1
|
Gidumal S, Kirke D, Laitman B, Rapoport SK, Woo P. Nanofat for Injection Laryngoplasty: A Preliminary Study of a New Substrate. J Voice 2025:S0892-1997(25)00051-7. [PMID: 40148203 DOI: 10.1016/j.jvoice.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE "Nanofat" refers to fat further emulsified into 1-µm sizes. It is commonly used in facial plastic surgery. Nanofat increases the release of adipose-derived stem cells. This study tested whether injection laryngoplasty using nanofat resulted in bulking and vibratory effects comparable to using microfat in treating patients with fold atrophy. METHODS This was a randomized, controlled, single-blind, prospective study of 18 patients with vocal atrophy who underwent transoral lipoinjection using microlaryngoscopy. The control group received bilateral microfat injection. The experimental group randomly received microfat in one vocal fold and nanofat in the contralateral vocal fold. The average volume of fat injected was 0.6 mL on each side. The postsurgery evaluation at 3 months included ratings of stroboscopy and acoustic recordings by blinded expert raters. Vibratory behavior, voice ratings, preVoice Handicap Index-10 (VHI-10) and postVHI-10 score, and Cepstral/Spectral Index of Dysphonia (CSID) were compared. RESULTS Significant improvement in the VHI at three-month follow-up was noted in all patients (n = 18 total, 12 experimental, six control). In the subgroup analysis, only the nanofat group significantly improved VHI. Improvements in the CSID were observed in both techniques; however, neither group showed statistical significance. Improved glottic closure was comparable in both groups. Expert raters observed an improvement in the voice quality of nanofat individuals but no change in microfat individuals. CONCLUSION Lipoinjection laryngoplasty with nanofat may be an alternative to microfat in patients with vocal atrophy. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Sunder Gidumal
- Mount Sinai Department of Otolaryngology - Head and Neck Surgery
| | - Diana Kirke
- Mount Sinai Department of Otolaryngology - Head and Neck Surgery
| | - Benjamin Laitman
- Mount Sinai Department of Otolaryngology - Head and Neck Surgery
| | | | - Peak Woo
- Mount Sinai Department of Otolaryngology - Head and Neck Surgery.
| |
Collapse
|
2
|
Ozawa S, Mukudai S, Kaneko M, Kinoshita S, Hashimoto K, Sugiyama Y, Hashimoto S, Akaki J, Hirano S. Anti-inflammatory and Antioxidant Effects of Japanese Herbal Medicine Kyoseihatekigan on Vocal Fold Wound Healing. J Voice 2024; 38:503-509. [PMID: 34836738 DOI: 10.1016/j.jvoice.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The Japanese herbal medicine kyoseihatekigan (KHG) has been used to alleviate the symptoms of croaky voice and globus hystericus, and each of its components has anti-inflammatory and antioxidant effects. However, the mechanisms underlying these beneficial actions of KHG on the vocal folds remain largely unknown. We examined the effects of KHG on rat vocal fold wound healing and assessed its anti-inflammatory and antioxidant properties. STUDY DESIGN Animal model. METHODS The vocal folds of Sprague-Dawley rats were unilaterally injured under endoscopy. Rats were divided into three groups based on KHG dosing from pre injury day 4 to post injury day 3: 0 mg/kg/day (sham group), 500 mg/kg/day (1% KHG group) and 1000 mg/kg/day (2% KHG group). Histologic changes were examined to assess the degree of inflammation and oxidative stress at day 3, and fibrosis at day 56. In addition, gene expression related to pro-inflammatory cytokines and transforming growth factor-beta1 (TGF-β1) signaling was examined by quantitative real-time polymerase chain reaction (qPCR). RESULTS Histologic analysis showed that the 1% and 2% KHG treatments significantly decreased cell infiltration and the 4-hydroxy-2-nonenalx-immunopositive area, and increased hyaluronic acid at day 3. Both KHG treatments significantly decreased fibrosis at day 56. qPCR revealed that mRNA of interleukin-1β and cyclooxygenase-2 were significantly suppressed at day 1 and TGF-β1 mRNA was significantly downregulated at day 5 in both KHG groups. CONCLUSIONS The current findings suggest that KHG has anti-inflammatory and antioxidant effects in the early phase of vocal fold wound healing, which can lead to better wound healing with less scar formation.
Collapse
Affiliation(s)
- Satomi Ozawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shota Kinoshita
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Junji Akaki
- Kobayashi Pharmaceutical Co., Ltd., Osaka, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Woo P. Platelet-rich plasma in treatment of scar, atrophy, and sulcus: Short- and long-term results. Laryngoscope Investig Otolaryngol 2023; 8:1304-1311. [PMID: 37899871 PMCID: PMC10601577 DOI: 10.1002/lio2.1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/30/2023] [Accepted: 08/13/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Platelet-rich plasma (PRP) is rich in growth factors and is easily obtained from blood samples. Long-term data after PRP injection into the larynx should be improved. This study reports the short-term (3 months) and long-term (12 months) voice results after PRP injection. Materials and Methods Sixty-three patients with scars (n = 34), sulcus vocalis (n = 17), recalcitrant nodules (n = 5), atrophy (n = 4), or a combination of these (n = 3) were included (158 injections; median follow-up = 12.3 months). Stroboscopy, voice handicap index (VHI-10), and cepstral spectral index of dysphonia (CSID) before and after treatment (3 months) and at 12 months were tabulated. Results VHI-10 changed from 19.5 to 14 at 3 months and 21 to 15 in the long term. The CSID scores improved from 31 to 21 in the short term and 31 to 26 in the long term (p < 0.001, paired t-test). Patients reported improved vocal effort and stamina with slight VHI or CSID score changes. Stroboscopy revealed improved closure and mucosal waves. Patients with severe dysphonia were less likely to improve compared to those with mild to moderate dysphonia. Some patients showed short-term improvements and then deteriorated back to baseline CSID over time (p < .05, paired t-test). Conclusion Both short- and long-term improvements in voice following PRP injection have been reported. Patients with mild-to-moderate dysphonia had better outcomes. PRP injection is an alternative treatment for patients with mild-to-moderate dysphonia due to vocal fold scarring, sulcus, and atrophy. Level of evidence II Prospective case series treatment.
Collapse
Affiliation(s)
- Peak Woo
- Department of Otolaryngology, Head and Neck SurgeryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
4
|
Hamilton NJI. The life-cycle and restoration of the human vocal fold. Laryngoscope Investig Otolaryngol 2023; 8:168-176. [PMID: 36846403 PMCID: PMC9948577 DOI: 10.1002/lio2.993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Objective To better understand the challenges of designing therapies to treat damaged vocal fold lamina propria, it is essential to understand the biophysical and pathophysiological mechanisms involved in vocal fold development, maintenance, injury, and aging. This review critically analyses these points to try and direct future efforts and new strategies toward science-based solutions. Data Sources & Review Methods MEDLINE, Ovid Embase, and Wed of Science databases were used to identify relevant literature. A scoping review was performed following the preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews checklist. Results The layered arrangement of the vocal fold, develops during early childhood and is maintained during adulthood unless injury occurs. The stellate cells of the macular flava are likely to be important in this process. The capacity for vocal fold regeneration and growth is lost during adulthood and repair results in the deposition of fibrous tissue from resident fibroblasts. With advancing age, viscoelastic tissue declines, possibly due to cell senescence. Strategies aimed at replacing fibrous tissue within the vocal folds must either stimulate resident cells or implant new cells to secrete healthy extracellular protein. Injection of basic fibroblast growth factor is the most widely reported therapy that aims to achieve this. Conclusions The pathways involved in vocal fold development, maintenance and aging are incompletely understood. Improved understanding has the potential to identify new treatment targets that could potentially overcome loss of vocal fold vibratory tissue.
Collapse
Affiliation(s)
- Nick J. I. Hamilton
- Head & Neck Academic Centre, UCL Division of Surgery and Interventional SciencesUniversity College LondonLondonUK
- Department of LaryngologyThe Royal National Ear Nose & Throat hospital (University College London Hospitals NHS Trust)LondonUK
| |
Collapse
|
5
|
Yeung V, Sriram S, Tran JA, Guo X, Hutcheon AEK, Zieske JD, Karamichos D, Ciolino JB. FAK Inhibition Attenuates Corneal Fibroblast Differentiation In Vitro. Biomolecules 2021; 11:1682. [PMID: 34827680 PMCID: PMC8616004 DOI: 10.3390/biom11111682] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Corneal fibrosis (or scarring) occurs in response to ocular trauma or infection, and by reducing corneal transparency, it can lead to visual impairment and blindness. Studies highlight important roles for transforming growth factor (TGF)-β1 and -β3 as modulators in corneal wound healing and fibrosis, leading to increased extracellular matrix (ECM) components and expression of α-smooth muscle actin (αSMA), a myofibroblast marker. In this study, human corneal fibroblasts (hCF) were cultured as a monolayer culture (2D) or on poly-transwell membranes to generate corneal stromal constructs (3D) that were treated with TGF-β1, TGF-β3, or TGF-β1 + FAK inhibitor (FAKi). Results show that hCF 3D constructs treated with TGF-β1 or TGF-β3 impart distinct effects on genes involved in wound healing and fibrosis-ITGAV, ITGB1, SRC and ACTA2. Notably, in the 3D construct model, TGF-β1 enhanced αSMA and focal adhesion kinase (FAK) protein expression, whereas TGF-β3 did not. In addition, in both the hCF 2D cell and 3D construct models, we found that TGF-β1 + FAKi attenuated TGF-β1-mediated myofibroblast differentiation, as shown by abrogated αSMA expression. This study concludes that FAK signaling is important for the onset of TGF-β1-mediated myofibroblast differentiation, and FAK inhibition may provide a novel beneficial therapeutic avenue to reduce corneal scarring.
Collapse
Affiliation(s)
- Vincent Yeung
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Sriniwas Sriram
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Jennifer A. Tran
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Xiaoqing Guo
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Audrey E. K. Hutcheon
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - James D. Zieske
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA;
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Joseph B. Ciolino
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; (S.S.); (J.A.T.); (X.G.); (A.E.K.H.); (J.D.Z.); (J.B.C.)
| |
Collapse
|
6
|
Bai X, Liu J, Yuan W, Liu Y, Li W, Cao S, Yu L, Wang L. Therapeutic Effect of Human Amniotic Epithelial Cells in Rat Models of Intrauterine Adhesions. Cell Transplant 2021; 29:963689720908495. [PMID: 32223314 PMCID: PMC7444214 DOI: 10.1177/0963689720908495] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As a refractory fibrosis disease, intrauterine adhesions (IUAs) is defined as
fibrosis of the physiological endometrium. Although hysteroscopic adhesiolysis
is widely recommended as an effective treatment, prognosis and recurrence remain
poor in severe cases. Recently, stem cell therapy has been promoted as a
promising treatment for IUAs. The ability of human amniotic epithelial cells
(hAECs), emerging as a new candidate for stem cell therapy, to treat IUAs has
not been demonstrated. To study the potential effects of hAECs on IUAs, we
created an IUA rat model using mechanical injury and injected cultured primary
hAECs into the rats’ uteri. Next, we observed the morphological structure of
endometrial thickness and glands using hematoxylin and eosin staining, and we
detected extracellular-matrix collagen deposition using Masson staining. In
addition, we performed immunohistochemical staining and reverse-transcription
polymerase chain reaction (RT-PCR) to investigate potential fibrosis molecules
and angiogenesis factors 7 d after hAECs transplantation. Finally, we detected
estrogen receptor (ER) and growth factors via RT-PCR to verify the molecular
mechanism underlying cell therapy. In the IUA rat models, endometrial thickness
and endometrial glands proliferated and collagen deposition decreased
significantly after hAEC transplantation. We found that during the recovery of
injured endometrium, the crucial fibrosis marker transforming growth factor-β
(TGF-β) was regulated and angiogenesis occurred in the endometrial tissue with
the up-regulation of vascular endothelial growth factor. Furthermore, hAECs were
shown to promote ER expression in the endometrium and regulate the inflammatory
reaction in the uterine microenvironment. In conclusion, these results
demonstrated that hAEC transplantation could inhibit the progression of fibrosis
and promote proliferation and angiogenesis in IUA rat models. The current study
suggests hAECs as a novel stem cell candidate in the treatment of severe
IUA.
Collapse
Affiliation(s)
- Xuechai Bai
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jia Liu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Hangzhou, People's Republic of China.,Shanghai iCELL Biotechnology Co Ltd, Shanghai, People's Republic of China
| | - Weixin Yuan
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Hangzhou, People's Republic of China
| | - Yang Liu
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wei Li
- Department of Gynecology, Ningbo Yinzhou People's Hospital, Ningbo, People's Republic of China
| | - Siyu Cao
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Luyang Yu
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Hangzhou, People's Republic of China.,College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, Hangzhou, People's Republic of China
| | - Liang Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
7
|
Griffin K, Pedersen H, Stauss K, Lungova V, Thibeault SL. Characterization of intrauterine growth, proliferation and biomechanical properties of the murine larynx. PLoS One 2021; 16:e0245073. [PMID: 33439907 PMCID: PMC7806159 DOI: 10.1371/journal.pone.0245073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023] Open
Abstract
Current research approaches employ traditional tissue engineering strategies to promote vocal fold (VF) tissue regeneration, whereas recent novel advances seek to use principles of developmental biology to guide tissue generation by mimicking native developmental cues, causing tissue or allogenic/autologous progenitor cells to undergo the regeneration process. To address the paucity of data to direct VF differentiation and subsequent new tissue formation, we characterize structure-proliferation relationships and tissue elastic moduli over embryonic development using a murine model. Growth, cell proliferation, and tissue biomechanics were taken at E13.5, E15.5, E16.5, E18.5, P0, and adult time points. Quadratic growth patterns were found in larynx length, maximum transverse diameter, outer dorsoventral diameter, and VF thickness; internal VF length was found to mature linearly. Cell proliferation measured with EdU in the coronal and transverse planes of the VFs was found to decrease with increasing age. Exploiting atomic force microscopy, we measured significant differences in tissue stiffness across all time points except between E13.5 and E15.5. Taken together, our results indicate that as the VF mature and develop quadratically, there is a concomitant tissue stiffness increase. Greater gains in biomechanical stiffness at later prenatal stages, correlated with reduced cell proliferation, suggest that extracellular matrix deposition may be responsible for VF thickening and increased biomechanical function, and that the onset of biomechanical loading (breathing) may also contribute to increased stiffness. These data provide a profile of VF biomechanical and growth properties that can guide the development of biomechanically-relevant scaffolds and progenitor cell differentiation for VF tissue regeneration.
Collapse
Affiliation(s)
- Kate Griffin
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hailey Pedersen
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kari Stauss
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vlasta Lungova
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Susan L. Thibeault
- Division of Otolaryngology, Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
8
|
Xu H, Fan GK. The Role of Cytokines in Modulating Vocal Fold Fibrosis: A Contemporary Review. Laryngoscope 2020; 131:139-145. [PMID: 32293731 DOI: 10.1002/lary.28507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/11/2019] [Accepted: 12/29/2019] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Vocal fold (VF) scarring and laryngeal stenosis are a significant clinical challenge. Excessive scar formation causes low voice quality or even life-threatening obstructions. Cytokines are thought to modulate multiple steps of the establishment of VF fibrosis, but there is no systematic report regarding their role in modulating VF fibrosis. This review aims to investigate the role of cytokines in modulating vocal fold fibrosis. STUDY DESIGN Literature review. METHODS This review searched for all relevant peer publications in English for the period 2009 to 2019 in the PubMed database using search terms: "laryngeal stenosis," "vocal fold scarring," and "cytokines." A thorough investigation of the methods and results of the reviewed studies was performed. RESULTS Comprehensive research in various studies, including analyses of prostaglandin E2 (PGE2), granulocyte-macrophage colony-stimulating factor (GM-CSF), hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), transforming growth factor-β3 (TGF-β3), and interleukin-10 (IL-10), supports cytokine therapy for VF scarring and laryngeal stenosis to some extent. A few clinical studies on this topic support the conclusion that HGF and bFGF can be selected as effective drugs, and no serious side effects were found. CONCLUSIONS This review describes the potential of cytokines for modulating the process of VF fibrogenesis, although cytokines are still an unproven treatment method. As no ideal drugs exist, cytokines may be considered the candidate treatment for preventing VF fibrogenesis. Laryngoscope, 131:139-145, 2021.
Collapse
Affiliation(s)
- Haoyuan Xu
- Department of Otolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-Kang Fan
- Department of Otolaryngology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Antioxidant Properties of Tonsil-Derived Mesenchymal Stem Cells on Human Vocal Fold Fibroblast Exposed to Oxidative Stress. Stem Cells Int 2020. [DOI: 10.1155/2020/2560828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The therapeutic potential of tonsil-derived mesenchymal stem cells (TMSCs) has been proved in several in vitro and in vivo models based on their antioxidative capacity. Oxidative stress is involved in the formation of vocal fold scars and the aging of vocal folds. However, few studies have examined the direct correlation between oxidative damage and reconstitution of extracellular matrix (ECM) in the vocal fold fibrosis. We, therefore, sought to investigate the impact of oxidative stress on cell survival and ECM production of human vocal fibroblasts (hVFFs) and the protective effects elicited by TMSCs against oxidative damages in hVFFs. hVFFs were exposed to different concentrations of tert-butyl hydroperoxide in the presence or absence of TMSCs. Cell viability and reactive oxygen species (ROS) production were assessed to examine the progression of oxidative stress in vitro. In addition, expression patterns of ECM-associated factors including various collagens were examined by real-time PCR and immunocytochemical analysis. We found that both cell viability and proliferation capacity of hVFFs were decreased following the exposure to tBHP in a dose-dependent manner. Furthermore, tBHP treatment induced the generation of ROS and reactive aldehydes, while it decreased endogenous activity of antioxidant enzymes in hVFF. Importantly, TMSCs could rescue these oxidative stress-associated damages of hVFFs. TMSCs also downregulated tBHP-mediated production of proinflammatory cytokines in hVFFs. In addition, coculture with TMSC could restore the endogenous matrix metalloproteinase (MMP) activity of hVFFs upon tBHP treatment and, in turn, reduce the oxidative stress-induced ECM accumulation in hVFFs. We have, therefore, shown that the changes in hVFF proliferative capacity and ECM gene expression induced by oxidative stress are consistent with in vivo phenotypes observed in aging vocal folds and vocal fold scarring and that TMSCs may function to reduce oxidative stress in aging vocal folds.
Collapse
|
10
|
Alicura Tokgöz S, Saka C, Akın İ, Köybaşıoğlu F, Kılıçaslan S, Çalışkan M, Beşaltı Ö, Çadallı Tatar E. Effects of phenytoin injection on vocal cord healing after mechanical trauma: An experimental study. Turk J Med Sci 2019; 49:1577-1581. [PMID: 31652040 PMCID: PMC7018381 DOI: 10.3906/sag-1903-63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022] Open
Abstract
Background/aim Phenytoin is an anticonvulsant drug which causes fibroblast proliferation, collagen synthesis, and an increase in epidermal growth factor. Therefore, the aim of the present study is to evaluate the effect of phenytoin injection on the wound healing process in rats with vocal cord injury by histopathological methods. Materials and methods The vocal cords of 10 albino Wistar rats were damaged bilaterally; the left vocal cord was kept as the control group. Phenytoin was injected in the right vocal cord. Ten rats were sacrificed. The thickness of the lamina propria and density of the fibroblast and collagen were evaluated histopathologically. Results Thickness of the lamina propria was 18.0 ± 7.1 µm in the control group, 65.5 ± 10.7 µm in the phenytoin group. The density of fibroblast and collagen were statistically lower in the control group compared the phenytoin group (P < 0.05). Conclusion Phenytoin injection in rats after vocal cord injury significantly increased the thickness of the lamina propria and density of fibroblast and regular and mature collagen in the lamina propria. The findings in our study provide a feasible scientific view for adding phenytoin treatment to vocal cord surgeries in otolaryngology practice, but further studies are needed in order to evaluate the use of phenytoin in preventing the formation of scar tissue and possible effects on vocal cord vibration in humans after vocal cord injury.
Collapse
Affiliation(s)
- Sibel Alicura Tokgöz
- Department of Otorhinolaryngology, University of Health Sciences Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Cem Saka
- Department of Otorhinolaryngology, University of Health Sciences Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - İstemihan Akın
- Department of Otorhinolaryngology, University of Health Sciences Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Fulya Köybaşıoğlu
- Department of Pathology, Faculty of Medicine, Yüksek İhtisas University, Ankara, Turkey
| | - Saffet Kılıçaslan
- Department of Otorhinolaryngology, Düzce Atatürk State Hospital, Düzce, Turkey
| | - Murat Çalışkan
- Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Ömer Beşaltı
- Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Emel Çadallı Tatar
- Department of Otorhinolaryngology, University of Health Sciences Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
11
|
Zhou M, Shi W, Yu F, Zhang Y, Yu B, Tang J, Yang Y, Huang Y, Xiang Q, Zhang Q, Yao Z, Su Z. Pilot-scale expression, purification, and bioactivity of recombinant human TGF-β3 from Escherichia coli. Eur J Pharm Sci 2019; 127:225-232. [DOI: 10.1016/j.ejps.2018.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/16/2018] [Accepted: 11/08/2018] [Indexed: 02/04/2023]
|
12
|
Karbiener M, Darnhofer B, Frisch MT, Rinner B, Birner-Gruenberger R, Gugatschka M. Comparative proteomics of paired vocal fold and oral mucosa fibroblasts. J Proteomics 2017; 155:11-21. [PMID: 28099887 PMCID: PMC5389448 DOI: 10.1016/j.jprot.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
Injuries of the vocal folds frequently heal with scar formation, which can have lifelong detrimental impact on voice quality. Current treatments to prevent or resolve scars of the vocal fold mucosa are highly unsatisfactory. In contrast, the adjacent oral mucosa is mostly resistant to scarring. These differences in healing tendency might relate to distinct properties of the fibroblasts populating oral and vocal fold mucosae. We thus established the in vitro cultivation of paired, near-primary vocal fold fibroblasts (VFF) and oral mucosa fibroblasts (OMF) to perform a basic cellular characterization and comparative cellular proteomics. VFF were significantly larger than OMF, proliferated more slowly, and exhibited a sustained TGF-β1-induced elevation of pro-fibrotic interleukin 6. Cluster analysis of the proteomic data revealed distinct protein repertoires specific for VFF and OMF. Further, VFF displayed a broader protein spectrum, particularly a more sophisticated array of factors constituting and modifying the extracellular matrix. Conversely, subsets of OMF-enriched proteins were linked to cellular proliferation, nuclear events, and protection against oxidative stress. Altogether, this study supports the notion that fibroblasts sensitively adapt to the functional peculiarities of their respective anatomical location and presents several molecular targets for further investigation in the context of vocal fold wound healing. BIOLOGICAL SIGNIFICANCE Mammalian vocal folds are a unique but delicate tissue. A considerable fraction of people is affected by voice problems, yet many of the underlying vocal fold pathologies are sparsely understood at the molecular level. One such pathology is vocal fold scarring - the tendency of vocal fold injuries to heal with scar formation -, which represents a clinical problem with highly suboptimal treatment modalities. This study employed proteomics to obtain comprehensive insight into the protein repertoire of vocal fold fibroblasts, which are the cells that predominantly synthesize the extracellular matrix in both physiological and pathophysiological conditions. Protein profiles were compared to paired fibroblasts from the oral mucosa, a neighboring tissue that is remarkably resistant to scarring. Bioinformatic analyses of the data revealed a number of pathways as well as single proteins (e.g. ECM-remodeling factors, transcription factors, enzymes) that were significantly different between the two fibroblast types. Thereby, this study has revealed novel interesting molecular targets which can be analyzed in the future for their impact on vocal fold wound healing.
Collapse
Affiliation(s)
- Michael Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Austria.
| | - Barbara Darnhofer
- Research Unit, Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Austria; Omics Center Graz, BioTechMed-Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB), Austria
| | - Marie-Therese Frisch
- Core Facility Alternative Biomodels und Preclinical Imaging, Division of Biomedical Research, Medical University of Graz, Austria
| | - Beate Rinner
- Core Facility Alternative Biomodels und Preclinical Imaging, Division of Biomedical Research, Medical University of Graz, Austria
| | - Ruth Birner-Gruenberger
- Research Unit, Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Austria; Omics Center Graz, BioTechMed-Graz, Austria; Austrian Centre of Industrial Biotechnology (ACIB), Austria
| | - Markus Gugatschka
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Austria
| |
Collapse
|
13
|
Kobayashi T, Mizuta M, Hiwatashi N, Kishimoto Y, Nakamura T, Kanemaru SI, Hirano S. Drug delivery system of basic fibroblast growth factor using gelatin hydrogel for restoration of acute vocal fold scar. Auris Nasus Larynx 2017; 44:86-92. [DOI: 10.1016/j.anl.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/24/2016] [Accepted: 04/01/2016] [Indexed: 01/26/2023]
|
14
|
Suzuki R, Kawai Y, Tsuji T, Hiwatashi N, Kishimoto Y, Tateya I, Nakamura T, Hirano S. Prevention of vocal fold scarring by local application of basic fibroblast growth factor in a rat vocal fold injury model. Laryngoscope 2016; 127:E67-E74. [DOI: 10.1002/lary.26138] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/01/2016] [Accepted: 05/23/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Ryo Suzuki
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Takuya Tsuji
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Nao Hiwatashi
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Ichiro Tateya
- Department of Otolaryngology-Head and Neck Surgery; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Tatsuo Nakamura
- Department of Bioartificial Organs; Institute for Frontier Medical Science; Kyoto University Kyoto Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery; Kyoto Prefectural University of Medicine; Kyoto Japan
| |
Collapse
|
15
|
Kishimoto Y, Kishimoto AO, Ye S, Kendziorski C, Welham NV. Modeling fibrosis using fibroblasts isolated from scarred rat vocal folds. J Transl Med 2016; 96:807-16. [PMID: 27111284 PMCID: PMC4920689 DOI: 10.1038/labinvest.2016.43] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 02/02/2016] [Accepted: 02/19/2016] [Indexed: 12/11/2022] Open
Abstract
Following injury, pathologically activated vocal fold fibroblasts (VFFs) can engage in disordered extracellular matrix (ECM) remodeling, leading to VF fibrosis and impaired voice function. Given the importance of scar VFFs to phenotypically appropriate in vitro modeling of VF fibrosis, we pursued detailed characterization of scar VFFs obtained from surgically injured rat VF mucosae, compared with those obtained from experimentally naïve, age-matched tissue. Scar VFFs initially exhibited a myofibroblast phenotype characterized by increased proliferation, increased Col1a1 transcription and collagen, type I synthesis, increased Acta2 transcription and α-smooth muscle actin synthesis, and enhanced contractile function. These features were most distinct at passage 1 (P1); we observed a coalescence of the scar and naïve VFF phenotypes at later passages. An empirical Bayes statistical analysis of the P1 cell transcriptome identified 421 genes that were differentially expressed by scar, compared with naïve, VFFs. These genes were primarily associated with the wound response, ECM regulation, and cell proliferation. Follow-up comparison of P1 scar VFFs and their in vivo tissue source showed substantial transcriptomic differences. Finally, P1 scar VFFs responded to treatment with hepatocyte growth factor and transforming growth factor-β3, two biologics with reported therapeutic value. Despite the practical limitations inherent to working with early passage cells, this experimental model is easily implemented in any suitably equipped laboratory and has the potential to improve the applicability of preclinical VF fibrosis research.
Collapse
Affiliation(s)
- Yo Kishimoto
- Department of Surgery, Division of Otolaryngology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Ayami Ohno Kishimoto
- Department of Surgery, Division of Otolaryngology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Shuyun Ye
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Nathan V. Welham
- Department of Surgery, Division of Otolaryngology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
16
|
Kwon SK, Ryu YJ, Kim DW, Chang H, Kim SY, Sung MW, Hah JH. Prevention of anterior glottis web with hyaluronic acid derivatives in rabbit model. Laryngoscope 2016; 126:2320-4. [DOI: 10.1002/lary.26089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - Yoon-Jong Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - Dong Wook Kim
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - Hyun Chang
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - Soo Yeon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - Myung Whun Sung
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - J. Hun Hah
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| |
Collapse
|
17
|
Guo X, Hutcheon AEK, Zieske JD. Molecular insights on the effect of TGF-β1/-β3 in human corneal fibroblasts. Exp Eye Res 2016; 146:233-241. [PMID: 26992778 DOI: 10.1016/j.exer.2016.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 01/01/2023]
Abstract
Transforming growth factor β (TGF-β) plays a critical role in wound healing and the pathogenesis of fibrosis (scarring). Three isoforms of TGF-β have been identified in mammals. Previous studies have shown that the addition of TGF-β1 (T1) or -β2 (T2) to human corneal fibroblasts (HCF) cultured in a 3-dimensional construct resulted in a fibrotic matrix, while the addition of TGF-β3 (T3) resulted in the production of enhanced non-fibrotic matrix as compared to control (Vitamin C [VitC] only). In the current investigation, we undertook the molecular comparison of fibrosis-related gene expression in T1 or T3-treated HCF to gain further insights into the regulation and roles of these two isoforms on the fibrotic response. HCF were cultured in 100 mm dishes in basic medium (Eagles minimum essential medium [EMEM] with 10% fetal bovine serum [FBS]). At 70-80% confluency, cells were exposed to basic medium with 0.5 mM 2-O-α-d-glucopyranosyl-l-ascorbic acid (VitC) ± 2 ng/ml of T1 or T3. After 4 h or 3 days, cells were harvested, and mRNA or protein was isolated. Fibrosis related mRNA levels were assayed using a commercial qRT-PCR Array. Selected proteins were examined using Western blotting (WB). Experiments were performed 6 times for the qRT-PCR and 4 times for WB for each condition. qRT-PCR results showed that most of the fibrosis-related genes were up or downregulated in HCF exposed to T1 or T3 as compared with VitC control. At 4 h, only Smad7 expression was significantly altered in T3-treated HCF, compared to T1, and at 3 days, five genes were altered. WB confirmed that T1 significantly decreased Smad7 expression compared to T3 and control, and that the expression of thrombospondin-1 in T3-stimulated HCF was enhanced compared to T1-treated cells. Finally, both T1 and T3 decreased Smad3 expression dramatically at both time points. At early time points, T1 and T3 have similar effects on expression of fibrosis related genes; however, with a longer exposure, an increasing number of genes were differentially expressed. Interestingly, most of the differentially expressed gene products are secreted by the cells and may be related to the modulation of extracellular matrix.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Schepens Eye Research Institute/MEE and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Audrey E K Hutcheon
- Schepens Eye Research Institute/MEE and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - James D Zieske
- Schepens Eye Research Institute/MEE and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Fishman JM, Long J, Gugatschka M, De Coppi P, Hirano S, Hertegard S, Thibeault SL, Birchall MA. Stem cell approaches for vocal fold regeneration. Laryngoscope 2016; 126:1865-70. [PMID: 26774977 DOI: 10.1002/lary.25820] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/20/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES/HYPOTHESIS Current interventions in the management of vocal fold (VF) dysfunction focus on conservative and surgical approaches. However, the complex structure and precise biomechanical properties of the human VF mean that these strategies have their limitations in clinical practice and in some cases offer inadequate levels of success. Regenerative medicine is an exciting development in this field and has the potential to further enhance VF recovery beyond conventional treatments. Our aim in this review is to discuss advances in the field of regenerative medicine; that is, advances in the process of replacing, engineering, or regenerating the VF through utilization of stem cells, with the intention of restoring normal VF structure and function. DATA SOURCES English literature (1946-2015) review. METHODS We conducted a systematic review of MEDLINE for cases and studies of VF tissue engineering utilizing stem cells. RESULTS The three main approaches by which regenerative medicine is currently applied to VF regeneration include cell therapy, scaffold development, and utilization of growth factors. CONCLUSION Exciting advances have been made in stem cell biology in recent years, including use of induced pluripotent stem cells. We expect such advances to be translated into the field in the forthcoming years. Laryngoscope, 126:1865-1870, 2016.
Collapse
Affiliation(s)
- Jonathan M Fishman
- UCL Institute of Child Health, London, United Kingdom.,UCL Ear Institute and Royal National Throat, Nose and Ear Hospital and, London, United Kingdom
| | - Jenny Long
- UCL Institute of Child Health, London, United Kingdom
| | - Markus Gugatschka
- Department of Phoniatrics, ENT University Hospital Graz, Medical University Graz, Graz, Austria
| | | | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Stellan Hertegard
- Department of Otorhinolaryngology, Karolinska Institutet Clintec, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, Wisconsin, U.S.A
| | - Martin A Birchall
- UCL Ear Institute and Royal National Throat, Nose and Ear Hospital and, London, United Kingdom
| |
Collapse
|
19
|
Kwon SK, Kim DW, Ryu YJ, Kim SY, Chang H, Sung MW, Hah JH. Novel experimental rabbit model of anterior glottic web formation. Acta Otolaryngol 2015; 135:840-5. [PMID: 25828378 DOI: 10.3109/00016489.2015.1028594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION The rabbit model of anterior glottic web (AGW) formation using the laryngofissure technique resulted in reproducible and stable AGW formation that may facilitate research into this area. OBJECTIVE To introduce and validate a novel experimental animal model of AGW formation using the rabbit. METHODS The inner larynges of eight New Zealand white rabbits were exposed through the laryngofissure technique. The mucosa of the bilateral true vocal fold was stripped off using the bevel of a needle tip. On the basis of the laryngoscopic findings at 8 weeks postoperatively, the extent of AGW was measured, and the success of this procedure was validated. Laryngeal specimens were sampled at 8 weeks for high-speed recording and histological analysis. RESULTS In seven (87.5%) rabbits, laryngoscopic examination revealed the formation of a scar band involving the anterior commissure. The mean extent of AGW ratio on the left and right sides was 0.58 ± 0.073 and 0.55 ± 0.075, respectively. The symmetric formation of AGW (p = 0.655, p = 0.128) and stability of the AGW procedure (p = 0.491, left; p = 0.501, right) were statistically validated. On high-speed recording, the vocal mucosal wave was hindered by AGW formation. Histologically, fibro-connective tissue, especially collagen fiber, was observed in the anterior commissure.
Collapse
Affiliation(s)
- Seong Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital & Seoul National University College of Medicine , Seoul
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Over 100 million patients acquire scars in the industrialized world each year, primarily as a result of elective operations. Although undefined, the global incidence of scarring is even larger, extending to significant numbers of burn and other trauma-related wounds. Scars have the potential to exert a profound psychological and physical impact on the individual. Beyond aesthetic considerations and potential disfigurement, scarring can result in restriction of movement and reduced quality of life. The formation of a scar following skin injury is a consequence of wound healing occurring through reparative rather than regenerative mechanisms. In this article, the authors review the basic stages of wound healing; differences between adult and fetal wound healing; various mechanical, genetic, and pharmacologic strategies to reduce scarring; and the biology of skin stem/progenitor cells that may hold the key to scarless regeneration.
Collapse
|
21
|
Epidermal growth factor mediated healing in stem cell-derived vocal fold mucosa. J Surg Res 2015; 197:32-8. [PMID: 25818979 DOI: 10.1016/j.jss.2015.02.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/03/2015] [Accepted: 02/26/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND The goal of vocal fold wound healing is the reconstitution of functional tissue, including a structurally and functionally intact epithelium. Mechanisms underlying reepithelialization in vocal folds are not known, although it is suspected that healing involves the interplay between several growth factors. We used a three-dimensional human embryonic stem cell-derived model of vocal fold mucosa to examine the effects of one growth factor, exogenous epidermal growth factor (EGF), on wound healing. MATERIALS AND METHODS A scratch wound was created in the in vitro model. Rate of wound healing, epidermal growth factor receptor (EGFR) activation, and cell proliferation after injury were analyzed with and without application of both exogenous EGF and an EGFR inhibitor, gefitinib. RESULTS Wound repair after injury was significantly hastened by application of exogenous EGF (13.3 μm/h, ± 2.63) compared with absence of exogenous EGF (7.1 μm/h ± 2.84), but inhibited with concurrent addition of Gefitinib (5.2 μm/h, ± 2.23), indicating that EGF mediates wound healing in an EGFR-dependent manner. Immunohistochemistry revealed that EGFR activation occurred only in the presence of exogenous EGF. Although not statistically significant, increased density of Ki67 staining in the epithelium adjacent to the scratch wound was observed after treatment with EGF, suggesting a tendency for exogenous EGF to increase epithelial cell proliferation. CONCLUSIONS Exogenous EGF increases the rate of wound healing in an EGFR-dependent manner in a three-dimensional stem cell-derived model of vocal fold mucosa. This model of wound healing can be used to gain insight into the mechanisms that regulate vocal fold epithelial repair after injury.
Collapse
|
22
|
Leydon C, Imaizumi M, Bartlett RS, Wang SF, Thibeault SL. Epithelial cells are active participants in vocal fold wound healing: an in vivo animal model of injury. PLoS One 2014; 9:e115389. [PMID: 25514022 PMCID: PMC4267843 DOI: 10.1371/journal.pone.0115389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022] Open
Abstract
Vocal fold epithelial cells likely play an important, yet currently poorly defined, role in healing following injury, irritation and inflammation. In the present study, we sought to identify a possible role for growth factors, epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGFβ1), in epithelial regeneration during wound healing as a necessary first step for uncovering potential signaling mechanisms of vocal fold wound repair and remodeling. Using a rat model, we created unilateral vocal fold injuries and examined the timeline for epithelial healing and regeneration during early and late stages of wound healing using immunohistochemistry (IHC). We observed time-dependent secretion of the proliferation marker, ki67, growth factors EGF and TGFβ1, as well as activation of the EGF receptor (EGFR), in regenerating epithelium during the acute phase of injury. Ki67, growth factor, and EGFR expression peaked at day 3 post-injury. Presence of cytoplasmic and intercellular EGF and TGFβ1 staining occurred up to 5 days post-injury, consistent with a role for epithelial cells in synthesizing and secreting these growth factors. To confirm that epithelial cells contributed to the cytokine secretion, we examined epithelial cell growth factor secretion in vitro using polymerase chain reaction (PCR). Cultured pig vocal fold epithelial cells expressed both EGF and TGFβ1. Our in vivo and in vitro findings indicate that epithelial cells are active participants in the wound healing process. The exact mechanisms underlying their roles in autocrine and paracrine signaling guiding wound healing await study in a controlled, in vitro environment.
Collapse
Affiliation(s)
- Ciara Leydon
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Mitsuyoshi Imaizumi
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Rebecca S. Bartlett
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Sarah F. Wang
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Susan L. Thibeault
- Division of Otolaryngology – Head and Neck Surgery, Department of Surgery, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
23
|
Branco A, Rodrigues SA, Fabro AT, Fonseca-Alves CE, Martins RHG. Hyaluronic acid behavior in the lamina propria of the larynx with advancing age. Otolaryngol Head Neck Surg 2014; 151:652-656. [PMID: 25096358 DOI: 10.1177/0194599814544673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/03/2014] [Indexed: 04/02/2025]
Abstract
OBJECTIVES To analyze the hyaluronic acid behavior in the lamina propria of the larynx with advancing age. STUDY DESIGN Prospective study. SETTING UNESP-Univ Estadual Paulista, Botucatu Medical School, Brazil. SUBJECTS AND METHODS Thirty vocal folds were obtained at necropsy from 10 adult males (30-50 years old) and 20 geriatric males (10: 60-75 years old; 10: over 76 years old). Midmembranous vocal fold sections were subjected to immunohistochemical reactions. Digital imaging software (ImageJ) was used to quantify the hyaluronic acid distribution over the lamina propria of vocal folds, from superficial to deep layers. RESULTS Hyaluronic acid distribution was homogeneous for the larynges, at both superficial and deep layers (41.6 and 38.5, respectively). For both 30- to 50-year-old men geriatric age groups, hyaluronic acid level was lower at both layers. CONCLUSION Hyaluronic acid level in the lamina propria of the larynx of geriatric men decreases with advancing age at both layers of the lamina.
Collapse
Affiliation(s)
- Anete Branco
- Head and Neck Surgery Department, Univ Estadual Paulista, Botucatu Medical School, Ophthalmology, Otorhinolaryngology, São Paulo, Brazil
| | | | | | - Carlos Eduardo Fonseca-Alves
- Veterinary Clinic Department, School of Veterinary Medicine and Animal Science/UNESP-Univ Estadual Paulista, São Paulo, Brazil
| | - Regina Helena Garcia Martins
- Head and Neck Surgery Department, Univ Estadual Paulista, Botucatu Medical School, Ophthalmology, Otorhinolaryngology, São Paulo, Brazil
| |
Collapse
|
24
|
Lee JH, Kim DW, Kim EN, Park SW, Kim HB, Oh SH, Kwon SK. Evaluation of the Poly(lactic-co-glycolic acid)/Pluronic F127 for Injection Laryngoplasty in Rabbits. Otolaryngol Head Neck Surg 2014; 151:830-5. [DOI: 10.1177/0194599814549527] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective Poly(lactic-co-glycolic acid) (PLGA) is an aliphatic polyester and one of the most commonly used synthetic biodegradable polymers for tissue engineering. The objectives of this study were to evaluate the biocompatibility of PLGA/Pluronic F127 in the vocal fold. Study Design A randomized, prospective, controlled animal study. Setting University laboratory. Subjects and Methods We used 18 New Zealand white rabbits, which were divided into 5% PLGA solution (n = 9) and 10% PLGA solution (n = 9) groups. The PLGA/Pluronic F127 solutions were injected into the rabbit vocal fold. Laryngoscopic exams were performed at 1, 4, and 8 weeks after implantation; then larynx specimens were sampled. High-speed video camera examination was performed for functional analysis of vocal mucosa vibration at 8 weeks after implantation. Also, we evaluated the amplitude of the mucosal wave from the laryngeal midline on high-speed recording. Histologic study of larynx specimen was performed at 4 and 8 weeks. Results All animals survived until the scheduled period. Laryngoscopic analysis showed that both 5% and 10% PLGA/Pluronic F127 maintained after 8 weeks after injection without significant inflammatory response. On functional analysis, high-speed camera examination revealed regular and symmetric contact of vocal fold mucosa without a distorted movement by injected PLGA/Pluronic F127. Histologically, no significant inflammation was observed in the injected vocal fold. Conclusion As a vocal fold injection material, PLGA/Pluronic F127 showed a good bio-compatibility without significant inflammatory response. Further experiment will follow to elucidate its role for drug or gene delivery into the vocal fold.
Collapse
Affiliation(s)
- Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon, Republic of Korea
| | - Dong Wook Kim
- Department of Otorhinolaryngology–Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Na Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Republic of Korea
| | - Seok-Won Park
- Department of Otorhinolaryngology–Head and Neck Surgery, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Hee-Bok Kim
- Department of Otorhinolaryngology–Head and Neck Surgery, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Seong Keun Kwon
- Department of Otorhinolaryngology–Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul, Republic of Korea
- Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
25
|
Duscher D, Maan ZN, Wong VW, Rennert RC, Januszyk M, Rodrigues M, Hu M, Whitmore AJ, Whittam AJ, Longaker MT, Gurtner GC. Mechanotransduction and fibrosis. J Biomech 2014; 47:1997-2005. [PMID: 24709567 DOI: 10.1016/j.jbiomech.2014.03.031] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 01/06/2023]
Abstract
Scarring and tissue fibrosis represent a significant source of morbidity in the United States. Despite considerable research focused on elucidating the mechanisms underlying cutaneous scar formation, effective clinical therapies are still in the early stages of development. A thorough understanding of the various signaling pathways involved is essential to formulate strategies to combat fibrosis and scarring. While initial efforts focused primarily on the biochemical mechanisms involved in scar formation, more recent research has revealed a central role for mechanical forces in modulating these pathways. Mechanotransduction, which refers to the mechanisms by which mechanical forces are converted to biochemical stimuli, has been closely linked to inflammation and fibrosis and is believed to play a critical role in scarring. This review provides an overview of our current understanding of the mechanisms underlying scar formation, with an emphasis on the relationship between mechanotransduction pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Dominik Duscher
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Zeshaan N Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Victor W Wong
- Department of Plastic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert C Rennert
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie Rodrigues
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Arnetha J Whitmore
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander J Whittam
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Wu Y, Schomisch SJ, Cipriano C, Chak A, Lash RH, Ponsky JL, Marks JM. Preliminary results of antiscarring therapy in the prevention of postendoscopic esophageal mucosectomy strictures. Surg Endosc 2013; 28:447-55. [PMID: 24100858 DOI: 10.1007/s00464-013-3210-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 08/30/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Esophageal endoscopic submucosal dissection (ESD) is an effective minimally invasive therapy for early esophageal cancer and high-grade Barrett dysplasia. However, esophageal stricture formation after circumferential or large ESD has limited its wide adoption. Mitomycin C (MMC), halofuginone (Hal), and transforming growth factor β3 (TGF-β3) exhibits antiscarring effects that may prevent post-ESD stricture formation. METHODS Using endoscopic mucosectomy (EEM) technique, an 8- to 10-cm-long circumferential esophageal mucosal segment was excised in a porcine model. The site was either untreated (control, n = 6) or received 40 evenly distributed injections of antiscarring agent immediately and at weeks 1 and 2. High and low doses were used: MMC 5 mg (n = 2), 0.5 mg (n = 2); Hal 5 mg (n = 2), 1.5 mg (n = 2), 0.5 mg (n = 2); TGF-β3 2 μg (n = 2), 0.5 μg (n = 2). The degree of stricture formation was determined by the percentage reduction of the esophageal lumen on weekly fluoroscopic examination. Animals were euthanized when strictures exceeded 80 % or the animals were unable to maintain weight. RESULTS The control group had a luminal diameter reduction of 78.2 ± 10.9 % by 2 weeks and were euthanized by week 3. Compared at 2 weeks, the Hal group showed a decrease in mean stricture formation (68.4 % low dose, 57.7 % high dose), while both TGF-β3 dosage groups showed no significant change (65.3 % low dose, 76.2 % high dose). MMC was most effective in stricture prevention (53.6 % low dose, 35 % high dose). Of concern, the esophageal wall treated with high-dose MMC appeared to be necrotic and eventually led to perforation. In contrast, low dose MMC, TGF-β3 and Hal treated areas appeared re-epithelialized and healthy. CONCLUSIONS Preliminary data on MMC and Hal demonstrated promise in reducing esophageal stricture formation after EEM. More animal data are needed to perform adequate statistical analysis in order to determine overall efficacy of antiscarring therapy.
Collapse
Affiliation(s)
- Yuhsin Wu
- Department of Surgery, University Hospitals Case Medical Center, 11100 Euclid Ave., Mail Stop LKS 5047, Cleveland, OH, 44106, USA,
| | | | | | | | | | | | | |
Collapse
|
27
|
Chang Z, Kishimoto Y, Hasan A, Welham NV. TGF-β3 modulates the inflammatory environment and reduces scar formation following vocal fold mucosal injury in rats. Dis Model Mech 2013; 7:83-91. [PMID: 24092879 PMCID: PMC3882051 DOI: 10.1242/dmm.013326] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor (TGF)-β1 and TGF-β3 have been reported to exert differential effects on wound healing, and possibly even account for tissue-specific differences in scar formation. Scarring is particularly detrimental in the vocal fold mucosa (VFM), where destruction of the native extracellular matrix causes irreparable biomechanical changes and voice impairment. Here, in a series of in vitro and in vivo experiments, we identified differences in TGF-β1 and TGF-β3 transcription and immunolocalization to various cell subpopulations in naïve and injured rat VFM, compared with oral mucosa (which undergoes rapid healing with minimal scar) and skin (which typically heals with scar). Treatment of cultured human vocal fold fibroblasts with TGF-β3 resulted in less potent induction of profibrotic gene transcription, extracellular matrix synthesis and fibroblast-myofibroblast differentiation, compared with treatment with TGF-β1 and TGF-β2. Finally, delivery of exogenous TGF-β3 to rat VFM during the acute injury phase modulated the early inflammatory environment and reduced eventual scar formation. These experiments show that the TGF-β isoforms have distinct roles in VFM maintenance and repair, and that TGF-β3 redirects wound healing to improve VFM scar outcomes in vivo.
Collapse
Affiliation(s)
- Zhen Chang
- Department of Surgery, Division of Otolaryngology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | |
Collapse
|
28
|
Coexistence of elastic fibers with hyaluronic acid in the human urethral sphincter complex: a histological study. J Urol 2013; 190:1313-9. [PMID: 23583858 DOI: 10.1016/j.juro.2013.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2013] [Indexed: 11/21/2022]
Abstract
PURPOSE To promote the prevention and treatment of urethral sphincteric dysfunction, we examined the distribution of elastic fibers around the urethral sphincter complex and the histological localization of hyaluronic acid in relation to elastic fiber architecture. MATERIALS AND METHODS Using elastica-Masson staining as well as biotinated hyaluronic acid binding protein, we examined specimens of the urethral sphincter complex obtained from 14 elderly Japanese cadavers, including 10 men and 4 women. As a control, we also observed other striated muscles in male cadavers. RESULTS Elastic fibers were densely distributed throughout the submucosal and smooth muscle layers along the entire length of the male urethra, including the prostatic urethra. The levator ani fascia and rhabdosphincter also contained abundant elastic fibers. An intramuscular elastic net was seen in the rhabdosphincter but not in other striated muscles. Strong staining for hyaluronic acid was evident in the submucosa and smooth muscle sphincter of the urethra but not in the levator ani fascia or rhabdosphincter, suggesting that elastic fibers and hyaluronic acid might interact at the former sites. Gender related differences in the distribution of elastic fibers and hyaluronic acid were noted with a much lower density of elastic fibers and hyaluronic acid staining in women than in men. CONCLUSIONS Urethral sites where elastic fibers and hyaluronic acid coexist could be targeted for the prevention and treatment of urethral sphincteric insufficiency. These findings should improve our understanding of the human urethral sphincter complex.
Collapse
|
29
|
Kawase T, Shibata S, Katori Y, Ohtsuka A, Murakami G, Fujimiya M. Elastic fiber-mediated enthesis in the human middle ear. J Anat 2012; 221:331-40. [PMID: 22803514 DOI: 10.1111/j.1469-7580.2012.01542.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adaptation to constant vibration (acoustic oscillation) is likely to confer a specific morphology at the bone-tendon and bone-ligament interfaces at the ear ossicles, which therefore represent an exciting target of enthesis research. We histologically examined (i) the bone attachments of the tensor tympani and stapedius muscles and (ii) the annular ligament of the incudostapedial joint obtained from seven elderly donated cadavers. Notably, both aldehyde-fuchsin and elastic-Masson staining demonstrated that the major fibrous component of the entheses was not collagen fibers but mature elastic fibers. The positive controls for elastic fiber staining were the arterial wall elastic laminae included in the temporal bone materials. The elastic fibers were inserted deeply into the type II collagen-poor fibrocartilage covering the ear ossicles. The muscle tendons were composed of an outer thin layer of collagen fibers and an inner thick core of elastic fibers near the malleus or stapes. In the unique elastic fiber-mediated entheses, hyaluronan, versican and fibronectin were expressed strongly along the elastic fibers. The hyaluronan seemed to act as a friction-reducing lubricant for the elastic fibers. Aggrecan was labeled strongly in a disk- or plica-like fibrous mass on the inner side of the elastic fiber-rich ligament, possibly due to compression stress from the ligament. Tenascin-c was not evident in the entheses. The elastic fiber-mediated entheses appeared resistant to tissue destruction in an environment exposed to constant vibration. The morphology was unlikely to be the result of age-related degeneration.
Collapse
Affiliation(s)
- Tetsuaki Kawase
- Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | | | | | | | | | | |
Collapse
|