1
|
Türk CÇ, Topsoy C, Mutlucan UO, Gür E, Yilmaz K, Elter O, Genç F, Süren D. Histopathological changes in tissues surrounding vagal nerve stimulation generators: A retrospective analysis of revision surgeries. Acta Neurochir (Wien) 2023; 165:2171-2178. [PMID: 37393559 DOI: 10.1007/s00701-023-05701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Vagal nerve stimulation (VNS) is an effective treatment for patients with epilepsy, depression, and other neuropsychiatric conditions. Understanding the tissue changes associated with VNS devices is crucial for optimizing patient outcomes and device development. This study aimed to investigate the histopathological changes in the tissues surrounding the VNS generator and explore potential correlations with clinical factors and battery performance. METHODS A total of 23 patients who underwent VNS generator revision surgery owing to battery depletion were included. Tissue samples from the areas surrounding the VNS generator were obtained and analyzed for histopathological changes. Demographic and device-related variables were also recorded. RESULTS Capsule formation was observed in all patients. Acute inflammation were not detected in any case. Perivascular lymphocytic infiltration, foreign-body giant cell reaction (FBGCR), and calcification were observed in 8.7%, 26.1%, and 43.5% of patients, respectively. Crystalloid foreign body appearance was noted in 4 patients. The median output current of the generator was higher in patients with lymphocytic infiltration than in those without lymphocytic infiltration. The median off time was higher in patients with skin retraction than in those without skin retraction. Moreover, discomfort was associated with the presence of FBGCR. CONCLUSION Our study provides insights into the tissue changes associated with the VNS generator, with capsule formation being a common response. Crystalloid foreign body appearance was not reported previously. Further research is needed to understand the relationship between these tissue changes and VNS device performance, including the potential impact on battery life. These findings may contribute to VNS therapy optimization and device development.
Collapse
Affiliation(s)
- Cezmi Çağri Türk
- Department of Neurosurgery, University of Health Sciences, Hamidiye School of Medicine, Istanbul, Turkey.
- Antalya Education and Research Hospital, Neurosurgery Clinic, Antalya, Turkey.
| | - Ceren Topsoy
- Department of Pathology, University of Health Sciences, Hamidiye School of Medicine, Istanbul, Turkey
| | - Umut Ogün Mutlucan
- Antalya Education and Research Hospital, Neurosurgery Clinic, Antalya, Turkey
| | - Erdal Gür
- Antalya Education and Research Hospital, Neurosurgery Clinic, Antalya, Turkey
| | - Kerem Yilmaz
- Department of Neurosurgery, University of Health Sciences, Hamidiye School of Medicine, Istanbul, Turkey
- Antalya Education and Research Hospital, Neurosurgery Clinic, Antalya, Turkey
| | - Oktay Elter
- Department of Neurosurgery, University of Health Sciences, Hamidiye School of Medicine, Istanbul, Turkey
- Antalya Education and Research Hospital, Neurosurgery Clinic, Antalya, Turkey
| | - Fatma Genç
- Department of Neurology, University of Health Sciences, Hamidiye School of Medicine, Istanbul, Turkey
| | - Dinç Süren
- Department of Pathology, University of Health Sciences, Hamidiye School of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
Averbeck SR, Xu D, Murphy BB, Shevchuk K, Shankar S, Anayee M, Torres MDT, Beauchamp MS, de la Fuente-Nunez C, Gogotsi Y, Vitale F. Stability of Ti 3C 2T x MXene Films and Devices under Clinical Sterilization Processes. ACS NANO 2023; 17:9442-9454. [PMID: 37171407 PMCID: PMC11342293 DOI: 10.1021/acsnano.3c01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
MXenes are being heavily investigated in biomedical research, with applications ranging from regenerative medicine to bioelectronics. To enable the adoption and integration of MXenes into therapeutic platforms and devices, however, their stability under standard sterilization procedures must be established. Here, we present a comprehensive investigation of the electrical, chemical, structural, and mechanical effects of common thermal (autoclave) and chemical (ethylene oxide (EtO) and H2O2 gas plasma) sterilization protocols on both thin-film Ti3C2Tx MXene microelectrodes and mesoscale arrays made from Ti3C2Tx-infused cellulose-elastomer composites. We also evaluate the effectiveness of the sterilization processes in eliminating all pathogens from the Ti3C2Tx films and composites. Post-sterilization analysis revealed that autoclave and EtO did not alter the DC conductivity, electrochemical impedance, surface morphology, or crystallographic structure of Ti3C2Tx and were both effective at eliminating E. coli from both types of Ti3C2Tx-based devices. On the other end, exposure to H2O2 gas plasma sterilization for 45 min induced severe degradation of the structure and properties of Ti3C2Tx films and composites. The stability of the Ti3C2Tx after EtO and autoclave sterilization and the complete removal of pathogens establish the viability of both sterilization processes for Ti3C2Tx-based technologies.
Collapse
Affiliation(s)
- Spencer R. Averbeck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA
| | - Doris Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA
| | - Brendan B. Murphy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA
| | - Kateryna Shevchuk
- Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania – 19104, USA; A.J Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania – 19104, USA
| | - Sneha Shankar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA
| | - Mark Anayee
- Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania – 19104, USA; A.J Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania – 19104, USA
| | - Marcelo Der Torossian Torres
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Departments of Psychiatry and Microbiology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA
| | - Michael S. Beauchamp
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA
| | - Cesar de la Fuente-Nunez
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Departments of Psychiatry and Microbiology, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA
| | - Yury Gogotsi
- Department of Material Science and Engineering, Drexel University, Philadelphia, Pennsylvania – 19104, USA; A.J Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania – 19104, USA
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania – 19104, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania – 19104, USA
| |
Collapse
|
3
|
Morton C, Cotero V, Ashe J, Ginty F, Puleo C. Accelerating cutaneous healing in a rodent model of type II diabetes utilizing non-invasive focused ultrasound targeted at the spleen. Front Neurosci 2022; 16:1039960. [PMID: 36478877 PMCID: PMC9721138 DOI: 10.3389/fnins.2022.1039960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Healing of wounds is delayed in Type 2 Diabetes Mellitus (T2DM), and new treatment approaches are urgently needed. Our earlier work showed that splenic pulsed focused ultrasound (pFUS) alters inflammatory cytokines in models of acute endotoxemia and pneumonia via modulation of the cholinergic anti-inflammatory pathway (CAP) (ref below). Based on these earlier results, we hypothesized that daily splenic exposure to pFUS during wound healing would accelerate closure rate via altered systemic cytokine titers. In this study, we applied non-invasive ultrasound directed to the spleen of a rodent model [Zucker Diabetic Sprague Dawley (ZDSD) rats] of T2DM with full thickness cutaneous excisional wounds in an attempt to accelerate wound healing via normalization of T2DM-driven aberrant cytokine expression. Daily (1x/day, Monday-Friday) pFUS pulses were targeted externally to the spleen area for 3 min over the course of 15 days. Wound diameter was measured daily, and levels of cytokines were evaluated in spleen and wound bed lysates. Non-invasive splenic pFUS accelerated wound closure by up to 4.5 days vs. sham controls. The time to heal in all treated groups was comparable to that of healthy rats from previously published studies (ref below), suggesting that the pFUS treatment restored a normal wound healing phenotype to the ZDSD rats. IL-6 was lower in stimulated spleen (-2.24 ± 0.81 Log2FC, p = 0.02) while L-selectin was higher in the wound bed of stimulated rodents (2.53 ± 0.72 Log2FC, p = 0.003). In summary, splenic pFUS accelerates healing in a T2DM rat model, demonstrating the potential of the method to provide a novel, non-invasive approach for wound care in diabetes.
Collapse
Affiliation(s)
| | | | | | - Fiona Ginty
- Biology and Applied Physics, GE Research, Niskayuna, NY, United States
| | - Christopher Puleo
- GE Research, Niskayuna, NY, United States
- *Correspondence: Christopher Puleo,
| |
Collapse
|
4
|
Parylene C as an Insulating Polymer for Implantable Neural Interfaces: Acute Electrochemical Impedance Behaviors in Saline and Pig Brain In Vitro. Polymers (Basel) 2022; 14:polym14153033. [PMID: 35893997 PMCID: PMC9332801 DOI: 10.3390/polym14153033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Parylene is used as encapsulating material for medical devices due to its excellent biocompatibility and insulativity. Its performance as the insulating polymer of implantable neural interfaces has been studied in electrolyte solutions and in vivo. Biological tissue in vitro, as a potential environment for characterization and application, is convenient to access in the fabrication lab of polymer and neural electrodes, but there has been little study investigating the behaviors of Parylene in the tissue in vitro. Here, we investigated the electrochemical impedance behaviors of Parylene C polymer coating both in normal saline and in a chilled pig brain in vitro by performing electrochemical impedance spectroscopy (EIS) measurements of platinum (Pt) wire neural electrodes. The electrochemical impedance at the representative frequencies is discussed, which helps to construct the equivalent circuit model. Statistical analysis of fitted parameters of the equivalent circuit model showed good reliability of Parylene C as an insulating polymer in both electrolyte models. The electrochemical impedance measured in pig brain in vitro shows marked differences from that of saline.
Collapse
|
5
|
Controlled release of low-molecular weight, polymer-free corticosteroid coatings suppresses fibrotic encapsulation of implanted medical devices. Biomaterials 2022; 286:121586. [DOI: 10.1016/j.biomaterials.2022.121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/23/2022]
|
6
|
Eiber CD, Payne SC, Biscola NP, Havton LA, Keast JR, Osborne PB, Fallon JB. Computational modelling of nerve stimulation and recording with peripheral visceral neural interfaces. J Neural Eng 2021; 18. [PMID: 34740201 DOI: 10.1088/1741-2552/ac36e2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/05/2021] [Indexed: 12/30/2022]
Abstract
Objective.Neuromodulation of visceral nerves is being intensively studied for treating a wide range of conditions, but effective translation requires increasing the efficacy and predictability of neural interface performance. Here we use computational models of rat visceral nerve to predict how neuroanatomical variability could affect both electrical stimulation and recording with an experimental planar neural interface.Approach.We developed a hybrid computational pipeline,VisceralNerveEnsembleRecording andStimulation (ViNERS), to couple finite-element modelling of extracellular electrical fields with biophysical simulations of individual axons. Anatomical properties of fascicles and axons in rat pelvic and vagus nerves were measured or obtained from public datasets. To validate ViNERS, we simulated pelvic nerve stimulation and recording with an experimental four-electrode planar array.Main results.Axon diameters measured from pelvic nerve were used to model a population of myelinated and unmyelinated axons and simulate recordings of electrically evoked single-unit field potentials (SUFPs). Across visceral nerve fascicles of increasing size, our simulations predicted an increase in stimulation threshold and a decrease in SUFP amplitude. Simulated threshold changes were dominated by changes in perineurium thickness, which correlates with fascicle diameter. We also demonstrated that ViNERS could simulate recordings of electrically-evoked compound action potentials (ECAPs) that were qualitatively similar to pelvic nerve recording made with the array used for simulation.Significance.We introduce ViNERS as a new open-source computational tool for modelling large-scale stimulation and recording from visceral nerves. ViNERS predicts how neuroanatomical variation in rat pelvic nerve affects stimulation and recording with an experimental planar electrode array. We show ViNERS can simulate ECAPS that capture features of our recordings, but our results suggest the underlying NEURON models need to be further refined and specifically adapted to accurately simulate visceral nerve axons.
Collapse
Affiliation(s)
- Calvin D Eiber
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Sophie C Payne
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, The University of Melbourne, Victoria, Australia
| | - Natalia P Biscola
- Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Leif A Havton
- Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Janet R Keast
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - James B Fallon
- Bionics Institute, East Melbourne, Victoria, Australia.,Medical Bionics Department, The University of Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Szymanski LJ, Kellis S, Liu CY, Jones KT, Andersen RA, Commins D, Lee B, McCreery DB, Miller CA. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient. J Neural Eng 2021; 18. [PMID: 34314384 DOI: 10.1088/1741-2552/ac127e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/08/2021] [Indexed: 11/12/2022]
Abstract
Objective.Intracortical microelectrode arrays (MEA) can be used as part of a brain-machine interface system to provide sensory feedback control of an artificial limb to assist persons with tetraplegia. Variability in functionality of electrodes has been reported but few studies in humans have examined the impact of chronic brain tissue responses revealed postmortem on electrode performancein vivo. Approach.In a tetraplegic man, recording MEAs were implanted into the anterior intraparietal area and Brodmann's area 5 (BA5) of the posterior parietal cortex and a recording and stimulation array was implanted in BA1 of the primary somatosensory cortex (S1). The participant expired from unrelated causes seven months after MEA implantation. The underlying tissue of two of the three devices was processed for histology and electrophysiological recordings were assessed.Main results.Recordings of neuronal activity were obtained from all three MEAs despite meningeal encapsulation. However, the S1 array had a greater encapsulation, yielded lower signal quality than the other arrays and failed to elicit somatosensory percepts with electrical stimulation. Histological examination of tissues underlying S1 and BA5 implant sites revealed localized leptomeningeal proliferation and fibrosis, lymphocytic infiltrates, astrogliosis, and foreign body reaction around the electrodes. The BA5 recording site showed focal cerebral microhemorrhages and leptomeningeal vascular ectasia. The S1 site showed focal tissue damage including vascular recanalization, neuronal loss, and extensive subcortical white matter necrosis. The tissue response at the S1 site included hemorrhagic-induced injury suggesting a likely mechanism for reduced function of the S1 implant.Significance.Our findings are similar to those from animal studies with chronic intracortical implants and suggest that vascular disruption and microhemorrhage during device implantation are important contributors to overall array and individual electrode performance and should be a topic for future device development to mitigate tissue responses. Neurosurgical considerations are also discussed.
Collapse
Affiliation(s)
- Linda J Szymanski
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America.,Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA, United States of America
| | - Spencer Kellis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States of America.,Department of Neurosurgery, Keck USC School of Medicine, Los Angeles, CA, United States of America.,USC Neurorestoration Center, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Charles Y Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Department of Neurosurgery, Keck USC School of Medicine, Los Angeles, CA, United States of America.,USC Neurorestoration Center, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Kymry T Jones
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Richard A Andersen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States of America
| | - Deborah Commins
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Brian Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America.,Department of Neurosurgery, Keck USC School of Medicine, Los Angeles, CA, United States of America.,USC Neurorestoration Center, Keck USC School of Medicine, Los Angeles, CA, United States of America
| | - Douglas B McCreery
- Huntington Medical Research Institute, Pasadena, CA, United States of America
| | - Carol A Miller
- Department of Pathology, Keck USC School of Medicine, Los Angeles, CA, United States of America
| |
Collapse
|
8
|
Sahyouni R, Goshtasbi K, Presacco A, Birkenbeuel J, Cheung D, Abiri A, Berger MH, Djalilian HR, Lin HW. Selective Facial Muscle Activation with Acute and Chronic Multichannel Cuff Electrode Implantation in a Feline Model. Ann Otol Rhinol Laryngol 2021; 131:365-372. [PMID: 34096343 DOI: 10.1177/00034894211023218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Facial paralysis is a debilitating condition with substantial functional and psychological consequences. This feline-model study evaluates whether facial muscles can be selectively activated in acute and chronic implantation of 16-channel multichannel cuff electrodes (MCE). METHODS Two cats underwent acute terminal MCE implantation experiments, 2 underwent chronic MCE implantation in uninjured facial nerves (FN) and tested for 6 months, and 2 underwent chronic MCE implantation experiments after FN transection injury and tested for 3 months. The MCE were wrapped around the main trunk of the skeletonized FN, and data collection consisted of EMG thresholds, amplitudes, and selectivity of muscle activation. RESULTS In acute experimentation, activation of specific channels (ie, channels 1-3 and 6-8) resulted in selective activation of orbicularis oculi, whereas activation of other channels (ie, channels 4, 5, or 8) led to selective activation of levator auris longus with higher EMG amplitudes. MCE implantation yielded stable and selective facial muscle activation EMG thresholds and amplitudes up to a 5-month period. Modest selective muscle activation was furthermore obtained after a complete transection-reapproximating nerve injury after a 3-month recovery period and implantation reoperation. Chronic implantation of MCE did not lead to fibrosis on histology. Field steering was achieved to activate distinct facial muscles by sending simultaneous subthreshold currents to multiple channels, thus theoretically protecting against nerve damage from chronic electrical stimulation. CONCLUSION Our proof-of-concept results show the ability of an MCE, supplemented with field steering, to provide a degree of selective facial muscle stimulation in a feline model, even following nerve regeneration after FN injury. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Ronald Sahyouni
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, USA
| | - Khodayar Goshtasbi
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, USA
| | - Alessandro Presacco
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, USA.,Bio-Robotics Laboratory, Universidad Nacional Autónoma de México, Mexico
| | - Jack Birkenbeuel
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, USA
| | - Dillon Cheung
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, USA
| | - Arash Abiri
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, USA
| | - Michael H Berger
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, USA
| | - Hamid R Djalilian
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, CA, USA
| | - Harrison W Lin
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA, USA
| |
Collapse
|
9
|
Vatsyayan R, Cleary D, Martin JR, Halgren E, Dayeh SA. Electrochemical safety limits for clinical stimulation investigated using depth and strip electrodes in the pig brain. J Neural Eng 2021; 18. [PMID: 34015769 DOI: 10.1088/1741-2552/ac038b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/20/2021] [Indexed: 11/12/2022]
Abstract
Objective. Diagnostic and therapeutic electrical stimulation are increasingly utilized with the rise of neuromodulation devices. However, systematic investigations that depict the practical clinical stimulation paradigms (bipolar, two-electrode configuration) to determine the safety limits are currently lacking. Further, safe charge densities that were classically determined from conical sharp electrodes are generalized for cylindrical (depth) and flat (surface grid) electrodes completely ignoring geometric factors that govern current spreading and trajectories in tissue.Approach. This work reports the first investigations comparing stimulation limits for clinically used electrodes in two mediums: in benchtop experiments in saline andin vivoin a single acute experiment in the pig brain. We experimentally determine the geometric factors, the water electrolysis windows, and the current safety limits from voltage transients, for the sEEG, depth and surface strip electrodes in both mediums. Using four-electrode and three-electrode configuration measurements and comprehensive circuit models that accurately depict our measurements, we delineate the various elements of the stimulation medium, including the tissue-electrode interface impedance spectra, the medium impedance and the bias-dependent change in the interface impedance as a function of stimulation parameters.Main results. The results of our systematics studies suggest that safe currents in clinical bipolar stimulation determinedin vivocan be as much as 24 times smaller than those determined from benchtop experiments (for depth electrodes at a 1 ms pulse duration). Our detailed circuit modeling attributes this drastic difference in safe limits to the greatly dissimilar electrode/tissue and electrode/saline impedances.Significance. We established the electrochemical safety limits for commonly used clinical electrodesin vivoand revealed by detailied electrochemical modeling how they differ from benchtop evaluation. We argue that electrochemical limits and currents are unique for each electrode, should be measuredin vivoaccording to the protocols established in this work, and should be accounted for while setting the stimulation parameters for clinical applications including for chronic applications.
Collapse
Affiliation(s)
- Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America
| | - Daniel Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America.,Department of Neurological Surgery, University of California, San Diego, CA 92097, United States of America
| | - Joel R Martin
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America.,Department of Neurological Surgery, University of California, San Diego, CA 92097, United States of America
| | - Eric Halgren
- Department of Radiology, University of California, San Diego, CA 92097, United States of America
| | - Shadi A Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093, United States of America
| |
Collapse
|
10
|
Different Neurogenic Potential in the Subnuclei of the Postnatal Rat Cochlear Nucleus. Stem Cells Int 2021; 2021:8871308. [PMID: 33880121 PMCID: PMC8046557 DOI: 10.1155/2021/8871308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
In patients suffering from hearing loss, the reduced or absent neural input induces morphological changes in the cochlear nucleus (CN). Neural stem cells have recently been identified in this first auditory relay. Afferent nerve signals and their impact on the immanent neural stem and progenitor cells already impinge upon the survival of early postnatal cells within the CN. This auditory brainstem nucleus consists of three different subnuclei: the anteroventral cochlear nucleus (AVCN), the posteroventral cochlear nucleus (PVCN), and the dorsal cochlear nucleus (DCN). Since these subdivisions differ ontogenetically and physiologically, the question arose whether regional differences exist in the neurogenic niche. CN from postnatal day nine Sprague-Dawley rats were microscopically dissected into their subnuclei and cultivated in vitro as free-floating cell cultures and as whole-mount organ cultures. In addition to cell quantifications, immunocytological and immunohistological studies of the propagated cells and organ preparations were performed. The PVCN part showed the highest mitotic potential, while the AVCN and DCN had comparable activity. Specific stem cell markers and the ability to differentiate into cells of the neural lineage were detected in all three compartments. The present study shows that in all subnuclei of rat CN, there is a postnatal neural stem cell niche, which, however, differs significantly in its potential. The results can be explained by the origin from different regions in the rhombic lip, the species, and the various analysis techniques applied. In conclusion, the presented results provide further insight into the neurogenic potential of the CN, which may prove beneficial for the development of new regenerative strategies for hearing loss.
Collapse
|
11
|
Gibney S, Hicks JM, Robinson A, Jain A, Sanjuan-Alberte P, Rawson FJ. Toward nanobioelectronic medicine: Unlocking new applications using nanotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1693. [PMID: 33442962 DOI: 10.1002/wnan.1693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Bioelectronic medicine aims to interface electronic technology with biological components and design more effective therapeutic and diagnostic tools. Advances in nanotechnology have moved the field forward improving the seamless interaction between biological and electronic components. In the lab many of these nanobioelectronic devices have the potential to improve current treatment approaches, including those for cancer, cardiovascular disorders, and disease underpinned by malfunctions in neuronal electrical communication. While promising, many of these devices and technologies require further development before they can be successfully applied in a clinical setting. Here, we highlight recent work which is close to achieving this goal, including discussion of nanoparticles, carbon nanotubes, and nanowires for medical applications. We also look forward toward the next decade to determine how current developments in nanotechnology could shape the growing field of bioelectronic medicine. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Steven Gibney
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jacqueline M Hicks
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andie Robinson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Akhil Jain
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paola Sanjuan-Alberte
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK.,Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute,School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
12
|
Chen M, Wang S, Li X, Yu L, Yang H, Liu Q, Tang J, Zhou S. Non-invasive Autonomic Neuromodulation Is Opening New Landscapes for Cardiovascular Diseases. Front Physiol 2021; 11:550578. [PMID: 33384606 PMCID: PMC7769808 DOI: 10.3389/fphys.2020.550578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023] Open
Abstract
Autonomic imbalance plays a crucial role in the genesis and maintenance of cardiac disorders. Approaches to maintain sympatho-vagal balance in heart diseases have gained great interest in recent years. Emerging therapies However, certain types of emerging therapies including direct electrical stimulation and nerve denervation require invasive implantation of a generator and a bipolar electrode subcutaneously or result in autonomic nervous system (ANS) damage, inevitably increasing the risk of complications. More recently, non-invasive neuromodulation approaches have received great interest in ANS modulation. Non-invasive approaches have opened new fields in the treatment of cardiovascular diseases. Herein, we will review the protective roles of non-invasive neuromodulation techniques in heart diseases, including transcutaneous auricular vagus nerve stimulation, electromagnetic field stimulation, ultrasound stimulation, autonomic modulation in optogenetics, and light-emitting diode and transcutaneous cervical vagus nerve stimulation (gammaCore).
Collapse
Affiliation(s)
- Mingxian Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xuping Li
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lilei Yu
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hui Yang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianjun Tang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
13
|
Ravagli E, Mastitskaya S, Thompson N, Iacoviello F, Shearing PR, Perkins J, Gourine AV, Aristovich K, Holder D. Imaging fascicular organization of rat sciatic nerves with fast neural electrical impedance tomography. Nat Commun 2020; 11:6241. [PMID: 33288760 PMCID: PMC7721735 DOI: 10.1038/s41467-020-20127-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Imaging compound action potentials (CAPs) in peripheral nerves could help avoid side effects in neuromodulation by selective stimulation of identified fascicles. Existing methods have low resolution, limited imaging depth, or are invasive. Fast neural electrical impedance tomography (EIT) allows fascicular CAP imaging with a resolution of <200 µm, <1 ms using a non-penetrating flexible nerve cuff electrode array. Here, we validate EIT imaging in rat sciatic nerve by comparison to micro-computed tomography (microCT) and histology with fluorescent dextran tracers. With EIT, there are reproducible localized changes in tissue impedance in response to stimulation of individual fascicles (tibial, peroneal and sural). The reconstructed EIT images correspond to microCT scans and histology, with significant separation between the fascicles (p < 0.01). The mean fascicle position is identified with an accuracy of 6% of nerve diameter. This suggests fast neural EIT can reliably image the functional fascicular anatomy of the nerves and so aid selective neuromodulation.
Collapse
Affiliation(s)
- Enrico Ravagli
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Nicole Thompson
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Francesco Iacoviello
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, London, UK
| | - Paul R Shearing
- Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, London, UK
| | - Justin Perkins
- Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Kirill Aristovich
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - David Holder
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
14
|
Adewole DO, Serruya MD, Wolf JA, Cullen DK. Bioactive Neuroelectronic Interfaces. Front Neurosci 2019; 13:269. [PMID: 30983957 PMCID: PMC6449725 DOI: 10.3389/fnins.2019.00269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Within the neural engineering field, next-generation implantable neuroelectronic interfaces are being developed using biologically-inspired and/or biologically-derived materials to improve upon the stability and functional lifetime of current interfaces. These technologies use biomaterials, bioactive molecules, living cells, or some combination of these, to promote host neuronal survival, reduce the foreign body response, and improve chronic device-tissue integration. This article provides a general overview of the different strategies, milestones, and evolution of bioactive neural interfaces including electrode material properties, biological coatings, and "decoration" with living cells. Another such biohybrid approach developed in our lab uses preformed implantable micro-tissue featuring long-projecting axonal tracts encased within carrier biomaterial micro-columns. These so-called "living electrodes" have been engineered with carefully tailored material, mechanical, and biological properties to enable natural, synaptic based modulation of specific host circuitry while ultimately being under computer control. This article provides an overview of these living electrodes, including design and fabrication, performance attributes, as well as findings to date characterizing in vitro and in vivo functionality.
Collapse
Affiliation(s)
- Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Mijail D. Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| |
Collapse
|
15
|
Srinivasan S, Vyas K, McAvoy M, Calvaresi P, Khan OF, Langer R, Anderson DG, Herr H. Polyimide Electrode-Based Electrical Stimulation Impedes Early Stage Muscle Graft Regeneration. Front Neurol 2019; 10:252. [PMID: 30967830 PMCID: PMC6438882 DOI: 10.3389/fneur.2019.00252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/25/2019] [Indexed: 01/22/2023] Open
Abstract
Given the increasing use of regenerative free muscle flaps for various reconstructive procedures and neuroprosthetic applications, there is great interest and value in their enhanced regeneration, revascularization, and reinnervation for improved functional recovery. Here, we implant polyimide-based mircroelectrodes on free flap grafts and perform electrical stimulation for 6 weeks in a murine model. Using electrophysiological and histological assessments, we compare outcomes of stimulated grafts with unstimulated control grafts. We find delayed reinnervation and abnormal electromyographic (EMG) signals, with significantly more polyphasia, lower compound muscle action potentials and higher fatigability in stimulated animals. These metrics are suggestive of myopathy in the free flap grafts stimulated with the electrode. Additionally, active inflammatory processes and partial necrosis are observed in grafts stimulated with the implanted electrode. The results suggest that under this treatment protocol, implanted epimysial electrodes and electrical stimulation to deinnervated, and devascularized flaps during the early recovery phase may be detrimental to regeneration. Future work should determine the optimal implantation and stimulation window for accelerating free muscle graft regeneration.
Collapse
Affiliation(s)
- Shriya Srinivasan
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Keval Vyas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Malia McAvoy
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Peter Calvaresi
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Omar F. Khan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert Langer
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daniel G. Anderson
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Hugh Herr
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
16
|
Cramer SD, Lee JS, Butt MT, Paulin J, Stoffregen WC. Neurologic Medical Device Overview for Pathologists. Toxicol Pathol 2019; 47:250-263. [PMID: 30599801 DOI: 10.1177/0192623318816685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thorough morphologic evaluations of medical devices placed in or near the nervous system depend on many factors. Pathologists interpreting a neurologic device study must be familiar with the regulatory framework affecting device development, biocompatibility and safety determinants impacting nervous tissue responses, and appropriate study design, including the use of appropriate animal models, group design, device localization, euthanasia time points, tissue examination, sampling and processing, histochemistry and immunohistochemistry, and reporting. This overview contextualizes these features of neurologic medical devices for pathologists engaged in device evaluations.
Collapse
Affiliation(s)
| | | | - Mark T Butt
- 1 Tox Path Specialists, LLC, Frederick, Maryland, USA
| | | | | |
Collapse
|
17
|
Selective Stimulation of Facial Muscles Following Chronic Intraneural Electrode Array Implantation and Facial Nerve Injury in the Feline Model. Otol Neurotol 2018; 38:e369-e377. [PMID: 28834941 DOI: 10.1097/mao.0000000000001545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Our group has previously shown that activation of specific facial nerve (FN) fiber populations and selective activation of facial musculature can be achieved through acute intraneural multichannel microelectrode array (MEA) implantation in the feline model. HYPOTHESIS Selective stimulation of facial muscles will be maintained in the setting of 1) chronic and 2) acute MEA implantation after FN injury and subsequent recovery. METHODS This study included seven cats. In three cats with normal facial function, 4-channel penetrating MEAs were implanted chronically in the FN and tested biweekly for 6 months. Electrical current pulses were delivered to each channel individually, and elicited electromyographic (EMG) voltage outputs were recorded for each of several facial muscles. For FN injury experiments, two cats received a standardized hemostat-crush injury, and two cats received a transection-reapproximation injury to the FN main trunk. These four underwent acute implantation of MEA and EMG recording in terminal experiments 4 months postinjury. RESULTS Stimulation through individual channels selectively activated restricted nerve populations, resulting in activation of individual muscles in cats with chronic MEA implantation and after nerve injury. Increasing stimulation current levels resulted in increasing EMG voltage responses in all patients. Nerve histology showed only minor neural tissue reaction to the implant. CONCLUSION We have established in the animal model the ability of a chronically implanted MEA to selectively stimulate restricted FN fiber populations and elicit activations in specific facial muscles. Likewise, after FN injury, selective stimulation of restricted FN fiber populations and subsequent activation of discrete facial muscles can be achieved after acute MEA implantation.
Collapse
|
18
|
Somann JP, Albors GO, Neihouser KV, Lu KH, Liu Z, Ward MP, Durkes A, Robinson JP, Powley TL, Irazoqui PP. Chronic cuffing of cervical vagus nerve inhibits efferent fiber integrity in rat model. J Neural Eng 2017; 15:036018. [PMID: 29219123 DOI: 10.1088/1741-2552/aaa039] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Numerous studies of vagal nerve stimulation (VNS) have been published showing it to be a potential treatment for chronic inflammation and other related diseases and disorders. Studies in recent years have shown that electrical stimulation of the vagal efferent fibers can artificially modulate cytokine levels and reduce systematic inflammation. Most VNS research in the treatment of inflammation have been acute studies on rodent subjects. Our study tested VNS on freely moving animals by stimulating and recording from the cervical vagus with nerve cuff electrodes over an extended period of time. APPROACH We used methods of electrical stimulation, retrograde tracing (using Fluorogold) and post necropsy histological analysis of nerve tissue, flow cytometry to measure plasma cytokine levels, and MRI scanning of gastric emptying. This novel combination of methods allowed examination of physiological aspects of VNS previously unexplored. MAIN RESULTS Through our study of 53 rat subjects, we found that chronically cuffing the left cervical vagus nerve suppressed efferent Fluorogold transport in 43 of 44 animals (36 showed complete suppression). Measured cytokine levels and gastric emptying rates concurrently showed nominal differences between chronically cuffed rats and those tested with similar acute methods. Meanwhile, results of electrophysiological and histological tests of the cuffed nerves revealed them to be otherwise healthy, consistent with previous literature. SIGNIFICANCE We hypothesize that due to these unforeseen and unexplored physiological consequences of the chronically cuffed vagus nerve in a rat, that inflammatory modulation and other vagal effects by VNS may become unreliable in chronic studies. Given our findings, we submit that it would benefit the VNS community to re-examine methods used in previous literature to verify the efficacy of the rat model for chronic VNS studies.
Collapse
Affiliation(s)
- Jesse P Somann
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, United States of America. Center for Implantable Devices (CID), Purdue University, West Lafayette, Indiana, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|