1
|
Kim J, Ślęczkowska M, Nobre B, Wieringa P. Study Models for Chlamydia trachomatis Infection of the Female Reproductive Tract. Microorganisms 2025; 13:553. [PMID: 40142446 PMCID: PMC11945960 DOI: 10.3390/microorganisms13030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Chlamydia trachomatis (Ct) is a leading cause of sexually transmitted infections globally, often resulting in inflammatory disorders, ectopic pregnancies, and infertility. Studying Ct's pathogenesis remains challenging due to its unique life cycle and host-specific interactions, which require diverse experimental models. Animal studies using mouse, guinea pig, pig, and non-human primate models provide valuable insights into immune responses, hormonal influences, and disease progression. However, they face limitations in terms of translational relevance due to physiological differences, as well as ethical concerns. Complementing these, in vitro systems, ranging from simple monolayer to advanced three-dimensional models, exhibit improved physiological relevance by replicating the human tissue architecture. This includes the detailed investigation of epithelial barrier disruptions, epithelium-stroma interactions, and immune responses at a cellular level. Nonetheless, in vitro models fall short in mimicking the intricate tissue structures found in vivo and, therefore, cannot faithfully replicate the host-pathogen interactions or infection dynamics observed in living organisms. This review presents a comprehensive overview of the in vivo and in vitro models employed over the past few decades to investigate Ct and its pathogenesis, addressing their strengths and limitations. Furthermore, we explore emerging technologies, including organ-on-chip and in silico models, as promising tools to overcome the existing challenges and refine our understanding of Ct infections.
Collapse
Affiliation(s)
| | | | | | - Paul Wieringa
- Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.K.); (M.Ś.); (B.N.)
| |
Collapse
|
2
|
Murphy W, Liu S, Hon K, Finnie J, Bouras GS, Feizi S, Houtak G, Shaghayegh G, Vyskocil E, Wormald PJ, Vreugde S, Psaltis AJ. A Novel Model of Staphylococcus aureus-Induced Lymphoplasmacytic Rhinosinusitis in Rats. Int J Mol Sci 2024; 25:3336. [PMID: 38542309 PMCID: PMC10970618 DOI: 10.3390/ijms25063336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 11/11/2024] Open
Abstract
Chronic rhinosinusitis (CRS) is characterized by sinonasal mucosal inflammation. Staphylococcus aureus (S. aureus) is associated with severe CRS phenotypes. Different animal models have been proposed to study the association of CRS and S. aureus. However, current animal models are expensive due to the use of large animals, have high barriers to ethics approval, or require invasive surgical intervention, necessitating a need for a model that can overcome these limitations. This study aimed at establishing a reliable and efficient rat lymphoplasmacytic inflammatory model for rhinosinusitis. Sprague Dawley rats received a daily intranasal application of 20 μL of saline, S. aureus CI-182 exoprotein (250 μg/mL), or exoprotein CI-182 in combination with S. aureus clinical isolate (CI-908 or CI-913) 108 colony-forming unit (CFU)/mL. The rats' sinuses were harvested at 1 and 2 weeks post-intervention. The CFU and histopathologic examination of inflammation were evaluated. S. aureus clinical isolates CI-908 or CI-913 in combination with the exoprotein (CI-182) had higher CFUs and caused persistently higher inflammation at both the 1 and 2-week post-intervention compared to the exoprotein and saline group. The observed inflammatory cell type was lymphoplasmacytic. This study provided evidence that the combination of a S. aureus exoprotein with S. aureus induces inflammation that persists for a minimum of two weeks post-intervention. This model is the first known animal model to create the lymphoplasmacytic inflammation subtype seen in CRS patients. This offers a cost-effective, accessible, non-invasive, and easy-to-replicate model to study the causes and treatment of such inflammation.
Collapse
Affiliation(s)
- William Murphy
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sha Liu
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Karen Hon
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - John Finnie
- Division of Research and Innovation, University of Adelaide, Adelaide, SA 5005, Australia
| | - George Spyro Bouras
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sholeh Feizi
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Ghais Houtak
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gohar Shaghayegh
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Erich Vyskocil
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
- Department of Otolaryngology, Head and Neck Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Alkis J. Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
- The Department of Surgery, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Vanderpool EJ, Rumbaugh KP. Host-microbe interactions in chronic rhinosinusitis biofilms and models for investigation. Biofilm 2023; 6:100160. [PMID: 37928619 PMCID: PMC10622848 DOI: 10.1016/j.bioflm.2023.100160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a debilitating condition characterized by long-lasting inflammation of the paranasal sinuses. It affects a significant portion of the population, causing a considerable burden on individuals and healthcare systems. The pathogenesis of CRS is multifactorial, with bacterial infections playing a crucial role in CRS development and persistence. In recent years, the presence of biofilms has emerged as a key contributor to the chronicity of sinusitis, further complicating treatment and exacerbating symptoms. This review aims to explore the role of biofilms in CRS, focusing on the involvement of the bacterial species Staphylococcus aureus and Pseudomonas aeruginosa, their interactions in chronic infections, and model systems for studying biofilms in CRS. These species serve as an example of how microbial interplay can influence disease progression and exemplify the need for continued investigation and innovation in CRS research.
Collapse
Affiliation(s)
- Emily J. Vanderpool
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
4
|
Hamour AF, Lee JJ, Wasilewski E, Monteiro E, Lee JM, Vescan A, Kotra LP. Murine model for chronic rhinosinusitis: an interventional study. J Otolaryngol Head Neck Surg 2023; 52:32. [PMID: 37098626 PMCID: PMC10131485 DOI: 10.1186/s40463-023-00637-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/30/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a complex inflammatory disease of the sinonasal tract. To understand this disease entity and develop targeted treatments, a reproducible animal model is paramount. AIMS/OBJECTIVES To optimize a murine model of eosinophilic CRS by establishing benchmark histological markers and validate its fidelity in evaluating intranasal treatments. MATERIAL AND METHODS Forty-five Balb/c mice were included in the 7-week protocol. Experimental animals (n = 20) were induced a CRS disease state upon receiving intraperitoneal sensitization with ovalbumin (OVA), followed by intranasal OVA with Aspergillus oryzae protease. Analysis of complete blood count with differential, peripheral blood smear, and histological markers from the nasal cavity mucosa were performed. CRS mice were additionally treated with intranasal saline (n = 5) or mometasone (n = 10) and compared with control groups of untreated CRS (n = 5) and healthy (n = 5) mice after week 7. RESULTS Histological analysis of experimental animal nasal mucosa revealed significantly higher levels of eosinophilic tissue infiltration/degranulation, hyaline droplets, Charcot-Leyden crystals, and respiratory epithelial thickness compared to healthy controls. Treatment with mometasone significantly reversed the histopathological changes observed in CRS mice. CONCLUSION AND SIGNIFICANCE This murine model induced substantial local eosinophilic inflammation within sinonasal mucosa, that was reversible with mometasone. This model may be used to evaluate the efficacy of therapeutics designed to target CRS.
Collapse
Affiliation(s)
- Amr F Hamour
- Department of Otolaryngology - Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John Jw Lee
- Department of Otolaryngology - Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Ewa Wasilewski
- Centre for Cannabinoid Therapeutics and Centre for Molecular Design and Preformulations, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Eric Monteiro
- Department of Otolaryngology - Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology - Head and Neck Surgery, Sinai Health System, Toronto, ON, Canada
| | - John M Lee
- Department of Otolaryngology - Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology - Head and Neck Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Allan Vescan
- Department of Otolaryngology - Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Otolaryngology - Head and Neck Surgery, Sinai Health System, Toronto, ON, Canada
| | - Lakshmi P Kotra
- Centre for Cannabinoid Therapeutics and Centre for Molecular Design and Preformulations, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Combination of Merocel sponge with Lipopolysaccharide to establish rat rhinosinusitis model. Braz J Otorhinolaryngol 2023; 89:432-439. [PMID: 36868995 PMCID: PMC10164785 DOI: 10.1016/j.bjorl.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/23/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVE The study aimed to investigate the feasibility of establishing rhinosinusitis model in rats combinated with Lipopolysaccharide (LPS) and merocel sponge. METHODS SD (Sprague Dawley) rats that underwent nasal obstruction using Merocel sponge packing, rats with LPS instillation alone, and rats with both nasal obstruction and LPS instillation were used to establish rat models of rhinosinusitis. After the models were established, the nasal symptoms of rats were recorded, the histopathological examination and Transmission Electron Microscopy (TME) of the sinus tissue were performed and the levels of Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6) in the blood were also analyzed. The expressions of Aquaporin-5 (AQP5), Occludin, Toll-Like Receptor-4 (TLR4), Medullary differentiation factor 88 (MyD88) and phosphorylated (p)-p65 protein were detected by Western blot to evaluate the effect and mechanism of the experimental models. RESULTS We found that compared with the control group and LPS group, the sinusitis symptom scores in the Merocel sponge combined with LPS group were significantly increased; the respiratory epithelia of the maxillary sinus were degenerated, cilia were detached, and even inflammatory cell infiltration occurred; the levels of TNF-α and IL-6 were increased; the expression of AQP5 and Occludin protein was decreased; and the expressions of TLR4, MyD88, and p-p65 protein were increased. CONCLUSION For the first time, we successfully established a rat rhinosinusitis model using Merocel sponge with LPS and explored the possible mechanism of LPS action.
Collapse
|
6
|
Psaltis AJ, Mackenzie BW, Cope EK, Ramakrishnan VR. Unravelling the role of the microbiome in chronic rhinosinusitis. J Allergy Clin Immunol 2022; 149:1513-1521. [PMID: 35300985 DOI: 10.1016/j.jaci.2022.02.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/31/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
Chronic rhinosinusitis (CRS) is a complex, heterogenous condition with likely infectious and inflammatory causative factors. Renewed interest in the role that microbes play in this condition has stemmed from advancements in microbe identification and parallel research that has implicated the role of the microbiome in other chronic inflammatory conditions. This clinical commentary provides a review of the current literature relevant to chronic rhinosinusitis. Particular focus is paid to factors specific to the investigation of the sinonasal microbiome, evidence for the role of dysbiosis in the disease state and influences that may impact the microbiome. Possible mechanisms of disease and therapeutic implications through microbial manipulation are also reviewed, as are deficiencies and limitations of the current body of research.
Collapse
Affiliation(s)
- Alkis J Psaltis
- Department of Surgery-Otolaryngology, Head and Neck Surgery, The University of Adelaide, Adelaide, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, Australia.
| | | | - Emily K Cope
- Center for Applied Microbiome Sciences, the Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Ariz
| | - Vijay R Ramakrishnan
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Ind
| |
Collapse
|
7
|
Schilling AL, Cannon E, Lee SE, Wang EW, Little SR. Advances in controlled drug delivery to the sinonasal mucosa. Biomaterials 2022; 282:121430. [DOI: 10.1016/j.biomaterials.2022.121430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/09/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
|
8
|
França CN, Bachi ALL, Kosugi EM, Pezato R, Machado Santelli GM, Amaral JBD. Three-dimensional cell culture for the study of nasal polyps. Braz J Otorhinolaryngol 2021; 88 Suppl 5:S69-S74. [PMID: 34924329 PMCID: PMC9801061 DOI: 10.1016/j.bjorl.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/02/2021] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Three-dimensional (3D) cell cultures have many applications such as stem cell biology research, new drug discovery, cancer, and Chronic Rhinosinusitis with Nasal Polyps (CRSwNP). This disease is characterized by a significant impact on quality of life and productivity. The diversity of factors that act in the progression of CRSwNP point to the creation of a cell culture model that allows the integration of different cell types with extracellular matrix. This work aimed to create a cell culture model in 3 dimensions (spheroids) for the study of Nasal Polyposis. METHODS Nasal polyp tissue from patients diagnosed with CRSwNP was mechanically dissociated using tweezers and a scalpel and the solution containing cells and small aggregates of nasal polyps was transferred to a Petri dish containing 5 mL of culture medium at the concentration of 106 cells/mL. RESULTS The spheroids were cultivated for 20 days, fixed and analyzed using confocal microscopy. In a 3D culture environment, the spheroids were formed both by clustering cells and from small tissue fragments. In the cultures analyzed, the ciliary beat was present from the dissociation of the cells up to 20 days in culture. CONCLUSION Our findings also point to these characteristics showing the environment generated in our study, the cells remained differentiated for a longer time and with ciliary beating. Thus, this work shows that nasal polyp-derived cells can be maintained in a 3D environment, enabling better strategies for understanding CRSwNP in situations similar to those found in vivo. LEVEL OF EVIDENCE Laboratory studies.
Collapse
Affiliation(s)
- Carolina Nunes França
- Universidade de Santo Amaro (UNISA), Programa de Pós-Graduação em Ciências da Saúde, São Paulo, SP, Brazil
| | - André Luis Lacerda Bachi
- Universidade de Santo Amaro (UNISA), Programa de Pós-Graduação em Ciências da Saúde, São Paulo, SP, Brazil,Universidade Federal de São Paulo, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Laboratório de Pesquisa ORL, São Paulo, SP, Brazil
| | - Eduardo Macoto Kosugi
- Universidade Federal de São Paulo, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Laboratório de Pesquisa ORL, São Paulo, SP, Brazil
| | - Rogério Pezato
- Universidade Federal de São Paulo, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Laboratório de Pesquisa ORL, São Paulo, SP, Brazil,Universidade de São Paulo, Departamento de Otorrinolaringologia e Oftalmologia, São Paulo, SP, Brazil
| | - Gláucia Maria Machado Santelli
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Biologia Celular e do Desenvolvimento, São Paulo, SP, Brazil
| | - Jônatas Bussador do Amaral
- Universidade Federal de São Paulo, Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço, Laboratório de Pesquisa ORL, São Paulo, SP, Brazil,Corresponding author.
| |
Collapse
|
9
|
Yen TT, Jiang RS, Chang CY, Wu CY, Liang KL. Erythromycin reduces nasal inflammation by inhibiting immunoglobulin production, attenuating mucus secretion, and modulating cytokine expression. Sci Rep 2021; 11:21737. [PMID: 34741083 PMCID: PMC8571277 DOI: 10.1038/s41598-021-01192-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/25/2021] [Indexed: 12/02/2022] Open
Abstract
Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) share some similar pathological mechanisms. In current study, we intend to investigate the impact of AR on CRS. In addition, we explored the efficacy of erythromycin (EM) treatment on CRS mice with or without AR (CRSwoAR, CRSwAR). Study subjects were divided into control, CRSwoAR, and CRSwAR groups. Experimental mice were divided similarly into control, CRSwoAR, and CRSwAR groups. In addition, CRS mice were treated with EM at 0.75, 7.5, or 75 mg/kg or with dexamethasone (Dex) at 1 mg/kg. In our results, allergy exacerbates inflammation that was evident in nasal histology and cytokine expression both in patients and in mice with CRS. Dex 1 mg/kg, EM 7.5 or 75 mg/kg treatments significantly inhibited serum IgE and IgG2a in CRS mice. EM-treated CRS mice had significantly elevated IL-10 levels and had a reversal of Th-1/Th-2 cytokine expression in nasal-associated lymphoid tissue. MUC5AC expressions were significantly reduced in the 7.5 or 75 mg/kg EM-treated mice compared with untreated mice. EM showed inhibitions on immunoglobulin production and mucus secretion stronger than Dex. We concluded that comorbid AR enhanced inflammation of CRS. EM and Dex treatments showed similar anti-inflammatory effects on CRS but through partly different mechanisms.
Collapse
Affiliation(s)
- Ting-Ting Yen
- Department of Otolaryngology, Taichung Veterans General Hospital, 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan
- Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Rong-San Jiang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Yun Chang
- Department of Otolaryngology, Taichung Veterans General Hospital, 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan
| | - Chih-Ying Wu
- Department of Pathology and Medical Laboratory, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kai-Li Liang
- Department of Otolaryngology, Taichung Veterans General Hospital, 1650, Sec. 4, Taiwan Boulevard, Taichung, 40705, Taiwan.
- Faculty of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Leyva‐Grado V, Pugach P, Sadeghi‐Latefi N. A novel anti-inflammatory treatment for bradykinin-induced sore throat or pharyngitis. Immun Inflamm Dis 2021; 9:1321-1335. [PMID: 34153179 PMCID: PMC8589389 DOI: 10.1002/iid3.479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Often thought of as a minor health concern, sore throat or pharyngitis is an important public health issue. It is one of the most common symptoms of upper respiratory diseases including COVID-19 and is a leading cause of physician visits and antibiotic prescriptions. However, few over-the-counter medications are proven to heal sore throat inflammation. METHODS Adenocarcinomic human alveolar basal epithelial cells (A549 cells) and three dimensional organotypic human respiratory tissues were used to study inflammation and various treatment effects on respiratory epithelia. The cells and tissues were studied both in the presence and absence of bradykinin, one of the first inflammatory mediators of pharyngitis. Inflammation was measured by analyzing the levels of prostaglandin E2 (PGE2), interleukin 8 (IL-8), and leukotriene B4 (LTB4), transepithelial electrical resistance (TEER), and lactate dehydrogenase (LDH) release. Tissue morphology was analyzed by immunohistochemistry. RESULTS In studying pharyngitis using organotypic human respiratory tissue stimulated with bradykinin, we saw an increase in PGE2 and interleukin-8 (IL-8) in response to bradykinin. Acetyl salicylic acid (ASA), a nonspecific COX inhibitor, was able to mitigate a bradykinin-induced increase in PGE2 in our studies. However, ASA was inflammatory above its therapeutic window, increasing the levels of PGE2 and IL-8 above those seen with bradykinin stimulation alone. We describe a novel, scientifically validated treatment for sore throat, that contains a low dose of ASA and other anti-inflammatory ingredients. CONCLUSION This study elucidates the complex mechanisms involved in healing pharyngitis, an inflammatory condition of the upper respiratory epithelia. An ASA-based formula (Biovanta) mitigated bradykinin-induced inflammation more strongly than ASA alone in organotypic human respiratory tissues. Surprisingly, we found that many of the most common over the counter sore throat therapies exacerbate inflammation and IL-8 in organotypic human respiratory tissues, suggesting these common treatments may increase the likelihood of further respiratory complications.
Collapse
Affiliation(s)
| | - Pavel Pugach
- Applied Biological LaboratoriesBrooklynNew YorkUSA
| | | |
Collapse
|
11
|
Yu J, Kang X, Xiong Y, Luo Q, Dai D, Ye J. Gene Expression Profiles of Circular RNAs and MicroRNAs in Chronic Rhinosinusitis With Nasal Polyps. Front Mol Biosci 2021; 8:643504. [PMID: 34124144 PMCID: PMC8194396 DOI: 10.3389/fmolb.2021.643504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Chronic rhinosinusitis (CRS) is often classified primarily on the basis of the absence or presence of nasal polyps (NPs), that is, as CRS with nasal polyps (CRSwNP) or CRS without nasal polyps (CRSsNP). Additionally, according to the percentage of eosinophils, CRSwNP can be further divided into eosinophilic CRSwNP (ECRSwNP) and non-ECRSwNP. CRSwNP is a significant public health problem with a considerable socioeconomic burden. Previous research reported that the pathophysiology of CRSwNP is a complex, multifactorial disease. There have been many studies on its etiology, but its pathogenesis remains unclear. Dysregulated expression of microRNAs (miRNAs) has been shown in psoriasis, rheumatoid arthritis, pulmonary fibrosis, and allergic asthma. Circular RNAs (circRNAs) are also involved in inflammatory diseases such as rheumatoid arthritis, septic acute kidney injury, myocardial ischemia/reperfusion injury, and sepsis-induced liver damage. The function of miRNAs in various diseases, including CRSwNP, is a research hotspot. In contrast, there have been no studies on circRNAs in CRSwNP. Overall, little is known about the functions of circRNAs and miRNAs in CRSwNP. This study aimed to investigate the expression of circRNAs and miRNAs in a CRSwNP group and a control group to determine whether these molecules are related to the occurrence and development of CRSwNP. Methods: Nine nasal mucosa samples were collected, namely, three ECRSwNP samples, three non-ECRSwNP samples, and three control samples, for genomic microarray analysis of circRNA and microRNA expression. All of the tissue samples were from patients who were undergoing functional endoscopic sinus surgery in our department. Then we selected some differentially expressed miRNAs and circRNAs for qPCR verification. Meanwhile, GO enrichment analysis and KEGG pathway analysis were applied to predict the biological functions of aberrantly expressed circRNAs and miRNAs based on the GO and KEGG databases. Receiver operating characteristic (ROC) curve analysis and principal component analysis (PCA) were performed to confirm these molecules are involved in the occurrence and development of CRSwNP. Results: In total, 2,875 circRNAs showed significant differential expression in the CRSwNP group. Specifically, 1794 circRNAs were downregulated and 1,081 circRNAs were upregulated. In the CRSwNP group, the expression of 192 miRNAs was significantly downregulated, and none of the miRNAs were significantly upregulated. GO and KEGG analysis showed differential circRNAs and miRNAs were enriched in "amoebiasis," "salivary secretion," "pathways in cancer," and "endocytosis." Through qRT-PCR verification, the expression profiles of hsa-circ-0031593, hsa-circ-0031594, hsa-miR-132-3p, hsa-miR-145-5p, hsa-miR-146a-5p, and hsa-miR-27b-3p were shown to have statistical differences. In addition, ROC curve analysis showed that the molecules with the two highest AUCs were hsa-circ-0031593 with AUC 0.8353 and hsa-miR-145-5p with AUC 0.8690. Through PCA with the six ncRNAs, the first principal component explained variance ratio was 98.87%. The AUC of the six ncRNAs was 0.8657. Conclusion: In our study, the expression profiles of ECRSwNP and non-ECRSwNP had no statistical differences. The differentially expressed circRNAs and miRNAs between CRSwNP and control may play important roles in the pathogenesis of CRSwNP. Altered expression of hsa-circ-0031593 and hsa-miR-145-5p have the strongest evidence for involvement in the occurrence and development of CRSwNP because their AUCs are higher than the other molecules tested in this study.
Collapse
Affiliation(s)
- Jieqing Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Nanchang, China
| | - Xue Kang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Otorhinolaryngology Head and Neck Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Yuanping Xiong
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daofeng Dai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Ye
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Otorhinolaryngology Head and Neck Surgery Institute, Nanchang, China
| |
Collapse
|
12
|
De Boeck I, Spacova I, Vanderveken OM, Lebeer S. Lactic acid bacteria as probiotics for the nose? Microb Biotechnol 2021; 14:859-869. [PMID: 33507624 PMCID: PMC8085937 DOI: 10.1111/1751-7915.13759] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Several studies have recently pointed towards an increased occurrence and prevalence of several taxa of the lactic acid bacteria (LAB) in the microbiota of the upper respiratory tract (URT) under healthy conditions versus disease. These include several species of the Lactobacillales such as Lacticaseibacillus casei, Lactococcus lactis and Dolosigranulum pigrum. In addition to physiological studies on their potential beneficial functions and their long history of safe use as probiotics in other human body sites, LAB are thus increasingly to be explored as alternative or complementary treatment for URT diseases. This review highlights the importance of lactic acid bacteria in the respiratory tract and their potential as topical probiotics for this body site. We focus on the potential probiotic properties and adaptation factors that are needed for a bacterial strain to optimally exert its beneficial activity in the respiratory tract. Furthermore, we discuss a range of in silico, in vitro and in vivo models needed to obtain better insights into the efficacy and adaptation factors specifically for URT probiotics. Such knowledge will facilitate optimal strain selection in order to conduct rigorous clinical studies with the most suitable probiotic strains. Despite convincing evidence from microbiome association and in vitro studies, the clinical evidence for oral or topical probiotics for common URT diseases such as chronic rhinosinusitis (CRS) needs further substantiation.
Collapse
Affiliation(s)
- Ilke De Boeck
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171AntwerpB‐2020Belgium
| | - Irina Spacova
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171AntwerpB‐2020Belgium
| | - Olivier M. Vanderveken
- ENT, Head and Neck Surgery and Communication DisordersAntwerp University HospitalEdegemBelgium
- Faculty of Medicine and Health SciencesTranslational NeurosciencesUniversity of AntwerpAntwerpBelgium
| | - Sarah Lebeer
- Department of Bioscience EngineeringUniversity of AntwerpGroenenborgerlaan 171AntwerpB‐2020Belgium
| |
Collapse
|
13
|
Tiboc Schnell CN, Filip GA, Decea N, Moldovan R, Opris R, Man SC, Moldovan B, David L, Tabaran F, Olteanu D, Gheldiu AM, Baldea I. The impact of Sambucus nigra L. extract on inflammation, oxidative stress and tissue remodeling in a rat model of lipopolysaccharide-induced subacute rhinosinusitis. Inflammopharmacology 2021; 29:753-769. [PMID: 33881685 DOI: 10.1007/s10787-021-00805-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Rhinosinusitis is a common disorder related to inflammation of paranasal sinuses and nasal cavity mucosa. Herbal medicines could be an option in the treatment of rhinosinusitis due to their anti-inflammatory and anti-oxidative properties. The study aims to investigate the effect of intranasal Sambucus nigra L. subsp. nigra (SN) extract against inflammation, oxidative stress, and tissue remodeling in nasal and sinus mucosa, but also in serum, lungs, and brain, in Wistar rat model of subacute sinonasal inflammation induced by local administration of lipopolysaccharides (LPS), from Escherichia Coli. The cytokines (TNF-α, IL-1β, IL-6) and oxidative stress (malondialdehyde) in nasal mucosa, blood, lungs, and brain were analyzed. In addition, a histopathological examination was performed, and NF-kB, MMP2, MMP9, TIMP1 expressions were also evaluated in nasal mucosa. Both doses of LPS increased the production of cytokines in all the investigated tissues, especially in the nasal mucosa and blood (p < 0.01 and p < 0.05), and stimulated their secretion in the lungs, and partially in the brain. Malondialdehyde increased in all the investigated tissues (p < 0.01 and p < 0.05). In parallel, upregulation of NF-kB and MMP2 expressions with downregulation of TIMP1, particularly at high dose of LPS, was observed. SN extract reduced the local inflammatory response, maintained low levels of IL-6, TNF-α, and IL-1β. In lungs, SN reduced all cytokines levels while in the brain, the protective effect was noticed only on IL-6. Additionally, SN diminished lipid peroxidation and downregulated NF-kB in animals exposed to a low dose of LPS, with increased TIMP1 expression, while in animals treated with a high dose of LPS, SN increased NF-kB, MMP2, and MMP9 levels. In conclusion, SN extract diminished the inflammatory response, reduced generation of reactive oxygen species (ROS) and, influenced MMPs expressions, suggesting the benficial effect of SN extract on tissue remodeling in subacute rhinosinusitis and on systemic inflammatory response.
Collapse
Affiliation(s)
- C N Tiboc Schnell
- Department of Pediatrics, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Clinicilor Street, No. 1-3, 400006, Cluj-Napoca, Romania.
| | - N Decea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Clinicilor Street, No. 1-3, 400006, Cluj-Napoca, Romania
| | - R Moldovan
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Clinicilor Street, No. 1-3, 400006, Cluj-Napoca, Romania
| | - R Opris
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Clinicilor Street, No. 1-3, 400006, Cluj-Napoca, Romania
| | - S C Man
- Department of Pediatrics, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - B Moldovan
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 400028, Cluj-Napoca, Romania
| | - L David
- Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 400028, Cluj-Napoca, Romania
| | - F Tabaran
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, 400035, Cluj-Napoca, Romania
| | - D Olteanu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Clinicilor Street, No. 1-3, 400006, Cluj-Napoca, Romania
| | - A M Gheldiu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - I Baldea
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Clinicilor Street, No. 1-3, 400006, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Schilling AL, Moore J, Kulahci Y, Little SR, Rigatti LH, Wang EW, Lee SE. Evaluating inflammation in an obstruction-based chronic rhinosinusitis model in rabbits. Int Forum Allergy Rhinol 2021; 11:807-809. [PMID: 33161651 PMCID: PMC9166926 DOI: 10.1002/alr.22729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/30/2020] [Accepted: 10/17/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Andrea L. Schilling
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA, 15213
| | - John Moore
- Department of Otolaryngology—Head and Neck Surgery, University of Pittsburgh Medical Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA 15219
| | - Yalcin Kulahci
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA, 15213
| | - Steven R. Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA, 15213
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15213
- Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219
- Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213
- Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213
| | - Lora H. Rigatti
- Division of Laboratory Animal Research, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213
| | - Eric W. Wang
- Department of Otolaryngology—Head and Neck Surgery, University of Pittsburgh Medical Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA 15219
| | - Stella E. Lee
- Department of Otolaryngology—Head and Neck Surgery, University of Pittsburgh Medical Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA 15219
| |
Collapse
|
15
|
Alford MA, Choi KYG, Trimble MJ, Masoudi H, Kalsi P, Pletzer D, Hancock REW. Murine Model of Sinusitis Infection for Screening Antimicrobial and Immunomodulatory Therapies. Front Cell Infect Microbiol 2021; 11:621081. [PMID: 33777834 PMCID: PMC7994591 DOI: 10.3389/fcimb.2021.621081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
The very common condition of sinusitis is characterized by persistent inflammation of the nasal cavity, which contributes to chronic rhinosinusitis and morbidity of cystic fibrosis patients. Colonization by opportunistic pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa triggers inflammation that is exacerbated by defects in the innate immune response. Pathophysiological mechanisms underlying initial colonization of the sinuses are not well established. Despite their extensive use, current murine models of acute bacterial rhinosinusitis have not improved the understanding of early disease stages due to analytical limitations. In this study, a model is described that is technically simple, allows non-invasive tracking of bacterial infection, and screening of host-responses to infection and therapies. The model was modified to investigate longer-term infection and disease progression by using a less virulent, epidemic P. aeruginosa cystic fibrosis clinical isolate LESB65. Tracking of luminescent bacteria was possible after intranasal infections, which were sustained for up to 120 h post-infection, without compromising the overall welfare of the host. Production of reactive oxidative species was associated with neutrophil localization to the site of infection in this model. Further, host-defense peptides administered by Respimat® inhaler or intranasal instillation reduced bacterial burden and impacted disease progression as well as cytokine responses associated with rhinosinusitis. Thus, future studies using this model will improve our understanding of rhinosinusitis etiology and early stage pathogenesis, and can be used to screen for the efficacy of emerging therapies pre-clinically.
Collapse
Affiliation(s)
- Morgan A. Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Ka-Yee G. Choi
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Michael J. Trimble
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- British Columbia Centre for Disease Control, Public Health Services Authority, Vancouver, BC, Canada
| | - Hamid Masoudi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pavneet Kalsi
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Oberoi G, Eberspächer-Schweda MC, Hatamikia S, Königshofer M, Baumgartner D, Kramer AM, Schaffarich P, Agis H, Moscato F, Unger E. 3D Printed Biomimetic Rabbit Airway Simulation Model for Nasotracheal Intubation Training. Front Vet Sci 2020; 7:587524. [PMID: 33330714 PMCID: PMC7728614 DOI: 10.3389/fvets.2020.587524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 11/29/2022] Open
Abstract
Rabbit inhalation anesthesia by endotracheal intubation involves a higher risk among small animals owing to several anatomical and physiological features, which is pathognomonic to this species of lagomorphs. Rabbit-specific airway devices have been designed to prevent misguided intubation attempts. However, it is believed that expert anesthetic training could be a boon in limiting the aftermaths of this procedure. Our research is aimed to develop a novel biomimetic 3D printed rabbit airway model with representative biomechanical material behavior and radiodensity. Imaging data were collected for two sacrificed rabbit heads using micro-computed tomography (μCT) and micro-magnetic resonance imaging for the first head and cone beam computed tomography (CBCT) for the second head. Imaging-based life-size musculoskeletal airway models were printed using polyjet technology with a combination of hard and soft materials in replicates of three. The models were evaluated quantitatively for dimensional accuracy and radiodensity and qualitatively using digital microscopy and endoscopy for technical, tactic, and visual realism. The results displayed that simulation models printed with polyjet technology have an overall surface representation of 93% for μCT-based images and 97% for CBCT-based images within a range of 0.0-2.5 mm, with μCT showing a more detailed reproduction of the nasotracheal anatomy. Dimensional discrepancies can be caused due to inadequate support material removal and due to the limited reconstruction of microstructures from the imaging on the 3D printed model. The model showed a significant difference in radiodensities in hard and soft tissue regions. Endoscopic evaluation provided good visual and tactile feedback, comparable to the real animal. Overall, the model, being a practical low-cost simulator, comprehensively accelerates the learning curve of veterinary nasotracheal intubation and paves the way for 3D simulation-based image-guided interventional procedures.
Collapse
Affiliation(s)
- Gunpreet Oberoi
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - M. C. Eberspächer-Schweda
- Department/Hospital for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Sepideh Hatamikia
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | - Markus Königshofer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Doris Baumgartner
- Department/Hospital for Companion Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | | | - Peter Schaffarich
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Schilling AL, Kulahci Y, Moore J, Wang EW, Lee SE, Little SR. A thermoresponsive hydrogel system for long-acting corticosteroid delivery into the paranasal sinuses. J Control Release 2020; 330:889-897. [PMID: 33157189 DOI: 10.1016/j.jconrel.2020.10.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
Delivering localized treatment to the paranasal sinuses for diseases such as chronic rhinosinusitis (CRS) is particularly challenging because of the small natural openings leading from the sinuses that can be further obstructed by presence of inflammation. As such, oral steroids, topical nasal sprays or irrigation, and surgery can be utilized to treat persistent sinonasal inflammation, but there exists a need for post-operative options for long-term steroid delivery to prevent disease recurrence. In the present study, a Thermogel, Extended-release Microsphere-based-delivery to the Paranasal Sinuses (TEMPS) is developed with the corticosteroid mometasone furoate. Specifically, the bioactive steroid is released for 4 weeks from poly(lactic-co-glycolic acid) (PLGA) microspheres embedded in a poly(N-isopropylacrylamide) (p-NIPAAm)-based hydrogel. The temperature-responsive system undergoes a reversible sol-gel transition at 34-35 °C such that it can be applied as a liquid at ambient temperature, conforming to the sinonasal epithelium as it gels. In a rabbit model of CRS, TEMPS was maintained in rabbit sinuses and effectively reduced sinonasal inflammation as characterized by micro-computed tomography and histopathology analysis. Ultimately, the combination of controlled release microspheres with a thermoresponsive hydrogel provides flexibility for encapsulating therapeutics in a reversible and conforming system for localized delivery to the sinuses.
Collapse
Affiliation(s)
- Andrea L Schilling
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, United States of America
| | - Yalcin Kulahci
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, United States of America
| | - John Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA 15219, United States of America
| | - Eric W Wang
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA 15219, United States of America
| | - Stella E Lee
- Department of Otolaryngology-Head and Neck Surgery, University of Pittsburgh Medical Center, 1400 Locust Street, Suite 2100, Pittsburgh, PA 15219, United States of America
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA, 15213, United States of America; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, United States of America; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, United States of America; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, United States of America; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
18
|
Abstract
Chronic rhinosinusitis (CRS) is persistent inflammation and/or infection of the nasal cavity and paranasal sinuses. Recent advancements in culture-independent molecular techniques have enhanced understanding of interactions between sinus microbiota and upper airway microenvironment. The dysbiosis hypothesis-alteration of microbiota associated with perturbation of the local ecological landscape-is suggested as a mechanism involved in CRS pathogenesis. This review discusses the complex role of the microbiota in health and in CRS and considerations in sinus microbiome investigation, dysbiosis of sinus microbiota in CRS, microbial interactions in CRS, and development of preclinical models. The authors conclude with future directions for CRS-associated microbiome research.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology-Head & Neck Surgery, University of Alabama at Birmingham, 1155 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35233, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ryan C Hunter
- Department of Microbiology & Immunology, University of Minnesota, 3-115 Microbiology Research Facility, 689 23rd Avenue SE, Minneapolis, MN 55455, USA
| | - Vijay R Ramakrishnan
- Department of Otolaryngology-Head and Neck Surgery, University of Colorado, 12631 East 17th Avenue, B205, Aurora, CO 80045, USA.
| |
Collapse
|
19
|
An optimized, robust and reproducible protocol to generate well-differentiated primary nasal epithelial models from extremely premature infants. Sci Rep 2019; 9:20069. [PMID: 31882915 PMCID: PMC6934534 DOI: 10.1038/s41598-019-56737-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/13/2019] [Indexed: 01/01/2023] Open
Abstract
Extremely premature infants are prone to severe respiratory infections, and the mechanisms underlying this exceptional susceptibility are largely unknown. Nasal epithelial cells (NEC) represent the first-line of defense and adult-derived ALI cell culture models show promising results in mimicking in vivo physiology. Therefore, the aim of this study was to develop a robust and reliable protocol for generating well-differentiated cell culture models from NECs of extremely premature infants. Nasal brushing was performed in 13 extremely premature infants at term corrected age and in 11 healthy adult controls to obtain NECs for differentiation at air-liquid interface (ALI). Differentiation was verified using imaging and functional analysis. Successful isolation and differentiation was achieved for 5 (38.5%) preterm and 5 (45.5%) adult samples. Preterm and adult ALI-cultures both showed well-differentiated morphology and ciliary function, however, preterm cultures required significantly longer cultivation times for acquiring full differentiation (44 ± 3.92 vs. 23 ± 1.83 days; p < 0.0001). Moreover, we observed that recent respiratory support may impair successful NECs isolation. Herewithin, we describe a safe, reliable and reproducible method to generate well-differentiated ALI-models from NECs of extremely premature infants. These models provide a valuable foundation for further studies regarding immunological and inflammatory responses and respiratory disorders in extremely premature infants.
Collapse
|
20
|
Braga AA, Valera FCP, Faria FM, Rossato M, Murashima AAB, Fantucci MZ, Aragon DC, Queiroz DLC, Anselmo-Lima WT, Tamashiro E. An Experimental Model of Eosinophilic Chronic Rhinosinusitis Induced by Bacterial Toxins in Rabbits. Am J Rhinol Allergy 2019; 33:737-750. [DOI: 10.1177/1945892419865642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background The pathophysiology of chronic rhinosinusitis (CRS) is still not well known due to the multifactorial etiologies involved. Bacteria play a role in the pathogenesis of CRS by various means, including biofilm adhesion, intracellular persistence, or inducing inflammation secondary to toxins. Endotoxins and exotoxins, especially Staphylococcus aureus superantigens, can produce significant immune responses in the host and are implicated in patients with CRS. The majority of animal models described for CRS revalidates the pathophysiology of acute sinusitis, ostium occlusion, or foreign body associated infection. Objectives To evaluate an experimental model of eosinophilic CRS using prolonged exposure to bacterial toxins. The histological changes in rabbits exposed to S. aureus enterotoxin B (SEB), lipopolysaccharide (LPS), or lipoteichoic acid (LTA) were compared. Methods After induction with ovalbumin (OVA) sensitization with subcutaneous injection for 2 weeks, rabbits underwent surgery to insert an indwelling catheter into the maxillary sinus. The sinus was irrigated with OVA 3 times weekly for 2 weeks, followed by sinus irrigation with bacterial toxin (SEB: 1 µg/mL, LPS: 100 ng/mL, or LTA: 100 ng/mL) 3 times weekly for 4 weeks. The histological changes in the treated sinus were compared with control rabbits. Results Sinuses exposed to bacterial toxins (SEB, LPS, and LTA) produced significant mucosal thickening with infiltration of inflammatory cells, notably eosinophils. SEB was the only toxin that promoted a mixed pattern of inflammation, including eosinophilic and neutrophilic infiltration. Conclusion Our experimental model of eosinophilic CRS in rabbits produced significant mucosal thickening and inflammation in the sinuses exposed to bacterial toxins, with histological changes analogous to what is observed in patients with CRS with nasal polyps. This model may serve as a basis for future investigation of the pathogenesis of eosinophilic CRS in relation to bacterial toxins or as a model for testing new therapeutic modalities for this disease.
Collapse
Affiliation(s)
- Andréa A. Braga
- Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiana C. P. Valera
- Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Francesca M. Faria
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria Rossato
- Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adriana A. B. Murashima
- Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Z. Fantucci
- Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Davi C. Aragon
- Departament of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danielle L. C. Queiroz
- Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wilma T. Anselmo-Lima
- Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Edwin Tamashiro
- Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
21
|
Casadei E, Salinas I. Comparative models for human nasal infections and immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:212-222. [PMID: 30513304 PMCID: PMC7102639 DOI: 10.1016/j.dci.2018.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 05/09/2023]
Abstract
The human olfactory system is a mucosal surface and a major portal of entry for respiratory and neurotropic pathogens into the body. Understanding how the human nasopharynx-associated lymphoid tissue (NALT) halts the progression of pathogens into the lower respiratory tract or the central nervous system is key for developing effective cures. Although traditionally mice have been used as the gold-standard model for the study of human nasal diseases, mouse models present important caveats due to major anatomical and functional differences of the human and murine olfactory system and NALT. We summarize the NALT anatomy of different animal groups that have thus far been used to study host-pathogen interactions at the olfactory mucosa and to test nasal vaccines. The goal of this review is to highlight the strengths and limitations of each animal model of nasal immunity and to identify the areas of research that require further investigation to advance human health.
Collapse
Affiliation(s)
- Elisa Casadei
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA.
| | - Irene Salinas
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA
| |
Collapse
|
22
|
Increased susceptibility of airway epithelial cells from ataxia-telangiectasia to S. pneumoniae infection due to oxidative damage and impaired innate immunity. Sci Rep 2019; 9:2627. [PMID: 30796268 PMCID: PMC6385340 DOI: 10.1038/s41598-019-38901-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022] Open
Abstract
Respiratory disease is a major cause of morbidity and mortality in patients with ataxia-telangiectasia (A-T) who are prone to recurrent sinopulmonary infections, bronchiectasis, pulmonary fibrosis, and pulmonary failure. Upper airway infections are common in patients and S. pneumoniae is associated with these infections. We demonstrate here that the upper airway microbiome in patients with A-T is different from that to healthy controls, with S. pneumoniae detected largely in patients only. Patient-specific airway epithelial cells and differentiated air-liquid interface cultures derived from these were hypersensitive to infection which was at least in part due to oxidative damage since it was partially reversed by catalase. We also observed increased levels of the pro-inflammatory cytokines IL-8 and TNF-α (inflammasome-independent) and a decreased level of the inflammasome-dependent cytokine IL-β in patient cells. Further investigation revealed that the ASC-Caspase 1 signalling pathway was defective in A-T airway epithelial cells. These data suggest that the heightened susceptibility of these cells to S. pneumoniae infection is due to both increased oxidative damage and a defect in inflammasome activation, and has implications for lung disease in these patients.
Collapse
|