1
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
2
|
Lopez-Soler RI, Nikouee A, Kim M, Khan S, Sivaraman L, Ding X, Zang QS. Beclin-1 dependent autophagy improves renal outcomes following Unilateral Ureteral Obstruction (UUO) injury. Front Immunol 2023; 14:1104652. [PMID: 36875088 PMCID: PMC9978333 DOI: 10.3389/fimmu.2023.1104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Background Interstitial Fibrosis and Tubular Atrophy (IFTA) is the most common cause of long-term graft failure following renal transplant. One of the hallmarks of IFTA is the development of interstitial fibrosis and loss of normal renal architecture. In this study, we evaluated the role of autophagy initiation factor Beclin-1 in protecting against post-renal injury fibrosis. Methods Adult male wild type (WT) C57BL/6 mice were subjected to Unilateral Ureteral Obstruction (UUO), and kidney tissue samples were harvested at 72-hour, 1- and 3-week post-injury. The UUO-injured and uninjured kidney samples were examined histologically for fibrosis, autophagy flux, inflammation as well activation of the Integrated Stress Response (ISR). We compared WT mice with mice carrying a forced expression of constitutively active mutant form of Beclin-1, Becn1F121A/F121A . Results In all experiments, UUO injury induces a progressive development of fibrosis and inflammation. These pathological signs were diminished in Becn1F121A/F121A mice. In WT animals, UUO caused a strong blockage of autophagy flux, indicated by continuously increases in LC3II accompanied by an over 3-fold accumulation of p62 1-week post injury. However, increases in LC3II and unaffected p62 level by UUO were observed in Becn1F121A/F121A mice, suggesting an alleviation of disrupted autophagy. Beclin-1 F121A mutation causes a significant decrease in phosphorylation of inflammatory STING signal and limited production of IL6 and IFNγ, but had little effect on TNF-α, in response to UUO. Furthermore, activation of ISR signal cascade was detected in UUO-injured in kidneys, namely the phosphorylation signals of elF2S1 and PERK in addition to the stimulated expression of ISR effector ATF4. However, Becn1F121A/F121A mice did not reveal signs of elF2S1 and PERK activation under the same condition and had a dramatically reduced ATF level at 3-week post injury. Conclusions The results suggest that UUO causes a insufficient, maladaptive renal autophagy, which triggered downstream activation of inflammatory STING pathway, production of cytokines, and pathological activation of ISR, eventually leading to the development of fibrosis. Enhancing autophagy via Beclin-1 improved renal outcomes with diminished fibrosis, via underlying mechanisms of differential regulation of inflammatory mediators and control of maladaptive ISR.
Collapse
Affiliation(s)
- Reynold I. Lopez-Soler
- Section of Renal Transplantation, Edward Hines Jr. VA Hospital, Hines, IL, United States
- Department of Surgery, Division of Intra-Abdominal Transplantation, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Azadeh Nikouee
- Department of Surgery, Burn & Shock Trauma Research Institute; Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Matthew Kim
- Department of Surgery, Burn & Shock Trauma Research Institute; Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Saman Khan
- Department of Surgery, Burn & Shock Trauma Research Institute; Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Lakshmi Sivaraman
- Department of Biology, Loyola University Chicago, Chicago, IL, United States
| | - Xiangzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| | - Qun Sophia Zang
- Department of Surgery, Burn & Shock Trauma Research Institute; Loyola University Chicago Stritch School of Medicine, Maywood, IL, United States
| |
Collapse
|
3
|
Wang Z, Divanyan A, Jourd'heuil FL, Goldman RD, Ridge KM, Jourd'heuil D, Lopez-Soler RI. Vimentin expression is required for the development of EMT-related renal fibrosis following unilateral ureteral obstruction in mice. Am J Physiol Renal Physiol 2018; 315:F769-F780. [PMID: 29631355 DOI: 10.1152/ajprenal.00340.2017] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most renal transplants ultimately fail secondary to chronic allograft nephropathy (CAN). Vimentin (vim) is a member of the intermediate filament family of proteins and has been shown to be important in the development of CAN. One of the pathways leading to chronic renal fibrosis after transplant is thought to be epithelial to mesenchymal transition (EMT). Even though vim expression is one of the main steps of EMT, it is unknown whether vim expression is required for EMT leading to renal fibrosis and allograft loss. To this end, the role of vim in renal fibrosis was determined via unilateral ureteral obstruction (UUO) in vim knockout mice (129 svs6 vim -/-). Following UUO, kidneys were recovered and analyzed via Western blotting, immunofluorescence, and transcriptomics. Cultured human proximal renal tubular (HK-2) cells were subjected to lentiviral-driven inhibition of vim expression and then treated with transforming growth factor (TGF)-β to undergo EMT. Immunoblotting as well as wound healing assays were used to determine development of EMT. Western blotting analyses of mice undergoing UUO reveal increased levels of vim soon after UUO. As expected, interstitial collagen deposition increased in control mice following UUO but decreased in vim -/- kidneys. Immunofluorescence analyses also revealed altered localization of β-catenin in vim -/- mice undergoing UUO without significant changes in mRNA levels. However, RNA sequencing revealed a decrease in β-catenin-dependent genes in vim -/- kidneys. Finally, vim-silenced HK-2 cell lines undergoing EMT were shown to have decreased cellular migration during wound healing. We conclude that vim inhibition decreases fibrosis following UUO by possibly altering β-catenin localization and downstream signaling.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Alex Divanyan
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Frances L Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Robert D Goldman
- Department of Cellular and Molecular Biology, Northwestern University , Chicago, Illinois
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University , Chicago, Illinois
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College , Albany, New York
| | - Reynold I Lopez-Soler
- Division of Surgery, Section of Transplantation, Albany Medical Center , Albany, New York
| |
Collapse
|
4
|
Li R, Dong J, Bu X, Huang Y, Yang J, Dong X, Liu J. Retracted
: Interleukin‐6 promotes the migration and cellular senescence and inhibits apoptosis of human intrahepatic biliary epithelial cells. J Cell Biochem 2017; 119:2135-2143. [DOI: 10.1002/jcb.26375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/24/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Ran Li
- Department of GastroenterologyThe Third Affiliated Hospital of Shandong Academy of Medical SciencesJiningChina
- Department of GastroenterologyShandong Institute of Parasitic DiseasesJiningChina
| | - Juan Dong
- Department of GastroenterologyJining Rencheng District People's HospitalJiningChina
| | - Xiu‐Qin Bu
- Department of GastroenterologyShandong Institute of Parasitic DiseasesJiningChina
| | - Yong Huang
- Department of GastroenterologyShandong Institute of Parasitic DiseasesJiningChina
| | - Jing‐Yu Yang
- Department of GastroenterologyShandong Institute of Parasitic DiseasesJiningChina
| | - Xuan Dong
- Department of GastroenterologyShandong Institute of Parasitic DiseasesJiningChina
| | - Jie Liu
- Department of GastroenterologyJining No. 1 People's HospitalJiningChina
| |
Collapse
|
5
|
The function of activatable cell-penetrating peptides in human intrahepatic bile duct epithelial cells. J Bioenerg Biomembr 2016; 48:599-606. [PMID: 27889841 DOI: 10.1007/s10863-016-9690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
This study aimed to investigate the function of Activatable Cell-Penetrating Peptides (ACPP) in detecting the changes of human intrahepatic bile duct epithelial cell(hIBDEC). ACPP, which target matrix metalloproteinases, were constructed. All were labeled with FITC and Gd-DTPA at the N-terminal. Fluorescence microscopy was used to observe the fluorescence intensity inside hIBDEC after stimulating with different concentrations of LPS and incubating with different concentrations of ACPP to determine the optimal concentration range for LPS stimulation and the optimal concentration for FITC-ACPP effect. Flow cytometry and magnetic resonance imaging were used to detect fluorescence signal intensity and nuclear magnetic resonance signal intensity, respectively, after stimulating with different concentrations of LPS. LPS stimulation time and ACPP incubation time were also evaluated, and variance analysis was conducted to analyze intracellular signal change characteristics for every group. Activatable Cell-Penetrating Peptides (ACPP), which were marked with FITC and Gd-DTPA had target-penetrating activity. The intracellular signal intensity gradually increased with the increase in LPS stimulation time and ACPP incubation time within a certain range; however, it did not increase with the increase of LPS concentration. ACPP can be used for imaging hIBDEC with epithelial-mesenchymal transition.
Collapse
|
6
|
Guihaire J, Itagaki R, Stubbendorff M, Hua X, Deuse T, Ullrich S, Fadel E, Dorfmüller P, Robbins RC, Reichenspurner H, Schumacher U, Schrepfer S. Orthotopic tracheal transplantation using human bronchus: an original xenotransplant model of obliterative airway disorder. Transpl Int 2016; 29:1337-1348. [PMID: 27614085 DOI: 10.1111/tri.12854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/30/2016] [Accepted: 08/29/2016] [Indexed: 01/09/2023]
Abstract
Bronchiolitis obliterans syndrome (BOS) is a main cause of allograft dysfunction and mortality after lung transplantation (LTx). A better understanding of BOS pathogenesis is needed to overcome this treatment-refractory complication. Orthotopic tracheal transplantation using human bronchus was performed in Brown Norway (BN) and nude (RNU) rats. Allografts were recovered in both strains at Day 7 (BN7 , n = 6; RNU7 , n = 7) or Day 28 (BN28 , n = 6; RNU28 , n = 6). Immune response of the host against the bronchial graft was assessed. Human samples from BOS patients were used to compare with the histological features of the animal model. Obstruction of the allograft lumen associated with significant infiltration of CD3+ and CD68+ cells was observed in the BN group on Day 28. Immune response from type 1 T-helper cells against the tracheal xenograft was higher in BN animals compared to nude animals on Days 7 and 28 (P < 0.001 and P = 0.035). Xenoreactive antibodies were significantly higher at Day 7 (IgM) and Day 28 (IgG) in the BN group compared to RNU (respectively, 37.6 ± 6.5 vs. 5.8 ± 0.7 mean fluorescence, P = 0.039; and 22.4 ± 3.8 vs. 6.9 ± 1.6 mean fluorescence, P = 0.011). Immunocompetent animals showed a higher infiltration of S100A4+ cells inside the bronchial wall after 28 days, associated with cartilage damage ranging from invasion to complete destruction. In vitro expression of S100A4 by human fibroblasts was higher when stimulated by mononuclear cells (MNCs) from BN rats than from RNU (2.9 ± 0.1 vs. 2.4 ± 0.1 mean fluorescence intensity, P = 0.005). Similarly, S100A4 was highly expressed in response to human MNCs compared to stimulation by T-cell-depleted human MNCs (4.3 ± 0.2 vs. 2.7 ± 0.1 mean fluorescence intensity, P < 0.001). Obliterative bronchiolitis has been induced in a new xenotransplant model in which chronic airway obstruction was associated with immune activation against the xenograft. Cartilage infiltration by S100A4+ cells might be stimulated by T cells.
Collapse
Affiliation(s)
- Julien Guihaire
- TSI-Laboratory, University Heart Center Hamburg, Hamburg, Germany.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Ryo Itagaki
- TSI-Laboratory, University Heart Center Hamburg, Hamburg, Germany.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Mandy Stubbendorff
- TSI-Laboratory, University Heart Center Hamburg, Hamburg, Germany.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Xiaoqin Hua
- TSI-Laboratory, University Heart Center Hamburg, Hamburg, Germany.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Tobias Deuse
- TSI-Laboratory, University Heart Center Hamburg, Hamburg, Germany.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany.,University of California San Francisco (UCSF) Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI), Lab San Francisco, CA, USA
| | - Sebastian Ullrich
- Department of Anatomy and Experimental Morphology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Elie Fadel
- Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, University of Paris Sud, Le Plessis Robinson, France
| | - Peter Dorfmüller
- Department of Pathology, Marie Lannelongue Hospital, University of Paris Sud, Le Plessis Robinson, France
| | - Robert C Robbins
- Department of Cardiothoracic Surgery, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hermann Reichenspurner
- Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Schrepfer
- TSI-Laboratory, University Heart Center Hamburg, Hamburg, Germany.,Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany.,Department of Cardiothoracic Surgery, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,University of California San Francisco (UCSF) Department of Surgery, Division of Cardiothoracic Surgery, Transplant and Stem Cell Immunobiology (TSI), Lab San Francisco, CA, USA
| |
Collapse
|
7
|
Dyson JK, Hirschfield GM, Adams DH, Beuers U, Mann DA, Lindor KD, Jones DEJ. Novel therapeutic targets in primary biliary cirrhosis. Nat Rev Gastroenterol Hepatol 2015; 12:147-58. [PMID: 25645973 DOI: 10.1038/nrgastro.2015.12] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary biliary cirrhosis (PBC) is a chronic immune-mediated liver disease characterized by progressive cholestasis, biliary fibrosis and eventually cirrhosis. It results in characteristic symptoms with marked effects on life quality. The advent of large patient cohorts has challenged the view of PBC as a benign condition treated effectively by the single licensed therapy-ursodeoxycholic acid (UDCA). UDCA nonresponse or under-response has a major bearing on outcome, substantially increasing the likelihood that liver transplantation will be required or that patients will die of the disease. In patients with high-risk, treatment-unresponsive or highly symptomatic disease the need for new treatment approaches is clear. Evolution in our understanding of disease mechanisms is rapidly leading to the advent of new and re-purposed therapeutic agents targeting key processes. Notable opportunities are offered by targeting what could be considered as the 'upstream' immune response, 'midstream' biliary injury and 'downstream' fibrotic processes. Combination therapy targeting several pathways or the development of novel agents addressing multiple components of the disease pathway might be required. Ultimately, PBC therapeutics will require a stratified approach to be adopted in practice. This Review provides a current perspective on potential approaches to PBC treatment, and highlights the challenges faced in evaluating and implementing those treatments.
Collapse
Affiliation(s)
- Jessica K Dyson
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Gideon M Hirschfield
- Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Wolfson Drive, Birmingham B15 2TT, UK
| | - David H Adams
- Centre for Liver Research, NIHR Biomedical Research Unit, University of Birmingham, Wolfson Drive, Birmingham B15 2TT, UK
| | - Ulrich Beuers
- Department of Gastroenterology &Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, G4-216, University of Amsterdam, PO Box 22600, NL-1100 DD, Amsterdam, Netherlands
| | - Derek A Mann
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Keith D Lindor
- College of Health Solutions, Arizona State University, 550 North 3rd Street, Phoenix, AZ 85004, USA
| | - David E J Jones
- Institute of Cellular Medicine, 3rd Floor William Leech Building, Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
8
|
Brain JG, Robertson H, Thompson E, Humphreys EH, Gardner A, Booth TA, Jones DEJ, Afford SC, von Zglinicki T, Burt AD, Kirby JA. Biliary epithelial senescence and plasticity in acute cellular rejection. Am J Transplant 2013; 13:1688-702. [PMID: 23750746 PMCID: PMC3746108 DOI: 10.1111/ajt.12271] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/26/2013] [Indexed: 01/25/2023]
Abstract
Biliary epithelial cells (BEC) are important targets in some liver diseases, including acute allograft rejection. Although some injured BEC die, many can survive in function compromised states of senescence or phenotypic de-differentiation. This study was performed to examine changes in the phenotype of BEC during acute liver allograft rejection and the mechanism driving these changes. Liver allograft sections showed a positive correlation (p < 0.0013) between increasing T cell mediated acute rejection and the number of BEC expressing the senescence marker p21(WAF1/Cip) or the mesenchymal marker S100A4. This was modeled in vitro by examination of primary or immortalized BEC after acute oxidative stress. During the first 48 h, the expression of p21(WAF1/Cip) was increased transiently before returning to baseline. After this time BEC showed increased expression of mesenchymal proteins with a decrease in epithelial markers. Analysis of TGF-β expression at mRNA and protein levels also showed a rapid increase in TGF-β2 (p < 0.006) following oxidative stress. The epithelial de-differentiation observed in vitro was abrogated by pharmacological blockade of the ALK-5 component of the TGF-β receptor. These data suggest that stress induced production of TGF-β2 by BEC can modify liver allograft function by enhancing the de-differentiation of local epithelial cells.
Collapse
Affiliation(s)
- J G Brain
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK
| | - H Robertson
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK
| | - E Thompson
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK
| | - E H Humphreys
- Centre for Liver Research, School of Infection and Immunity University of BirminghamBirmingham, UK,NIHR BRU Queen Elizabeth Hospital BirminghamUK
| | - A Gardner
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK
| | - T A Booth
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK
| | - D E J Jones
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK
| | - S C Afford
- Centre for Liver Research, School of Infection and Immunity University of BirminghamBirmingham, UK,NIHR BRU Queen Elizabeth Hospital BirminghamUK
| | - T von Zglinicki
- Institute for Ageing and Health, Newcastle UniversityNewcastle upon Tyne, UK
| | - A D Burt
- Clinical Deanery, Newcastle UniversityNewcastle upon Tyne, UK
| | - J A Kirby
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK,*Corresponding author: John A. Kirby,
| |
Collapse
|
9
|
Eosinophils promote epithelial to mesenchymal transition of bronchial epithelial cells. PLoS One 2013; 8:e64281. [PMID: 23700468 PMCID: PMC3660301 DOI: 10.1371/journal.pone.0064281] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 04/12/2013] [Indexed: 02/06/2023] Open
Abstract
Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF)-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling.
Collapse
|
10
|
Haugaa H, Thorgersen EB, Pharo A, Boberg KM, Foss A, Line PD, Sanengen T, Almaas R, Grindheim G, Waelgaard L, Pischke SE, Mollnes TE, Inge Tønnessen T. Inflammatory markers sampled by microdialysis catheters distinguish rejection from ischemia in liver grafts. Liver Transpl 2012; 18:1421-9. [PMID: 22767413 DOI: 10.1002/lt.23503] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/13/2012] [Indexed: 01/12/2023]
Abstract
Rejection and ischemia are serious complications after liver transplantation. Early detection is mandatory, but specific markers are largely missing, particularly for rejection. The objective of this study was to explore the ability of microdialysis catheters inserted in liver grafts to detect and discriminate rejection and ischemia through postoperative measurements of inflammatory mediators. Microdialysis catheters with a 100-kDa pore size were inserted into 73 transplants after reperfusion. After the study's completion, complement activation product 5a (C5a), C-X-C motif chemokine 8 (CXCL8), CXCL10, interleukin-1 (IL-1) receptor antagonist, IL-6, IL-10, and macrophage inflammatory protein 1β were analyzed en bloc in all grafts with biopsy-confirmed rejection (n = 12), in grafts with vascular occlusion/ischemia (n = 4), and in reference grafts with a normal postoperative course of circulating transaminase and bilirubin levels (n = 17). The inflammatory mediators were elevated immediately after graft reperfusion and decreased toward low, stable values during the first 24 hours in nonischemic grafts. In grafts suffering from rejection, CXCL10 increased significantly (P = 0.008 versus the reference group and P = 0.002 versus the ischemia group) 2 to 5 days before increases in circulating alanine aminotransferase and bilirubin levels. The area under the receiver operating characteristic curve was 0.81. Grafts with ischemia displayed increased levels of C5a (P = 0.002 versus the reference group and P = 0.008 versus the rejection group). The area under the curve was 0.99. IL-6 and CXCL8 increased with both ischemia and rejection. In conclusion, CXCL10 and C5a were found to be selective markers for rejection and ischemia, respectively.
Collapse
Affiliation(s)
- Håkon Haugaa
- Division of Emergencies and Critical Care, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen K, Kang Q. Progress in understanding the relationship between epithelial-mesenchymal transition and liver fibrosis. Shijie Huaren Xiaohua Zazhi 2012; 20:941-945. [DOI: 10.11569/wcjd.v20.i11.941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complicated pathophysiological process and is thought to play an important role in the pathogenesis of liver fibrosis recently. Evidence suggests that epithelial cells in the liver (hepatocytes, cholangiocytes and hepatic epithelial progenitors) may undergo EMT and contribute to liver fibrosis. EMT is regulated in liver fibrosis mainly through the transforming growth factor beta1 signaling pathway, and various cytokines are involved in this process. This review aims to elucidate the roles of EMT in the pathogenesis of liver fibrosis.
Collapse
|