1
|
Javed A, Alburaiki A, Sharma N, De M, Garas G, Ahmad I, Nankivell P, Sonsale A, Fussey J, Gupta KK. Utilisation of Near Infrared Autofluorescence in Parathyroid Identification During Thyroidectomy: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Clin Otolaryngol 2025. [PMID: 40186524 DOI: 10.1111/coa.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/23/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE Unintentional parathyroid gland resection during total thyroidectomy can result in permanent hypoparathyroidism and lifelong replacement therapy. Near infrared autofluorescence (NIRAF) imaging may aid intraoperative identification and preservation of the parathyroid glands. This article aims to review NIRAF's effectiveness in the prevention of post-operative hypoparathyroidism. DESIGN Systematic review and meta-analysis reported according to PRISMA guidelines. METHODS The electronic databases of MEDLINE, Embase and Cochrane were searched in September 2024. Included articles were randomised controlled trials (RCTs) that studied the use of NIRAF vs. dissection with no intraoperative aids in thyroidectomy. Meta-analysis was performed using a random-effects model. Primary outcomes were postoperative hypocalcaemia and permanent hypoparathyroidism. RESULTS Eight RCTs were included in the final analysis, comprising 1620 patients. Meta-analysis revealed patients undergoing thyroidectomy using NIRAF had a reduced risk of both post-operative hypocalcaemia (OR 0.56, 95% CI: 0.36-0.89, p = 0.01) and persistent hypoparathyroidism (OR 0.44, 95% CI: 0.22-0.89, p = 0.02). CONCLUSIONS NIRAF use in thyroidectomy reduces the risk of post-operative hypocalcaemia and post-operative hypoparathyroidism.
Collapse
Affiliation(s)
- Azfar Javed
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Abdullah Alburaiki
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Neil Sharma
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Mriganka De
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - George Garas
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ijaz Ahmad
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Paul Nankivell
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Anita Sonsale
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Jonathan Fussey
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Keshav Kumar Gupta
- Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
2
|
Dowling GP, Hehir CM, Daly GR, Hembrecht S, Keelan S, Giblin K, Alrawashdeh MM, Boland F, Hill ADK. Diagnostic accuracy of intraoperative methods for margin assessment in breast cancer surgery: A systematic review & meta-analysis. Breast 2024; 76:103749. [PMID: 38759577 PMCID: PMC11127275 DOI: 10.1016/j.breast.2024.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
PURPOSE There are a wide variety of intraoperative techniques available in breast surgery to achieve low rates for positive margins of excision. The objective of this systematic review was to determine the pooled diagnostic accuracy of intraoperative breast margin assessment techniques that have been evaluated in clinical practice. METHODS This study was performed in accordance with PRISMA guidelines. A systematic search of the literature was conducted to identify studies assessing the diagnostic accuracy of intraoperative margin assessment techniques. Only clinical studies with raw diagnostic accuracy data as compared with final permanent section histopathology were included in the meta-analysis. A bivariate model for diagnostic meta-analysis was used to determine overall pooled sensitivity and specificity. RESULTS Sixty-one studies were eligible for inclusion in this systematic review and meta-analysis. Cytology demonstrated the best diagnostic accuracy, with pooled sensitivity of 0.92 (95 % CI 0.77-0.98) and a pooled specificity of 0.95 (95 % CI 0.90-0.97). The findings also indicate good diagnostic accuracy for optical spectroscopy, with a pooled sensitivity of 0.86 (95 % CI 0.76-0.93) and a pooled specificity of 0.92 (95 % CI 0.82-0.97). CONCLUSION Pooled data indicate that optical spectroscopy, cytology and frozen section have the greatest diagnostic accuracy of currently available intraoperative margin assessment techniques. However, long turnaround time for results and their resource intensive nature has prevented widespread adoption of these methods. The aim of emerging technologies is to compete with the diagnostic accuracy of these established techniques, while improving speed and usability.
Collapse
Affiliation(s)
- Gavin P Dowling
- Department of Surgery, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, Beaumont Hospital, Dublin, Ireland.
| | - Cian M Hehir
- Department of Surgery, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Gordon R Daly
- Department of Surgery, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Sandra Hembrecht
- Department of Surgery, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Stephen Keelan
- Department of Surgery, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Katie Giblin
- Department of Surgery, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Maen M Alrawashdeh
- Department of Surgery, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland
| | - Fiona Boland
- Data Science Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Arnold D K Hill
- Department of Surgery, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
3
|
Guergan S, Boeer B, Fugunt R, Helms G, Roehm C, Solomianik A, Neugebauer A, Nuessle D, Schuermann M, Brunecker K, Jurjut O, Boehme KA, Dammeier S, Enderle MD, Bettio S, Gonzalez-Menendez I, Staebler A, Brucker SY, Kraemer B, Wallwiener D, Fend F, Hahn M. Optical Emission Spectroscopy for the Real-Time Identification of Malignant Breast Tissue. Diagnostics (Basel) 2024; 14:338. [PMID: 38337854 PMCID: PMC10855719 DOI: 10.3390/diagnostics14030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Breast conserving resection with free margins is the gold standard treatment for early breast cancer recommended by guidelines worldwide. Therefore, reliable discrimination between normal and malignant tissue at the resection margins is essential. In this study, normal and abnormal tissue samples from breast cancer patients were characterized ex vivo by optical emission spectroscopy (OES) based on ionized atoms and molecules generated during electrosurgical treatment. The aim of the study was to determine spectroscopic features which are typical for healthy and neoplastic breast tissue allowing for future real-time tissue differentiation and margin assessment during breast cancer surgery. A total of 972 spectra generated by electrosurgical sparking on normal and abnormal tissue were used for support vector classifier (SVC) training. Specific spectroscopic features were selected for the classification of tissues in the included breast cancer patients. The average classification accuracy for all patients was 96.9%. Normal and abnormal breast tissue could be differentiated with a mean sensitivity of 94.8%, a specificity of 99.0%, a positive predictive value (PPV) of 99.1% and a negative predictive value (NPV) of 96.1%. For 66.6% patients all classifications reached 100%. Based on this convincing data, a future clinical application of OES-based tissue differentiation in breast cancer surgery seems to be feasible.
Collapse
Affiliation(s)
- Selin Guergan
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Bettina Boeer
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Regina Fugunt
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Gisela Helms
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Carmen Roehm
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Anna Solomianik
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Alexander Neugebauer
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Daniela Nuessle
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Mirjam Schuermann
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Kristin Brunecker
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Ovidiu Jurjut
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Karen A. Boehme
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Sascha Dammeier
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Markus D. Enderle
- Erbe Elektromedizin GmbH, Waldhoernlestr. 17, 72072 Tübingen, Germany; (A.N.); (D.N.); (M.S.); (O.J.); (K.A.B.); (S.D.); (M.D.E.)
| | - Sabrina Bettio
- Institute of Pathology and Neuropathology, Tuebingen University Hospital, 72076 Tübingen, Germany; (S.B.); (I.G.-M.); (A.S.); (F.F.)
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Tuebingen University Hospital, 72076 Tübingen, Germany; (S.B.); (I.G.-M.); (A.S.); (F.F.)
| | - Annette Staebler
- Institute of Pathology and Neuropathology, Tuebingen University Hospital, 72076 Tübingen, Germany; (S.B.); (I.G.-M.); (A.S.); (F.F.)
| | - Sara Y. Brucker
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Bernhard Kraemer
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Diethelm Wallwiener
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| | - Falko Fend
- Institute of Pathology and Neuropathology, Tuebingen University Hospital, 72076 Tübingen, Germany; (S.B.); (I.G.-M.); (A.S.); (F.F.)
| | - Markus Hahn
- Department of Women’s Health, Tuebingen University Hospital, 72076 Tübingen, Germany; (B.B.); (R.F.); (G.H.); (C.R.); (A.S.); (S.Y.B.); (B.K.); (D.W.); (M.H.)
| |
Collapse
|
4
|
Wernly D, Beniere C, Besse V, Seidler S, Lachat R, Letovanec I, Huber D, Simonson C. SENOSI Confocal Microscopy: A New and Innovating Way to Detect Positive Margins in Non-Palpable Breast Cancer? Life (Basel) 2024; 14:204. [PMID: 38398713 PMCID: PMC10890637 DOI: 10.3390/life14020204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
In Switzerland, breast cancer is the leading cancer among women, with breast-conserving surgery (BCS) being the preferred treatment for small tumors. The margin status post-surgery is a critical predictor of local recurrence. Achieving negative margins remains a challenge, leading to re-excision in 20-30% of cases. Traditional methods like intraoperative examination palpation and radiography have limitations in assessing excised margins. This study introduces the Histolog® Scanner, a confocal microscopy tool, as a potential solution. It provides real-time images of tissue architecture, allowing for rapid and accurate assessment of excised margins. Our research compared the Histolog® Scanner with standard per-operative radiography in patients with non palpable breast cancer. Preliminary results indicate that the Histolog® Scanner offers a reliable and time-efficient method for margin assessment, suggesting its potential for clinical integration.
Collapse
Affiliation(s)
- Deborah Wernly
- Hôpital du Valais, 1951 Sion, Switzerland; (C.B.); (V.B.); (S.S.); (R.L.); (I.L.); (D.H.); (C.S.)
- Centre Hospitalier Universitaire Vaudois (CHUV), 1011 Lausanne, Switzerland
| | - Charles Beniere
- Hôpital du Valais, 1951 Sion, Switzerland; (C.B.); (V.B.); (S.S.); (R.L.); (I.L.); (D.H.); (C.S.)
- Aurigen, Centre de Pathologie, 1004 Lausanne, Switzerland
| | - Valerie Besse
- Hôpital du Valais, 1951 Sion, Switzerland; (C.B.); (V.B.); (S.S.); (R.L.); (I.L.); (D.H.); (C.S.)
| | - Stephanie Seidler
- Hôpital du Valais, 1951 Sion, Switzerland; (C.B.); (V.B.); (S.S.); (R.L.); (I.L.); (D.H.); (C.S.)
| | - Regine Lachat
- Hôpital du Valais, 1951 Sion, Switzerland; (C.B.); (V.B.); (S.S.); (R.L.); (I.L.); (D.H.); (C.S.)
| | - Igor Letovanec
- Hôpital du Valais, 1951 Sion, Switzerland; (C.B.); (V.B.); (S.S.); (R.L.); (I.L.); (D.H.); (C.S.)
| | - Daniela Huber
- Hôpital du Valais, 1951 Sion, Switzerland; (C.B.); (V.B.); (S.S.); (R.L.); (I.L.); (D.H.); (C.S.)
- Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals, Boulevard de la Cluse 30, 1205 Geneva, Switzerland
| | - Colin Simonson
- Hôpital du Valais, 1951 Sion, Switzerland; (C.B.); (V.B.); (S.S.); (R.L.); (I.L.); (D.H.); (C.S.)
| |
Collapse
|
5
|
Rodriguez Troncoso J, Marium Mim U, Ivers JD, Paidi SK, Harper MG, Nguyen KG, Ravindranathan S, Rebello L, Lee DE, Zaharoff DA, Barman I, Rajaram N. Evaluating differences in optical properties of indolent and aggressive murine breast tumors using quantitative diffuse reflectance spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:6114-6126. [PMID: 38420330 PMCID: PMC10898562 DOI: 10.1364/boe.505153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 03/02/2024]
Abstract
We used diffuse reflectance spectroscopy to quantify tissue absorption and scattering-based parameters in similarly sized tumors derived from a panel of four isogenic murine breast cancer cell lines (4T1, 4T07, 168FARN, 67NR) that are each capable of accomplishing different steps of the invasion-metastasis cascade. We found lower tissue scattering, increased hemoglobin concentration, and lower vascular oxygenation in indolent 67NR tumors incapable of metastasis compared with aggressive 4T1 tumors capable of metastasis. Supervised learning statistical approaches were able to accurately differentiate between tumor groups and classify tumors according to their ability to accomplish each step of the invasion-metastasis cascade. We investigated whether the inhibition of metastasis-promoting genes in the highly metastatic 4T1 tumors resulted in measurable optical changes that made these tumors similar to the indolent 67NR tumors. These results demonstrate the potential of diffuse reflectance spectroscopy to noninvasively evaluate tumor biology and discriminate between indolent and aggressive tumors.
Collapse
Affiliation(s)
| | - Umme Marium Mim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jesse D. Ivers
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Santosh K. Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mason G. Harper
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Khue G. Nguyen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sruthi Ravindranathan
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Lisa Rebello
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - David E. Lee
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Exercise Science, University of Arkansas, Fayetteville, AR 72703, USA
| | - David A. Zaharoff
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27695, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Narasimhan Rajaram
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
6
|
Campbell JM, Habibalahi A, Handley S, Agha A, Mahbub SB, Anwer AG, Goldys EM. Emerging clinical applications in oncology for non-invasive multi- and hyperspectral imaging of cell and tissue autofluorescence. JOURNAL OF BIOPHOTONICS 2023; 16:e202300105. [PMID: 37272291 DOI: 10.1002/jbio.202300105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023]
Abstract
Hyperspectral and multispectral imaging of cell and tissue autofluorescence is an emerging technology in which fluorescence imaging is applied to biological materials across multiple spectral channels. This produces a stack of images where each matched pixel contains information about the sample's spectral properties at that location. This allows precise collection of molecularly specific data from a broad range of native fluorophores. Importantly, complex information, directly reflective of biological status, is collected without staining and tissues can be characterised in situ, without biopsy. For oncology, this can spare the collection of biopsies from sensitive regions and enable accurate tumour mapping. For in vivo tumour analysis, the greatest focus has been on oral cancer, whereas for ex vivo assessment head-and-neck cancers along with colon cancer have been the most studied, followed by oral and eye cancer. This review details the scope and progress of research undertaken towards clinical translation in oncology.
Collapse
Affiliation(s)
- Jared M Campbell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shannon Handley
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Adnan Agha
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Saabah B Mahbub
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ewa M Goldys
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Veluponnar D, Dashtbozorg B, Jong LJS, Geldof F, Da Silva Guimaraes M, Vrancken Peeters MJTFD, van Duijnhoven F, Sterenborg HJCM, Ruers TJM, de Boer LL. Diffuse reflectance spectroscopy for accurate margin assessment in breast-conserving surgeries: importance of an optimal number of fibers. BIOMEDICAL OPTICS EXPRESS 2023; 14:4017-4036. [PMID: 37799696 PMCID: PMC10549728 DOI: 10.1364/boe.493179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 10/07/2023]
Abstract
During breast-conserving surgeries, it remains challenging to accomplish adequate surgical margins. We investigated different numbers of fibers for fiber-optic diffuse reflectance spectroscopy to differentiate tumorous breast tissue from healthy tissue ex vivo up to 2 mm from the margin. Using a machine-learning classification model, the optimal performance was obtained using at least three emitting fibers (Matthew's correlation coefficient (MCC) of 0.73), which was significantly higher compared to the performance of using a single-emitting fiber (MCC of 0.48). The percentage of correctly classified tumor locations varied from 75% to 100% depending on the tumor percentage, the tumor-margin distance and the number of fibers.
Collapse
Affiliation(s)
- Dinusha Veluponnar
- Department of Surgery,
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Behdad Dashtbozorg
- Department of Surgery,
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lynn-Jade S. Jong
- Department of Surgery,
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Freija Geldof
- Department of Surgery,
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Marcos Da Silva Guimaraes
- Department of Pathology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | - Frederieke van Duijnhoven
- Department of Surgery,
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Henricus J. C. M. Sterenborg
- Department of Surgery,
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Theo J. M. Ruers
- Department of Surgery,
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Nanobiophysics, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Lisanne L. de Boer
- Department of Surgery,
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
8
|
Shanthakumar D, Leiloglou M, Kelliher C, Darzi A, Elson DS, Leff DR. A Comparison of Spectroscopy and Imaging Techniques Utilizing Spectrally Resolved Diffusely Reflected Light for Intraoperative Margin Assessment in Breast-Conserving Surgery: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:cancers15112884. [PMID: 37296847 DOI: 10.3390/cancers15112884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 19% of patients require re-excision surgery due to positive margins in breast-conserving surgery (BCS). Intraoperative margin assessment tools (IMAs) that incorporate tissue optical measurements could help reduce re-excision rates. This review focuses on methods that use and assess spectrally resolved diffusely reflected light for breast cancer detection in the intraoperative setting. Following PROSPERO registration (CRD42022356216), an electronic search was performed. The modalities searched for were diffuse reflectance spectroscopy (DRS), multispectral imaging (MSI), hyperspectral imaging (HSI), and spatial frequency domain imaging (SFDI). The inclusion criteria encompassed studies of human in vivo or ex vivo breast tissues, which presented data on accuracy. The exclusion criteria were contrast use, frozen samples, and other imaging adjuncts. 19 studies were selected following PRISMA guidelines. Studies were divided into point-based (spectroscopy) or whole field-of-view (imaging) techniques. A fixed-or random-effects model analysis generated pooled sensitivity/specificity for the different modalities, following heterogeneity calculations using the Q statistic. Overall, imaging-based techniques had better pooled sensitivity/specificity (0.90 (CI 0.76-1.03)/0.92 (CI 0.78-1.06)) compared with probe-based techniques (0.84 (CI 0.78-0.89)/0.85 (CI 0.79-0.91)). The use of spectrally resolved diffusely reflected light is a rapid, non-contact technique that confers accuracy in discriminating between normal and malignant breast tissue, and it constitutes a potential IMA tool.
Collapse
Affiliation(s)
- Dhurka Shanthakumar
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Maria Leiloglou
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Colm Kelliher
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Daniel S Elson
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| | - Daniel R Leff
- Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
- The Hamlyn Centre, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Niemitz L, van der Stel SD, Sorensen S, Messina W, Venkata Sekar SK, Sterenborg HJCM, Andersson-Engels S, Ruers TJM, Burke R. Microcamera Visualisation System to Overcome Specular Reflections for Tissue Imaging. MICROMACHINES 2023; 14:mi14051062. [PMID: 37241685 DOI: 10.3390/mi14051062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
In vivo tissue imaging is an essential tool for medical diagnosis, surgical guidance, and treatment. However, specular reflections caused by glossy tissue surfaces can significantly degrade image quality and hinder the accuracy of imaging systems. In this work, we further the miniaturisation of specular reflection reduction techniques using micro cameras, which have the potential to act as intra-operative supportive tools for clinicians. In order to remove these specular reflections, two small form factor camera probes, handheld at 10 mm footprint and miniaturisable to 2.3 mm, are developed using different modalities, with line-of-sight to further miniaturisation. (1) The sample is illuminated via multi-flash technique from four different positions, causing a shift in reflections which are then filtered out in a post-processing image reconstruction step. (2) The cross-polarisation technique integrates orthogonal polarisers onto the tip of the illumination fibres and camera, respectively, to filter out the polarisation maintaining reflections. These form part of a portable imaging system that is capable of rapid image acquisition using different illumination wavelengths, and employs techniques that lend themselves well to further footprint reduction. We demonstrate the efficacy of the proposed system with validating experiments on tissue-mimicking phantoms with high surface reflection, as well as on excised human breast tissue. We show that both methods can provide clear and detailed images of tissue structures along with the effective removal of distortion or artefacts caused by specular reflections. Our results suggest that the proposed system can improve the image quality of miniature in vivo tissue imaging systems and reveal underlying feature information at depth, for both human and machine observers, leading to better diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Lorenzo Niemitz
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland
| | - Stefan D van der Stel
- Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands
- Group Nanobiophysics, Faculty TNW, Twente University, 7522 NB Enschede, The Netherlands
| | - Simon Sorensen
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland
| | - Walter Messina
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland
| | - Sanathana Konugolu Venkata Sekar
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland
- BioPixS Ltd.-Biophotonics Standards, IPIC, Lee Maltings Complex, Dyke Parade, T12 R5CP Cork, Ireland
| | | | - Stefan Andersson-Engels
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland
- BioPixS Ltd.-Biophotonics Standards, IPIC, Lee Maltings Complex, Dyke Parade, T12 R5CP Cork, Ireland
- Department of Physics, University College Cork, T12 K8AF Cork, Ireland
| | - Theo J M Ruers
- Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands
- Group Nanobiophysics, Faculty TNW, Twente University, 7522 NB Enschede, The Netherlands
| | - Ray Burke
- Biophotonics @ Tyndall, IPIC, Tyndall National Institute, University College Cork, T12 R5CP Cork, Ireland
| |
Collapse
|
10
|
David S, Tran T, Dallaire F, Sheehy G, Azzi F, Trudel D, Tremblay F, Omeroglu A, Leblond F, Meterissian S. In situ Raman spectroscopy and machine learning unveil biomolecular alterations in invasive breast cancer. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:036009. [PMID: 37009577 PMCID: PMC10062385 DOI: 10.1117/1.jbo.28.3.036009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
SIGNIFICANCE As many as 60% of patients with early stage breast cancer undergo breast-conserving surgery. Of those, 20% to 35% need a second surgery because of incomplete resection of the lesions. A technology allowing in situ detection of cancer could reduce re-excision procedure rates and improve patient survival. AIM Raman spectroscopy was used to measure the spectral fingerprint of normal breast and cancer tissue ex-vivo. The aim was to build a machine learning model and to identify the biomolecular bands that allow one to detect invasive breast cancer. APPROACH The system was used to interrogate specimens from 20 patients undergoing lumpectomy, mastectomy, or breast reduction surgery. This resulted in 238 ex-vivo measurements spatially registered with standard histology classifying tissue as cancer, normal, or fat. A technique based on support vector machines led to the development of predictive models, and their performance was quantified using a receiver-operating-characteristic analysis. RESULTS Raman spectroscopy combined with machine learning detected normal breast from ductal or lobular invasive cancer with a sensitivity of 93% and a specificity of 95%. This was achieved using a model based on only two spectral bands, including the peaks associated with C-C stretching of proteins around 940 cm - 1 and the symmetric ring breathing at 1004 cm - 1 associated with phenylalanine. CONCLUSIONS Detection of cancer on the margins of surgically resected breast specimen is feasible with Raman spectroscopy.
Collapse
Affiliation(s)
- Sandryne David
- Polytechnique Montréal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Trang Tran
- Polytechnique Montréal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Frédérick Dallaire
- Polytechnique Montréal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Guillaume Sheehy
- Polytechnique Montréal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Feryel Azzi
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Dominique Trudel
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Department of Pathology and Cellular Biology, Montreal, Quebec, Canada
| | - Francine Tremblay
- McGill University Health Center, Department of Surgery, Montreal, Quebec, Canada
| | - Atilla Omeroglu
- McGill University Health Center, Department of Pathology, Montreal, Quebec, Canada
| | - Frédéric Leblond
- Polytechnique Montréal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Sarkis Meterissian
- McGill University Health Center, Department of Surgery, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Sandor MF, Schwalbach B, Hofmann V, Istrate SE, Schuller Z, Ionescu E, Heimann S, Ragazzi M, Lux MP. Imaging of lumpectomy surface with large field-of-view confocal laser scanning microscope for intraoperative margin assessment - POLARHIS study. Breast 2022; 66:118-125. [PMID: 36240525 PMCID: PMC9574757 DOI: 10.1016/j.breast.2022.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Breast-conserving surgery (BCS) in case of breast cancer and/or in-situ-carcinoma lesions (DCIS) intends to completely remove breast cancer while saving healthy tissue as much as possible to achieve better aesthetic and psychological outcomes for the patient. Such modality should result in postoperative tumor-free margins of the surgical resection in order to carry on with the next therapeutical steps of the patient care. However, 10-40% of patients undergo more than one procedure to achieve acceptable cancer-negative margins. A 2nd operation or further operation (re-operation) has physical, psychological, and economic consequences. It also delays the administration of adjuvant therapy, and has been associated with an elevated risk of local and distant disease relapse. In addition, a high re-operation rate can have significant economic effects - both for the service provider and for the payer. A more efficient intraoperative assessment of the margin may address these issues. Recently, a large field-of-view confocal laser scanning microscope designed to allow real-time intraoperative margin assessment has arrived on the market - the Histolog Scanner. In this paper, we present the first evaluation of lumpectomy margins assessment with this new device. MATERIALS AND METHODS 40 consecutive patients undergoing BCS with invasive and/or DCIS were included. The whole surface of the surgical specimens was imaged right after the operation using the Histolog Scanner (HLS). The assessment of all the specimen margins was performed intraoperatively according to the standard-of-care of the center which consists of combined ultrasound (IOUS) and/or conventional specimen radiography (CSR), and gross surgical inspection. Margin assessment on HLS images was blindly performed after the surgery by 5 surgeons and one pathologist. The capabilities to correctly determine margin status in HLS images was compared to the final histopathological assessment. Furthermore, the potential reduction of positive-margin and re-operation rates by utilization of the HLS were extrapolated. RESULTS The study population included 7/40 patients with DCIS (17.5%), 17/40 patients with DCIS and invasive ductal cancer (IDC NST) (42.5%), 10/40 patients with IDC NST (25%), 4/40 with invasive lobular cancer (ILC) (10%), and 1/40 patients with a mix of IDC NST, DCIS, and ILC. Clinical routine resulted in 13 patients with positive margins identified by final histopathological assessment, resulting in 12 re-operations (30% re-operation rate). Amongst these 12 patients, 10 had DCIS components involved in their margin, confirming the importance of improving the detection accuracy of this specific lesion. Surgeons, who were given a short familiarization on HLS images, and a pathologist were able to detect positive margins in 4/12 and 7/12 patients (33% and 58%), respectively, that were missed by the intraoperative standard of care. In addition, a retrospective analysis of the HLS images revealed that cancer lesions can be identified in 9/12 (75%) patients with positive margins. CONCLUSION The present study presents that breast cancer can be detected by surgeons and pathologists in HLS images of lumpectomy margins leading to a potential reduction of 30% and 75% of the re-operations. The Histolog Scanner is easily inserted into the clinical workflow and has the potential to improve the intraoperative standard-of-care for the assessment of breast conserving treatments. In addition, it has the potential to increase oncological safety and cosmetics by avoiding subsequent resections and can also have a significant positive economic effect for service providers and cost bearers. The data presented in this study will have to be further confirmed in a prospective phase-III-trial.
Collapse
MESH Headings
- Female
- Humans
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/surgery
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging
- Carcinoma, Intraductal, Noninfiltrating/surgery
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Lasers
- Margins of Excision
- Mastectomy, Segmental/methods
- Neoplasm Recurrence, Local/pathology
- Prospective Studies
- Reoperation
- Retrospective Studies
Collapse
Affiliation(s)
- Mariana-Felicia Sandor
- Department of Gynecology and Obstetrics, Women's Hospital St. Louise, Paderborn, Women's Hospital, St. Josefs, Salzkotten, St. Vincenz-Krankenhaus GmbH, Husener Str. 81, 33098, Paderborn, Germany
| | - Beatrice Schwalbach
- Department of Gynecology and Obstetrics, Women's Hospital St. Louise, Paderborn, Women's Hospital, St. Josefs, Salzkotten, St. Vincenz-Krankenhaus GmbH, Husener Str. 81, 33098, Paderborn, Germany
| | - Viktoria Hofmann
- Department of Gynecology and Obstetrics, Women's Hospital St. Louise, Paderborn, Women's Hospital, St. Josefs, Salzkotten, St. Vincenz-Krankenhaus GmbH, Husener Str. 81, 33098, Paderborn, Germany
| | - Simona-Elena Istrate
- Department of Gynecology and Obstetrics, Women's Hospital St. Louise, Paderborn, Women's Hospital, St. Josefs, Salzkotten, St. Vincenz-Krankenhaus GmbH, Husener Str. 81, 33098, Paderborn, Germany
| | - Zlatna Schuller
- Department of Gynecology and Obstetrics, Women's Hospital St. Louise, Paderborn, Women's Hospital, St. Josefs, Salzkotten, St. Vincenz-Krankenhaus GmbH, Husener Str. 81, 33098, Paderborn, Germany
| | - Elena Ionescu
- Department of Gynecology and Obstetrics, Women's Hospital St. Louise, Paderborn, Women's Hospital, St. Josefs, Salzkotten, St. Vincenz-Krankenhaus GmbH, Husener Str. 81, 33098, Paderborn, Germany
| | - Sara Heimann
- Department of Gynecology and Obstetrics, Women's Hospital St. Louise, Paderborn, Women's Hospital, St. Josefs, Salzkotten, St. Vincenz-Krankenhaus GmbH, Husener Str. 81, 33098, Paderborn, Germany
| | - Moira Ragazzi
- Pathology Unit, Azienda USL - IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Michael P Lux
- Department of Gynecology and Obstetrics, Women's Hospital St. Louise, Paderborn, Women's Hospital, St. Josefs, Salzkotten, St. Vincenz-Krankenhaus GmbH, Husener Str. 81, 33098, Paderborn, Germany.
| |
Collapse
|
12
|
Abstract
AbstractMeasuring morphological and biochemical features of tissue is crucial for disease diagnosis and surgical guidance, providing clinically significant information related to pathophysiology. Hyperspectral imaging (HSI) techniques obtain both spatial and spectral features of tissue without labeling molecules such as fluorescent dyes, which provides rich information for improved disease diagnosis and treatment. Recent advances in HSI systems have demonstrated its potential for clinical applications, especially in disease diagnosis and image-guided surgery. This review summarizes the basic principle of HSI and optical systems, deep-learning-based image analysis, and clinical applications of HSI to provide insight into this rapidly growing field of research. In addition, the challenges facing the clinical implementation of HSI techniques are discussed.
Collapse
|
13
|
de Boer LL, Kho E, Van de Vijver KK, Vranken Peeters MJTFD, van Duijnhoven F, Hendriks BHW, Sterenborg HJCM, Ruers TJM. Optical tissue measurements of invasive carcinoma and ductal carcinoma in situ for surgical guidance. Breast Cancer Res 2021; 23:59. [PMID: 34022928 PMCID: PMC8141169 DOI: 10.1186/s13058-021-01436-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background Although the incidence of positive resection margins in breast-conserving surgery has decreased, both incomplete resection and unnecessary large resections still occur. This is especially the case in the surgical treatment of ductal carcinoma in situ (DCIS). Diffuse reflectance spectroscopy (DRS), an optical technology based on light tissue interactions, can potentially characterize tissue during surgery thereby guiding the surgeon intraoperatively. DRS has shown to be able to discriminate pure healthy breast tissue from pure invasive carcinoma (IC) but limited research has been done on (1) the actual optical characteristics of DCIS and (2) the ability of DRS to characterize measurements that are a mixture of tissue types. Methods In this study, DRS spectra were acquired from 107 breast specimens from 107 patients with proven IC and/or DCIS (1488 measurement locations). With a generalized estimating equation model, the differences between the DRS spectra of locations with DCIS and IC and only healthy tissue were compared to see if there were significant differences between these spectra. Subsequently, different classification models were developed to be able to predict if the DRS spectrum of a measurement location represented a measurement location with “healthy” or “malignant” tissue. In the development and testing of the models, different definitions for “healthy” and “malignant” were used. This allowed varying the level of homogeneity in the train and test data. Results It was found that the optical characteristics of IC and DCIS were similar. Regarding the classification of tissue with a mixture of tissue types, it was found that using mixed measurement locations in the development of the classification models did not tremendously improve the accuracy of the classification of other measurement locations with a mixture of tissue types. The evaluated classification models were able to classify measurement locations with > 5% malignant cells with a Matthews correlation coefficient of 0.41 or 0.40. Some models showed better sensitivity whereas others had better specificity. Conclusion The results suggest that DRS has the potential to detect malignant tissue, including DCIS, in healthy breast tissue and could thus be helpful for surgical guidance. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01436-5.
Collapse
Affiliation(s)
- Lisanne L de Boer
- Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Postbus 90203, 1006, Amsterdam, BE, Netherlands.
| | - Esther Kho
- Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Postbus 90203, 1006, Amsterdam, BE, Netherlands
| | - Koen K Van de Vijver
- Department of Pathology, Ghent University Hospital, and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | | | - Frederieke van Duijnhoven
- Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Postbus 90203, 1006, Amsterdam, BE, Netherlands
| | - Benno H W Hendriks
- Philips Research, In-body Systems Group, Eindhoven, Netherlands.,Biomechanical Engineering Department, Delft University of Technology, Delft, The Netherlands
| | - Henricus J C M Sterenborg
- Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Postbus 90203, 1006, Amsterdam, BE, Netherlands.,Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Theo J M Ruers
- Department of Surgery, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Postbus 90203, 1006, Amsterdam, BE, Netherlands.,Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| |
Collapse
|
14
|
Balasundaram G, Krafft C, Zhang R, Dev K, Bi R, Moothanchery M, Popp J, Olivo M. Biophotonic technologies for assessment of breast tumor surgical margins-A review. JOURNAL OF BIOPHOTONICS 2021; 14:e202000280. [PMID: 32951321 DOI: 10.1002/jbio.202000280] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Breast conserving surgery (BCS) offering similar surgical outcomes as mastectomy while retaining breast cosmesis is becoming increasingly popular for the management of early stage breast cancers. However, its association with reoperation rates of 20% to 40% following incomplete tumor removal warrants the need for a fast and accurate intraoperative surgical margin assessment tool that offers cellular, structural and molecular information of the whole specimen surface to a clinically relevant depth. Biophotonic technologies are evolving to qualify as such an intraoperative tool for clinical assessment of breast cancer surgical margins at the microscopic and macroscopic scale. Herein, we review the current research in the application of biophotonic technologies such as photoacoustic imaging, Raman spectroscopy, multimodal multiphoton imaging, diffuse optical imaging and fluorescence imaging using medically approved dyes for breast cancer detection and/or tumor subtype differentiation toward intraoperative assessment of surgical margins in BCS specimens, and possible challenges in their route to clinical translation.
Collapse
Affiliation(s)
- Ghayathri Balasundaram
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Ruochong Zhang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kapil Dev
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Renzhe Bi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mohesh Moothanchery
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, University Jena, Jena, Germany
| | - Malini Olivo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
15
|
Ozmen T, Avisar E. The Impact of Advanced Image-Guided Breast Surgery and Oncoplastic Techniques on Margin Positivity in Breast Conserving Surgery. Cureus 2020; 12:e11831. [PMID: 33409073 PMCID: PMC7781498 DOI: 10.7759/cureus.11831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Objective Positive margins remain a significant psychological and economic burden after breast conserving surgery. The aim of this study was to test the hypothesis that advanced oncoplastic techniques as well as intraoperative integrative imaging with intraoperative ultrasound and mobile digital specimen radiography decreases positive margin rate in breast conserving surgery. Methods A single-institution retrospective review of a prospectively collected database was performed. Patients with breast neoplasms who underwent lumpectomy with or without using intraoperative integrative imaging approaches and oncoplastic techniques were included. The primary outcome was positive margin rate for each technique. Results A total of 392 patients were included in the study. The median age of the cohort was 59 years. Overall positive margin rate was 15%. Ductal carcinoma in situ (DCIS) histology and larger tumor size were associated with higher positive margin rate. Intraoperative integrative imaging significantly decreased positive margin rate (9% vs. 18%, p=0.018). Oncoplastic techniques also decreased positive margin rate from 16% to 12%, however this was not significant. Conclusion Positive margin rate was significantly lower when intraoperative integrative imaging was used. Oncoplastic techniques also decreased positive margin rate in a selected group of patients with large tumor size. We suggest incorporating these techniques in all breast conserving surgery cases.
Collapse
Affiliation(s)
- Tolga Ozmen
- Surgical Oncology, University of Miami, Miller School of Medicine, Miami, USA
| | - Eli Avisar
- Surgical Oncology, University of Miami, Miller School of Medicine, Miami, USA
| |
Collapse
|
16
|
Lu T, Jorns JM, Patton M, Fisher R, Emmrich A, Doehring T, Schmidt TG, Ye DH, Yen T, Yu B. Rapid assessment of breast tumor margins using deep ultraviolet fluorescence scanning microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200272R. [PMID: 33241673 PMCID: PMC7688317 DOI: 10.1117/1.jbo.25.12.126501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/28/2020] [Indexed: 06/02/2023]
Abstract
SIGNIFICANCE Re-excision rates for women with invasive breast cancer undergoing breast conserving surgery (or lumpectomy) have decreased in the past decade but remain substantial. This is mainly due to the inability to assess the entire surface of an excised lumpectomy specimen efficiently and accurately during surgery. AIM The goal of this study was to develop a deep-ultraviolet scanning fluorescence microscope (DUV-FSM) that can be used to accurately and rapidly detect cancer cells on the surface of excised breast tissue. APPROACH A DUV-FSM was used to image the surfaces of 47 (31 malignant and 16 normal/benign) fresh breast tissue samples stained in propidium iodide and eosin Y solutions. A set of fluorescence images were obtained from each sample using low magnification (4 × ) and fully automated scanning. The images were stitched to form a color image. Three nonmedical evaluators were trained to interpret and assess the fluorescence images. Nuclear-cytoplasm ratio (N/C) was calculated and used for tissue classification. RESULTS DUV-FSM images a breast sample with subcellular resolution at a speed of 1.0 min / cm2. Fluorescence images show excellent visual contrast in color, tissue texture, cell density, and shape between invasive carcinomas and their normal counterparts. Visual interpretation of fluorescence images by nonmedical evaluators was able to distinguish invasive carcinoma from normal samples with high sensitivity (97.62%) and specificity (92.86%). Using N/C alone was able to differentiate patch-level invasive carcinoma from normal breast tissues with reasonable sensitivity (81.5%) and specificity (78.5%). CONCLUSIONS DUV-FSM achieved a good balance between imaging speed and spatial resolution with excellent contrast, which allows either visual or quantitative detection of invasive cancer cells on the surfaces of a breast surgical specimen.
Collapse
Affiliation(s)
- Tongtong Lu
- Marquette University and Medical College of Wisconsin, Department of Biomedical Engineering, Milwaukee, Wisconsin, United States
| | - Julie M. Jorns
- Medical College of Wisconsin, Department of Pathology, Milwaukee, Wisconsin, United States
| | - Mollie Patton
- Medical College of Wisconsin, Department of Pathology, Milwaukee, Wisconsin, United States
| | - Renee Fisher
- Marquette University and Medical College of Wisconsin, Department of Biomedical Engineering, Milwaukee, Wisconsin, United States
| | - Amanda Emmrich
- Medical College of Wisconsin, Department of Surgery, Milwaukee, Wisconsin, United States
| | | | - Taly Gilat Schmidt
- Marquette University and Medical College of Wisconsin, Department of Biomedical Engineering, Milwaukee, Wisconsin, United States
| | - Dong Hye Ye
- Marquette University, Department of Electrical and Computer Engineering, Milwaukee, Wisconsin, United States
| | - Tina Yen
- Medical College of Wisconsin, Department of Surgery, Milwaukee, Wisconsin, United States
| | - Bing Yu
- Marquette University and Medical College of Wisconsin, Department of Biomedical Engineering, Milwaukee, Wisconsin, United States
| |
Collapse
|
17
|
Yoon HM, Kim H, Sohn DK, Park SC, Chang HJ, Oh JH, Dasari RR, So PTC, Kang JW. Dual modal spectroscopic tissue scanner for colorectal cancer diagnosis. Surg Endosc 2020; 35:4363-4370. [PMID: 32875410 DOI: 10.1007/s00464-020-07929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/19/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Margin status is an important prognostic factor for treating colorectal cancer. This study aimed to investigate the usefulness of a multimodal spectroscopic tissue scanner for real-time cancer diagnosis without tissue staining. PATIENTS AND METHODS Diffuse reflectance spectra (DRS) and fluorescence spectra (FS) of < 1-mm-sized paired cancer and normal mucosa tissue were acquired using custom-built spectroscopic tissue scanners. For FS, we analyzed wavelengths and intensities at peaks and highest intensities near (± 1.25 nm) the known fluorescence spectral peaks of collagen (380 nm), reduced nicotinamide adenine dinucleotide (NADH, 460 nm), and flavin adenine dinucleotide (FAD, 550 nm). For DRS, we performed a similar analysis near the peaks of strong absorbers, oxyhemoglobin (oxyHb; 414 nm, 540 nm, and 576 nm) and deoxyhemoglobin (deoxyHb; 432 nm and 556 nm). Logistic regression analysis for these parameters was performed in the testing set. RESULTS We acquired 17,735 spectra of cancer tissues and 9438 of normal tissues from 30 patients. Intensity peaks of representative normal spectra for FS and DRS were higher than those of representative cancer spectra. Logistic regression analysis showed wavelength and intensity at peaks, and the intensities of the peak wavelength of NADH, FAD, deoxyHb, and oxyHb had significant coefficients. The area under the receiver operating characteristic curve was 0.927. The scanner had 100%, 64.3%, and 85.3% sensitivity, specificity, and accuracy, respectively. CONCLUSIONS The spectroscopic tissue scanner has high sensitivity and accuracy and provides real-time intraoperative resection margin assessments and should be further investigated as an alternative to frozen section.
Collapse
Affiliation(s)
- Hong Man Yoon
- Division of Convergence Technology, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Hongrae Kim
- Division of Convergence Technology, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Dae Kyung Sohn
- Division of Convergence Technology, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| | - Sung Chan Park
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 10408, Korea
| | - Hee Jin Chang
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 10408, Korea
| | - Jae Hwan Oh
- Center for Colorectal Cancer, Research Institute and Hospital, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang, 10408, Korea
| | - Ramachandra R Dasari
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
18
|
Doyle TE, Butler AP, Salisbury MJ, Bennett MJ, Wagner GM, Al-Ghaib HA, Matsen CB. High-Frequency Ultrasonic Forceps for the In Vivo Detection of Cancer During Breast-Conserving Surgery. J Med Device 2020. [DOI: 10.1115/1.4047115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
A major aim in the surgical management of soft tissue cancers is to detect and remove all cancerous tissues while ensuring noncancerous tissue remains intact. Breast-conserving surgery provides a prime illustration of this aim, since remaining cancer in breast margins results in multiple surgeries, while removal of too much unaffected tissue often has undesirable cosmetic effects. Similarly, resection of benign lymph nodes during sentinel lymph node biopsy can cause deleterious health outcomes. The objective of this study was to create an intraoperative, in vivo device to address these challenges. Instant diagnostic information generated by this device could allow surgeons to precisely and completely remove all malignant tissue during the first surgery. Surgical forceps based on Martin forceps were instrumented at the tips with high-frequency ultrasonic transducers composed of polyvinylidene difluoride, a thickness-sensing rotary potentiometer at the base, and a spring to provide the appropriate restoring force. Transducer wires within the forceps were connected to an external high-frequency pulser-receiver, activating the forceps' transmitting transducer at 50 MHz and amplifying through-transmission signals from the receiving transducer. The forceps were tested with tissue-mimicking agarose phantoms embedded with 58–550 μm polyethylene microspheres to simulate various stages of cancer progression and to provide a range of measurement values. Results were compared with measurements from standard 50 MHz immersion transducers. The results showed that the forceps displayed similar sensitivity for attenuation and increased accuracy for wave speed. The forceps could also be extended to endoscopes and laparoscopes.
Collapse
Affiliation(s)
| | | | | | | | - Garrett M. Wagner
- Department of Computer Engineering, Utah Valley University, Orem, UT 84058
| | - Huda A. Al-Ghaib
- Department of Computer Engineering, Utah Valley University, Orem, UT 84058
| | - Cindy B. Matsen
- Department of Surgery, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
19
|
Recent Advances and the Potential for Clinical Use of Autofluorescence Detection of Extra-Ophthalmic Tissues. Molecules 2020; 25:molecules25092095. [PMID: 32365790 PMCID: PMC7248908 DOI: 10.3390/molecules25092095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
The autofluorescence (AF) characteristics of endogenous fluorophores allow the label-free assessment and visualization of cells and tissues of the human body. While AF imaging (AFI) is well-established in ophthalmology, its clinical applications are steadily expanding to other disciplines. This review summarizes clinical advances of AF techniques published during the past decade. A systematic search of the MEDLINE database and Cochrane Library databases was performed to identify clinical AF studies in extra-ophthalmic tissues. In total, 1097 articles were identified, of which 113 from internal medicine, surgery, oral medicine, and dermatology were reviewed. While comparable technological standards exist in diabetology and cardiology, in all other disciplines, comparability between studies is limited due to the number of differing AF techniques and non-standardized imaging and data analysis. Clear evidence was found for skin AF as a surrogate for blood glucose homeostasis or cardiovascular risk grading. In thyroid surgery, foremost, less experienced surgeons may benefit from the AF-guided intraoperative separation of parathyroid from thyroid tissue. There is a growing interest in AF techniques in clinical disciplines, and promising advances have been made during the past decade. However, further research and development are mandatory to overcome the existing limitations and to maximize the clinical benefits.
Collapse
|
20
|
Semenov AN, Yakimov BP, Rubekina AA, Gorin DA, Drachev VP, Zarubin MP, Velikanov AN, Lademann J, Fadeev VV, Priezzhev AV, Darvin ME, Shirshin EA. The Oxidation-Induced Autofluorescence Hypothesis: Red Edge Excitation and Implications for Metabolic Imaging. Molecules 2020; 25:E1863. [PMID: 32316642 PMCID: PMC7221974 DOI: 10.3390/molecules25081863] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Endogenous autofluorescence of biological tissues is an important source of information for biomedical diagnostics. Despite the molecular complexity of biological tissues, the list of commonly known fluorophores is strictly limited. Still, the question of molecular sources of the red and near-infrared excited autofluorescence remains open. In this work we demonstrated that the oxidation products of organic components (lipids, proteins, amino acids, etc.) can serve as the molecular source of such red and near-infrared excited autofluorescence. Using model solutions and cell systems (human keratinocytes) under oxidative stress induced by UV irradiation we demonstrated that oxidation products can contribute significantly to the autofluorescence signal of biological systems in the entire visible range of the spectrum, even at the emission and excitation wavelengths higher than 650 nm. The obtained results suggest the principal possibility to explain the red fluorescence excitation in a large class of biosystems-aggregates of proteins and peptides, cells and tissues-by the impact of oxidation products, since oxidation products are inevitably presented in the tissue. The observed fluorescence signal with broad excitation originated from oxidation products may also lead to the alteration of metabolic imaging results and has to be taken into account.
Collapse
Affiliation(s)
- Alexey N. Semenov
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Boris P. Yakimov
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Anna A. Rubekina
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Dmitry A. Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel st., Building 3, Moscow 121205, Russia; (D.A.G.); (V.P.D.)
| | - Vladimir P. Drachev
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel st., Building 3, Moscow 121205, Russia; (D.A.G.); (V.P.D.)
- Department of Physics, University of North Texas, Denton, TX 76203, USA
| | - Mikhail P. Zarubin
- International Intergovernmental Organization Joint Institute for Nuclear Research 6 Joliot-Curie St., Dubna, Moscow 141980, Russia;
| | - Alexander N. Velikanov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow 119234, Russia;
| | - Juergen Lademann
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité–Universitäts medizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.L.); (M.E.D.)
| | - Victor V. Fadeev
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Alexander V. Priezzhev
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
| | - Maxim E. Darvin
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité–Universitäts medizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.L.); (M.E.D.)
| | - Evgeny A. Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory, Moscow 119991, Russia; (A.N.S.); (B.P.Y.); (A.A.R.); (V.V.F.); (A.V.P.)
- Institute of Spectroscopy of the Russian Academy of Sciences, Fizicheskaya Str., 5, Troitsk, Moscow 108840, Russia
| |
Collapse
|
21
|
Unger J, Hebisch C, Phipps JE, Lagarto JL, Kim H, Darrow MA, Bold RJ, Marcu L. Real-time diagnosis and visualization of tumor margins in excised breast specimens using fluorescence lifetime imaging and machine learning. BIOMEDICAL OPTICS EXPRESS 2020; 11:1216-1230. [PMID: 32206404 PMCID: PMC7075618 DOI: 10.1364/boe.381358] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 05/03/2023]
Abstract
Tumor-free surgical margins are critical in breast-conserving surgery. In up to 38% of the cases, however, patients undergo a second surgery since malignant cells are found at the margins of the excised resection specimen. Thus, advanced imaging tools are needed to ensure clear margins at the time of surgery. The objective of this study was to evaluate a random forest classifier that makes use of parameters derived from point-scanning label-free fluorescence lifetime imaging (FLIm) measurements of breast specimens as a means to diagnose tumor at the resection margins and to enable an intuitive visualization of a probabilistic classifier on tissue specimen. FLIm data from fresh lumpectomy and mastectomy specimens from 18 patients were used in this study. The supervised training was based on a previously developed registration technique between autofluorescence imaging data and cross-sectional histology slides. A pathologist's histology annotations provide the ground truth to distinguish between adipose, fibrous, and tumor tissue. Current results demonstrate the ability of this approach to classify the tumor with 89% sensitivity and 93% specificity and to rapidly (∼ 20 frames per second) overlay the probabilistic classifier overlaid on excised breast specimens using an intuitive color scheme. Furthermore, we show an iterative imaging refinement that allows surgeons to switch between rapid scans with a customized, low spatial resolution to quickly cover the specimen and slower scans with enhanced resolution (400 μm per point measurement) in suspicious regions where more details are required. In summary, this technique provides high diagnostic prediction accuracy, rapid acquisition, adaptive resolution, nondestructive probing, and facile interpretation of images, thus holding potential for clinical breast imaging based on label-free FLIm.
Collapse
Affiliation(s)
- Jakob Unger
- Department of Biomedical Engineering, University of California Davis, California, CA 95616, USA
- Corresponding authors
| | - Christoph Hebisch
- Department of Biomedical Engineering, University of California Davis, California, CA 95616, USA
| | - Jennifer E. Phipps
- Department of Biomedical Engineering, University of California Davis, California, CA 95616, USA
| | - João L. Lagarto
- Department of Biomedical Engineering, University of California Davis, California, CA 95616, USA
| | - Hanna Kim
- Department of Otolaryngology, University of California Davis, California, CA 95817, USA
| | - Morgan A. Darrow
- Department of Pathology and Laboratory Medicine, University of California Davis, California, CA 95817, USA
| | - Richard J. Bold
- Department of Surgery, University of California Davis, California, CA 95817, USA
| | - Laura Marcu
- Department of Biomedical Engineering, University of California Davis, California, CA 95616, USA
- Corresponding authors
| |
Collapse
|
22
|
Di Marco AN, Palazzo FF. Near-infrared autofluorescence in thyroid and parathyroid surgery. Gland Surg 2020; 9:S136-S146. [PMID: 32175254 DOI: 10.21037/gs.2020.01.04] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Contrast-free autofluorescence (AF) of the parathyroid glands (PTGs) and thyroid tissue occurs in the near-infrared (NIR) spectrum on excitation by light in the upper range of the visible spectrum or lower NIR spectrum. In vivo, PTGs autofluoresce more brightly than thyroid (by a factor of 2-20 times) and appear as a bright spot against surrounding thyroid, muscle or fat on a processed image which is generated in real-time. NIR-AF of PTGs was first described in 2009 although NIR-AF had previously been used in several other clinical applications. Since then there has been a great amount of interest in the use of NIR-AF in thyroid and parathyroid surgery with over 25 published reports of the utilisation of both self-built and proprietary NIR-AF devices in neck endocrine surgery. All of these reports have confirmed the feasibility of NIR-AF intraoperatively and its ability to detect PTGs, although the reported accuracy varies from 90-100%. Reports of the effect of NIR-AF on relevant clinical endpoints i.e., post-operative hypoparathyroidism in thyroidectomy and persistent disease in parathyroidectomy are however scant. There has been one multicentre clinical trial of NIR-AF in thyroidectomy but this did not report clinical outcomes and two single-centre, non-randomised studies which did report post-operative hypoparathyroidism but with differing results: one showing no benefit in 106 NIR-AF vs. 163 controls and one, a reduction of early hypocalcaemia from 20% to 5% in 93 NIR-AF patients vs. 420 controls. There were only 2 cases of permanent hypoparathyroidism across both studies and therefore no significant observable difference in this key outcome variable. In parathyroidectomy, possible variability of the AF signal due to composition of a PTG adenoma, secondary/tertiary disease and MEN1 as well as depth-penetration preventing detection of sub-surface PTGs would imply that NIR-AF in its current form is not well-placed to improve cure-rates in hyperparathyroidism, which may already be as high as 98%. Thus far, no study has addressed this. Despite the promising results of NIR-AF, the absence of data demonstrating an improvement in outcomes and the cost of its use currently limit its use in routine clinical practice, especially in a publicly funded healthcare system with budgetary constraints. However, it can be utilised in research settings and this should be undertaken within the context of well-designed and conducted randomised, multi-centre, appropriately powered studies, which will assist in establishing its role in neck endocrine surgery.
Collapse
Affiliation(s)
- Aimee N Di Marco
- Department of Endocrine Surgery, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.,Department of Surgery & Cancer, Imperial College, London, UK
| | - Fausto F Palazzo
- Department of Endocrine Surgery, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.,Department of Surgery & Cancer, Imperial College, London, UK
| |
Collapse
|
23
|
Goh Y, Balasundaram G, Moothanchery M, Attia A, Li X, Lim HQ, Burton NC, Qiu Y, Putti TC, Chan CW, Iau P, Buhari SA, Hartman M, Tang SW, Ng CWQ, Chan YH, Pool FJ, Pillay P, Chua W, Kapur J, Jagmohan P, Sterling E, Quek ST, Olivo M. Ultrasound Guided Optoacoustic Tomography in Assessment of Tumor Margins for Lumpectomies. Transl Oncol 2019; 13:254-261. [PMID: 31869750 PMCID: PMC6931190 DOI: 10.1016/j.tranon.2019.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 11/29/2022] Open
Abstract
PURPOSE: To determine the accuracy of a handheld ultrasound-guided optoacoustic tomography (US-OT) probe developed for human deep-tissue imaging in ex vivo assessment of tumor margins postlumpectomy. METHODS: A custom-built two-dimensional (2D) US-OT–handheld probe was used to scan 15 lumpectomy breast specimens. Optoacoustic signals acquired at multiple wavelengths between 700 and 1100 nm were reconstructed using model linear algorithm, followed by spectral unmixing for lipid and deoxyhemoglobin (Hb). Distribution maps of lipid and Hb on the anterior, posterior, superior, inferior, medial, and lateral margins of the specimens were inspected for margin involvement, and results were correlated with histopathologic findings. The agreement in tumor margin assessment between US-OT and histopathology was determined using the Bland–Altman plot. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of margin assessment using US-OT were calculated. RESULTS: Ninety margins (6 × 15 specimens) were assessed. The US-OT probe resolved blood vessels and lipid up to a depth of 6 mm. Negative and positive margins were discriminated by marked differences in the distribution patterns of lipid and Hb. US-OT assessments were concordant with histopathologic findings in 87 of 89 margins assessed (one margin was uninterpretable and excluded), with diagnostic accuracy of 97.9% (kappa = 0.79). The sensitivity, specificity, PPV, and NPV were 100% (4/4), 97.6% (83/85), 66.7% (4/6), and 100% (83/83), respectively. CONCLUSION: US-OT was capable of providing distribution maps of lipid and Hb in lumpectomy specimens that predicted tumor margins with high sensitivity and specificity, making it a potential tool for intraoperative tumor margin assessment.
Collapse
Affiliation(s)
- Yonggeng Goh
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | | | - Mohesh Moothanchery
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Singapore
| | - Amalina Attia
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Singapore
| | - Xiuting Li
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Singapore
| | - Hann Qian Lim
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Singapore
| | | | - Yi Qiu
- IThera Medical GmbH, Germany
| | | | - Ching Wan Chan
- Department of Breast Surgery, National University Hospital, Singapore
| | - Philip Iau
- Department of Breast Surgery, National University Hospital, Singapore
| | | | - Mikael Hartman
- Department of Breast Surgery, National University Hospital, Singapore
| | - Siau Wei Tang
- Department of Breast Surgery, National University Hospital, Singapore
| | - Celene Wei Qi Ng
- Department of Breast Surgery, National University Hospital, Singapore
| | - Yiong Huak Chan
- Department of Biostatistics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Felicity Jane Pool
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Premilla Pillay
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Wynne Chua
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Jeevesh Kapur
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Pooja Jagmohan
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Eide Sterling
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, Singapore
| | - Malini Olivo
- Laboratory of Bio-Optical Imaging, Singapore Bioimaging Consortium, Singapore.
| |
Collapse
|
24
|
Attia ABE, Balasundaram G, Moothanchery M, Dinish U, Bi R, Ntziachristos V, Olivo M. A review of clinical photoacoustic imaging: Current and future trends. PHOTOACOUSTICS 2019; 16:100144. [PMID: 31871888 PMCID: PMC6911900 DOI: 10.1016/j.pacs.2019.100144] [Citation(s) in RCA: 441] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 08/21/2019] [Indexed: 05/02/2023]
Abstract
Photoacoustic imaging (or optoacoustic imaging) is an upcoming biomedical imaging modality availing the benefits of optical resolution and acoustic depth of penetration. With its capacity to offer structural, functional, molecular and kinetic information making use of either endogenous contrast agents like hemoglobin, lipid, melanin and water or a variety of exogenous contrast agents or both, PAI has demonstrated promising potential in a wide range of preclinical and clinical applications. This review provides an overview of the rapidly expanding clinical applications of photoacoustic imaging including breast imaging, dermatologic imaging, vascular imaging, carotid artery imaging, musculoskeletal imaging, gastrointestinal imaging and adipose tissue imaging and the future directives utilizing different configurations of photoacoustic imaging. Particular emphasis is placed on investigations performed on human or human specimens.
Collapse
Key Words
- AR-PAM, acoustic resolution-photoacoustic microscopy
- Clinical applications
- DAQ, data acquisition
- FOV, field-of-view
- Hb, deoxy-hemoglobin
- HbO2, oxy-hemoglobin
- LED, light emitting diode
- MAP, maximum amplitude projection
- MEMS, microelectromechanical systems
- MRI, magnetic resonance imaging
- MSOT, multispectral optoacoustic tomography
- OCT, optical coherence tomography
- OR-PAM, optical resolution-photoacoustic microscopy
- Optoacoustic mesoscopy
- Optoacoustic tomography
- PA, photoacoustic
- PAI, photoacoustic imaging
- PAM, photoacoustic microscopy
- PAT, photoacoustic tomography
- Photoacoustic imaging
- Photoacoustic microscopy
- RSOM, raster-scanning optoacoustic mesoscopy
- SBH-PACT, single breath hold photoacoustic computed tomography system
- US, ultrasound
- sO2, saturation
Collapse
Affiliation(s)
| | | | - Mohesh Moothanchery
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - U.S. Dinish
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Renzhe Bi
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Malini Olivo
- Laboratory of Bio-optical Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| |
Collapse
|
25
|
DiMarco A, Chotalia R, Bloxham R, McIntyre C, Tolley N, Palazzo FF. Autofluorescence in Parathyroidectomy: Signal Intensity Correlates with Serum Calcium and Parathyroid Hormone but Routine Clinical Use is Not Justified. World J Surg 2019; 43:1532-1537. [PMID: 30737552 DOI: 10.1007/s00268-019-04929-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The inability to identify the pathological gland at surgery results in failure to cure hyperparathyroidism in 2-5%. The poorly understood characteristic of parathyroid tissue to manifest autofluorescence (AF) under near-infrared (NIR) light has been promoted as an intraoperative adjunct in parathyroid surgery. This study sought to explore potential clinical correlates for AF and assess the clinical utility of AF in parathyroid surgery. METHODS Consecutive patients undergoing parathyroid surgery for primary and renal disease were included. NIR imaging was used intraoperatively and the degree of AF of parathyroid glands graded by the operating surgeon. Variables assessed for correlation with AF were: pre-operative serum calcium and PTH, SestaMIBI positivity, gland weight and histological composition. RESULTS Ninety-six patients underwent parathyroidectomy over an 8-month period: 49 bilateral explorations, 41 unilateral and 6 focussed lateral approaches: 284 potentially 'visualisable' glands in total. Two hundred and fifty-seven glands (90.5%) were visualised with NIR. Correlation was found between the degree of fluorescence and pre-operative serum calcium and PTH, but not between gland weight and SestaMIBI positivity. In those with renal hyperparathyroidism, a predominance of oxyphil cells correlated with increased AF. CONCLUSION Autofluorescence intensity correlates with serum calcium, PTH and gland composition. Further refinements would be required for this information to be of value in a clinical setting. Improvements allowing NIR to visualise the additional 9.5% of parathyroids and overcome the variation in signal intensity due to depth of access are required for the routine adoption of this technology. At present, its routine use in a clinical setting cannot be justified.
Collapse
Affiliation(s)
- Aimee DiMarco
- Department of Endocrine Surgery, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ravi Chotalia
- Department of Endocrine Surgery, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Ruth Bloxham
- Department of Endocrine Surgery, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK
| | - Charlotte McIntyre
- Department of Endocrine Surgery, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| | - Neil Tolley
- Department of Endocrine Surgery, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK.,Department of Surgery and Cancer, Imperial College London, London, UK
| | - F Fausto Palazzo
- Department of Endocrine Surgery, Hammersmith Hospital, Du Cane Road, London, W12 0HS, UK. .,Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
26
|
de Boer LL, Kho E, Jóźwiak K, Van de Vijver KK, Vrancken Peeters MJTFD, van Duijnhoven F, Hendriks BHW, Sterenborg HJCM, Ruers TJM. Influence of neoadjuvant chemotherapy on diffuse reflectance spectra of tissue in breast surgery specimens. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:115004. [PMCID: PMC7003145 DOI: 10.1117/1.jbo.24.11.115004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 05/28/2023]
Abstract
Diffuse reflectance spectroscopy (DRS) can discriminate different tissue types based on optical characteristics. Since this technology has the ability to detect tumor tissue, several groups have proposed to use DRS for margin assessment during breast-conserving surgery for breast cancer. Nowadays, an increasing number of patients with breast cancer are being treated by neoadjuvant chemotherapy. Limited research has been published on the influence of neoadjuvant chemotherapy on the optical characteristics of the tissue. Hence, it is unclear whether margin assessment based on DRS is feasible in this specific group of patients. We investigate whether there is an effect of neoadjuvant chemotherapy on optical measurements of breast tissue. To this end, DRS measurements were performed on 92 ex-vivo breast specimens from 92 patients, treated with neoadjuvant chemotherapy and without neoadjuvant chemotherapy. Generalized estimating equation (GEE) models were generated, comparing the measurements of patients with and without neoadjuvant chemotherapy in datasets of different tissue types using a significance level of 5%. As input for the GEE models, either the intensity at a specific wavelength or a fit parameter, derived from the spectrum, was used. In the evaluation of the intensity, no influence of neoadjuvant chemotherapy was found, since none of the wavelengths were significantly different between the measurements with and the measurements without neoadjuvant chemotherapy in any of the datasets. These results were confirmed by the analysis of the fit parameters, which showed a significant difference for the amount of collagen in only one dataset. All other fit parameters were not significant for any of the datasets. These findings may indicate that assessment of the resection margin with DRS is also feasible in the growing population of breast cancer patients who receive neoadjuvant chemotherapy. However, it is possible that we did not detect neoadjuvant chemotherapy effect in the some of the datasets due to the small number of measurements in those datasets.
Collapse
Affiliation(s)
- Lisanne L. de Boer
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Esther Kho
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
| | - Katarzyna Jóźwiak
- The Netherlands Cancer Institute, Department of Epidemiology and Biostatistics, The Netherlands
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Koen K. Van de Vijver
- The Netherlands Cancer Institute, Department of Pathology, Amsterdam, The Netherlands
- Ghent University Hospital, Department of Pathology, Gent, Belgium
| | | | | | - Benno H. W. Hendriks
- Philips Research, Eindhoven, The Netherlands
- Delft University of Technology, Biomechanical Engineering Department, Delft, The Netherlands
| | - Henricus J. C. M. Sterenborg
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
- Amsterdam University Medical Center, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Theo J. M. Ruers
- The Netherlands Cancer Institute, Department of Surgery, Amsterdam, The Netherlands
- University of Twente, TNW, Technical Medical Centre, Enschede, The Netherlands
| |
Collapse
|
27
|
DiMarco A, Chotalia R, Bloxham R, McIntyre C, Tolley N, Palazzo FF. Does fluoroscopy prevent inadvertent parathyroidectomy in thyroid surgery? Ann R Coll Surg Engl 2019; 101:508-513. [PMID: 31305127 PMCID: PMC6667958 DOI: 10.1308/rcsann.2019.0065] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2019] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Near-infrared imaging may facilitate intraoperative identification of parathyroid glands by causing autofluorescence but its clinical value has not been established. Inadvertent parathyroidectomy occurs in 5-22% of thyroidectomies and is associated with temporary and permanent hypoparathyroidism. The aim of this study was to determine whether near-infrared imaging prevents inadvertent parathyroidectomy and early hypocalcaemia as a surrogate for permanent hypoparathyroidism. MATERIALS AND METHODS Near-infrared imaging was used in a prospective cohort of consecutive thyroidectomies. Thyroidectomies performed prior to the introduction of near-infrared imaging formed a control group. The thyroid bed and specimen were scanned with near-infrared imaging. Areas of autofluorescence on the specimen were examined and any parathyroid tissue found was autotransplanted. Inadvertent parathyroidectomy was therefore recorded as established intraoperatively by near-infrared imaging (allowing autotransplantation) or on subsequent histology (missed). Serum calcium and parathyroid hormone were measured on day one and at two weeks and six months postoperatively. RESULTS A total of 269 patients were included: 106 near-infrared imaging and 163 controls. Inadvertent parathyroidectomy was detected by near-infrared imaging in two (and autotransplantation performed) and histologically (i.e. missed by near-infrared imaging in 13, 12.3% vs 17, 10.4% controls). Neither result was statistically significant (P = 0.08, 0.89). There was no significant difference in serum calcium or parathyroid hormone between near-infrared imaging and control groups at one day, two weeks or thereafter. DISCUSSION Near-infrared imaging may detect inadvertent parathyroidectomy and may allow autotransplantation. It did not, however, reduce the incidence of missed inadvertent parathyroidectomy and no difference was seen in early hypocalcaemia or late hypoparathyroidism. Current near-infrared imaging technology does not appear to confer a clinical benefit sufficient to justify its use.
Collapse
Affiliation(s)
- A DiMarco
- Department of Endocrine Surgery, Hammersmith Hospital, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - R Chotalia
- Department of Endocrine Surgery, Hammersmith Hospital, London, UK
| | - R Bloxham
- Department of Endocrine Surgery, Hammersmith Hospital, London, UK
| | - C McIntyre
- Department of Endocrine Surgery, Hammersmith Hospital, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - N Tolley
- Department of Endocrine Surgery, Hammersmith Hospital, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| | - FF Palazzo
- Department of Endocrine Surgery, Hammersmith Hospital, London, UK
- Department of Surgery and Cancer, Imperial College, London, UK
| |
Collapse
|
28
|
Steelman ZA, Ho DS, Chu KK, Wax A. Light scattering methods for tissue diagnosis. OPTICA 2019; 6:479-489. [PMID: 33043100 PMCID: PMC7544148 DOI: 10.1364/optica.6.000479] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Light scattering has become a common biomedical research tool, enabling diagnostic sensitivity to myriad tissue alterations associated with disease. Light-tissue interactions are particularly attractive for diagnostics due to the variety of contrast mechanisms that can be used, including spectral, angle-resolved, and Fourier-domain detection. Photonic diagnostic tools offer further benefit in that they are non-ionizing, non-invasive, and give real-time feedback. In this review, we summarize recent innovations in light scattering technologies, with a focus on clinical achievements over the previous ten years.
Collapse
|
29
|
de Boer LL, Bydlon TM, van Duijnhoven F, Vranken Peeters MJTFD, Loo CE, Winter-Warnars GAO, Sanders J, Sterenborg HJCM, Hendriks BHW, Ruers TJM. Towards the use of diffuse reflectance spectroscopy for real-time in vivo detection of breast cancer during surgery. J Transl Med 2018; 16:367. [PMID: 30567584 PMCID: PMC6299954 DOI: 10.1186/s12967-018-1747-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Breast cancer surgeons struggle with differentiating healthy tissue from cancer at the resection margin during surgery. We report on the feasibility of using diffuse reflectance spectroscopy (DRS) for real-time in vivo tissue characterization. Methods Evaluating feasibility of the technology requires a setting in which measurements, imaging and pathology have the best possible correlation. For this purpose an optical biopsy needle was used that had integrated optical fibers at the tip of the needle. This approach enabled the best possible correlation between optical measurement volume and tissue histology. With this optical biopsy needle we acquired real-time DRS data of normal tissue and tumor tissue in 27 patients that underwent an ultrasound guided breast biopsy procedure. Five additional patients were measured in continuous mode in which we obtained DRS measurements along the entire biopsy needle trajectory. We developed and compared three different support vector machine based classification models to classify the DRS measurements. Results With DRS malignant tissue could be discriminated from healthy tissue. The classification model that was based on eight selected wavelengths had the highest accuracy and Matthews Correlation Coefficient (MCC) of 0.93 and 0.87, respectively. In three patients that were measured in continuous mode and had malignant tissue in their biopsy specimen, a clear transition was seen in the classified DRS measurements going from healthy tissue to tumor tissue. This transition was not seen in the other two continuously measured patients that had benign tissue in their biopsy specimen. Conclusions It was concluded that DRS is feasible for integration in a surgical tool that could assist the breast surgeon in detecting positive resection margins during breast surgery. Trail registration NIH US National Library of Medicine–clinicaltrails.gov, NCT01730365. Registered: 10/04/2012 https://clinicaltrials.gov/ct2/show/study/NCT01730365
Collapse
Affiliation(s)
- Lisanne L de Boer
- Department of Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Postbus 90203, 1066 CX, Amsterdam, The Netherlands.
| | - Torre M Bydlon
- In-body Systems, Philips Research, High Tech, Campus 34, 5656 AE, Eindhoven, The Netherlands
| | - Frederieke van Duijnhoven
- Department of Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Postbus 90203, 1066 CX, Amsterdam, The Netherlands
| | - Marie-Jeanne T F D Vranken Peeters
- Department of Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Postbus 90203, 1066 CX, Amsterdam, The Netherlands
| | - Claudette E Loo
- Department of Radiology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Gonneke A O Winter-Warnars
- Department of Radiology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Joyce Sanders
- Department of Pathology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Henricus J C M Sterenborg
- Department of Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Postbus 90203, 1066 CX, Amsterdam, The Netherlands.,Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Benno H W Hendriks
- In-body Systems, Philips Research, High Tech, Campus 34, 5656 AE, Eindhoven, The Netherlands.,Biomechanical Engineering, Delft University of Technology, Mekelweg 5, 2628 CD, Delft, The Netherlands
| | - Theo J M Ruers
- Department of Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Postbus 90203, 1066 CX, Amsterdam, The Netherlands.,Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| |
Collapse
|
30
|
Goh Y, Balasundaram G, Moothanchery M, Attia A, Li X, Lim HQ, Burton N, Qiu Y, Putti TC, Chan CW, Iau P, Tang SW, Ng CWQ, Pool FJ, Pillay P, Chua W, Sterling E, Quek ST, Olivo M. Multispectral Optoacoustic Tomography in Assessment of Breast Tumor Margins During Breast-Conserving Surgery: A First-in-human Case Study. Clin Breast Cancer 2018; 18:e1247-e1250. [DOI: 10.1016/j.clbc.2018.07.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 11/26/2022]
|
31
|
Dev K, Dinish US, Chakraborty S, Bi R, Andersson-Engels S, Sugii S, Olivo M. Quantitative in vivo detection of adipose tissue browning using diffuse reflectance spectroscopy in near-infrared II window. JOURNAL OF BIOPHOTONICS 2018; 11:e201800135. [PMID: 29978566 DOI: 10.1002/jbio.201800135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 05/23/2023]
Abstract
White adipose tissue (WAT) and brown adipose tissue (BAT) biologically function in an opposite way in energy metabolism. BAT induces energy consumption by heat production while WAT mainly stores energy in the form of triglycerides. Recent progress in the conversion of WAT cells to "beige" or "brown-like" adipocytes in animals, having functional similarity to BAT, spurred a great interest in developing the next-generation therapeutics in the field of metabolic disorders. Though magnetic resonance imaging and positron emission tomography could detect classical BAT and WAT in animals and humans, it is of a great challenge in detecting the "browning" process in vivo. Here, to the best of our knowledge, for the first time, we present a simple, cost-effective, label-free fiber optic-based diffuse reflectance spectroscopy measurement in the near infrared II window (~1050-1400 nm) for the quantitative detection of browning in a mouse model in vivo. We could successfully quantify the browning of WAT in a mouse model by estimating the lipid fraction, which serves as an endogenous marker. Lipid fraction exhibited a gradual decrease from WAT to BAT with beige exhibiting an intermediate value. in vivo browning process was also confirmed with standard molecular and biochemical assays.
Collapse
Affiliation(s)
- Kapil Dev
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - U S Dinish
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Smarajit Chakraborty
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Renzhe Bi
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Stefan Andersson-Engels
- Irish Photonic Integration Centre (IPIC), Tyndall National Institute, Cork, Ireland
- Department of Physics, University College Cork, Cork, Ireland
| | - Shigeki Sugii
- Fat Metabolism and Stem Cell Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Malini Olivo
- Laboratory of Bio Optical Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
32
|
Li R, Lan L, Xia Y, Wang P, Han LK, Dunnington GL, Obeng-Gyasi S, Sandusky GE, Medley JA, Crook ST, Cheng JX. High-speed Intraoperative Assessment of Breast Tumor Margins by Multimodal Ultrasound and Photoacoustic Tomography. ACTA ACUST UNITED AC 2018; 1. [PMID: 31435620 DOI: 10.1002/mds3.10018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Conventional methods for breast tumor margins assessment need a long turnaround time, which may lead to re-operation for patients undergoing lumpectomy surgeries. Photoacoustic tomography (PAT) has been shown to visualize adipose tissue in small animals and human breast. Here, we demonstrate a customized multimodal ultrasound and PAT system for intraoperative breast tumor margins assessment using fresh lumpectomy specimens from 66 patients. The system provides the margin status of the entire excised tissue within 10 minutes. By subjective reading of three researchers, the results show 85.7% [95% confidence interval (CI), 42.0% - 99.2%] sensitivity and 84.6% (95% CI, 53.7% - 97.3%) specificity, 71.4% (95% CI, 30.3% - 94.9%) sensitivity and 92.3% (95% CI, 62.1% - 99.6%) specificity, and 100% (95% CI, 56.1% - 100%) sensitivity and 53.9% (95% CI, 26.1% - 79.6%) specificity respectively when cross-correlated with post-operational histology. Furthermore, a machine learning-based algorithm is deployed for margin assessment in the challenging ductal carcinoma in situ tissues, and achieved 85.5% (95% CI, 75.2% - 92.2%) sensitivity and 90% (95% CI, 79.9% - 95.5%) specificity. Such results present the potential of using mutlimodal ultrasound and PAT as a high-speed and accurate method for intraoperative breast tumor margins evaluation.
Collapse
Affiliation(s)
- Rui Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, Indiana, 47907, USA.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China, 100083.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China, 102402
| | - Lu Lan
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, Indiana, 47907, USA.,Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, USA
| | - Yan Xia
- Vibronix, Inc., 1281 Win Hentschel Blvd., West Lafayette, Indiana, 47906, USA
| | - Pu Wang
- Vibronix, Inc., 1281 Win Hentschel Blvd., West Lafayette, Indiana, 47906, USA
| | - Linda K Han
- Indiana University Health Melvin and Bren Simon Cancer Center, 1030 W. Michigan St., Breast Center, Indianapolis, Indiana 46202, USA
| | - Gary L Dunnington
- Indiana University Health Melvin and Bren Simon Cancer Center, 1030 W. Michigan St., Breast Center, Indianapolis, Indiana 46202, USA
| | - Samilia Obeng-Gyasi
- Indiana University Health Melvin and Bren Simon Cancer Center, 1030 W. Michigan St., Breast Center, Indianapolis, Indiana 46202, USA
| | - George E Sandusky
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, 350 West 11th Street, Indianapolis, Indiana, 46202, USA
| | - Jennifer A Medley
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd, Indianapolis, Indiana 46202, USA
| | - Susan T Crook
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 550 N. University Blvd, Indianapolis, Indiana 46202, USA
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, Indiana, 47907, USA.,Purdue University Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana, 47906, USA.,Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA 02215, USA
| |
Collapse
|
33
|
Roberts PR, Jani AB, Packianathan S, Albert A, Bhandari R, Vijayakumar S. Upcoming imaging concepts and their impact on treatment planning and treatment response in radiation oncology. Radiat Oncol 2018; 13:146. [PMID: 30103786 PMCID: PMC6088418 DOI: 10.1186/s13014-018-1091-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
For 2018, the American Cancer Society estimated that there would be approximately 1.7 million new diagnoses of cancer and about 609,640 cancer-related deaths in the United States. By 2030 these numbers are anticipated to exceed a staggering 21 million annual diagnoses and 13 million cancer-related deaths. The three primary therapeutic modalities for cancer treatments are surgery, chemotherapy, and radiation therapy. Individually or in combination, these treatment modalities have provided and continue to provide curative and palliative care to the myriad victims of cancer. Today, CT-based treatment planning is the primary means through which conventional photon radiation therapy is planned. Although CT remains the primary treatment planning modality, the field of radiation oncology is moving beyond the sole use of CT scans to define treatment targets and organs at risk. Complementary tissue scans, such as magnetic resonance imaging (MRI) and positron electron emission (PET) scans, have all improved a physician’s ability to more specifically identify target tissues, and in some cases, international guidelines have even been issued. Moreover, efforts to combine PET and MR to define solid tumors for radiotherapy planning and treatment evaluation are also gaining traction. Keeping these advances in mind, we present brief overviews of other up-and-coming key imaging concepts that appear promising for initial treatment target definition or treatment response from radiation therapy.
Collapse
Affiliation(s)
- Paul Russell Roberts
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Ashesh B Jani
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, 1365 Clifton Rd, Atlanta, GA, 30322, USA
| | - Satyaseelan Packianathan
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Ashley Albert
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Rahul Bhandari
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA
| | - Srinivasan Vijayakumar
- Department of Radiation Oncology, University of Mississippi Medical Center, 350 Woodrow Wilson Drive Suite 1600, Jackson, MS, 39213, USA.
| |
Collapse
|
34
|
Mela CA, Papay FA, Liu Y. Intraoperative Fluorescence Imaging and Multimodal Surgical Navigation Using Goggle System. Methods Mol Biol 2018; 1444:85-95. [PMID: 27283420 DOI: 10.1007/978-1-4939-3721-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intraoperative imaging is an invaluable tool in many surgical procedures. We have developed a wearable stereoscopic imaging and display system entitled Integrated Imaging Goggle, which can provide real-time multimodal image guidance. With the Integrated Imaging Goggle, wide field-of-view fluorescence imaging is tracked and registered with intraoperative ultrasound imaging and preoperative tomography-based surgical navigation, to provide integrated multimodal imaging capabilities in real-time. Herein we describe the system instrumentation and the methods of using the Integrated Imaging Goggle to guide surgeries.
Collapse
Affiliation(s)
- Christopher A Mela
- Department of Biomedical Engineering, The University of Akron, 235 Carroll Street, Akron, OH, 44325, USA
| | - Francis A Papay
- Department of Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yang Liu
- Department of Biomedical Engineering, The University of Akron, 235 Carroll Street, Akron, OH, 44325, USA.
| |
Collapse
|
35
|
Phipps JE, Gorpas D, Unger J, Darrow M, Bold RJ, Marcu L. Automated detection of breast cancer in resected specimens with fluorescence lifetime imaging. Phys Med Biol 2017; 63:015003. [PMID: 29099721 PMCID: PMC7485302 DOI: 10.1088/1361-6560/aa983a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to surgeons relying on inaccurate or incomplete methods of evaluating specimen margins. The objective of this study was to determine if cancer could be automatically detected in breast specimens from mastectomy and lumpectomy procedures by a classification algorithm that incorporated parameters derived from fluorescence lifetime imaging (FLIm). This study generated a database of co-registered histologic sections and FLIm data from breast cancer specimens (N = 20) and a support vector machine (SVM) classification algorithm able to automatically detect cancerous, fibrous, and adipose breast tissue. Classification accuracies were greater than 97% for automated detection of cancerous, fibrous, and adipose tissue from breast cancer specimens. The classification worked equally well for specimens scanned by hand or with a mechanical stage, demonstrating that the system could be used during surgery or on excised specimens. The ability of this technique to simply discriminate between cancerous and normal breast tissue, in particular to distinguish fibrous breast tissue from tumor, which is notoriously challenging for optical techniques, leads to the conclusion that FLIm has great potential to assess breast cancer margins. Identification of positive margins before waiting for complete histologic analysis could significantly reduce breast cancer re-excision rates.
Collapse
Affiliation(s)
- Jennifer E. Phipps
- University of California, Davis, Biomedical Engineering Department, 1 Shields Ave, Davis CA 95616
| | - Dimitris Gorpas
- University of California, Davis, Biomedical Engineering Department, 1 Shields Ave, Davis CA 95616
| | - Jakob Unger
- University of California, Davis, Biomedical Engineering Department, 1 Shields Ave, Davis CA 95616
| | - Morgan Darrow
- University of California Davis Health System, Department of Pathology and Laboratory Medicine
| | - Richard J. Bold
- University of California Davis Health System, Department of Surgery
| | - Laura Marcu
- University of California, Davis, Biomedical Engineering Department, 1 Shields Ave, Davis CA 95616
| |
Collapse
|
36
|
Thomas G, Nguyen TQ, Pence IJ, Caldwell B, O'Connor ME, Giltnane J, Sanders ME, Grau A, Meszoely I, Hooks M, Kelley MC, Mahadevan-Jansen A. Evaluating feasibility of an automated 3-dimensional scanner using Raman spectroscopy for intraoperative breast margin assessment. Sci Rep 2017; 7:13548. [PMID: 29051521 PMCID: PMC5648832 DOI: 10.1038/s41598-017-13237-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/20/2017] [Indexed: 11/25/2022] Open
Abstract
Breast conserving surgery is the preferred treatment for women diagnosed with early stage invasive breast cancer. To ensure successful breast conserving surgeries, efficient tumour margin resection is required for minimizing tumour recurrence. Currently surgeons rely on touch preparation cytology or frozen section analysis to assess tumour margin status intraoperatively. These techniques have suboptimal accuracy and are time-consuming. Tumour margin status is eventually confirmed using postoperative histopathology that takes several days. Thus, there is a need for a real-time, accurate, automated guidance tool that can be used during tumour resection intraoperatively to assure complete tumour removal in a single procedure. In this paper, we evaluate feasibility of a 3-dimensional scanner that relies on Raman Spectroscopy to assess the entire margins of a resected specimen within clinically feasible time. We initially tested this device on a phantom sample that simulated positive tumour margins. This device first scans the margins of the sample and then depicts the margin status in relation to an automatically reconstructed image of the phantom sample. The device was further investigated on breast tissues excised from prophylactic mastectomy specimens. Our findings demonstrate immense potential of this device for automated breast tumour margin assessment to minimise repeat invasive surgeries.
Collapse
Affiliation(s)
- G Thomas
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - T-Q Nguyen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - I J Pence
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - B Caldwell
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - M E O'Connor
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - J Giltnane
- Genentech, San Francisco, CA, 94080, USA.,Division of Pathology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M E Sanders
- Division of Pathology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - A Grau
- Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - I Meszoely
- Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M Hooks
- Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M C Kelley
- Division of Surgical Oncology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - A Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
37
|
Grootendorst MR, Fitzgerald AJ, Brouwer de Koning SG, Santaolalla A, Portieri A, Van Hemelrijck M, Young MR, Owen J, Cariati M, Pepper M, Wallace VP, Pinder SE, Purushotham A. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue. BIOMEDICAL OPTICS EXPRESS 2017; 8:2932-2945. [PMID: 28663917 PMCID: PMC5480440 DOI: 10.1364/boe.8.002932] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
Since nearly 20% of breast-conserving surgeries (BCS) require re-operation, there is a clear need for developing new techniques to more accurately assess tumor resection margins intraoperatively. This study evaluates the diagnostic accuracy of a handheld terahertz pulsed imaging (TPI) system to discriminate benign from malignant breast tissue ex vivo. Forty six freshly excised breast cancer samples were scanned with a TPI handheld probe system, and histology was obtained for comparison. The image pixels on TPI were classified using (1) parameters in combination with support vector machine (SVM) and (2) Gaussian wavelet deconvolution in combination with Bayesian classification. The results were an accuracy, sensitivity, specificity of 75%, 86%, 66% for method 1, and 69%, 87%, 54% for method 2 respectively. This demonstrates the probe can discriminate invasive breast cancer from benign breast tissue with an encouraging degree of accuracy, warranting further study.
Collapse
Affiliation(s)
- Maarten R Grootendorst
- King's College London, Division of Cancer Studies, London, UK
- Department of Breast Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Contributed equally
| | - Anthony J Fitzgerald
- School of Physics, University of Western Australia, Perth, Australia
- Contributed equally
| | - Susan G Brouwer de Koning
- King's College London, Division of Cancer Studies, London, UK
- Department of Breast Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | - Matthew R Young
- Department of Breast Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Julie Owen
- King's College London, Division of Cancer Studies, King's Health Partners Cancer Biobank and Breast Pathology Research Group, London, UK
| | - Massi Cariati
- King's College London, Division of Cancer Studies, London, UK
- Department of Breast Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Michael Pepper
- Teraview Ltd., Cambridge, UK
- London Centre for Nanotechnology, University College London, UK
| | - Vincent P Wallace
- School of Physics, University of Western Australia, Perth, Australia
| | - Sarah E Pinder
- King's College London, Division of Cancer Studies, King's Health Partners Cancer Biobank and Breast Pathology Research Group, London, UK
| | - Arnie Purushotham
- King's College London, Division of Cancer Studies, London, UK
- Department of Breast Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
38
|
Diagnostic Accuracy of Intraoperative Techniques for Margin Assessment in Breast Cancer Surgery. Ann Surg 2017; 265:300-310. [DOI: 10.1097/sla.0000000000001897] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Gray RJ, Pockaj BA, Garvey E, Blair S. Intraoperative Margin Management in Breast-Conserving Surgery: A Systematic Review of the Literature. Ann Surg Oncol 2017; 25:18-27. [PMID: 28058560 DOI: 10.1245/s10434-016-5756-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Breast surgeons have a wide variety of intraoperative techniques available to help achieve low rates for positive margins of excision, with variable levels of evidence. METHODS A systematic review of the medical literature from 1995 to July 2016 was conducted, with 434 abstracts identified and evaluated. The analysis included 106 papers focused on intraoperative management of breast cancer margins and contained actionable data. RESULTS Ultrasound-guided lumpectomy for palpable tumors, as an alternative to palpation guidance, can lower positive margin rates, but the effect when used as an alternative to wire localization (WL) for nonpalpable tumors is less certain. Localization techniques such as radioactive seed localization and radioguided occult lesion localization were found potentially to lower positive margin rates as alternatives to WL depending on baseline positive margin rates. Intraoperative pathologic methods including gross histology, frozen section analysis, and imprint cytology all have the potential to lower the rates of positive margins. Cavity-shave margins and the Marginprobe device both lower rates of positive margins, with some potential for negative cosmetic effects. Specimen radiography and multiple miscellaneous techniques did not affect positive margin rates or provided too little evidence for formation of a conclusion. CONCLUSIONS A systematic review of the literature showed evidence that several intraoperative techniques and actions can lower the rates of positive margins. These results are presented together with graded recommendations.
Collapse
Affiliation(s)
| | | | - Erin Garvey
- Department of Surgery, Mayo Clinic, Phoenix, AZ, USA
| | - Sarah Blair
- UCSD Department of Surgery, UCSD Cancer Center, Encinitas, USA
| |
Collapse
|
40
|
de Boer LL, Hendriks BHW, van Duijnhoven F, Peeters-Baas MJTFDV, Van de Vijver K, Loo CE, Jóźwiak K, Sterenborg HJCM, Ruers TJM. Using DRS during breast conserving surgery: identifying robust optical parameters and influence of inter-patient variation. BIOMEDICAL OPTICS EXPRESS 2016; 7:5188-5200. [PMID: 28018735 PMCID: PMC5175562 DOI: 10.1364/boe.7.005188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 05/12/2023]
Abstract
Successful breast conserving surgery consists of complete removal of the tumor while sparing healthy surrounding tissue. Despite currently available imaging and margin assessment tools, recognizing tumor tissue at a resection margin during surgery is challenging. Diffuse reflectance spectroscopy (DRS), which uses light for tissue characterization, can potentially guide surgeons to prevent tumor positive margins. However, inter-patient variation and changes in tissue physiology occurring during the resection might hamper this light-based technology. Here we investigate how inter-patient variation and tissue status (in vivo vs ex vivo) affect the performance of the DRS optical parameters. In vivo and ex vivo measurements of 45 breast cancer patients were obtained and quantified with an analytical model to acquire the optical parameters. The optical parameter representing the ratio between fat and water provided the best discrimination between normal and tumor tissue, with an area under the receiver operating characteristic curve of 0.94. There was no substantial influence of other patient factors such as menopausal status on optical measurements. Contrary to expectations, normalization of the optical parameters did not improve the discriminative power. Furthermore, measurements taken in vivo were not significantly different from the measurements taken ex vivo. These findings indicate that DRS is a robust technology for the detection of tumor tissue during breast conserving surgery.
Collapse
Affiliation(s)
- Lisanne L. de Boer
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
| | - Benno H. W. Hendriks
- Philips Research, Eindhoven, The Netherlands
- Biomechanical Engineering Department, Delft University of Technology, Delft, The Netherlands
| | | | | | - Koen Van de Vijver
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
| | - Claudette E. Loo
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
| | - Katarzyna Jóźwiak
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
| | - Henricus J. C. M. Sterenborg
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
- Academic Medical Center, Department of Biomedical Engineering and Physics, Meibergdreef 9, 1105AZ, Amsterdam, Netherlands
| | - Theo J. M. Ruers
- Netherlands Cancer Institute – Antoni van Leeuwenhoek, Amsterdam The Netherlands
- MIRA Institute, University Twente, The Netherlands
| |
Collapse
|
41
|
Brachtel EF, Johnson NB, Huck AE, Rice-Stitt TL, Vangel MG, Smith BL, Tearney GJ, Kang D. Spectrally encoded confocal microscopy for diagnosing breast cancer in excision and margin specimens. J Transl Med 2016; 96:459-67. [PMID: 26779830 PMCID: PMC5027883 DOI: 10.1038/labinvest.2015.158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 11/09/2022] Open
Abstract
A large percentage of breast cancer patients treated with breast conserving surgery need to undergo multiple surgeries due to positive margins found during post-operative margin assessment. Carcinomas could be removed completely during the initial surgery and additional surgery avoided if positive margins can be determined intraoperatively. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has a potential to rapidly image the entire surgical margin at subcellular resolution and accurately determine margin status intraoperatively. In this study, in order to test the feasibility of using SECM for intraoperative margin assessment, we have evaluated the diagnostic accuracy of SECM for detecting various types of breast cancers. Forty-six surgically removed breast specimens were imaged with an SECM system. Side-by-side comparison between SECM and histologic images showed that SECM images can visualize key histomorphologic patterns of normal/benign and malignant breast tissues. Small (500 μm × 500 μm) spatially registered SECM and histologic images (n=124 for each) were diagnosed independently by three pathologists with expertise in breast pathology. Diagnostic accuracy of SECM for determining malignant tissues was high, average sensitivity of 0.91, specificity of 0.93, positive predictive value of 0.95, and negative predictive value of 0.87. Intra-observer agreement and inter-observer agreement for SECM were also high, 0.87 and 0.84, respectively. Results from this study suggest that SECM may be developed into an intraoperative margin assessment tool for guiding breast cancer excisions.
Collapse
Affiliation(s)
| | | | | | | | - Mark G. Vangel
- Department of Radiology, Massachusetts General Hospital,Biostatistics Center, Massachusetts General Hospital
| | - Barbara L. Smith
- Gillette Center for Women’s Cancers and Department of Surgery, Massachusetts General Hospital
| | - Guillermo J. Tearney
- Department of Pathology, Massachusetts General Hospital,Wellman Center for Photomedicine, Massachusetts General Hospital,Harvard-MIT division of Health Sciences and Technology
| | - Dongkyun Kang
- Wellman Center for Photomedicine, Massachusetts General Hospital,Corresponding author: Dongkyun Kang, 40 Blossom St. BAR802, Boston, MA 02114, , Phone: 617-726-1699, Fax: 617-726-4103
| |
Collapse
|
42
|
Karanlik H, Ozgur I, Sahin D, Fayda M, Onder S, Yavuz E. Intraoperative ultrasound reduces the need for re-excision in breast-conserving surgery. World J Surg Oncol 2015; 13:321. [PMID: 26596699 PMCID: PMC4657358 DOI: 10.1186/s12957-015-0731-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/06/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate ultrasound-guided surgery for palpable breast cancer by comparing the standard palpation-guided surgery in terms of the extent of healthy breast tissue resection, the percentage of tumor-free margins, and cosmetic outcomes. METHODS This was a prospective, observational cohort study conducted from January 2009 to July 2011. Breast cancer patients, diagnosed via biopsy, were operated in guidance with either ultrasound or palpation. Patient demographics, tumor features, intraoperative findings, pathologic and cosmetic results, intraoperative-measured ultrasound margins, and pathology margins were compared. RESULTS Ultrasound (US)-guided lumpectomy was performed on 84 women and palpation-guided lumpectomy on 80 women. Patient demographics and tumor characteristics showed no differences. The rate of re-excision was 17 % for the palpation-guided surgery group, and 6 % for the US-guided group (p = 0.03). There was good correlation between the closest margins recorded by US and pathology margins (r = 0.76, p = 0.01). Volume of resection was significantly larger in the palpation-guided group despite the similar size of tumors (p = 0.048). Cosmetic outcome of surgery was equivalent between groups. CONCLUSIONS Intraoperative ultrasound guidance for excision of palpable breast cancers is feasible and gives results in terms of pathologic margins that are comparable with those achieved by standard palpation-guided excisions.
Collapse
Affiliation(s)
- Hasan Karanlik
- Surgical Oncology Unit, Institute of Oncology, Istanbul University, Istanbul, Turkey.
| | - Ilker Ozgur
- Department of General Surgery, Acibadem International Hospital, Bakirkoy, Istanbul, Turkey
| | - Dilek Sahin
- Department of Radiology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Merdan Fayda
- Department of Radiation Oncology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Semen Onder
- Department of Pathology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ekrem Yavuz
- Department of Pathology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
43
|
Mela CA, Patterson C, Thompson WK, Papay F, Liu Y. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance. PLoS One 2015; 10:e0141956. [PMID: 26529249 PMCID: PMC4631490 DOI: 10.1371/journal.pone.0141956] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/15/2015] [Indexed: 02/05/2023] Open
Abstract
We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a) the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b) the first wearable system offering both large FOV and microscopic imaging simultaneously,
Collapse
Affiliation(s)
- Christopher A. Mela
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, United States of America
| | - Carrie Patterson
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, United States of America
| | | | - Francis Papay
- Dermatology and Plastic Surgery Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yang Liu
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, United States of America
| |
Collapse
|
44
|
Landercasper J, Attai D, Atisha D, Beitsch P, Bosserman L, Boughey J, Carter J, Edge S, Feldman S, Froman J, Greenberg C, Kaufman C, Morrow M, Pockaj B, Silverstein M, Solin L, Staley A, Vicini F, Wilke L, Yang W, Cody H. Toolbox to Reduce Lumpectomy Reoperations and Improve Cosmetic Outcome in Breast Cancer Patients: The American Society of Breast Surgeons Consensus Conference. Ann Surg Oncol 2015; 22:3174-83. [PMID: 26215198 PMCID: PMC4550635 DOI: 10.1245/s10434-015-4759-x] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Multiple recent reports have documented significant variability of reoperation rates after initial lumpectomy for breast cancer. To address this issue, a multidisciplinary consensus conference was convened during the American Society of Breast Surgeons 2015 annual meeting. METHODS The conference mission statement was to "reduce the national reoperation rate in patients undergoing breast conserving surgery for cancer, without increasing mastectomy rates or adversely affecting cosmetic outcome, thereby improving value of care." The goal was to develop a toolbox of recommendations to reduce the variability of reoperation rates and improve cosmetic outcomes. Conference participants included providers from multiple disciplines involved with breast cancer care, as well as a patient representative. Updated systematic reviews of the literature and invited presentations were sent to participants in advance. After topic presentations, voting occurred for choice of tools, level of evidence, and strength of recommendation. RESULTS The following tools were recommended with varied levels of evidence and strength of recommendation: compliance with the SSO-ASTRO Margin Guideline; needle biopsy for diagnosis before surgical excision of breast cancer; full-field digital diagnostic mammography with ultrasound as needed; use of oncoplastic techniques; image-guided lesion localization; specimen imaging for nonpalpable cancers; use of specialized techniques for intraoperative management, including excisional cavity shave biopsies and intraoperative pathology assessment; formal pre- and postoperative planning strategies; and patient-reported outcome measurement. CONCLUSIONS A practical approach to performance improvement was used by the American Society of Breast Surgeons to create a toolbox of options to reduce lumpectomy reoperations and improve cosmetic outcomes.
Collapse
Affiliation(s)
- Jeffrey Landercasper
- Gundersen Health System Norma J. Vinger Center for Breast Care, La Crosse, WI, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lakshmanan MN, Harrawood BP, Samei E, Kapadia AJ. Volumetric x-ray coherent scatter imaging of cancer in resected breast tissue: a Monte Carlo study using virtual anthropomorphic phantoms. Phys Med Biol 2015; 60:6355-70. [DOI: 10.1088/0031-9155/60/16/6355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Akter S, Maejima S, Kawauchi S, Sato S, Hinoki A, Aosasa S, Yamamoto J, Nishidate I. Evaluation of light scattering and absorption properties of in vivo rat liver using a single-reflectance fiber probe during preischemia, ischemia-reperfusion, and postmortem. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:076010. [PMID: 26214615 DOI: 10.1117/1.jbo.20.7.076010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/25/2015] [Indexed: 05/23/2023]
Abstract
Diffuse reflectance spectroscopy (DRS) has been extensively used for characterization of biological tissues as a noninvasive optical technique to evaluate the optical properties of tissue. We investigated a method for evaluating the reduced scattering coefficient μ(s)', the absorption coefficient μ(a), the tissue oxygen saturation StO₂, and the reduction of heme aa3 in cytochrome c oxidase CcO of in vivo liver tissue using a single-reflectance fiber probe with two source-collector geometries. We performed in vivo recordings of diffuse reflectance spectra for exposed rat liver during the ischemia-reperfusion induced by the hepatic portal (hepatic artery, portal vein, and bile duct) occlusion. The time courses of μ a at 500, 530, 570, and 584 nm indicated the hemodynamic change in liver tissue as well as StO₂. Significant increase in μ(a)(605)/μ(a)(620) during ischemia and after euthanasia induced by nitrogen breathing was observed, which indicates the reduction of heme aa3, representing a sign of mitochondrial energy failure. The time courses of μ(s)' at 500, 530, 570, and 584 nm were well correlated with those of μ(a), which also reflect the scattering by red blood cells. On the other hand, at 700 and 800 nm, a temporary increase in μ(s)' and an irreversible decrease in μ(s)' were observed during ischemia-reperfusion and after euthanasia induced by nitrogen breathing, respectively. The change in μ(s)' in the near-infrared wavelength region during ischemia is indicative of the morphological changes in the cellular and subcellular structures induced by the ischemia, whereas that after euthanasia implies the hepatocyte vacuolation. The results of the present study indicate the potential application of the current DRS system for evaluating the pathophysiological conditions of in vivo liver tissue.
Collapse
Affiliation(s)
- Sharmin Akter
- Tokyo University of Agriculture and Technology, Graduate School of Bio-Application and Systems Engineering, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Satoshi Maejima
- National Defense Medical College, Department of Surgery, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Satoko Kawauchi
- National Defense Medical College Research Institute, Division of Biomedical Information Sciences, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Shunichi Sato
- National Defense Medical College Research Institute, Division of Biomedical Information Sciences, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akinari Hinoki
- National Defense Medical College, Department of Surgery, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Suefumi Aosasa
- National Defense Medical College, Department of Surgery, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Junji Yamamoto
- National Defense Medical College, Department of Surgery, 3-2, Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Izumi Nishidate
- Tokyo University of Agriculture and Technology, Graduate School of Bio-Application and Systems Engineering, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
47
|
Kim B, Kehtarnavaz N, LeBoulluec P, Liu H, Peng Y, Euhus D. Automation of ROI extraction in hyperspectral breast images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:3658-61. [PMID: 24110523 DOI: 10.1109/embc.2013.6610336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The extraction of regions-of-interest (ROIs) in hyperspectral images of breast cancer specimens is currently carried out manually or by visual inspection. In order to address the labor-intensive and time-consuming process of the manual extraction of ROIs in hyperspectral images, an algorithm is developed in this paper to automate the extraction process. This is achieved by using a contrast module and a homogeneity module to duplicate the same manual or visual steps that an expert goes through in order to extract ROIs. The success of the automated process is determined by comparing the classification rates of the automated approach with the manual approach in terms of the ability to separate cancer cases from normal cases.
Collapse
|
48
|
Li R, Wang P, Lan L, Lloyd FP, Goergen CJ, Chen S, Cheng JX. Assessing breast tumor margin by multispectral photoacoustic tomography. BIOMEDICAL OPTICS EXPRESS 2015; 6:1273-81. [PMID: 25909011 PMCID: PMC4399666 DOI: 10.1364/boe.6.001273] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 05/18/2023]
Abstract
An unmet need exists in high-speed and highly-sensitive intraoperative assessment of breast cancer margin during conservation surgical procedures. Here, we demonstrate a multispectral photoacoustic tomography system for breast tumor margin assessment using fat and hemoglobin as contrasts. This system provides ~3 mm tissue depth and ~125 μm axial resolution. The results agreed with the histological findings. A high sensitivity in margin assessment was accomplished, which opens a compelling way to intraoperative margin assessment.
Collapse
Affiliation(s)
- Rui Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive., West Lafayette, Indiana, 47907,
USA
- Authors contributed equally
| | - Pu Wang
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive., West Lafayette, Indiana, 47907,
USA
- Authors contributed equally
| | - Lu Lan
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive., West Lafayette, Indiana, 47907,
USA
| | - Frank P. Lloyd
- Surgical Oncology- Cascade Metrix/Putman County Hospital, 1542 S Bloomington Street, Greencastle, Indiana, 46135,
USA
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive., West Lafayette, Indiana, 47907,
USA
- Purdue University Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana, 47906,
USA
| | - Shaoxiong Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 West 11th Street, Indianapolis, Indiana, 46202,
USA
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive., West Lafayette, Indiana, 47907,
USA
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana, 47907,
USA
- Purdue University Center for Cancer Research, 201 S. University Street, West Lafayette, Indiana, 47906,
USA
| |
Collapse
|
49
|
Ravi SB, Annavajjula S. Surgical margins and its evaluation in oral cancer: a review. J Clin Diagn Res 2014; 8:ZE01-5. [PMID: 25386547 PMCID: PMC4225999 DOI: 10.7860/jcdr/2014/9755.4836] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/02/2014] [Indexed: 01/22/2023]
Abstract
The main surgical goal while treating cancer is to remove all local malignant disease with no residual malignant cells left. Overall benefits of achieving negative resection margins in terms of disease free local recurrence and overall survival has been discussed in many studies. The quantity of normal tissue to be removed during surgical procedure has not been standardised. Local recurrence can also occur among tumours with extensive histological demonstration of adequate resection margins. Oral cavity, submandibular region, tonsil and pharynx are the sites which have high chances of recurrence, even after showing negative margins. Therefore, the current approaches for histological risk assessment and various methods of evaluation of the surgical margins with their limitations are briefed in the present article.
Collapse
Affiliation(s)
- Spoorthi Banvar Ravi
- Reader, Department of Oral Pathology, M.S.Ramaiah Dental College, New Bel Road, MSR Nagar, Bangalore, India
| | - Saileela Annavajjula
- Postgraduate Student, M.S.Ramaiah Dental College, New Bel Road, MSR Nagar, Bangalore, India
| |
Collapse
|
50
|
Spliethoff JW, Evers DJ, Jaspers JE, Hendriks BHW, Rottenberg S, Ruers TJM. Monitoring of tumor response to Cisplatin using optical spectroscopy. Transl Oncol 2014; 7:230-9. [PMID: 24726234 PMCID: PMC4101345 DOI: 10.1016/j.tranon.2014.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/07/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy-autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS Brca1(-/-); p53(-/-) mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response.
Collapse
Affiliation(s)
- Jarich W Spliethoff
- Department of Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Daniel J Evers
- Department of Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Janneke E Jaspers
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Benno H W Hendriks
- Department of Minimally Invasive Healthcare, Philips Research, Eindhoven, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Theo J M Ruers
- Department of Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands; MIRA Institute, Technical University Twente, Enschede, The Netherlands
| |
Collapse
|