1
|
Vitória Pupo Silvestrini A, Garcia Praça F, Nani Leite M, Carvalho de Abreu Fantini M, Andrey Cipriani Frade M, Vitória Lopes Badra Bentley M. Liquid crystalline nanoparticles enable a multifunctional approach for topical psoriasis therapy by co-delivering triptolide and siRNAs. Int J Pharm 2023; 640:123019. [PMID: 37149114 DOI: 10.1016/j.ijpharm.2023.123019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Liquid crystalline nanoparticles (LCNs) are an attractive drugs topical delivery system due to the great internal ordering, wide interfacial area and structural similarities with the skin. In this work, LCNs were designed to encapsulate triptolide (TP) and to complex on its surface small interfering RNAs (siRNA) targeting TNF-α and IL-6, aiming at topical co-delivery and regulating multi-targets in psoriasis. These multifunctional LCNs showed appropriate physicochemical properties for topical application, such as a mean size of 150 nm, low polydispersion, TP encapsulation greater than 90% and efficient complexation with siRNA. The internal reverse hexagonal mesostructure of LCNs was confirmed by SAXS while their morphology was assessed by cryo-TEM. In vitro permeation studies revealed an increase of more than 20-fold in the distribution of TP through the porcine epidermis/dermis was achieved after the application of LCN-TP or LCN TP in hydrogel. In cell culture, LCNs showed good compatibility and rapid internalization, which was attributed to macropinocytosis and caveolin-mediated endocytosis. Anti-inflammatory potential of multifunctional LCNs was assessed by reducing of TNF-α, IL-6, IL-1β and TGF-β1 levels in LPS-stimulated macrophages. These results support the hypothesis that the co-delivery of TP and siRNAs by LCNs may be a new strategy for psoriasis topical therapy.
Collapse
Affiliation(s)
- Ana Vitória Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, 14040-903, Ribeirao Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, 14040-903, Ribeirao Preto, SP, Brazil
| | - Marcel Nani Leite
- Division of Dermatology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Marco Andrey Cipriani Frade
- Division of Dermatology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
2
|
Li J, Parakhonskiy BV, Skirtach AG. A decade of developing applications exploiting the properties of polyelectrolyte multilayer capsules. Chem Commun (Camb) 2023; 59:807-835. [PMID: 36472384 DOI: 10.1039/d2cc04806j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Transferring the layer-by-layer (LbL) coating approach from planar surfaces to spherical templates and subsequently dissolving these templates leads to the fabrication of polyelectrolyte multilayer capsules. The versatility of the coatings of capsules and their flexibility upon bringing in virtually any material into the coatings has quickly drawn substantial attention. Here, we provide an overview of the main developments in this field, highlighting the trends in the last decade. In the beginning, various methods of encapsulation and release are discussed followed by a broad range of applications, which were developed and explored. We also outline the current trends, where the range of applications is continuing to grow, including addition of whole new and different application areas.
Collapse
Affiliation(s)
- Jie Li
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan V Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
3
|
Huang L, Li S, Zhou W, Gao J, Yin J, Wang Z, Li J. Cellular transport of uranium and its cytotoxicity effects on CHO-k1 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114166. [PMID: 36228352 DOI: 10.1016/j.ecoenv.2022.114166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Uranium is a radioactive heavy metal and a significant public health concern; however, its associated underlying toxicological mechanisms remain largely unknown. In this work, the uptake and efflux processes of uranium in CHO-k1 cells were studied and the cytotoxicity effects were explored. It was found that both the uptake and efflux processes took place rapidly and half of the internalized uranium was expelled within 8 h. The uranium exposure caused a decrease of cell viability and adhesion ability in a dose-dependent manner and blocked the cell cycle at the G1 stage. In addition, gene expression analysis revealed relative changes in the transcription of metabolism related genes. Further studies revealed that the cytotoxicity of uranium could be alleviated by exposing cells to a lower temperature or by the addition of amantadine-HCl, an endocytosis inhibitor. Interestingly, after uranium exposure, needle-like precipitates were observed in both intracellular and extracellular regions. These findings collectively suggest that the cellular transport of uranium is a rapid process that disturbs cell metabolism and induces cytotoxicity, and this impact could be reduced by slowing down endocytic processes.
Collapse
Affiliation(s)
- Liqun Huang
- China Institute for Radiation Protection, Taiyuan 030006, China; Department of Radiation Safety, China Institute of Atomic Energy, Beijing 102413, China
| | - Shufang Li
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Wenhua Zhou
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Jie Gao
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Jingjing Yin
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Zhongwen Wang
- Department of Radiation Safety, China Institute of Atomic Energy, Beijing 102413, China
| | - Jianguo Li
- China Institute for Radiation Protection, Taiyuan 030006, China.
| |
Collapse
|
4
|
Gholami L, Mahmoudi A, Kazemi Oskuee R, Malaekeh-Nikouei B. An overview of polyallylamine applications in gene delivery. Pharm Dev Technol 2022; 27:714-724. [PMID: 35880621 DOI: 10.1080/10837450.2022.2107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A chief objective of gene transportation studies is to manipulate clinically accepted carriers that can be utilized to combat incurable diseases. Despite various strategies, efficiency and application of these vectors have been hindered, owing to different obstacles. Polyallylamine (PAA) is a synthetic water-soluble, weak base cationic polymer with different properties that could be administrated as an ideal candidate for biomedical applications such as gene delivery, drug delivery, or even tissue engineering. However, some intrinsic properties of this polymer limit its application. The two associated problems with the use of PAA in gene delivery are low transfection efficiency (because of low buffering capacity) and cytotoxic effects attributed to intense cationic character. Most of the strategies for structural modification of the PAA structure have focused on introducing hydrophobic groups to the polymeric backbone that target both cytotoxicity and transfection. In this perspective, we concentrate on PAA as a gene delivery vehicle and the existing approaches for modification of this cationic polymer to give insight to researchers for exploitation of PAA as an efficient carrier in biomedical applications.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mahmoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Zhai Z, Ouyang W, Yao Y, Zhang Y, Zhang H, Xu F, Gao C. Dexamethasone-loaded ROS-responsive poly(thioketal) nanoparticles suppress inflammation and oxidative stress of acute lung injury. Bioact Mater 2022; 14:430-442. [PMID: 35415281 PMCID: PMC8965854 DOI: 10.1016/j.bioactmat.2022.01.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is associated with excessive inflammatory response, leading to acute respiratory distress syndrome (ARDS) without timely treatment. A fewer effective drugs are available currently to treat the ALI/ARDS. Herein, a therapeutic nanoplatform with reactive oxygen species (ROS)-responsiveness was developed for the regulation of inflammation. Dexamethasone acetate (Dex) was encapsulated into poly(thioketal) polymers to form polymeric nanoparticles (NPs) (PTKNPs@Dex). The NPs were composed of poly(1,4-phenyleneacetonedimethylene thioketal) (PPADT) and polythioketal urethane (PTKU), in which the thioketal bonds could be cleaved by the high level of ROS at the ALI site. The PTKNPs@Dex could accumulate in the pulmonary inflammatory sites and release the encapsulated payloads rapidly, leading to the decreased ROS level, less generation of pro-inflammatory cytokines, and reduced lung injury and mortality of mice. RNA sequencing (RNA-seq) analysis showed that the therapeutic efficacy of the NPs was associated with the modulation of many immune and inflammation-linked pathways. These findings provide a newly developed nanoplatform for the efficient treatment of ALI/ARDS. A therapeutic nanoplatform with ROS-responsiveness was developed for the regulation of inflammation. NPs composed of low Mw of PPADT and high Mw of PTKU were loaded with dexamethasone to obtain a self-adaptive system. The Dex-loaded NPs significantly decreased lung inflammation, and reduced lung injury and mortality in vivo.
Collapse
Affiliation(s)
- Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Ouyang
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuqi Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Corresponding author. Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Corresponding author. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
6
|
Ghiman R, Pop R, Rugina D, Focsan M. Recent progress in preparation of microcapsules with tailored structures for bio-medical applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Nanoparticle-Doped Hybrid Polyelectrolyte Microcapsules with Controlled Photoluminescence for Potential Bioimaging Applications. Polymers (Basel) 2021; 13:polym13234076. [PMID: 34883579 PMCID: PMC8658880 DOI: 10.3390/polym13234076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Fluorescent imaging is widely used in the diagnosis and tracking of the distribution, interaction, and transformation processes at molecular, cellular, and tissue levels. To be detectable, delivery systems should exhibit a strong and bright fluorescence. Quantum dots (QDs) are highly photostable fluorescent semiconductor nanocrystals with wide absorption spectra and narrow, size-tunable emission spectra, which make them suitable fluorescent nanolabels to be embedded into microparticles used as bioimaging and theranostic agents. The layer-by-layer deposition approach allows the entrapping of QDs, resulting in bright fluorescent microcapsules with tunable surface charge, size, rigidity, and functional properties. Here, we report on the engineering and validation of the structural and photoluminescent characteristics of nanoparticle-doped hybrid microcapsules assembled by the deposition of alternating oppositely charged polyelectrolytes, water-soluble PEGylated core/shell QDs with a cadmium selenide core and a zinc sulfide shell (CdSe/ZnS), and carboxylated magnetic nanoparticles (MNPs) onto calcium carbonate microtemplates. The results demonstrate the efficiency of the layer-by-layer approach to designing QD-, MNP-doped microcapsules with controlled photoluminescence properties, and pave the way for the further development of next-generation bioimaging agents based on hybrid materials for continuous fluorescence imaging.
Collapse
|
8
|
Biocompatibility of magnetic nanoparticles coating with polycations using A549 cells. J Biotechnol 2020; 325:25-34. [PMID: 33285149 DOI: 10.1016/j.jbiotec.2020.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/09/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023]
Abstract
Fe3O4 nanoparticles were obtained by chemical coprecipitation of iron chloride and sodium hydroxide. The morphology and sizes of the obtained nanoparticles were characterized using laser Doppler velocimetry, transmission electron and atomic force microscopy. Then the nanoparticles were stabilized by three polycations (polyethylenimine (PEI), poly(allylamine hydrochloride) (PAH), poly(diallyldimethylammonium chloride) (PDADMAC)) to increase their biocompatibility. The cytotoxicity of the obtained polymer-stabilized nanoparticles was studied using a human lung carcinoma cell line (A549). The biodistribution of nanoparticles stabilized by polycations in human lung carcinoma cells was analyzed by transmission electron microscopy, and the toxicity of nanomaterials was evaluated using toxicity tests and flow cytometry. As a result, the most biocompatible nanoparticle-biopolymer complex was identified. PAH stabilized magnetic nanoparticles demonstrated the best biocompatibility, and the PEI-magnetic nanoparticle complex was the most toxic.
Collapse
|
9
|
Uptake of microcapsules with different stiffness and its influence on cell functions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Alekseenko L, Shilina M, Kozhukharova I, Lyublinskaya O, Fridlyanskaya I, Nikolsky N, Grinchuk T. Impact of Polyallylamine Hydrochloride on Gene Expression and Karyotypic Stability of Multidrug Resistant Transformed Cells. Cells 2020; 9:E2332. [PMID: 33096691 PMCID: PMC7589997 DOI: 10.3390/cells9102332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
The synthetic polymer, polyallylamine hydrochloride (PAA), is found in a variety of applications in biotechnology and medicine. It is used in gene and siRNA transfer, to form microcapsules for targeted drug delivery to damaged and tumor cells. Conventional chemotherapy often does not kill all cancer cells and leads to multidrug resistance (MDR). Until recently, studies of the effects of PAA on cells have mainly focused on their morphological and genetic characteristics immediately or several hours after exposure to the polymer. The properties of the cell progeny which survived the sublethal effects of PAA and resumed their proliferation, were not monitored. The present study demonstrated that treatment of immortalized Chinese hamster cells CHLV-79 RJK sensitive (RJK) and resistant (RJKEB) to ethidium bromide (EB) with cytotoxic doses of PAA, selected cells with increased karyotypic instability, were accompanied by changes in the expression of p53 genes c-fos, topo2-α, hsp90, hsc70. These changes did not contribute to the progression of MDR, accompanied by the increased sensitivity of these cells to the toxic effects of doxorubicin (DOX). Our results showed that PAA does not increase the oncogenic potential of immortalized cells and confirmed that it can be used for intracellular drug delivery for anticancer therapy.
Collapse
|
11
|
He S, Zhong S, Xu L, Dou Y, Li Z, Qiao F, Gao Y, Cui X. Sonochemical fabrication of magnetic reduction-responsive alginate-based microcapsules for drug delivery. Int J Biol Macromol 2020; 155:42-49. [PMID: 32224184 DOI: 10.1016/j.ijbiomac.2020.03.186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
|
12
|
Xia Y, Chen H, Zhao Y, Zhang F, Li X, Wang L, Weir MD, Ma J, Reynolds MA, Gu N, Xu HHK. Novel magnetic calcium phosphate-stem cell construct with magnetic field enhances osteogenic differentiation and bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 98:30-41. [PMID: 30813031 DOI: 10.1016/j.msec.2018.12.120] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 01/09/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (IONPs) are promising bioactive additives to fabricate magnetic scaffolds for bone tissue engineering. To date, there has been no report on osteoinductivity of IONP-incorporated calcium phosphate cement (IONP-CPC) scaffold on stem cells using an exterior static magnetic field (SMF). The objectives of this study were to: (1) develop a novel magnetic IONP-CPC construct for bone tissue engineering, and (2) investigate the effects of IONP-incorporation and SMF application on the proliferation, osteogenic differentiation and bone mineral synthesis of human dental pulp stem cells (hDPSCs) seeded on IONP-CPC scaffold for the first time. The novel magnetic IONP-CPC under SMF enhanced the cellular performance of hDPSCs, yielding greater alkaline phosphatase activities (about 3-fold), increased expressions of osteogenic marker genes, and more cell-synthesized bone minerals (about 2.5-fold), compared to CPC control and nonmagnetic IONP-CPC. In addition, IONP-CPC induced more active osteogenesis than CPC control in rat mandible defects. These results were consistent with the enhanced cellular performance by magnetic IONP in media under SMF. Moreover, nano-aggregates were detected inside the cells by transmission electron microscopy (TEM). Therefore, the enhanced cell performance was attributed to the physical forces generated by the magnetic field together with cell internalization of the released magnetic nanoparticles from IONP-CPC constructs.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Huimin Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yantao Zhao
- Beijing Engineering Research Center of Orthopedic Implants, First Affiliated Hospital of CPLA General Hospital, Beijing 100048, China
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China
| | - Xiaodong Li
- Department of Oral Medicine, School of Stomatology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Wang
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Michael D Weir
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, Jiangsu 215123, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Marlene and Stewart Greene Baum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
13
|
Xu L, Zhong S, Shi C, Sun Y, Zhao S, Gao Y, Cui X. Sonochemical fabrication of reduction-responsive magnetic starch-based microcapsules. ULTRASONICS SONOCHEMISTRY 2018; 49:169-174. [PMID: 30082250 DOI: 10.1016/j.ultsonch.2018.07.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
In this work, a novel, biocompatible, non-immunogenic and reductive-responsive magnetic starch-based microcapsules (RMSMCs) were designed and fabricated successfully via a facile sonochemical method for targeted delivery and triggered release of hydrophobic drugs. TEM image indicated that oleic acid (OA) modified Fe3O4 nanoparticles (OA-Fe3O4 NPs) were encapsulated into RMSMCs. The obtained RMSMCs were endowed with magnetism for drug targeted delivery because that the superparamagnetic OA-Fe3O4 NPs were encapsulated into RMSMCs. Moreover, Coumarin 6 (C6), a green fluorescent dye, was used as a model hydrophobic drug and loaded into RMSMCs. As drug carriers, the obtained spherical RMSMCs with the average size of 2 μm presented excellent reductive-responsive release ability for hydrophobic drugs. Accordingly, the obtained RMSMCs would be promising carriers for targeted delivery and triggered release of hydrophobic drugs in biomedical applications.
Collapse
Affiliation(s)
- Lifeng Xu
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China
| | - Chao Shi
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yuexin Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shengnan Zhao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yan Gao
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
14
|
McGeachy AC, Dalchand N, Caudill ER, Li T, Doğangün M, Olenick LL, Chang H, Pedersen JA, Geiger FM. Interfacial electrostatics of poly(vinylamine hydrochloride), poly(diallyldimethylammonium chloride), poly-l-lysine, and poly-l-arginine interacting with lipid bilayers. Phys Chem Chem Phys 2018; 20:10846-10856. [DOI: 10.1039/c7cp07353d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Charge densities of cationic polymers adsorbed to lipid bilayers are estimated from SHG spectroscopy and QCM-D measurements.
Collapse
Affiliation(s)
- A. C. McGeachy
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - N. Dalchand
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - E. R. Caudill
- Department of Chemistry
- University of Wisconsin-Madison
- Madison
- USA
| | - T. Li
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - M. Doğangün
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - L. L. Olenick
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - H. Chang
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - J. A. Pedersen
- Department of Chemistry
- University of Wisconsin-Madison
- Madison
- USA
- Environmental Chemistry and Technology Program
| | - F. M. Geiger
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| |
Collapse
|
15
|
Zhang Y, Fry CG, Pedersen JA, Hamers RJ. Dynamics and Morphology of Nanoparticle-Linked Polymers Elucidated by Nuclear Magnetic Resonance. Anal Chem 2017; 89:12399-12407. [DOI: 10.1021/acs.analchem.7b03489] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yongqian Zhang
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Charles G. Fry
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Joel A. Pedersen
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Environmental
Chemistry and Technology Program, University of Wisconsin—Madison, 1525 Observatory Drive, Madison, Wisconsin 53706, United States
| | - Robert J. Hamers
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Dong L, Shi C, Guo L, Yang T, Sun Y, Cui X. Fabrication of redox and pH dual-responsive magnetic graphene oxide microcapsules via sonochemical method. ULTRASONICS SONOCHEMISTRY 2017; 36:437-445. [PMID: 28069231 DOI: 10.1016/j.ultsonch.2016.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
In this study, the biocompatible redox and pH dual-responsive magnetic graphene oxide microcapsules (MGOMCs) were prepared by a simple sonochemical method. The disulfide bonds cross-linked the wall of MGOMCs were formed from the hydrosulfuryl on the surface of thiolated graphene oxide, which was synthesized by functionalizing graphene oxide with cysteine, showed an excellent redox-responsive property to control drugs release. Moreover, oleic acid modified Fe3O4 nanoparticles were encapsulated into the microcapsules successfully with the hydrophobic drugs dispersed in the hydroxy silicone oil. The MGOMCs possess distinguished magnetic property and pH-responsive ability. Besides, the microcapsules could be engulfed by Hela cells successfully due to the appropriate size and flexible shell. The MGOMCs could be a good carrier for hydrophobic drugs, especially the anticancer drugs.
Collapse
Affiliation(s)
- Linlin Dong
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Chao Shi
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Lanlan Guo
- College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, PR China
| | - Ting Yang
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Yuexin Sun
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun, Jilin 130012, PR China.
| |
Collapse
|
17
|
Zyuzin MV, Díez P, Goldsmith M, Carregal-Romero S, Teodosio C, Rejman J, Feliu N, Escudero A, Almendral MJ, Linne U, Peer D, Fuentes M, Parak WJ. Comprehensive and Systematic Analysis of the Immunocompatibility of Polyelectrolyte Capsules. Bioconjug Chem 2017; 28:556-564. [DOI: 10.1021/acs.bioconjchem.6b00657] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Meir Goldsmith
- Laboratory
of PrecisonNanoMedicine, Department of Cell Research and Immunology,
George S. Wise Faculty of Life Sciences, Department of Materials Science
and Engineering, The Iby and Aladar Fleischman Faculty of Engineering,
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | | | | | - Alberto Escudero
- Instituto
de Ciencia de Materiales de Sevilla, CSIC − Universidad de Sevilla, C. Américo Vespucio 49, E-41092, Seville, Spain
| | - María Jesús Almendral
- Department
of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain
| | | | - Dan Peer
- Laboratory
of PrecisonNanoMedicine, Department of Cell Research and Immunology,
George S. Wise Faculty of Life Sciences, Department of Materials Science
and Engineering, The Iby and Aladar Fleischman Faculty of Engineering,
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Wolfgang J. Parak
- CIC biomaGUNE, Paseo de Miramón
182, 20014 Donostia
− San Sebastián, Spain
| |
Collapse
|
18
|
Baldassarre F, Allegretti C, Tessaro D, Carata E, Citti C, Vergaro V, Nobile C, Cannazza G, D'Arrigo P, Mele A, Dini L, Ciccarella G. Biocatalytic Synthesis of Phospholipids and Their Application as Coating Agents for CaCO3Nano-crystals: Characterization and Intracellular Localization Analysis. ChemistrySelect 2016. [DOI: 10.1002/slct.201601429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Francesca Baldassarre
- Biological and Environmental Sciences Department; University of Salento; Via Monteroni 73100 Lecce Italy
| | - Chiara Allegretti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”; Politecnico di Milano; via L. Mancinelli, 7 20131 Milano Italy
| | - Davide Tessaro
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”; Politecnico di Milano; via L. Mancinelli, 7 20131 Milano Italy
- The Protein Factor; Politecnico di Milano; via L. Mancinelli, 7 20131 Milano Italy
| | - Elisabetta Carata
- Biological and Environmental Sciences Department; University of Salento; Via Monteroni 73100 Lecce Italy
| | - Cinzia Citti
- Biological and Environmental Sciences Department; University of Salento; Via Monteroni 73100 Lecce Italy
| | - Viviana Vergaro
- Biological and Environmental Sciences Department; University of Salento; Via Monteroni 73100 Lecce Italy
| | - Concetta Nobile
- Institute of Nanotechnology, CNR NANOTEC; Centro Nazionale delle Ricerche; Via Monteroni 73100 Lecce Italy
| | - Giuseppe Cannazza
- Department of Life Sciences; Università degli Studi di Modena e Reggio Emilia; Via Università 4 41121 Modena Italy
| | - Paola D'Arrigo
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”; Politecnico di Milano; via L. Mancinelli, 7 20131 Milano Italy
- The Protein Factor; Politecnico di Milano; via L. Mancinelli, 7 20131 Milano Italy
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”; Politecnico di Milano; via L. Mancinelli, 7 20131 Milano Italy
- The Protein Factor; Politecnico di Milano; via L. Mancinelli, 7 20131 Milano Italy
| | - Luciana Dini
- Biological and Environmental Sciences Department; University of Salento; Via Monteroni 73100 Lecce Italy
| | - Giuseppe Ciccarella
- Biological and Environmental Sciences Department & UdR INSTM of Lecce; University of Salento; Via Monteroni 73100 Lecce Italy
- Institute of Nanotechnology, CNR NANOTEC; Centro Nazionale delle Ricerche; Via Monteroni 73100 Lecce Italy
| |
Collapse
|
19
|
Lepik KV, Muslimov AR, Timin AS, Sergeev VS, Romanyuk DS, Moiseev IS, Popova EV, Radchenko IL, Vilesov AD, Galibin OV, Sukhorukov GB, Afanasyev BV. Mesenchymal Stem Cell Magnetization: Magnetic Multilayer Microcapsule Uptake, Toxicity, Impact on Functional Properties, and Perspectives for Magnetic Delivery. Adv Healthc Mater 2016; 5:3182-3190. [PMID: 27860430 DOI: 10.1002/adhm.201600843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/26/2016] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) are widely used in cell therapy due to their convenience, multiline differentiation potential, reproducible protocols, and biological properties. The potential of MSCs to impregnate magnetic microcapsules and their possible influence on cell function and ability to response to magnetic field have been explored. Interestingly, the cells suspended in media show much higher ability in internalization of microcapsules, then MSCs adhere into the surface. There is no significant effect of microcapsules on cell toxicity compared with other cell line-capsule internalization reported in literature. Due to internalization of magnetic capsules by the cells, such cell engineering platform is responsive to external magnetic field, which allows to manipulate MSC migration. Magnetically sorted MSCs are capable to differentiation as confirmed by their conversion to adipogenic and osteogenic cells using standard protocols. There is a minor effect of capsule internalization on cell adhesion, though MSCs are still able to form spheroid made by dozen of thousand MSCs. This work demonstrates the potential of use of microcapsule impregnated MSCs to carry internalized micron-sized vesicles and being navigated with external magnetic signaling.
Collapse
Affiliation(s)
- Kirill V. Lepik
- Department of Hematology, Transfusion, and Transplantation; First I. P. Pavlov State Medical University of St. Petersburg; Lev Tolstoy str., 6/8 197022 Saint Petersburg Russian Federation
| | - Albert R. Muslimov
- Department of Hematology, Transfusion, and Transplantation; First I. P. Pavlov State Medical University of St. Petersburg; Lev Tolstoy str., 6/8 197022 Saint Petersburg Russian Federation
| | - Alexander S. Timin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 634050 Tomsk Russian Federation
| | - Vladislav S. Sergeev
- Department of Hematology, Transfusion, and Transplantation; First I. P. Pavlov State Medical University of St. Petersburg; Lev Tolstoy str., 6/8 197022 Saint Petersburg Russian Federation
| | - Dmitry S. Romanyuk
- Department of Hematology, Transfusion, and Transplantation; First I. P. Pavlov State Medical University of St. Petersburg; Lev Tolstoy str., 6/8 197022 Saint Petersburg Russian Federation
| | - Ivan S. Moiseev
- Department of Hematology, Transfusion, and Transplantation; First I. P. Pavlov State Medical University of St. Petersburg; Lev Tolstoy str., 6/8 197022 Saint Petersburg Russian Federation
| | - Elena V. Popova
- RASA Center in St. Petersburg; Peter The Great St. Petersburg Polytechnic University; Polytechnicheskaya, 29 195251 Saint Petersburg Russian Federation
- Institute of Macromolecular Compounds; Russian Academy of Sciences; Birzhevoy proezd str. 6 199004 Saint Petersburg Russian Federation
| | - Igor L. Radchenko
- RASA Center in St. Petersburg; Peter The Great St. Petersburg Polytechnic University; Polytechnicheskaya, 29 195251 Saint Petersburg Russian Federation
| | - Alexander D. Vilesov
- RASA Center in St. Petersburg; Peter The Great St. Petersburg Polytechnic University; Polytechnicheskaya, 29 195251 Saint Petersburg Russian Federation
- Institute of Macromolecular Compounds; Russian Academy of Sciences; Birzhevoy proezd str. 6 199004 Saint Petersburg Russian Federation
| | - Oleg V. Galibin
- Department of Hematology, Transfusion, and Transplantation; First I. P. Pavlov State Medical University of St. Petersburg; Lev Tolstoy str., 6/8 197022 Saint Petersburg Russian Federation
| | - Gleb B. Sukhorukov
- RASA Center in St. Petersburg; Peter The Great St. Petersburg Polytechnic University; Polytechnicheskaya, 29 195251 Saint Petersburg Russian Federation
- School of Engineering and Materials Science; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Boris V. Afanasyev
- Department of Hematology, Transfusion, and Transplantation; First I. P. Pavlov State Medical University of St. Petersburg; Lev Tolstoy str., 6/8 197022 Saint Petersburg Russian Federation
| |
Collapse
|
20
|
Fe 3O 4/BSA particles induce osteogenic differentiation of mesenchymal stem cells under static magnetic field. Acta Biomater 2016; 46:141-150. [PMID: 27646502 DOI: 10.1016/j.actbio.2016.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/08/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022]
Abstract
Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe3O4/BSA) particles were prepared, which showed a spherical morphology with a diameter below 200 nm, negatively charged surface, and tunable magnetic property. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field, resulting in almost twice intracellular amount of the particles within 21 d compared to that of the magnetic field free control. Uptake of the Fe3O4/BSA particles enhanced significantly the osteogenic differentiation of MSCs under a static magnetic field, as evidenced by elevated alkaline phosphatase (ALP) activity, calcium deposition, and expressions of collagen type I and osteocalcin at both mRNA and protein levels. Therefore, uptake of the Fe3O4/BSA particles brings significant influence on the differentiation of MSCs under magnetic field, and thereby should be paid great attention for practical applications. STATEMENT OF SIGNIFICANCE Differentiation of stem cells is influenced by many factors, yet uptake of the magnetic particles with or without magnetic field is rarely tackled. In this study, iron oxide nanoparticles-loaded bovine serum albumin (BSA) (Fe3O4/BSA) particles with a diameter below 200nm, negatively charged surface, tunable Fe3O4 content and subsequently adjustable magnetic property were prepared. The particles could be internalized into bone marrow mesenchymal stem cells (MSCs), and their release from the cells was significantly retarded under external magnetic field. Uptake of the Fe3O4/BSA particles enhanced significantly the osteogenic differentiation of MSCs under a constant static magnetic field, while the magnetic particles and external magnetic field alone do not influence significantly the osteogenic differentiation potential of MSCs regardless of the uptake amount. The results demonstrate a potential magnetic manipulation method for stem cell differentiation, and also convey the significance of careful evaluation of the safety issue of magnetic particles in real an application situation.
Collapse
|
21
|
Donatan S, Yashchenok A, Khan N, Parakhonskiy B, Cocquyt M, Pinchasik BE, Khalenkow D, Möhwald H, Konrad M, Skirtach A. Loading Capacity versus Enzyme Activity in Anisotropic and Spherical Calcium Carbonate Microparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:14284-92. [PMID: 27166641 DOI: 10.1021/acsami.6b03492] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A new method of fabrication of calcium carbonate microparticles of ellipsoidal, rhomboidal, and spherical geometries is reported by adjusting the relative concentration ratios of the initial salt solutions and/or the ethylene glycol content in the reaction medium. Morphology, porosity, crystallinity, and loading capacity of synthesized CaCO3 templates were characterized in detail. Particles harboring dextran or the enzyme guanylate kinase were obtained through encapsulation of these macromolecules using the layer-by-layer assembly technique to deposit positively and negatively charged polymers on these differently shaped CaCO3 templates and were characterized by confocal laser scanning fluorescence microscopy, fluorometric techniques, and enzyme activity measurements. The enzymatic activity, an important application of such porous particles and containers, has been analyzed in comparison with the loading capacity and geometry. Our results reveal that the particles' shape influences morphology of particles and that, as a result, affects the activity of the encapsulated enzymes, in addition to the earlier reported influence on cellular uptake. These particles are promising candidates for efficient drug delivery due to their relatively high loading capacity, biocompatibility, and easy fabrication and handling.
Collapse
Affiliation(s)
- Senem Donatan
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces , Golm/Potsdam D-14476, Germany
| | - Alexey Yashchenok
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces , Golm/Potsdam D-14476, Germany
- Remote Controlled Theranostic Systems Lab, Institute of Nanostructres and Biosystems, Saratov State University , 410012 Saratov, Russia
| | - Nazimuddin Khan
- Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry , Göttingen D-37077, Germany
| | - Bogdan Parakhonskiy
- A.V. Shubnikov Institute of Crystallography RAS , 119333 Moscow, Russia
- Remote Controlled Theranostic Systems Lab, Institute of Nanostructres and Biosystems, Saratov State University , 410012 Saratov, Russia
- Department of Molecular Biotechnology, NB-Photonics Group, Ghent University , Ghent 9000, Belgium
| | - Melissa Cocquyt
- Department of Molecular Biotechnology, NB-Photonics Group, Ghent University , Ghent 9000, Belgium
| | - Bat-El Pinchasik
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces , Golm/Potsdam D-14476, Germany
- Department of Physics at Interfaces, Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Dmitry Khalenkow
- Department of Molecular Biotechnology, NB-Photonics Group, Ghent University , Ghent 9000, Belgium
| | - Helmuth Möhwald
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces , Golm/Potsdam D-14476, Germany
| | - Manfred Konrad
- Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry , Göttingen D-37077, Germany
| | - Andre Skirtach
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces , Golm/Potsdam D-14476, Germany
- Department of Molecular Biotechnology, NB-Photonics Group, Ghent University , Ghent 9000, Belgium
| |
Collapse
|
22
|
Wiraja C, Yeo DC, Chong MSK, Xu C. Nanosensors for Continuous and Noninvasive Monitoring of Mesenchymal Stem Cell Osteogenic Differentiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1342-50. [PMID: 26756453 DOI: 10.1002/smll.201502047] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/15/2015] [Indexed: 05/22/2023]
Abstract
Assessing mesenchymal stem cell (MSC) differentiation status is crucial to verify therapeutic efficacy and optimize treatment procedures. Currently, this involves destructive methods including antibody-based protein detection and polymerase chain reaction gene analysis, or laborious and technically challenging genetic reporters. Development of noninvasive methods for real-time differentiation status assessment can greatly benefit MSC-based therapies. This report introduces a nanoparticle-based sensing platform that encapsulates two molecular beacon (MB) probes within the same biodegradable polymeric nanoparticles. One MB targets housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal reference, while another detects alkaline phosphatase (ALP), a functional biomarker. Following internalization, MBs are gradually released as the nanoparticle degrades. GAPDH MBs provide a stable reference signal throughout the monitoring period (18 days) regardless of differentiation induction. Meanwhile, ALP mRNA undergoes well-defined dynamics with peak expression observed during early stages of osteogenic differentiation. By normalizing ALP-MB signal with GAPDH-MB, changes in ALP expression can be monitored, to noninvasively validate osteogenic differentiation. As proof-of-concept, a dual-colored nanosensor is applied to validate MSC osteogenesis on 2D culture and polycaprolactone films containing osteo-inductive tricalcium phospate.
Collapse
Affiliation(s)
- Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, Singapore
| | - David C Yeo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, Singapore
| | - Mark S K Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore
| |
Collapse
|
23
|
Yahia-Ammar A, Sierra D, Mérola F, Hildebrandt N, Le Guével X. Self-Assembled Gold Nanoclusters for Bright Fluorescence Imaging and Enhanced Drug Delivery. ACS NANO 2016; 10:2591-9. [PMID: 26845515 DOI: 10.1021/acsnano.5b07596] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles combining enhanced cellular drug delivery with efficient fluorescence detection are important tools for the development of theranostic agents. Here, we demonstrate this concept by a simple, fast, and robust protocol of cationic polymer-mediated gold nanocluster (Au NCs) self-assembly into nanoparticles (NPs) of ca. 120 nm diameter. An extensive characterization of the monodisperse and positively charged NPs revealed pH-dependent swelling properties, strong fluorescence enhancement, and excellent colloidal and photostability in water, buffer, and culture medium. The versatility of the preparation is demonstrated by using different Au NC surface ligands and cationic polymers. Steady-state and time-resolved fluorescence measurements give insight into the aggregation-induced emission phenomenon (AIE) by tuning the Au NC interactions in the self-assembled nanoparticles using the pH-dependent swelling. In vitro studies in human monocytic cells indicate strongly enhanced uptake of the NPs compared to free Au NCs in endocytic compartments. The NPs keep their assembly structure with quite low cytotoxicity up to 500 μg Au/mL. Enhanced drug delivery is demonstrated by loading peptides or antibodies in the NPs using a one-pot synthesis. Fluorescence microscopy and flow cytometry confirmed intracellular colocalization of the biomolecules and the NP carriers with a respective 1.7-fold and 6.5-fold enhanced cellular uptake of peptides and antibodies compared to the free biomolecules.
Collapse
Affiliation(s)
- Akram Yahia-Ammar
- NanoBioPhotonics, Institut d'Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud , CNRS, 91400 Orsay, France
| | - Daniel Sierra
- Therapeutic Nanosystems, The Andalusian Centre for Nanomedicine and Biotechnology, BIONAND , 29590 Málaga, Spain
| | - Fabienne Mérola
- Laboratoire de Chimie Physique, Université Paris-Saclay and Université Paris-Sud , CNRS, 91400 Orsay, France
| | - Niko Hildebrandt
- NanoBioPhotonics, Institut d'Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud , CNRS, 91400 Orsay, France
| | - Xavier Le Guével
- Therapeutic Nanosystems, The Andalusian Centre for Nanomedicine and Biotechnology, BIONAND , 29590 Málaga, Spain
| |
Collapse
|
24
|
Kreuzer M, Trapp M, Dahint R, Steitz R. Polymer-Induced Swelling of Solid-Supported Lipid Membranes. MEMBRANES 2015; 6:membranes6010002. [PMID: 26703746 PMCID: PMC4812408 DOI: 10.3390/membranes6010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/04/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
Abstract
In this paper, we study the interaction of charged polymers with solid-supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes by in-situ neutron reflectivity. We observe an enormous swelling of the oligolamellar lipid bilayer stacks after incubation in solutions of poly(allylamine hydrochloride) (PAH) in D2O. The positively charged polyelectrolyte molecules interact with the lipid bilayers and induce a drastic increase in their d-spacing by a factor of ~4. Temperature, time, and pH influence the swollen interfacial lipid linings. From our study, we conclude that electrostatic interactions introduced by the adsorbed PAH are the main cause for the drastic swelling of the lipid coatings. The DMPC membrane stacks do not detach from their solid support at T > Tm. Steric interactions, also introduced by the PAH molecules, are held responsible for the stabilizing effect. We believe that this novel system offers great potential for fundamental studies of biomembrane properties, keeping the membrane’s natural fluidity and freedom, decoupled from a solid support at physiological conditions.
Collapse
Affiliation(s)
- Martin Kreuzer
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
| | - Marcus Trapp
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
| | - Reiner Dahint
- Angewandte Physikalische Chemie, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, Heidelberg 69120, Germany.
| | - Roland Steitz
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany.
| |
Collapse
|
25
|
Yu W, Zhang W, Chen Y, Song X, Tong W, Mao Z, Gao C. Cellular uptake of poly(allylamine hydrochloride) microcapsules with different deformability and its influence on cell functions. J Colloid Interface Sci 2015; 465:149-57. [PMID: 26674230 DOI: 10.1016/j.jcis.2015.11.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022]
Abstract
It is important to understand the safety issue and cell interaction pattern of polyelectrolyte microcapsules with different deformability before their use in biomedical applications. In this study, SiO2, poly(sodium-p-styrenesulfonate) (PSS) doped CaCO3 and porous CaCO3 spheres, all about 4μm in diameter, were used as templates to prepare microcapsules with different inner structure and subsequent deformability. As a result, three kinds of covalently assembled poly(allylaminehydrochloride)/glutaraldehyde (PAH/GA) microcapsules with similar size but different deformability under external osmotic pressure were prepared. The impact of different microcapsules on cell viability and functions are studied using smooth muscle cells (SMCs), endothelial cells (ECs) and HepG2 cells. The results demonstrated that viabilities of SMCs, ECs and HepG2 cells were not significantly influenced by either of the three kinds of microcapsules. However, the adhesion ability of SMCs and ECs as well as the mobility of SMCs, ECs and HepG2 cells were significantly impaired after treatment with microcapsules in a deformability dependent manner, especially the microcapsules with lower deformability caused higher impairment on cell functions. The cellular uptake kinetics, uptake pathways, intracellular distribution of microcapsules are further investigated in SMCs to reveal the potential mechanism. The SMCs showed faster uptake rate and exocytosis rate of microcapsules with lower deformability (Cap@CaCO3/PSS and Cap@CaCO3), leading to higher intracellular accumulation of microcapsules with lower deformability and possibly larger retardation of cell functions. The results pointed out that the deformability of microcapsules is an important factor governing the biological performance of microcapsules, which requires careful adjustment for further biomedical applications.
Collapse
Affiliation(s)
- Wei Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenbo Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ying Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoxue Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
26
|
Parakhonskiy B, Zyuzin MV, Yashchenok A, Carregal-Romero S, Rejman J, Möhwald H, Parak WJ, Skirtach AG. The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J Nanobiotechnology 2015; 13:53. [PMID: 26337452 PMCID: PMC4558630 DOI: 10.1186/s12951-015-0111-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/28/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Recent reports highlighting the role of particle geometry have suggested that anisotropy can affect the rate and the pathway of particle uptake by cells. Therefore, we investigate the internalization by cells of porous calcium carbonate particles with different shapes and anisotropies. RESULTS We report here on a new method of the synthesis of polyelectrolyte coated calcium carbonate particles whose geometry was controlled by varying the mixing speed and time, pH value of the reaction solution, and ratio of the interacting salts used for particle formation. Uptake of spherical, cuboidal, ellipsoidal (with two different sizes) polyelectrolyte coated calcium carbonate particles was studied in cervical carcinoma cells. Quantitative data were obtained from the analysis of confocal laser scanning microscopy images. CONCLUSIONS Our results indicate that the number of internalized calcium carbonate particles depends on the aspect ratio of the particle, whereby elongated particles (higher aspect ratio) are internalized with a higher frequency than more spherical particles (lower aspect ratio). The total volume of internalized particles scales with the volume of the individual particles, in case equal amount of particles were added per cell.
Collapse
Affiliation(s)
- Bogdan Parakhonskiy
- Shubnikov Institute of Crystallography, Russian Academy of Science, Moscow, Russia.
- Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia.
| | - Mikhail V Zyuzin
- Fachbereich Physik, Philipps University of Marburg, Marburg, Germany.
| | - Alexey Yashchenok
- Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia.
- Department of Interfaces, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | | | - Joanna Rejman
- Fachbereich Physik, Philipps University of Marburg, Marburg, Germany.
| | - Helmuth Möhwald
- Department of Interfaces, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps University of Marburg, Marburg, Germany.
| | - Andre G Skirtach
- Department of Interfaces, Max-Planck Institute of Colloids and Interfaces, Potsdam, Germany.
- NanoBio-Photonics, Ghent University, Ghent, Belgium.
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.
| |
Collapse
|
27
|
Wiraja C, Yeo DC, Chew SY, Xu C. Molecular beacon-loaded polymeric nanoparticles for non-invasive imaging of mRNA expression. J Mater Chem B 2015; 3:6148-6156. [PMID: 32262733 DOI: 10.1039/c5tb00876j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assessment of intracellular mRNA expression is invaluable for understanding cellular signaling activities, identifying disease stages, and monitoring the gene expression pattern of therapeutic cells during their culture, expansion and/or differentiation process. Previous methods suffer from the need to disrupt the biological samples to perform polymerase chain reaction analysis which can be laborious, fragmented and destructive. Herein, we develop a mRNA nanosensor based on the sustained release of mRNA-specific molecular beacons (probes that fluoresce upon hybridization) from the biodegradable poly(d,l-lactide-co-glycolide) nanoparticles. Post cellular internalization, the particles gradually degrade and release the encapsulated probes which are initially weakly fluorescent. When the released probes meet and hybridize with target mRNA, they restore pre-quenched fluorescence. By virtue of quantifying the fluorescence intensity, we can estimate the cellular mRNA expression. As a case study, β-actin mRNA expression in mesenchymal stem cells cultured on a 3D matrix was monitored and compared with those cultured on a 2D plate for one week. Critically, the observed expression profile shows a great correlation with the established quantitative polymerase chain reaction analysis.
Collapse
Affiliation(s)
- Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | | | | | | |
Collapse
|
28
|
Jiang P, Mao Z, Gao C. Combinational effect of matrix elasticity and alendronate density on differentiation of rat mesenchymal stem cells. Acta Biomater 2015; 19:76-84. [PMID: 25805109 DOI: 10.1016/j.actbio.2015.03.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/26/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Abstract
Differentiation of mesenchymal stem cells (MSCs) is regulated by multivariate physical and chemical signals in a complicated microenvironment. In this study, polymerizable double bonds (GelMA) and osteo-inductive alendronate (Aln) (Aln-GelMA) were sequentially grafted onto gelatin molecules. The biocompatible hydrogels with defined stiffness in the range of 4-40 kPa were prepared by using polyethylene glycol diacrylate (PEGDA) as additional crosslinker. The Aln density was adjusted from 0 to 4 μM by controlling the ratio between the GelMA and Aln-GelMA. The combinational effects of stiffness and Aln density on osteogenic differentiation of MSCs were then studied in terms of ALP activity, collagen type I and osteocalcin expression, and calcium deposition. The results indicated that the stiffness and Aln density could synergistically improve the expression of all these osteogenesis markers. Their osteo-inductive effects are comparable to some extent, and high Aln density could be more effective than the stiffness.
Collapse
|
29
|
Go NK, Lee JS, Lee JH, Hur W. Growth, cell cycle progression, and morphology of 3T3 cells following fibroin microsphere ingestion. J Biomed Mater Res A 2014; 103:1325-31. [PMID: 25044553 DOI: 10.1002/jbm.a.35269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/06/2014] [Accepted: 06/24/2014] [Indexed: 11/09/2022]
Abstract
Cellular uptake of microspheres may cause physiological stress and toxicity. In this report, we investigated the effect of cellular uptake of fibroin microspheres on the growth, cell cycle progression, and morphology of 3T3 cells. The microspheres were prepared by physical cross-linking of fibroin molecules without any chemical modification. Fluorescent microspheres are comprised of fluorescein isothiocyanate-dextran core and fibroin shell. More than 90% of cells were determined to be fluorescence-positive following 24-h incubation with fluorescent microspheres (0.17 mg/mL). Microsphere localization in the cytoplasm was demonstrated using confocal and transmission electron microscopy. Cellular uptake of microspheres did not influence cellular viability, but microsphere concentrations above 0.1 mg/mL resulted in decreased cell proliferation. The proliferation inhibition was attributed to G2 /M phase delay in cell cycle progression and S-phase delay at higher microsphere concentrations (0.33 mg/mL). Although flow cytometry light-scattering data raised the possibility of morphological changes, Coulter counter analysis confirmed no significant size differences between cells incubated with and without microspheres. Accordingly, fibroin microspheres can be a potential vehicle for intracytoplasmic delivery of cargos, without affecting cell viability.
Collapse
Affiliation(s)
- Nam Kyung Go
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, 200-701, Korea
| | | | | | | |
Collapse
|
30
|
She S, Yu D, Han X, Tong W, Mao Z, Gao C. Fabrication of biconcave discoidal silica capsules and their uptake behavior by smooth muscle cells. J Colloid Interface Sci 2014; 426:124-30. [PMID: 24863774 DOI: 10.1016/j.jcis.2014.03.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Biconcave discoidal silica microcapsules were fabricated by reaction of tetraethoxysilane (TEOS) on biconcave discoidal Ca(OH)2 templates, followed by core removal. The biconcave discoidal morphology of microcapsules was characterized by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). The thickness of silica capsule shell can be tuned by two methods, "Gradient concentration" method and "Multi-step growth" method. Through the latter one, the shell thickness can be controlled more effectively. Compared with spherical microcapsules, the biconcave discoidal ones were internalized into smooth muscle cells (SMCs) with a slower rate.
Collapse
Affiliation(s)
- Shupeng She
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dahai Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xu Han
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
31
|
Song X, Li H, Tong W, Gao C. Fabrication of triple-labeled polyelectrolyte microcapsules for localized ratiometric pH sensing. J Colloid Interface Sci 2013; 416:252-7. [PMID: 24370429 DOI: 10.1016/j.jcis.2013.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 01/11/2023]
Abstract
Encapsulation of pH sensitive fluorophores as reporting molecules provides a powerful approach to visualize the transportation of multilayer capsules. In this study, two pH sensitive dyes (fluorescein and oregon green) and one pH insensitive dye (rhodamine B) were simultaneously labeled on the microcapsules to fabricate ratiometric pH sensors. The fluorescence of the triple-labeled microcapsule sensors was robust and nearly independent of other intracellular species. With a dynamic pH measurement range of 3.3-6.5, the microcapsules can report their localized pH at a real time. Cell culture experiments showed that the microcapsules could be internalized by RAW 246.7 cells naturally and finally accumulated in acidic organelles with a pH value of 5.08 ± 0.59 (mean ± s.d.; n=162).
Collapse
Affiliation(s)
- Xiaoxue Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou, 310027 Hangzhou, China
| | - Huanbin Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou, 310027 Hangzhou, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou, 310027 Hangzhou, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University in Hangzhou, 310027 Hangzhou, China
| |
Collapse
|
32
|
|
33
|
Romero G, Murray RA, Qiu Y, Sanz D, Moya SE. Layer by layer surface engineering of poly (lactide-co-glycolide) nanoparticles: A versatile tool for nanoparticle engineering for targeted drug delivery. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4891-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Thielbeer F, Johansson EMV, Chankeshwara SV, Bradley M. Influence of Spacer Length on the Cellular Uptake of Polymeric Nanoparticles. Macromol Biosci 2013; 13:682-6. [DOI: 10.1002/mabi.201200455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/22/2013] [Indexed: 01/09/2023]
|
35
|
Mao Z, Zhou X, Gao C. Influence of structure and properties of colloidal biomaterials on cellular uptake and cell functions. Biomater Sci 2013; 1:896-911. [DOI: 10.1039/c3bm00137g] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|