separation technique which is a hybrid between capillary electrophoresis (CE) and liquid chromatography (LC). CEC can be performed in packed, monolithic and open-tubular columns. In recent three years (from 2016 to 2018), enormous attention for CEC has been the development of novel stationary phases. This review mainly covers the development of novel stationary phases for open-tubular and monolithic columns. In particular, some biomaterials attracted increasing interest. There are no significant breakthroughs in technology and principles in CEC. The typical CEC applications, especially chiral separations are described.
Collapse
Affiliation(s)
- Zhenkun Mao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China
| |
Collapse
|
19
|
Zeng J, Li Y, Zheng X, Li Z, Zeng T, Duan W, Li Q, Shang X, Dong B. Controllable Transformation of Aligned ZnO Nanorods to ZIF-8 as Solid-Phase Microextraction Coatings with Tunable Porosity, Polarity, and Conductivity. Anal Chem 2019; 91:5091-5097. [DOI: 10.1021/acs.analchem.8b05419] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jingbin Zeng
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Yulong Li
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaofu Zheng
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Zizhou Li
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Wei Duan
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Qing Li
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiao Shang
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Bin Dong
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
20
|
Zhang H, Yang FQ. Applications of polydopamine modifications in capillary electrophoretic analysis. J Sep Sci 2019; 42:342-359. [PMID: 30133166 DOI: 10.1002/jssc.201800755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/26/2022]
Abstract
Mussel-inspired polydopamine has been widely used in capillary electrophoresis as a facile and universal tool for the surface modification of capillary, mainly due to its versatility, stability, strong adhesiveness, and biocompatibility properties. In this review, the recent development of mussel-inspired surface chemistry with rapid deposition of polydopamine was introduced, and the recent applications of polydopamine in capillary electrophoresis (2011-July 2018) were summarized into four main aspects, namely, sample pretreatments, functional coatings, codeposition coatings, and intermediate coatings. Further study may be focused on clarifying the mechanisms of polydopamine formation and polydopamine-assisted codeposition, and expanding coatings methods to plant polyphenols.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
21
|
Tang Y, Cui X, Zhang Y, Ji Y. Preparation and evaluation of a polydopamine-modified capillary silica monolith for capillary electrochromatography. NEW J CHEM 2019. [DOI: 10.1039/c8nj04912b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel capillary silica monolith (CSM) with surface modification was prepared for capillary electrochromatography (CEC) by using polydopamine (PDA) as a functional coating.
Collapse
Affiliation(s)
- Yixia Tang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| | - Xiaoqin Cui
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| | - Yuefen Zhang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| | - Yibing Ji
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Drug Quality Control and Pharmacovigilance
| |
Collapse
|
22
|
Zhang J, Chen J, Peng S, Peng S, Zhang Z, Tong Y, Miller PW, Yan XP. Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. Chem Soc Rev 2019; 48:2566-2595. [DOI: 10.1039/c8cs00657a] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porous materials confined within capillary columns/microfluidic devices are discussed, and progress in chromatographic and membrane separations and catalysis is reviewed.
Collapse
Affiliation(s)
- Jianyong Zhang
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Junxing Chen
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Sheng Peng
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Shuyin Peng
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Zizhe Zhang
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | - Yexiang Tong
- Sun Yat-Sen University
- MOE Laboratory of Polymeric Composite and Functional Materials
- Guangzhou 510275
- China
| | | | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology
- International Joint Laboratory on Food Safety
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
23
|
Cui X, Xu S, Jin C, Ji Y. Recent advances in the preparation and application of mussel-inspired polydopamine-coated capillary tubes in microextraction and miniaturized chromatography systems. Anal Chim Acta 2018; 1033:35-48. [DOI: 10.1016/j.aca.2018.04.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/13/2022]
|
24
|
Li W, Wang R, Chen Z. Zr-based metal-organic framework-modified cotton for solid phase micro-extraction of non-steroidal anti-inflammatory drugs. J Chromatogr A 2018; 1576:19-25. [DOI: 10.1016/j.chroma.2018.09.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/06/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
|
25
|
Maya F, Palomino Cabello C, Figuerola A, Turnes Palomino G, Cerdà V. Immobilization of Metal–Organic Frameworks on Supports for Sample Preparation and Chromatographic Separation. Chromatographia 2018. [DOI: 10.1007/s10337-018-3616-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
In situ immobilization of layered double hydroxides onto cotton fiber for solid phase extraction of fluoroquinolone drugs. Talanta 2018; 186:545-553. [DOI: 10.1016/j.talanta.2018.04.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/23/2018] [Accepted: 04/29/2018] [Indexed: 11/15/2022]
|
27
|
Wang X, Ye N, Hu X, Liu Q, Li J, Peng L, Ma X. Open-tubular capillary electrochromatographic determination of ten sulfonamides in tap water and milk by a metal-organic framework-coated capillary column. Electrophoresis 2018; 39:2236-2245. [PMID: 29799133 DOI: 10.1002/elps.201800047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/22/2018] [Accepted: 05/19/2018] [Indexed: 01/24/2023]
Abstract
In this study, a metal-organic framework (MOF), [Mn(cam)(bpy)], was synthesized and characterized by thermogravimetric analysis, scanning electron microscopy, and Fourier transform infrared spectrometry. An open-tubular capillary column was fabricated from [Mn(cam)(bpy)] via the amide coupling method. Ten types of sulfonamides were separated through the fabricated capillary column, which showed a good limits of detection (<0.07 μg/mL) and linear ranges (1-100 or 5-100 μg/mL) with a high correlation coefficients (R2 > 0.9987). The intra-day, inter-day and column-to-column relative standard deviations (RSDs) in the migration times ranged from 0.44 to 4.87%, and the peak area RSDs ranged from 0.80 to 7.28%. The developed capillary electrochromatography method can be successfully utilized for the determination of sulfonamides in tap water and milk samples.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| | - Xiaoyu Hu
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| | - Qingye Liu
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| | - Jian Li
- Beijing Institute of Veterinary Drugs Control, Beijing, P. R. China
| | - Lin Peng
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| | - Xiaotong Ma
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| |
Collapse
|
28
|
Tang P, Wang R, Chen Z. In situ growth of Zr-based metal-organic framework UiO-66-NH 2 for open-tubular capillary electrochromatography. Electrophoresis 2018; 39:2619-2625. [PMID: 29660144 DOI: 10.1002/elps.201800057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/08/2018] [Accepted: 04/08/2018] [Indexed: 11/05/2022]
Abstract
The high stability and other properties of Zr(IV)-based metal organic frameworks(MOFs) make it a promising choice for chromatographic separation, while the application in open-tubular capillary electrochromatography (OT-CEC) separation has not been explored yet. Herein, we report the first example of the in-situ growth of UiO-66-NH2 onto the capillary for open-tubular capillary electrochromatography. UiO-66-NH2 consists of ZrCl4 and 2-amino-1,4-benzenedicarboxylic acid, which is highly porous and stable in a variety of solvents. The prepared UiO-66-NH2 modified capillary was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectra (FT-IR), and the results confirmed the successful growth of the UiO-66-NH2 . The baseline separation of chlorobenzenes, phenoxyacids and two groups of phenols was achieved owing to the combined interaction of π-π interaction, hydrophobic interaction, molecular sieve effect, electrophoretic migration and hydrogen-bonding interaction etc. Besides, the prepared capillaries showed good reproducibility, with relative standard deviations (RSDs) for intra-day, inter-day and column-to-column runs in the range of 1.38-2.60%, 3.39-4.05%, and 3.47-5.03%, respectively. Our work indicates Zr(IV)-based MOFs are promising materials as stationary phase in CEC separation.
Collapse
Affiliation(s)
- Pingxiu Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| | - Rong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| |
Collapse
|
29
|
Zhang J, Chen Z. Metal-organic frameworks as stationary phase for application in chromatographic separation. J Chromatogr A 2017; 1530:1-18. [DOI: 10.1016/j.chroma.2017.10.065] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022]
|
30
|
In situ immobilization of layered double hydroxides as stationary phase for capillary electrochromatography. J Chromatogr A 2017; 1530:219-225. [DOI: 10.1016/j.chroma.2017.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/05/2017] [Accepted: 11/12/2017] [Indexed: 11/19/2022]
|
31
|
Wang X, Ye N. Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis 2017; 38:3059-3078. [PMID: 28869768 DOI: 10.1002/elps.201700248] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/06/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Abstract
In the field of analytical chemistry, sample preparation and chromatographic separation are two core procedures. The means by which to improve the sensitivity, selectivity and detection limit of a method have become a topic of great interest. Recently, porous organic frameworks, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely used in this research area because of their special features, and different methods have been developed. This review summarizes the applications of MOFs and COFs in sample preparation and chromatographic stationary phases. The MOF- or COF-based solid-phase extraction (SPE), solid-phase microextraction (SPME), gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) methods are described. The excellent properties of MOFs and COFs have resulted in intense interest in exploring their performance and mechanisms for sample preparation and chromatographic separation.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, P. R. China
| |
Collapse
|
32
|
Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C. Recent advances in microscale separation. Electrophoresis 2017; 39:8-33. [DOI: 10.1002/elps.201700271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanyuan Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Weiwei Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Mengqi Jia
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Rangdong Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Qing Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Han Xiao
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Jing Li
- Unimicro (shanghai) Technologies Co., Ltd.; Shanghai P. R. China
| | - Yun Xue
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
33
|
Tarongoy FM, Haddad PR, Quirino JP. Recent developments in open tubular capillary electrochromatography from 2016 to 2017. Electrophoresis 2017; 39:34-52. [PMID: 28815745 DOI: 10.1002/elps.201700280] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/11/2022]
Abstract
Interest in open-tubular capillary electrochromatography (OT-CEC) continues to thrive because of the inherent advantage of OT-CEC combining the high efficiency of capillary electrophoresis and the high selectivity of high performance liquid chromatography. For the period 2016 to 2017, novel materials have been developed as first-time stationary phases for OT-CEC and are grouped in this review as polymer-based materials, frameworks, nanoparticles, graphene-based materials, and biomaterials. Coating and fabrication methods mostly rely on covalent coating strategies while non-covalent immobilisation strategies like electrostatic assembly are notably still being employed. The concern of overcoming phase ratio challenges in OT-CEC coatings have also generated adoption of combined coating strategies including multi-layering, layer-by-layer self-assembly and methods adapted from nanofilm fabrications like epitaxial growth, liquid phase deposition, or nucleation of crystal growth. The emergence of non-conventional coating characterisation methods such as transmission electron microscopy, X-ray diffraction or X-ray photoelectron spectroscopy is also discussed.
Collapse
Affiliation(s)
- Faustino M Tarongoy
- Australian Centre for Research on Separation Science, School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, Australia.,Chemistry Department, College of Arts and Sciences, Xavier University-Ateneo de Cagayan, Cagayan de Oro, Misamis Oriental, Philippines
| | - Paul R Haddad
- Australian Centre for Research on Separation Science, School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science, School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
34
|
Trypsin inhibitor screening in traditional Chinese medicine by using an immobilized enzyme microreactor in capillary and molecular docking study. J Sep Sci 2017; 40:3168-3174. [DOI: 10.1002/jssc.201700419] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|