1
|
Chen X, Wan H, Lu L, Li R, Sun B, Ren J. PLGA-PEG-c(RGDfK)- Kushenol E Micelles With a Therapeutic Potential for Targeting Ovarian Cancer. IET Nanobiotechnol 2024; 2024:7136323. [PMID: 39649540 PMCID: PMC11623995 DOI: 10.1049/nbt2/7136323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Background: As a naturally derived inhibitor of autophagy, Kushenol E (KE) is a biprenylated flavonoid and is isolated from Sophora flavescens, which has been used for the treatment of cancer, hepatitis, and skin diseases. However, KE, as a poorly soluble drug, exhibited strong autophagy regulating activity in in vitro cancer cell lines, but no related studies have reported its antiovarian cancer property. Therefore, it is very beneficial to enhance the antineoplastic properties of KE by establishing an ovarian tumor-targeting nanoparticle system modified with tumor-homing c(RGDfK) peptides. Materials and Methods: In the current study, poly(lactic-co-glycolic acid)-poly(ethylene glycol)-modified with cyclic RGDfK peptide (PLGA-PEG-c(RGDfK))-KE micelles (PPCKM) were prepared to overcome the poor water solubility of KE to meet the requirement of tumor-active targeting. The effect of PPCKM on ovarian cancer was evaluated on SKOV-3 cells and xenograft models in BALB/c nude mice. Results: The PPCKM showed a higher drug cumulative release ratio (82.16 ± 7.69% vs. 34.96 ± 3.05%, at 1.5 h) with good morphology, particle size (93.41 ± 2.84 nm), and entrapment efficiency (89.7% ± 1.3%). The cell viability, migration, and apoptosis analysis of SKOV-3 cells demonstrated that PPCKM retained potent antitumor effects and promoted apoptosis at early and advanced stages with concentration-dependent. Based on the establishment of xenograft models in BALB/c nude mice, we discovered that PPCKM reduced tumor volume and weight, inhibited proliferating cell nuclear antigen (PCNA) and Ki67 expression, as well as promoted apoptosis by targeting the tumor site. Conclusion: The findings in this study suggest that PPCKM may serve as an effective therapeutic option for ovarian cancer.
Collapse
Affiliation(s)
- Xue Chen
- Department of Traditional Chinese Medicine, Nanxiang Branch of Ruijin Hospital, Shanghai 201802, China
| | - Haopeng Wan
- Department of Traditional Chinese Medicine, Nanxiang Branch of Ruijin Hospital, Shanghai 201802, China
| | - Lijuan Lu
- Department of Gynecology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - Ran Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212001, China
| | - Bo Sun
- Department of Gynecology, Fangta Traditional Chinese Medicine Hospital of Songjiang District of Shanghai, Shanghai 201699, China
| | - Juan Ren
- Clinical Medical Center of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200241, China
| |
Collapse
|
2
|
Sepahi S, Kiaei L, Kiaei M, Ghorani-Azam A. A systematic review of emerging technologies to enhance the treatment of ovarian cancer. Pharm Dev Technol 2023; 28:660-677. [PMID: 37417773 DOI: 10.1080/10837450.2023.2233588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The efficacy and safety of chemotherapy are two major challenges when it comes to treating ovarian cancer. The associated undesirable side effects of chemotherapy agents jeopardize the clinical intent and the efficiency of the therapy. Multiple studies have been published describing new developments and novel strategies utilizing the latest therapeutic and drug delivery technologies to address the efficacy and safety of chemotherapeutics in ovarian cancers. We have identified five novel technologies that are available and, if used, have the potential to mitigate the above-mentioned challenges. Nanocarriers in different forms (Nano-gel, Aptamer, peptide medicated formulations, Antibody-drug conjugation, surface charge, and nanovesicle technologies) are developed and available to be employed to target the cancerous tissue. These strategies are promising to improve clinical efficacy and reduce side effects. We have systematically searched and analyzed published data, as well as the authors intent for the described technology on each publication. We narrowed to 81 key articles and extracted their data to be discussed in this review. In summary, the selected articles investigated the pharmacokinetic properties of drugs combined with nanocarriers and found significant improvement in efficacy and safety by reducing the IC50 values and drug doses. These key papers described promising novel technologies in anti-cancer therapeutic approaches to enable sustained drug release and achieve prolonged drug performance near the tumor site or target tissue.
Collapse
Affiliation(s)
- Samaneh Sepahi
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Lily Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Mahmoud Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, USA
- Department of Pharmacology and Toxicology, Department of Neurology, Department of Geriatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adel Ghorani-Azam
- Department of Forensic Medicine and Toxicology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Sevimli S, Knight FC, Gilchuk P, Joyce S, Wilson JT. Fatty Acid-Mimetic Micelles for Dual Delivery of Antigens and Imidazoquinoline Adjuvants. ACS Biomater Sci Eng 2017; 3:179-194. [PMID: 29046894 PMCID: PMC5642296 DOI: 10.1021/acsbiomaterials.6b00408] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vaccine design has undergone a shift towards the use of purified protein subunit vaccines, which offer increased safety and greater control over antigen specificity, but at the expense of immunogenicity. Here we report the development of a new polymer-based vaccine delivery platform engineered to enhance immunity through the co-delivery of protein antigens and the Toll-like receptor 7 (TLR7) agonist imiquimod (IMQ). Owing to the preferential solubility of IMQ in fatty acids, a series of block copolymer micelles with a fatty acid-mimetic core comprising lauryl methacrylate (LMA) and methacrylic acid (MAA), and a poly(ethylene glycol) methyl ether methacrylate (PEGMA) corona decorated with pyridyl disulfide ethyl methacrylate (PDSM) moieties for antigen conjugation were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Carriers composed of 50 mole% LMA (LMA50) demonstrated the highest IMQ loading (2.2 w/w%) and significantly enhanced the immunostimulatory capacity of IMQ to induce dendritic cell maturation and proinflammatory cytokine production. Conjugation of a model antigen, ovalbumin (OVA), to the corona of IMQ-loaded LMA50 micelles enhanced in vitro antigen uptake and cross-presentation on MHC class I (MHC-I). A single intranasal (IN) immunization of mice with carriers co-loaded with IMQ and OVA elicited significantly higher pulmonary and systemic CD8+ T cell responses and increased serum IgG titer relative to a soluble formulation of antigen and adjuvant. Collectively, these data demonstrate that rationally designed fatty acid-mimetic micelles enhance intracellular antigen and IMQ delivery and have potential as synthetic vectors for enhancing the immunogenicity of subunit vaccines.
Collapse
Affiliation(s)
- Sema Sevimli
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2400 Highland Avenue
| | - Frances C. Knight
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North
- Department of Veterans Administration Tennessee Valley Healthcare System, 1310 24th Avenue South
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Medical Center North
- Department of Veterans Administration Tennessee Valley Healthcare System, 1310 24th Avenue South
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2301 Vanderbilt Place, Nashville, TN 37235, USA
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 2400 Highland Avenue
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, 2301 Vanderbilt Place, Nashville, TN 37235, USA
| |
Collapse
|
4
|
Till U, Gibot L, Mingotaud AF, Ehrhart J, Wasungu L, Mingotaud C, Souchard JP, Poinso A, Rols MP, Violleau F, Vicendo P. Drug Release by Direct Jump from Poly(ethylene-glycol-b-ε-caprolactone) Nano-Vector to Cell Membrane. Molecules 2016; 21:E1643. [PMID: 27916905 PMCID: PMC6273951 DOI: 10.3390/molecules21121643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/07/2023] Open
Abstract
Drug delivery by nanovectors involves numerous processes, one of the most important being its release from the carrier. This point still remains unclear. The current work focuses on this point using poly(ethyleneglycol-b-ε-caprolactone) micelles containing either pheophorbide-a (Pheo-a) as a fluorescent probe and a phototoxic agent or fluorescent copolymers. This study showed that the cellular uptake and the phototoxicity of loaded Pheo-a are ten times higher than those of the free drug and revealed a very low cellular penetration of the fluorescence-labeled micelles. Neither loaded nor free Pheo-a displayed the same cellular localization as the labeled micelles. These results imply that the drug entered the cells without its carrier and probably without a disruption, as suggested by their stability in cell culture medium. These data allowed us to propose that Pheo-a directly migrates from the micelle to the cell without disruption of the vector. This mechanism will be discussed.
Collapse
Affiliation(s)
- Ugo Till
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Laure Gibot
- Université de Toulouse, Equipe de Biophysique Cellulaire, IPBS-CNRS UMR5089 205, Route de Narbonne BP 64182, 31077 Toulouse, France.
| | | | - Jérôme Ehrhart
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Luc Wasungu
- Université de Toulouse, Equipe de Biophysique Cellulaire, IPBS-CNRS UMR5089 205, Route de Narbonne BP 64182, 31077 Toulouse, France.
| | - Christophe Mingotaud
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Jean-Pierre Souchard
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Alix Poinso
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| | - Marie-Pierre Rols
- Université de Toulouse, Equipe de Biophysique Cellulaire, IPBS-CNRS UMR5089 205, Route de Narbonne BP 64182, 31077 Toulouse, France.
| | - Frédéric Violleau
- Université de Toulouse, Laboratoire de Chimie Agro-industrielle (LCA), INRA, INPT, INP-EI PURPAN, 31076 Toulouse, France.
| | - Patricia Vicendo
- Université de Toulouse, UPS/CNRS, IMRCP, 118 Rte de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
5
|
Chang T, Gosain P, Stenzel MH, Lord MS. Drug-loading of poly(ethylene glycol methyl ether methacrylate) (PEGMEMA)-based micelles and mechanisms of uptake in colon carcinoma cells. Colloids Surf B Biointerfaces 2016; 144:257-264. [PMID: 27100852 DOI: 10.1016/j.colsurfb.2016.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/11/2016] [Accepted: 04/08/2016] [Indexed: 11/25/2022]
Abstract
In this study polymeric micelles formed from poly(poly(ethylene glycol) methyl ether methacrylate)-block-poly(methyl methacrylate) (P(PEGMEMA75)-b-PMMA80) block copolymer of approximately 25nm in diameter were used to encapsulate the model drug, Nile Red, with a loading efficiency of 0.08wt% and a chemotherapeutic drug, doxorubicin (DOX), with an efficiency of 2.75wt%. The release of DOX from the micelles was sufficient to be cytotoxic to human colon carcinoma cells, WiDr, while Nile Red and the unloaded micelles were found not to be cytotoxic when exposed to the cells at polymer concentrations up to 200μg/mL. Nile Red loaded micelles were used to analyze uptake of the micelles into the cells which were rapidly internalized within minutes of exposure. The three major endocytotic pathways were involved in the internalization of micelles; however other passive mechanisms were also at play as the addition of inhibitors to all three pathways did not completely inhibit the uptake of these nanoparticles. These data demonstrate the potential of the P(PEGMEMA)75-b-PMMA80 block copolymer micelles to be rapidly internalized by carcinoma cells and deliver low doses of drugs intracellularly for controlled drug release.
Collapse
Affiliation(s)
- Teddy Chang
- Graduate School of Biomedical Engineering. University of New South Wales, Sydney, NSW 2052, Australia
| | - Pallavi Gosain
- Graduate School of Biomedical Engineering. University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering. University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
6
|
Kerdous R, Sureau F, Bour A, Bonneau S. Release kinetics of an amphiphilic photosensitizer by block-polymer nanoparticles. Int J Pharm 2015; 495:750-60. [PMID: 26387620 DOI: 10.1016/j.ijpharm.2015.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/27/2022]
Abstract
Block-polymer nanoparticles are now well-known candidates for the delivery of various non-soluble drugs to cells. The release of drugs from these nanoparticles is a major concern related to their efficiency as nanovectors and is still not completely deciphered. Various processes have been identified, depending of both the nature of the block-polymer and those of the drugs used. We focused our interest on an amphiphilic photosensitizer studied for photodynamic treatments of cancer, Pheophorbide-a (Pheo). We studied the transfer of Pheo from poly(ethyleneglycol-b-ϵ-caprolactone) nanoparticles (I) to MCF-7 cancer cells and (II) to models of membranes. Altogether, our results suggest that the delivery of the major part of the Pheo by the nanoparticles occurs via a direct transfer of Pheo from the nanoparticles to the membrane, by collision. A minor process may involve the internalization of a small amount of the nanoplatforms by the cells. So, this research illustrates the great care necessary to address the question of the choice of such nanocarriers, in relation with the properties - in particular the relative hydrophobicity - of the drugs encapsulated, and gives elements to predict the mechanism and the efficiency of the delivery.
Collapse
Affiliation(s)
- Rachid Kerdous
- Université Pierre et Marie Curie-Paris 6, Laboratoire Jean Perrin - UMR8237, 4 place Jussieu, Paris F-75005, France; CNRS, Laboratoire Jean Perrin, UMR8237, 4 place Jussieu, Paris F-75005, France
| | - Franck Sureau
- Université Pierre et Marie Curie-Paris 6, Laboratoire Jean Perrin - UMR8237, 4 place Jussieu, Paris F-75005, France; CNRS, Laboratoire Jean Perrin, UMR8237, 4 place Jussieu, Paris F-75005, France
| | - Aurélien Bour
- Université Pierre et Marie Curie-Paris 6, Laboratoire Jean Perrin - UMR8237, 4 place Jussieu, Paris F-75005, France; CNRS, Laboratoire Jean Perrin, UMR8237, 4 place Jussieu, Paris F-75005, France
| | - Stéphanie Bonneau
- Université Pierre et Marie Curie-Paris 6, Laboratoire Jean Perrin - UMR8237, 4 place Jussieu, Paris F-75005, France; CNRS, Laboratoire Jean Perrin, UMR8237, 4 place Jussieu, Paris F-75005, France.
| |
Collapse
|
7
|
Babiuch K, Dag A, Zhao J, Lu H, Stenzel MH. Carbohydrate-Specific Uptake of Fucosylated Polymeric Micelles by Different Cancer Cell Lines. Biomacromolecules 2015; 16:1948-57. [PMID: 26057004 DOI: 10.1021/acs.biomac.5b00299] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inspired by upregulated levels of fucosylated proteins on the surfaces of multiple types of cancer cells, micelles carrying β-l-fucose and β-d-glucose were prepared. A range of block copolymers were synthesized by reacting a mixture of 2-azidoethyl β-l-fucopyranoside (FucEtN3) and 2-azideoethyl β-d-glucopyranoside (GlcEtN3) with poly(propargyl methacrylate)-block-poly(n-butyl acrylate) (PPMA-b-PBA) using copper-catalyzed azide-alkyne cycloaddition (CuAAC). Five block copolymers were obtained ranging from 100 mol % fucose to 100% glucose functionalization. The resulting micelles had hydrodynamic diameters of around 30 nm. In this work, we show that fucosylated micelles reveal an increased uptake by pancreatic, lung, and ovarian carcinoma cell lines, whereas the uptake by the healthy cell lines (CHO) is negligible. This finding suggests that these micelles can be used for targeted drug delivery toward cancer cells.
Collapse
Affiliation(s)
- Krzysztof Babiuch
- †Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Aydan Dag
- †Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia.,‡Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, 34093 Fatih, Istanbul Turkey
| | - Jiacheng Zhao
- †Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Hongxu Lu
- †Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Martina H Stenzel
- †Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| |
Collapse
|
8
|
Khine YY, Jiang Y, Dag A, Lu H, Stenzel MH. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs. Macromol Biosci 2015; 15:1091-104. [DOI: 10.1002/mabi.201500057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/12/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Yee Yee Khine
- Centre for Advanced Macromolecular Design (CAMD); School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
| | - Yanyan Jiang
- Centre for Advanced Macromolecular Design (CAMD); School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
| | - Aydan Dag
- Centre for Advanced Macromolecular Design (CAMD); School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; BezmialemVakif University; 34093 Fatih Istanbul Turkey
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD); School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD); School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
9
|
Guan X, Hu X, Li Z, Zhang H, Xie Z. cRGD targeted and charge conversion-controlled release micelles for doxorubicin delivery. RSC Adv 2015. [DOI: 10.1039/c4ra14368j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A biodegradable polymeric micelle with cRGD targeting and charge-conversional moiety could enhance the cellular uptake of pharmaceuticals and result in high cytotoxicity to tumor cells.
Collapse
Affiliation(s)
- Xingang Guan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhihong Li
- Department of Thoracic Surgery
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Hong Zhang
- Department of Thoracic Surgery
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
10
|
Callari M, Aldrich-Wright JR, de Souza PL, Stenzel MH. Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Zhao L, Su R, Cui W, Shi Y, Liu L, Su C. Preparation of biocompatible heat-labile enterotoxin subunit B-bovine serum albumin nanoparticles for improving tumor-targeted drug delivery via heat-labile enterotoxin subunit B mediation. Int J Nanomedicine 2014; 9:2149-56. [PMID: 24851048 PMCID: PMC4018319 DOI: 10.2147/ijn.s60764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Heat-labile enterotoxin subunit B (LTB) is a non-catalytic protein from a pentameric subunit of Escherichia coli. Based on its function of binding specifically to ganglioside GM1 on the surface of cells, a novel nanoparticle (NP) composed of a mixture of bovine serum albumin (BSA) and LTB was designed for targeted delivery of 5-fluorouracil to tumor cells. BSA-LTB NPs were characterized by determination of their particle size, polydispersity, morphology, drug encapsulation efficiency, and drug release behavior in vitro. The internalization of fluorescein isothiocyanate-labeled BSA-LTB NPs into cells was observed using fluorescent imaging. Results showed that BSA-LTB NPs presented a narrow size distribution with an average hydrodynamic diameter of approximately 254±19 nm and a mean zeta potential of approximately −19.95±0.94 mV. In addition, approximately 80.1% of drug was encapsulated in NPs and released in the biphasic pattern. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that BSA-LTB NPs exhibited higher cytotoxic activity than non-targeted NPs (BSA NPs) in SMMC-7721 cells. Fluorescent imaging results proved that, compared with BSA NPs, BSA-LTB NPs could greatly enhance cellular uptake. Hence, the results indicate that BSA-LTB NPs could be a potential nanocarrier to improve targeted delivery of 5-fluorouracil to tumor cells via mediation of LTB.
Collapse
Affiliation(s)
- Liang Zhao
- School of Pharmacy, Liaoning Medical University, Jinzhou, People's Republic of China
| | - Rongjian Su
- Central Laboratory of Liaoning Medical University, Jinzhou, People's Republic of China
| | - Wenyu Cui
- National Vaccine and Serum Institute, Beijing, People's Republic of China
| | - Yijie Shi
- School of Pharmacy, Liaoning Medical University, Jinzhou, People's Republic of China
| | - Liwei Liu
- School of Pharmacy, Liaoning Medical University, Jinzhou, People's Republic of China
| | - Chang Su
- School of Veterinary Medicine, Liaoning Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
12
|
Yu JM, Li WD, Lu L, Zhou XY, Wang DY, Li HM, Xu XY, Chen J. Preparation and characterization of galactosylated glycol chitosan micelles and its potential use for hepatoma-targeting delivery of doxorubicin. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:691-701. [PMID: 24338380 DOI: 10.1007/s10856-013-5109-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
This study aimed to develop novel galactosylated cholesterol modified-glycol chitosan (Gal-CHGC) micelles for targeting delivery of doxorubicin (DOX) in live cancer cells. Three kinds of Gal-CHGC conjugates were synthesized and characterized. The mean particle size and critical aggregation concentration of these polymeric micelles increased with the increase of galactose substitution degree. The DOX-loaded micelles were prepared by an o/w method. The mean diameters of DOX-loaded galactosylated micelles were in the range of 387-497 nm. DOX released from drug-loaded micelles displayed a biphasic way. Cellular uptake studies demonstrated that DOX-loaded galactosylated micelles could enhance the uptake of DOX into HepG2 cells. Moreover, the cytotoxicity of DOX-loaded galactosylated micelles against HepG2 cells significantly improved in contrast with free DOX and DOX-loaded micelles without galactosylation. These results suggested that Gal-CHGC micelles could be a potential carrier for hepatoma-targeting drug delivery.
Collapse
Affiliation(s)
- Jing-Mou Yu
- Department of Pharmacy, College of Basic Medical Science, Jiujiang University, 17 Lufeng Road, Jiujiang, 332000, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
13
|
García A, Leonardi D, Salazar MO, Lamas MC. Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. complete in vitro evaluation and characterization. PLoS One 2014; 9:e88234. [PMID: 24551084 PMCID: PMC3925136 DOI: 10.1371/journal.pone.0088234] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/06/2014] [Indexed: 11/18/2022] Open
Abstract
The potential use of natural cyclodextrins and their synthetic derivatives have been studied extensively in pharmaceutical research and development to modify certain properties of hydrophobic drugs. The ability of these host molecules of including guest molecules within their cavities improves notably the physicochemical properties of poorly soluble drugs, such as albendazole, the first chosen drug to treat gastrointestinal helminthic infections. Thus, the aim of this work was to synthesize a beta cyclodextrin citrate derivative, to analyze its ability to form complexes with albendazole and to evaluate its solubility and dissolution rate. The synthesis progress of the cyclodextrin derivative was followed by electrospray mass spectrometry and the acid-base titration of the product. The derivative exhibited an important drug affinity. Nuclear magnetic resonance experiments demonstrated that the tail and the aromatic ring of the drug were inside the cavity of the cyclodextrin derivative. The inclusion complex was prepared by spray drying and full characterized. The drug dissolution rate displayed exceptional results, achieving 100% drug release after 20 minutes. The studies indicated that the inclusion complex with the cyclodextrin derivative improved remarkably the physicochemical properties of albendazole, being a suitable excipient to design oral dosage forms.
Collapse
Affiliation(s)
- Agustina García
- IQUIR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Santa Fe, Argentina
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Santa Fe, Argentina
| | - Darío Leonardi
- IQUIR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Santa Fe, Argentina
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Santa Fe, Argentina
- * E-mail: (DL); (MCL)
| | - Mario Oscar Salazar
- Área Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Santa Fe, Argentina
| | - María Celina Lamas
- IQUIR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Santa Fe, Argentina
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Santa Fe, Argentina
- * E-mail: (DL); (MCL)
| |
Collapse
|
14
|
Noorani L, Pourgholami MH, Liang M, Morris DL, Stenzel M. Albendazole loaded albumin nanoparticles for ovarian cancer therapy. EUROPEAN JOURNAL OF NANOMEDICINE 2014; 6. [DOI: 10.1515/ejnm-2014-0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
AbstractAlbendazole (ABZ), a well-established antiparasitic drug, has been shown to suppress tumor growth in a number of preclinical models of cancer. However, the low solubility of ABZ limits its use as a systemic anticancer agent. To enable systemic administration, we have formulated ABZ into albumin nanoparticles with a size range of 200–300 nm, which were cross-linked with glutaraldehyde to stabilize the nanoparticles and to introduce pH-responsive features. Drug release studies demonstrated that about 20% of ABZ was released at neutral pH within a week in comparison to 70% at slightly acidic condition (pH 5). Cellular uptake studies using ovarian cancer cells indicated that nanoparticles were internalized efficiently within 1 h of incubation. Further, cell proliferation results demonstrated that albumin nanoparticles alone showed no cytotoxicity to both normal and cancer cells. In contrast, the drug-loaded nanoparticles exhibited cellular toxicity and high killing efficacy to cancer cells compared to normal cells. Collectively, our results suggest that these albumin nanoparticles may hold great potentials as ABZ carriers for cancer therapy.
Collapse
|
15
|
Chang T, Lord MS, Bergmann B, Macmillan A, Stenzel MH. Size effects of self-assembled block copolymer spherical micelles and vesicles on cellular uptake in human colon carcinoma cells. J Mater Chem B 2014; 2:2883-2891. [DOI: 10.1039/c3tb21751e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Block copolymers, poly(oligo ethylene glycol methyl ether methacrylate)-block-poly(styrene), POEGMEMA-b-PS, with various block lengths were prepared via RAFT polymerization and subsequently self-assembled into various aggregates to investigate their uptake ability into cancer cells.
Collapse
Affiliation(s)
- Teddy Chang
- Centre for Advanced Macromolecular Design (CAMD)
- The University of New South Wales
- Sydney, Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| | - Björn Bergmann
- Centre for Advanced Macromolecular Design (CAMD)
- The University of New South Wales
- Sydney, Australia
- Fraunhofer Institute for Chemical Technology ICT
- 76327 Karlsruhe, Germany
| | - Alex Macmillan
- Biomedical Imaging Facility
- University of New South Wales
- , Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD)
- The University of New South Wales
- Sydney, Australia
| |
Collapse
|
16
|
Scarano W, Lu H, Stenzel MH. Boronic acid ester with dopamine as a tool for bioconjugation and for visualization of cell apoptosis. Chem Commun (Camb) 2014; 50:6390-3. [DOI: 10.1039/c3cc49100e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boronic esters between 1,2-benzodiols and boronic acids are an efficient way for bioconjugation. The ester is stable at physiological condition, but it cleaves very slowly at acidic pH values found in the endosomes and lysosomes. During apoptosis, the boronic ester is cleaved, most likely due to the influx of Ca2+ ions and the oxidation of 1,2-benzodiols.
Collapse
Affiliation(s)
- Wei Scarano
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney, Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- School of Chemistry
- University of New South Wales
- Sydney, Australia
| |
Collapse
|
17
|
Marelli UK, Rechenmacher F, Sobahi TRA, Mas-Moruno C, Kessler H. Tumor Targeting via Integrin Ligands. Front Oncol 2013; 3:222. [PMID: 24010121 PMCID: PMC3757457 DOI: 10.3389/fonc.2013.00222] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/13/2013] [Indexed: 01/02/2023] Open
Abstract
Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side-effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability, and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor-specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug-delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.
Collapse
Affiliation(s)
- Udaya Kiran Marelli
- Institute for Advanced Study (IAS) and Center for Integrated Protein Science (CIPSM), Department Chemie, Technische Universität München , Garching , Germany
| | | | | | | | | |
Collapse
|
18
|
Alamdarnejad G, Sharif A, Taranejoo S, Janmaleki M, Kalaee MR, Dadgar M, Khakpour M. Synthesis and characterization of thiolated carboxymethyl chitosan-graft-cyclodextrin nanoparticles as a drug delivery vehicle for albendazole. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1939-1949. [PMID: 23665921 DOI: 10.1007/s10856-013-4947-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
A new strategy for the synthesis of thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles by an ionic-gelation method is presented. The synthetic approach was based on the utilization of 1,6-hexamethylene diisocyanate during cyclodextrin grafting onto carboxymethyl chitosan. The use of the 1,6-hexamethylene diisocyanate resulted in reactions between cyclodextrin and active sites at the C6-position of chitosan, and preserved amino groups of chitosan for subsequent reactions with thioglycolic acid, as the thiolating agent, and tripolyphosphate, as the gelling counterion. Various methods such as scanning electron microscopy, rheology and in vitro release studies were employed to exhibit significant features of the nanoparticles for mucosal albendazole delivery applications. It was found that the thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles prepared using an aqueous solution containing 1 wt% of tripolyphosphate and having 115.65 (μmol/g polymer) of grafted thiol groups show both the highest mucoadhesive properties and the highest albendazole entrapment efficiency. The latter was confirmed theoretically by calculating the enthalpy of mixing of albendazole in the above thiolated chitosan polymer.
Collapse
|
19
|
Hussain AF, Krüger HR, Kampmeier F, Weissbach T, Licha K, Kratz F, Haag R, Calderón M, Barth S. Targeted Delivery of Dendritic Polyglycerol–Doxorubicin Conjugates by scFv-SNAP Fusion Protein Suppresses EGFR+ Cancer Cell Growth. Biomacromolecules 2013; 14:2510-20. [DOI: 10.1021/bm400410e] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ahmad Fawzi Hussain
- Department of Gynecology and
Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Harald Rune Krüger
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Florian Kampmeier
- Department of Imaging Sciences
and Biomedical Engineering, King’s College London, Westminster Bridge Road London SE1 7EH, U.K
| | - Tim Weissbach
- Department of Experimental Medicine
and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstrasse 20,
52074, Aachen, Germany
| | - Kai Licha
- mivenion GmbH, Robert-Koch-Platz 4, 10115,
Berlin, Germany
| | - Felix Kratz
- Tumor Biology Center and Proquinase GmbH, Breisacher Strasse 117, 79106, Freiburg,
Germany
| | - Rainer Haag
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Marcelo Calderón
- Institut für Chemie und
Biochemie, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Stefan Barth
- Department of Experimental Medicine
and Immunotherapy, Institute of Applied Medical Engineering, University Hospital RWTH Aachen, Pauwelsstrasse 20,
52074, Aachen, Germany
- Department of Pharmaceutical
Product Development, Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstrasse 6, 52074,
Aachen, Germany
| |
Collapse
|
20
|
Zhao Y, Lord MS, Stenzel MH. A polyion complex micelle with heparin for growth factor delivery and uptake into cells. J Mater Chem B 2013; 1:1635-1643. [DOI: 10.1039/c3tb00360d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Kim Y, Pourgholami MH, Morris DL, Lu H, Stenzel MH. Effect of shell-crosslinking of micelles on endocytosis and exocytosis: acceleration of exocytosis by crosslinking. Biomater Sci 2013; 1:265-275. [DOI: 10.1039/c2bm00096b] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
|
22
|
Duong HTT, Hughes F, Sagnella S, Kavallaris M, Macmillan A, Whan R, Hook J, Davis TP, Boyer C. Functionalizing Biodegradable Dextran Scaffolds Using Living Radical Polymerization: New Versatile Nanoparticles for the Delivery of Therapeutic Molecules. Mol Pharm 2012; 9:3046-61. [DOI: 10.1021/mp300144y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hien T. T. Duong
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Felicity Hughes
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Sharon Sagnella
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Maria Kavallaris
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Alexander Macmillan
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Renee Whan
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - James Hook
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Thomas P. Davis
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Cyrille Boyer
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| |
Collapse
|
23
|
Kim Y, Binauld S, Stenzel MH. Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles. Biomacromolecules 2012; 13:3418-26. [PMID: 22946476 DOI: 10.1021/bm301351e] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this work is to generate polymer micelles decorated with a synthetic version of cell-penetrating peptides, which are often rich in arginine with its positively charged guanidine group. A methacrylate-based monomer with guanidinium as functional groups was prepared using arginine (M-Arg) as a building block, resulting in a zwitterionic monomer. RAFT (reversible addition-fragmentation chain transfer) polymerization was employed to generate triblock copolymers with poly(methyl methacrylate)-block-poly(polyethylene glycol methyl ether methacrylate) as the first two blocks, which were subsequently chain extended with the guanidine-based monomer to generate micelles with guanidinium functional groups on the surface. To simulate the actual oligoarginine peptide, which only carries cationic charges, the carboxylate group of P(M-Arg) was methylated to convert the zwitterionic polymer into a cationic polymer P(Me-M-Arg). For comparison, micelles based on triblock copolymers with a third block with permanently cationic charges, poly(2-methacryolyloxy ethyl) trimethyl ammonium chloride (PTMA), was prepared. The hydrodynamic diameters of the micelles were approximately 30-40 nm based on DLS and TEM. A direct correlation between surface charge (zeta potential ζ) and cytotoxicity was observed. The micelles based on the zwitterionic P(M-Arg) were nontoxic (ζ = -10 mV at pH = 7), while the methylated version P(Me-M-Arg) with a high cationic charge (ζ = +35 mV at pH = 7) were observed to be toxic. The cellular uptake of the block copolymers by OVCAR-3 ovarian cancer cell lines was found to be relatively fast (about 35% in 3 min) reaching an equilibrium after approximately 30 min. Both micelles, with either P(M-Arg) or P(Me-M-Arg) on the surface, showed an enhanced uptake compared to micelles with P(PEGMEMA) as shell only. In fact, the percentage of uptake was similar, with the difference that cells incubated with micelles with P(M-Arg) (zwitterionic) stayed alive, while P(Me-M-Arg) (cationic) led to significant cell death.
Collapse
Affiliation(s)
- Yoseop Kim
- University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
24
|
Kim Y, Liemmawal ED, Pourgholami MH, Morris DL, Stenzel MH. Comparison of Shell-Cross-Linked Micelles with Soft and Glassy Cores as a Drug Delivery Vehicle for Albendazole: Is There a Difference in Performance? Macromolecules 2012. [DOI: 10.1021/ma300644v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoseop Kim
- Centre
for Advanced Macromolecular Design (CAMD) and ‡Cancer Research Laboratories, Department
of Surgery, St. George Hospital, University of New South Wales, Sydney NSW 2052, Australia
| | - Elviana D. Liemmawal
- Centre
for Advanced Macromolecular Design (CAMD) and ‡Cancer Research Laboratories, Department
of Surgery, St. George Hospital, University of New South Wales, Sydney NSW 2052, Australia
| | - Mohammad H. Pourgholami
- Centre
for Advanced Macromolecular Design (CAMD) and ‡Cancer Research Laboratories, Department
of Surgery, St. George Hospital, University of New South Wales, Sydney NSW 2052, Australia
| | - David L. Morris
- Centre
for Advanced Macromolecular Design (CAMD) and ‡Cancer Research Laboratories, Department
of Surgery, St. George Hospital, University of New South Wales, Sydney NSW 2052, Australia
| | - Martina H. Stenzel
- Centre
for Advanced Macromolecular Design (CAMD) and ‡Cancer Research Laboratories, Department
of Surgery, St. George Hospital, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
25
|
Kim Y, Pourgholami MH, Morris DL, Stenzel MH. Effect of Cross-Linking on the Performance of Micelles As Drug Delivery Carriers: A Cell Uptake Study. Biomacromolecules 2012; 13:814-25. [PMID: 22276949 DOI: 10.1021/bm201730p] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yoseop Kim
- Centre
for Advanced Macromolecular Design (CAMD) and ‡Cancer Research Laboratories, Department
of Surgery, St. George Hospital, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mohammad H. Pourgholami
- Centre
for Advanced Macromolecular Design (CAMD) and ‡Cancer Research Laboratories, Department
of Surgery, St. George Hospital, University of New South Wales, Sydney, NSW 2052, Australia
| | - David L. Morris
- Centre
for Advanced Macromolecular Design (CAMD) and ‡Cancer Research Laboratories, Department
of Surgery, St. George Hospital, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina H. Stenzel
- Centre
for Advanced Macromolecular Design (CAMD) and ‡Cancer Research Laboratories, Department
of Surgery, St. George Hospital, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Gregory A, Stenzel MH. Complex polymer architectures via RAFT polymerization: From fundamental process to extending the scope using click chemistry and nature's building blocks. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.08.004] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Moad G, Rizzardo E, Thang SH. Living Radical Polymerization by the RAFT Process – A Third Update. Aust J Chem 2012. [DOI: 10.1071/ch12295] [Citation(s) in RCA: 825] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper provides a third update to the review of reversible deactivation radical polymerization (RDRP) achieved with thiocarbonylthio compounds (ZC(=S)SR) by a mechanism of reversible addition-fragmentation chain transfer (RAFT) that was published in June 2005 (Aust. J. Chem. 2005, 58, 379). The first update was published in November 2006 (Aust. J. Chem. 2006, 59, 669) and the second in December 2009 (Aust. J. Chem. 2009, 62, 1402). This review cites over 700 publications that appeared during the period mid 2009 to early 2012 covering various aspects of RAFT polymerization which include reagent synthesis and properties, kinetics and mechanism of polymerization, novel polymer syntheses, and a diverse range of applications. This period has witnessed further significant developments, particularly in the areas of novel RAFT agents, techniques for end-group transformation, the production of micro/nanoparticles and modified surfaces, and biopolymer conjugates both for therapeutic and diagnostic applications.
Collapse
|
28
|
Yhaya F, Lim J, Kim Y, Liang M, Gregory AM, Stenzel MH. Development of Micellar Novel Drug Carrier Utilizing Temperature-Sensitive Block Copolymers Containing Cyclodextrin Moieties. Macromolecules 2011. [DOI: 10.1021/ma2013964] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Firdaus Yhaya
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- School of Industrial Technology, University Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Johnny Lim
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yoseop Kim
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Cancer Research Laboratories, Department of Surgery, St. George Hospital, University of New South Wales, Sydney, NSW 2217, Australia
| | - Mingtao Liang
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew M. Gregory
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
29
|
Duong HTT, Marquis CP, Whittaker M, Davis TP, Boyer C. Acid Degradable and Biocompatible Polymeric Nanoparticles for the Potential Codelivery of Therapeutic Agents. Macromolecules 2011. [DOI: 10.1021/ma201085z] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hien T. T. Duong
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, The University of New South Wales, 2052 NSW, Sydney, Australia
| | - Christopher P. Marquis
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, 2052 NSW, Sydney, Australia
| | - Michael Whittaker
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, The University of New South Wales, 2052 NSW, Sydney, Australia
| | - Thomas P. Davis
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, The University of New South Wales, 2052 NSW, Sydney, Australia
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, The University of New South Wales, 2052 NSW, Sydney, Australia
| |
Collapse
|
30
|
Blunden BM, Thomas DS, Stenzel MH. Analysis of Thiol-sensitive Core-cross-linked Polymeric Micelles Carrying Nucleoside Pendant Groups using 'On-line' Methods: Effect of Hydrophobicity on Cross-linking and Degradation. Aust J Chem 2011. [DOI: 10.1071/ch10448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amphiphilic block copolymers were prepared via reversible–addition fragmentation chain transfer (RAFT) polymerization and their synthesis, cross-linking, and degradation were studied using on-line monitoring. The focus of this work is the systematic alteration of the hydrophobic block using copolymers based on 5′-O-methacryloyluridine (MAU) and styrene at different compositions to determine the effect of the copolymer composition on the properties of the micelle. A poly(poly(ethylene glycol) methyl ether methacrylate) (PEGMA) macroRAFT agent was chain extended with a mixture of styrene and MAU. In both systems, an increasing fraction of styrene was found to reduce the rate of polymerization, but the functionality of the RAFT system was always maintained. The amphiphilic block copolymers were dialyzed against water to generate micelles with sizes between 17 and 25 nm according to dynamic light scattering (DLS). Increasing styrene content lead to smaller micelles (determined by DLS and transmission electron microscopy) and to lower critical micelle concentrations, which was measured using surface tensiometry. The micelles were further stabilized via core-cross-linking using bis(2-methacroyloxyethyl) disulfide as crosslinker. NMR analysis revealed a faster consumption of crosslinker with higher styrene content. These stable cross-linked micelles were investigated regarding their ability to degrade in the presence of dithiothreitol as a model reductant. Increasing the styrene content resulted in a faster degradation of the cross-linked micelles into unimers.
Collapse
|
31
|
Kim Y, Pourgholami MH, Morris DL, Stenzel MH. Triggering the fast release of drugs from crosslinked micelles in an acidic environment. JOURNAL OF MATERIALS CHEMISTRY 2011; 21:12777. [DOI: 10.1039/c1jm11062d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
|