1
|
Woźnicki P, Bartusik-Aebisher D, Przygórzewska A, Aebisher D. Molecular mechanisms of the effects of photodynamic therapy on the brain: A review of the literature. Photodiagnosis Photodyn Ther 2025; 52:104536. [PMID: 40023269 DOI: 10.1016/j.pdpdt.2025.104536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/07/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Malignant gliomas are the most common primary brain tumors in adults. These tumors have a diverse molecular origin and a very poor prognosis. There is a lack of effective treatment at WHO grade IV glioma, and all glioblastomas progress or recur. Current treatments including surgical intervention, radiation therapy, and chemotherapy are insufficient and can cause damage to healthy brain tissue and neurological deficits. The preservation of healthy brain tissue during therapeutic intervention is made extremely difficult by the ability of malignant gliomas to diffusely infiltrate the surrounding brain parenchyma. Photodynamic therapy (PDT) is a treatment modality for glioma that can possibly overcome the inherent shortcommings of traditional therapies. Photodynamic therapy involves the use of a photosensitizer (PS) which, upon absorption of light by photosensitized tissue, triggers photochemical reactions generating reactive oxygen species (ROS) leading to the killing of tumor cells. Research focusing on the effective use of PDT in the treatment of glioma is already underway with promising results. Clinical studies on PDT for the treatment of gliomas have shown it to be a safe therapeutic modality with acceptable levels of side effects. However, some adverse sequelae have been observed during PDT of these tumours, such as increased photosensitivity, increased intracranial pressure or transient aphasia and worsening of pre-existing neurological deficits. Although the clinical sequelae of PDT are well described, the molecular mechanisms of PDT's effects on the healthy brain have not yet been thoroughly characterized. In our work, we attempt to summarize the molecular mechanisms of the effects of photosensitization on neural tissue, brain vasculature and the blood-brain barrier (BBB). We also point to findings presenting molecular approaches to protect the healthy brain from the adverse effects of photodynamic damage.
Collapse
Affiliation(s)
- Paweł Woźnicki
- Doctoral School, Medical College of the University of Rzeszów, Rzeszów 35-310, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, Rzeszów 35-310, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of The Rzeszów University, Rzeszów 35-310, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, Rzeszów 35-310, Poland.
| |
Collapse
|
2
|
Hsia T, Small JL, Yekula A, Batool SM, Escobedo AK, Ekanayake E, You DG, Lee H, Carter BS, Balaj L. Systematic Review of Photodynamic Therapy in Gliomas. Cancers (Basel) 2023; 15:3918. [PMID: 37568734 PMCID: PMC10417382 DOI: 10.3390/cancers15153918] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Over the last 20 years, gliomas have made up over 89% of malignant CNS tumor cases in the American population (NIH SEER). Within this, glioblastoma is the most common subtype, comprising 57% of all glioma cases. Being highly aggressive, this deadly disease is known for its high genetic and phenotypic heterogeneity, rendering a complicated disease course. The current standard of care consists of maximally safe tumor resection concurrent with chemoradiotherapy. However, despite advances in technology and therapeutic modalities, rates of disease recurrence are still high and survivability remains low. Given the delicate nature of the tumor location, remaining margins following resection often initiate disease recurrence. Photodynamic therapy (PDT) is a therapeutic modality that, following the administration of a non-toxic photosensitizer, induces tumor-specific anti-cancer effects after localized, wavelength-specific illumination. Its effect against malignant glioma has been studied extensively over the last 30 years, in pre-clinical and clinical trials. Here, we provide a comprehensive review of the three generations of photosensitizers alongside their mechanisms of action, limitations, and future directions.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Chan Medical School, University of Massachusetts, Worcester, MA 01605, USA
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 554414, USA
| | - Syeda M. Batool
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ana K. Escobedo
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Emil Ekanayake
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dong Gil You
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Luo S, Lin R, Liao X, Li D, Qin Y. Identification and verification of the molecular mechanisms and prognostic values of the cadherin gene family in gastric cancer. Sci Rep 2021; 11:23674. [PMID: 34880371 PMCID: PMC8655011 DOI: 10.1038/s41598-021-03086-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
While cadherin (CDH) genes are aberrantly expressed in cancers, the functions of CDH genes in gastric cancer (GC) remain poorly understood. The clinical significance and molecular mechanisms of CDH genes in GC were assessed in this study. Data from a total of 1226 GC patients included in The Cancer Genome Atlas (TCGA) and Kaplan–Meier plotter database were used to independently explore the value of CDH genes in clinical application. The TCGA RNA sequencing dataset was used to explore the molecular mechanisms of CDH genes in GC. Using enrichment analysis tools, CDH genes were found to be related to cell adhesion and calcium ion binding in function. In TCGA cohort, 12 genes were found to be differentially expressed between GC para-carcinoma and tumor tissue. By analyzing GC patients in two independent cohorts, we identified and verified that CDH2, CDH6, CDH7 and CDH10 were significantly associated with a poor GC prognosis. In addition, CDH2 and CDH6 were used to construct a GC risk score signature that can significantly improve the accuracy of predicting the 5-year survival of GC patients. The GSEA approach was used to explore the functional mechanisms of the four prognostic CDH genes and their associated risk scores. It was found that these genes may be involved in multiple classic cancer-related signaling pathways, such as the Wnt and phosphoinositide 3-kinase signaling pathways in GC. In the subsequent CMap analysis, three small molecule compounds (anisomycin, nystatin and bumetanide) that may be the target molecules that determine the risk score in GC, were initially screened. In conclusion, our current study suggests that four CDH genes can be used as potential biomarkers for GC prognosis. In addition, a prognostic signature based on the CDH2 and CDH6 genes was constructed, and their potential functional mechanisms and drug interactions explored.
Collapse
Affiliation(s)
- Shanshan Luo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, He Di Road 71, Nanning, 530021, Guangxi Autonomous Region, People's Republic of China.
| | - Rujing Lin
- Department of General Surgery, The People's Hospital of Binyang County, Nanning, 530405, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Daimou Li
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, He Di Road 71, Nanning, 530021, Guangxi Autonomous Region, People's Republic of China
| | - Yuzhou Qin
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Clinical Research Center for Colorectal Cancer, He Di Road 71, Nanning, 530021, Guangxi Autonomous Region, People's Republic of China.
| |
Collapse
|
4
|
Hou K, Liu J, Du J, Mi S, Ma S, Ba Y, Ji H, Li B, Hu S. Dihydroartemisinin prompts amplification of photodynamic therapy-induced reactive oxygen species to exhaust Na/H exchanger 1-mediated glioma cells invasion and migration. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 219:112192. [PMID: 34000476 DOI: 10.1016/j.jphotobiol.2021.112192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) is a promising glioma therapy; however, its efficacy is compromised due to the PDT-induced reactive oxygen species (ROS) production being limited by the local hypoxic tumor microenvironment. Furthermore, Hypoxia activates sodium/hydrogen exchanger 1 (NHE1), an essential component for tumor progression and metastasis, enables glioma cells (GC) to escape PDT-mediated phototoxicity via increased H+ extrusion. However, interactions between NHE1 expression with ROS level involving response of GC remain unclear. Dihydroartemisinin (DHA), a ROS generator, has extensive anti-tumor effects. This study aimed to explore whether PDT along with DHA could amplify the total ROS levels and diminish GC invasion and migration by inhibiting NHE1 expression. Proliferation and invasion of U251 and LN229 cells were evaluated under different treatments using cell counting Kit-8 (CCK-8), transwell, and wound healing assays. ROS levels were measured using fluorescence probes and flow cytometry. NHE1 levels were detected by immunofluorescence and western blotting. Co-treatment effects and molecular events were further confirmed in a bilateral tumor-bearing nude mouse model. PDT with synergistic DHA significantly increased the total abundance of ROS to further suppress the invasion and migration of GC by reducing NHE1 levels in vitro. Using a bilateral glioma xenograft mouse model with primary and recurrent gliomas, we found that PDT markedly suppressed primary tumor growth, while PDT in synergy with DHA also suppressed recurrent tumors, and improved overall survival by regulating the ROS-NHE1 axis. No evident side effects were observed. Our results suggest that PDT with DHA can amplify the total ROS levels to weaken GC invasion and migration by suppressing NHE1 expression in vitro and in vivo, thus abolishing the resistance of GC to PDT. The synergistic therapy of PDT and DHA therefore represents a more efficient and safe strategy for comprehensive glioma treatment.
Collapse
Affiliation(s)
- Kuiyuan Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jie Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jianyang Du
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shan Mi
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yixu Ba
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Bo Li
- Department of Neurosurgery, The First People's Hospital of Taizhou, Taizhou 318020, China
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
5
|
Teng F, Guo M, Liu F, Wang C, Dong J, Zhang L, Zou Y, Chen R, Sun K, Fu H, Fu Z, Guo W, Ding G. Treatment with an SLC12A1 antagonist inhibits tumorigenesis in a subset of hepatocellular carcinomas. Oncotarget 2018; 7:53571-53582. [PMID: 27447551 PMCID: PMC5288206 DOI: 10.18632/oncotarget.10670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 07/06/2016] [Indexed: 01/23/2023] Open
Abstract
A central aim in cancer research is to identify genes with altered expression patterns in tumor specimens and their potential role in tumorigenesis. Most types of tumors, including hepatocellular carcinoma (HCC), are heterogeneous in terms of genotype and phenotype. Thus, traditional analytical methods like the t-test fail to identify all oncogenes from expression profiles. In this study, we performed a meta-Cancer Outlier Profile Analysis (meta-COPA) across six microarray datasets for HCC from the GEO database. We found that gene SLC12A1 was overexpressed in the Hep3B cell line, compared with five other HCC cell lines and L02 cells. We also found that the upregulation of SLC12A1 was mediated by histone methylation within its promoter region, and that SLC12A1 is a positive regulator of the WNK1/ERK5 pathway. Consistent with in vitro results, treatment with the SLC12A1 antagonist Bumetanide delayed tumor formation and reduced Hep3B cell tumor size in mouse xenografts. In summary, our research reveals a novel subset of HCCs that are sensitive to SLC12A1 antagonist treatment, thereby offering a new strategy for precision HCC treatment.
Collapse
Affiliation(s)
- Fei Teng
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Meng Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Fang Liu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Ce Wang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiayong Dong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Lei Zhang
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - You Zou
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Rui Chen
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Keyan Sun
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Hong Fu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhiren Fu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wenyuan Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guoshan Ding
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
6
|
ALA-PpIX mediated photodynamic therapy of malignant gliomas augmented by hypothermia. PLoS One 2017; 12:e0181654. [PMID: 28759636 PMCID: PMC5536352 DOI: 10.1371/journal.pone.0181654] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/05/2017] [Indexed: 12/03/2022] Open
Abstract
Background Malignant gliomas are highly invasive, difficult to treat, and account for 2% of cancer deaths worldwide. Glioblastoma Multiforme (GBM) comprises the most common and aggressive intracranial tumor. The study hypothesis is to investigate the modification of Photodynamic Therapy (PDT) efficacy by mild hypothermia leads to increased glioma cell kill while protecting normal neuronal structures. Methods Photosensitizer accumulation and PDT efficacy in vitro were quantified in various glioma cell lines, primary rat neurons, and astrocytes. In vivo studies were carried out in healthy brain and RG2 glioma of naïve Fischer rats. Hypothermia was induced at 1 hour pre- to 2 hours post-PDT, with ALA-PpIX accumulation and PDT treatments effects on tumor and normal brain PDT quantified using optical spectroscopy, histology, immunohistochemistry, MRI, and survival studies, respectively. Findings In vitro studies demonstrated significantly improved post-PDT survival in primary rat neuronal cells. Rat in vivo studies confirmed a neuroprotective effect to hypothermia following PpIX mediated PDT by T2 mapping at day 10, reflecting edema/inflammation volume reduction. Mild hypothermia increased PpIX fluorescence in tumors five-fold, and the median post-PDT rat survival time (8.5 days normothermia; 14 days hypothermia). Histology and immunohistochemistry show close to complete cellular protection in normal brain structures under hypothermia. Conclusions The benefits of hypothermia on both normal neuronal tissue as well as increased PpIX fluorescence and RG2 induced rat survival strongly suggest a role for hypothermia in photonics-based surgical techniques, and that a hypothermic intervention could lead to considerable patient outcome improvements.
Collapse
|
7
|
Leroy HA, Vermandel M, Vignion-Dewalle AS, Leroux B, Maurage CA, Duhamel A, Mordon S, Reyns N. Interstitial photodynamic therapy and glioblastoma: Light fractionation in a preclinical model. Lasers Surg Med 2016; 49:506-515. [PMID: 28012197 DOI: 10.1002/lsm.22620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Glioblastoma is a high-grade cerebral tumor with local recurrence and poor outcome. Photodynamic therapy (PDT) is a localized treatment based on the light activation of a photosensitizer (PS) in the presence of oxygen, which results in the formation of cytotoxic species. The delivery of fractionated light may enhance treatment efficacy by reoxygenating tissues. OBJECTIVE To evaluate the efficiency of two light-fractionation schemes using immunohistological data. MATERIALS AND METHODS Human U87 cells were grafted into the right putamen of 39 nude rats. After PS precursor intake (5-ALA), an optic fiber was introduced into the tumor. The rats were randomly divided into three groups: without light, with light split into 2 fractions and with light split into 5 fractions. Treatment effects were assessed using brain immunohistology. RESULTS Fractionated treatments induced intratumoral necrosis (P < 0.001) and peritumoral edema (P = 0.009) associated with a macrophagic infiltration (P = 0.006). The ratio of apoptotic cells was higher in the 5-fraction group than in either the sham (P = 0.024) or 2-fraction group (P = 0.01). Peripheral vascularization increased after treatment (P = 0.017), and these likely new vessels were more frequently observed in the 5-fraction group (P = 0.028). CONCLUSION Interstitial PDT with fractionated light resulted in specific tumoral lesions. The 5-fraction scheme induced more apoptosis but led to greater peripheral neovascularization. Lasers Surg. Med. 49:506-515, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Henri-Arthur Leroy
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France.,Department of Neurosurgery, CHU Lille, F-59000, Lille, France
| | - Maximilien Vermandel
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France.,Department of Neurosurgery, CHU Lille, F-59000, Lille, France
| | - Anne-Sophie Vignion-Dewalle
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France
| | - Bertrand Leroux
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France
| | | | - Alain Duhamel
- Department of Biostatistics, CHU Lille, EA2694, Université de Lille, F-59000, Lille, France
| | - Serge Mordon
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France
| | - Nicolas Reyns
- Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Image Assisted Laser Therapy for Oncology, F-59000, Lille, France.,Department of Neurosurgery, CHU Lille, F-59000, Lille, France
| |
Collapse
|
8
|
Huberfeld G, Vecht CJ. Seizures and gliomas — towards a single therapeutic approach. Nat Rev Neurol 2016; 12:204-16. [DOI: 10.1038/nrneurol.2016.26] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Li BO, Meng C, Zhang X, Cong D, Gao X, Gao W, Ju D, Hu S. Effect of photodynamic therapy combined with torasemide on the expression of matrix metalloproteinase 2 and sodium-potassium-chloride cotransporter 1 in rat peritumoral edema and glioma. Oncol Lett 2016; 11:2084-2090. [PMID: 26998126 PMCID: PMC4774439 DOI: 10.3892/ol.2016.4210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Peritumoral edema is a key stage in the infiltration and recurrence of glioma. Photodynamic therapy (PDT) increases the extent of peritumoral edema, which leads to a decrease in the effectiveness of PDT in treating glioma. The present study evaluated the effects of PDT combined with torasemide on the levels of matrix metalloproteinase (MMP) 2 and sodium-potassium-chloride cotransporter (NKCC) 1 in peritumoral edema regions of rat glioma. Adult male Wistar rats were inoculated with rat glioma C6 cells, and the presence of glioma was confirmed using magnetic resonance imaging 7 days subsequent to injection. The rats were randomly assigned to 4 groups (n=15): Control group, the rats received no treatment; PDT group, the rats received PDT at 80 J/cm2 for 10 min; torasemide group, the rats received 5 mg/kg torasemide intraperitoneally; and PDT + torasemide group, the rats received 5 mg/kg torasemide intraperitoneally for 3 days following PDT at 80 J/cm2 for 10 min. A total of 5 rats from each group were sacrificed 21 days following injection and the peritumoral edema tissues were harvested. MMP2 and NKCC1 expression levels were detected in the tissues using immunohistochemistry and western blot analysis. The mRNA expression levels of MMP2 and NKCC1 were observed using reverse transcription-quantitative polymerase chain reaction. Peritumoral edema was measured using a wet-to-dry weight (W/D) ratio, and survival times of the remaining 10 rats in each group were evaluated. Compared with the control group, tumor growth was significantly suppressed in the PDT group and the survival time was prolonged through a reduction in the expression of MMP2 (P<0.05), and an increased W/D ratio resulted in significantly increased expression of NKCC1 (P<0.05). Compared with the PDT group, the expression of NKCC1 and the W/D ratio in the PDT + torasemide group were significantly decreased (P<0.05), while no significant difference was observed in the expression levels of MMP2. In conclusion, PDT combined with torasemide prolonged the survival time of rats by inhibiting the growth of glioma through a reduction in the expression of MMP2, and by reducing peritumoral edema through a reduction in the expression levels of NKCC1.
Collapse
Affiliation(s)
- B O Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Chao Meng
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xufeng Zhang
- Department of Internal Medicine-Oncology, The Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Damin Cong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xin Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wanlong Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Donghui Ju
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
10
|
Shevtsov MA, Nikolaev BP, Yakovleva LY, Dobrodumov AV, Zhakhov AV, Mikhrina AL, Pitkin E, Parr MA, Rolich VI, Simbircev AS, Ischenko AM. Recombinant interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles for theranostic targeting of experimental glioblastoma. Neoplasia 2015; 17:32-42. [PMID: 25622897 PMCID: PMC4309733 DOI: 10.1016/j.neo.2014.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022] Open
Abstract
Cerebral edema commonly accompanies brain tumors and contributes to neurologic symptoms. The role of the interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles (SPION-IL-1Ra) was assessed to analyze its anti-edemal effect and its possible application as a negative contrast enhancing agent for magnetic resonance imaging (MRI). Rats with intracranial C6 glioma were intravenously administered at various concentrations of IL-1Ra or SPION-IL-1Ra. Brain peritumoral edema following treatment with receptor antagonist was assessed with high-field MRI. IL-1Ra administered at later stages of tumor progression significantly reduced peritumoral edema (as measured by MRI) and prolonged two-fold the life span of comorbid animals in a dose-dependent manner in comparison to control and corticosteroid-treated animals (P < .001). Synthesized SPION-IL-1Ra conjugates had the properties of negative contrast agent with high coefficients of relaxation efficiency. In vitro studies of SPION-IL-1Ra nanoparticles demonstrated high intracellular incorporation and absence of toxic influence on C6 cells and lymphocyte viability and proliferation. Retention of the nanoparticles in the tumor resulted in enhanced hypotensive T2-weighted images of glioma, proving the application of the conjugates as negative magnetic resonance contrast agents. Moreover, nanoparticles reduced the peritumoral edema confirming the therapeutic potency of synthesized conjugates. SPION-IL-1Ra nanoparticles have an anti-edemal effect when administered through a clinically relevant route in animals with glioma. The SPION-IL-1Ra could be a candidate for theranostic approach in neuro-oncology both for diagnosis of brain tumors and management of peritumoral edema.
Collapse
Affiliation(s)
- Maxim A Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia; A.L. Polenov Russian Research Scientific Institute of Neurosurgery, St. Petersburg, Russia.
| | - Boris P Nikolaev
- Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
| | | | - Anatolii V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | | | - Anastasiy L Mikhrina
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Marina A Parr
- V.F. Fock Institute of Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Valerii I Rolich
- V.F. Fock Institute of Physics, St. Petersburg State University, St. Petersburg, Russia
| | - Andrei S Simbircev
- Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
| | | |
Collapse
|
11
|
Zhang X, Guo M, Shen L, Hu S. Combination of photodynamic therapy and temozolomide on glioma in a rat C6 glioma model. Photodiagnosis Photodyn Ther 2014; 11:603-12. [DOI: 10.1016/j.pdpdt.2014.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 01/22/2023]
|