1
|
Ye RQ, Chen YF, Ma C, Cheng X, Guo W, Li S. Advances in identifying risk factors of metabolic dysfunction-associated alcohol-related liver disease. Biomed Pharmacother 2025; 188:118191. [PMID: 40408808 DOI: 10.1016/j.biopha.2025.118191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/13/2025] [Accepted: 05/21/2025] [Indexed: 05/25/2025] Open
Abstract
Metabolic dysfunction-associated alcohol-related liver disease (MetALD) is an emerging clinical entity that reflects the coexistence of metabolic dysfunction and alcohol-related liver injury. Unlike classical alcoholic liver disease (ALD), MetALD patients often present with lower to moderate alcohol consumption alongside metabolic risk factors such as obesity, insulin resistance, and dyslipidemia. These factors can synergistically worsen liver injury even at lower alcohol intake levels. Alcohol abuse remains a major global health concern, with the liver being the primary target of alcohol's toxic effects. Long-term alcohol exposure, especially when compounded by metabolic dysfunction, can accelerate the progression from steatosis to inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Besides alcohol itself, various factors, including genetic predispositions, gender, type of alcoholic beverage, drinking patterns, and co-morbidities such as viral infections (HBV, HCV) modulate disease susceptibility and severity. This review summarizes current knowledge of risk factors contributing to MetALD, highlights the synergistic interactions between metabolic dysfunction and alcohol consumption, and discusses potential strategies for disease prevention and management.
Collapse
Affiliation(s)
- Rui-Qi Ye
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China; Xinhua Clinical Medical College, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Yi-Fan Chen
- College of Basic Medical Sciences, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chang Ma
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xi Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430022, China.
| | - Sha Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Xue Y, Li X, Tian Y, Huang X, Zhang L, Li J, Hou H, Dong P, Wang J. Salmon sperm DNA prevents acute liver injury by regulating alcohol‐induced steatosis and restores chronic hepatosis via alleviating inflammation and apoptosis. J Food Biochem 2022; 46:e14346. [DOI: 10.1111/jfbc.14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yuhan Xue
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Xiaojing Li
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Yingying Tian
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Xinyi Huang
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Lei Zhang
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Jing Li
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Hu Hou
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Ping Dong
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Jingfeng Wang
- School of Food Science and Engineering Ocean University of China Qingdao China
| |
Collapse
|
3
|
Li D, Hu Z, He Q, Guo Y, Chong Y, Xu J, Qin L. Lactoferrin Alleviates Acute Alcoholic Liver Injury by Improving Redox-Stress Response Capacity in Female C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14856-14867. [PMID: 34873911 DOI: 10.1021/acs.jafc.1c06813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lactoferrin (Lf) can attenuate alcoholic liver injury (ALI) in male mice; however, the effects of Lf on acute ALI in female mice are still unknown. Female C57BL/6J mice were randomly divided into four groups and fed with different diets for 4 weeks: an AIN-93G diet for control (CON) and ethanol (EtOH) groups; an AIN-93G diet with 0.4 and 4% casein replaced by Lf for low-dose Lf (LLf) and high-dose Lf (HLf) groups. Acute ALI was induced by intragastric administration of ethanol (4.8 g/kgbw) every 12 h continuously for three times. HLf had obvious alleviating effects on acute ALI. Lf pretreatment did not affect hepatic alcohol metabolism key enzymes. Meanwhile, the ethanol-induced hepatic reactive oxygen species level increase was not ameliorated by Lf. Metabolomics and bioinformatics analysis results suggested an important role of redox-stress response capacity (RRC). Western blots showed HLf-promoted AKT and AMP-activated protein kinase activations and upregulated Nrf2 and LC3-II expressions, which was associated with RRC improvement. In summary, HLf could prevent acute ALI in female mice, and RRC likely played an important role.
Collapse
Affiliation(s)
- Deming Li
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Zhiqiang Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Qian He
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yaxin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yu Chong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
Song P, Zhao X, Xu Y, Zhao Z, Liu Y, Gao Q. Morphological Effect of Vitamin D Deficiency on Globular Substances in Mice. Otol Neurotol 2021; 42:e1313-e1317. [PMID: 34121084 DOI: 10.1097/mao.0000000000003229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Many authors, including us, elucidated that vitamin D deficiency was a risk factor for benign paroxysmal position vertigo. We speculated vitamin D deficiency was likely to intervene otoconia formation by globular substance (GS). METHODS Kunming mice were randomly divided into three groups: vitamin D sufficient group (12-wk standard control diet), vitamin D deficiency group (16-wk vitamin D deficiency diet), and vitamin D supplement group (16-wk vitamin D deficiency diet and followed 8-wk standard control diet). At 12, 16, and 24 weeks, blood was collected for measuring vitamin D and macula utriculi were obtained for research under scanning electron microscope (SEM). We randomly selected 10 SEM photographs of macula utriculi in each mouse, counted cilium and GS, and measured diameters of counted GS. The ratio of the number of GS to cilium in each SEM photograph was defined as density of GS. RESULTS The diameter and density of GS were larger and higher in vitamin D deficiency group than sufficient group (p < 0.05; p < 0.05). There was no significant difference in density and diameters of GS between vitamin D deficiency and supplement group. The rough and grainy surface became smoother and smoother along with vitamin D deficiency, and reappeared after vitamin D supplement for 8 weeks. CONCLUSION GS secreted as a precursor of mature otoconia is affected by vitamin D deficiency and vitamin D supplementation can mitigate the effects in mice. The density of GS, a quantitative method we designed, can quantify GS well.
Collapse
Affiliation(s)
- Penglong Song
- Department of Otolaryngology/Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University
| | - Xianshu Zhao
- Health Center of Screening and Prevention of Diseases, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yanjun Xu
- Department of Otolaryngology/Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University
| | - Zhigang Zhao
- Department of Otolaryngology/Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University
| | - Yang Liu
- Department of Otolaryngology/Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University
| | - Qian Gao
- Department of Otolaryngology/Head and Neck Surgery, The First Affiliated Hospital, Harbin Medical University
| |
Collapse
|
5
|
Nicoll R, Gerasimidis K, Forrest E. The Role of Micronutrients in the Pathogenesis of Alcohol-Related Liver Disease. Alcohol Alcohol 2021; 57:275-282. [PMID: 34491307 DOI: 10.1093/alcalc/agab060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Chronic alcohol consumption may result in liver injury and chronic liver disease, but other factors are likely to influence disease progression. Malnutrition, specifically micronutrient deficiency, is frequently associated with both alcohol use disorder and chronic liver disease. We hypothesize that micronutrient deficiencies may affect the progression of liver disease in this population. METHODS Systematic integrative review of the medical literature; electronic search of MEDLINE 1950-2021; studies investigating role of any micronutrient in the acceleration of alcohol-related liver injury in humans or animals. Studies which specifically related to alcoholic hepatitis were excluded. Outcomes were extracted and recorded in tabulated form and discussed narratively. RESULTS We identified 46 studies investigating the role of micronutrient deficiencies in the pathogenesis of alcohol-related liver disease. Specific micronutrients which were identified included folic acid or related B vitamins (n = 9 studies), Vitamin D (n = 9 studies), magnesium (n = 8 studies), zinc (n = 8 studies) and selenium (n = 12 including one systematic review). Observational evidence suggests a potential role of magnesium deficiency in accelerating alcohol-related liver injury with weak or negative evidence for other micronutrients. CONCLUSIONS Magnesium deficiency may increase the risk of alcohol-related liver injury and adverse liver outcomes. However, currently, there is insufficient evidence to support magnesium supplementation except for clinically relevant magnesium deficiency. Long-term prospective cohort studies assessing the impact of micronutrients on liver disease progression in patients with alcohol use disorder are lacking and may help determine whether there is a causal role for micronutrient deficiencies in alcohol-related liver injury.
Collapse
Affiliation(s)
- Ruairidh Nicoll
- Department of Gastroenterology, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| | - Konstantinos Gerasimidis
- Department of Human Nutrition, School of Medicine, College of Medicine, Veterinary and Life Sciences, University of Glasgow, New Lister Building, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
| | - Ewan Forrest
- Department of Gastroenterology, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW This is a review of the research on the effectiveness of vitamin supplementation for alcoholism and alcohol-related illnesses. The focus is on research, both clinical and basic on alcohol treatment and nutritional effectiveness of these vital nutrients. RECENT FINDINGS Most of the research involves basic experiments exploring the impact of vitamin depletion or deficits on physiological systems, especially liver and brain, in rodents. These often include behavioral measures that use cognitive, learning/memory and motivation experiments that model clinical studies. These provide support for hypotheses concerning the impact of such deficiencies in clinical populations. Clinical studies are rare and involve evaluation of the outcome of supplementation usually in the context of a treatment program. Specific vitamins, dosages and treatment programs vary. Deficiencies in retinoids (vitamin A), thiamine (B1) and niacin (B3) are the most frequently investigated. However, there is a greater need for further research on other vitamins, and for more uniform supplementation and treatment procedures. SUMMARY The literature is primarily basic research on specific vitamins. There are very significant findings with individual vitamin supplementation and combinations that show promise of our understanding of the role of vitamins in the disease of alcoholism and its treatment.
Collapse
Affiliation(s)
- Michael J Lewis
- Department of Psychology, Hunter College, City University of New York (CUNY), New York, New York, USA
| |
Collapse
|
7
|
Vitamin D Deficiency Aggravates Hepatic Oxidative Stress and Inflammation during Chronic Alcohol-Induced Liver Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5715893. [PMID: 32184917 PMCID: PMC7063183 DOI: 10.1155/2020/5715893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Vitamin D deficiency has been reported in alcoholics. This study is aimed at evaluating the effects of vitamin D deficiency on chronic alcohol-induced liver injury in mice. Mice were fed with modified Lieber-DeCarli liquid diets for 6 weeks to establish an animal model of chronic alcohol-induced liver injury. In the VDD+EtOH group, mice were fed with modified diets, in which vitamin D was depleted. Vitamin D deficiency aggravated alcohol-induced liver injury. Furthermore, vitamin D deficiency aggravated hepatocyte apoptosis during alcohol-induced liver injury. Although it has a little effect on hepatic TG content, vitamin D deficiency promoted alcohol-induced hepatic GSH depletion and lipid peroxidation. Further analysis showed that vitamin D deficiency further increased alcohol-induced upregulation of hepatic inducible nitric oxide synthase (inos), two NADPH oxidase subunits p47phox and gp91phox, and heme oxygenase- (HO-) 1. By contrast, vitamin D deficiency attenuated alcohol-induced upregulation of hepatic antioxidant enzyme genes, such as superoxide dismutase (sod) 1 and gshpx. In addition, vitamin D deficiency significantly elevated alcohol-induced upregulation of hepatic proinflammatory cytokines and chemokines. Taken together, these results suggest that vitamin D deficiency aggravates hepatic oxidative stress and inflammation during chronic alcohol-induced liver injury.
Collapse
|