1
|
Khan S, Do CW, Ho EA. Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. Drug Deliv Transl Res 2025; 15:1828-1876. [PMID: 39674854 DOI: 10.1007/s13346-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Emmanuel A Ho
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
2
|
Mishra A, Halder J, Saha I, Rai VK, Mahanty R, Pradhan D, Dash P, Das C, Rajwar TK, Satpathy B, Manoharadas S, Tata M, Goyal A, Kar B, Ghosh G, Rath G. Biogenic Amino Acid Cross-Linked Hyaluronic Acid Nanoparticles Containing Dexamethasone for the Treatment of Dry Eye Syndrome. AAPS PharmSciTech 2025; 26:97. [PMID: 40148665 DOI: 10.1208/s12249-025-03090-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Ocular barriers, poor retention time, and frequent ocular discharge suppress the activity of Dexamethasone. Arginine (Arg) and hyaluronic acid (HA) are crucial for maintaining ocular health because of their unique biological benefits. In this study, we investigated the cationic properties of arginine to develop dexamethasone-loaded HA nanoparticles (ADHA NPs) and evaluated their therapeutic potential in alleviating dry eye syndrome using various reported in-vitro and in-vivo techniques. The ionic cross-linking method was used to prepare ADHA NPs. The ADHA NPs exhibited nearly 94.99 ± 4.16% drug release at the end of 6 h and followed the Korsemeyar-Peppas kinetic model (R2 = 0.9811). Moreover, the developed formulation exhibited a higher water retention capacity, i.e., 86.89 ± 1.41%, and revealed enhanced mucoadhesion characteristics. ADHA NPs also exhibited significant anti-inflammatory effects (p < 0.001) compared to dexamethasone in LPS-induced RAW 264.7 cell lines against proinflammatory cytokines IL-1 β, NO and TNF-α. Furthermore, cell line studies in HCECs (human corneal epithelial cells) showed cytocompatibility and a dose-dependent uptake of ADHA NPs. ADHA NPs also maintained the cell integrity against 0.005% benzalkonium chloride (BAC) induced dry eye model on HCECs. Further, the Schirmer tear test showed twofold enhanced tear production in the developed formulation, and ADHA NPs seem to maintain the uniform structure of the tear. In vivo, drug retention studies ensured the good retention properties of ADHA NPs up to 12 h. In conclusion, ADHA NPs, because of their anti-inflammatory, mucoadhesiveness, modified drug release capacity, and higher drug retention properties, could serve as a potential therapeutic alternative for treating dry eye conditions.
Collapse
Affiliation(s)
- Ajit Mishra
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ivy Saha
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Ritu Mahanty
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Priyanka Dash
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Chandan Das
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Bibhanwita Satpathy
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2454, 11451, Riyadh, Saudi Arabia
| | - Muralidhar Tata
- Department of Biotech and Biomolecular Science, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Amit Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Rajasthan, India
| | - Biswakanth Kar
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Science, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
3
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
4
|
Lao M, Wang Y, Li X, Li J, Ning X, Yin S, Deng X. Effect of Specific Surface Area and Hydrophobicity of Electrospun Nanofibers on the Sustained Release Performance of Diclofenac Sodium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39018474 DOI: 10.1021/acs.langmuir.4c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nanofibers produced by electrospinning are suitable options for slow-release materials. Diclofenac sodium (DS) is a nonsteroidal anti-inflammatory medication with a brief half-life that can serve as an effective sustained-release agent. This paper presents a novel method for producing DS-sustained release nanofibers by electrostatic spinning processes. During the preparation, the slow-release capabilities of biodegradable materials poly(lactic acid) (PLA) and polycaprolactone (PCL) are investigated. A composite drug-carrying scaffold is prepared to enhance the sustained-release performance. The sustained release ability is affected by the specific surface area of the nanofibers and the hydrophobicity of the polymer. The findings indicate that the composite nanofiber with a PLA/PCL ratio of 1:1 demonstrates the most effective sustained-release performance. The release rate is mostly influenced by the hydrophobicity of the polymer at this point. Sustained-release kinetic simulations were performed and revealed that the release of nanofibers follows a first-order release paradigm. This work presents a straightforward approach for creating a sustained-release formulation of DS.
Collapse
Affiliation(s)
- Min Lao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Yingjie Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xin Li
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Junlang Li
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xin Ning
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Shaofeng Yin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Xiaoting Deng
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| |
Collapse
|
5
|
Puertas-Bartolomé M, Gutiérrez-Urrutia I, Teruel-Enrico LL, Duong CN, Desai K, Trujillo S, Wittmann C, Del Campo A. Self-Lubricating, Living Contact Lenses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313848. [PMID: 38583064 DOI: 10.1002/adma.202313848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Indexed: 04/08/2024]
Abstract
The increasing prevalence of dry eye syndrome in aging and digital societies compromises long-term contact lens (CL) wear and forces users to regular eye drop instillation to alleviate discomfort. Here a novel approach with the potential to improve and extend the lubrication properties of CLs is presented. This is achieved by embedding lubricant-secreting biofactories within the CL material. The self-replenishable reservoirs autonomously produce and release hyaluronic acid (HA), a natural lubrication and wetting agent, long term. The hydrogel matrix regulates the growth of the biofactories and the HA production, and allows the diffusion of nutrients and HA for at least 3 weeks. The continuous release of HA sustainably reduces the friction coefficient of the CL surface. A self-lubricating CL prototype is presented, where the functional biofactories are contained in a functional ring at the lens periphery, outside of the vision area. The device is cytocompatible and fulfils physicochemical requirements of commercial CLs. The fabrication process is compatible with current manufacturing processes of CLs for vision correction. It is envisioned that the durable-by-design approach in living CL could enable long-term wear comfort for CL users and minimize the need for lubricating eye drops.
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| | | | | | - Cao Nguyen Duong
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Krupansh Desai
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Sara Trujillo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Campus A1 5, 66123, Saarbrücken, Germany
| | - Aránzazu Del Campo
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
6
|
Sanyal S, Ravula V. Mitigation of pesticide-mediated ocular toxicity via nanotechnology-based contact lenses: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46602-46624. [PMID: 37542697 DOI: 10.1007/s11356-023-28904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
The xenobiotic stress exerted by pesticides leads to the deterioration of human and animal health including ocular health. Acute or prolonged exposure to these agricultural toxicants has been implicated in a number of pathological conditions of the eye such as irritation, epiphora or hyper-lacrimation, abrasions on the ocular surface, and decreased visual acuity. The issue is compounded by the fact that tissues of the eye absorb pesticides faster than other organs of the body and are more susceptible to damage as well. However, there is a lacuna in our knowledge regarding the ways by which pesticide exposure-mediated ocular insult might be counteracted. Topical instillation of drugs known to combat the pesticide induced toxicity has been explored to mitigate the detrimental impact of pesticide exposure. However, topical eye drop solutions exhibit very low bioavailability and limited drug residence duration in the tear film decreasing their efficacy. Contact lenses have been explored in this respect to increase bioavailability of ocular drugs, while nanoparticles have lately been utilized to increase drug bioavailability and increase drug residence duration in different tissues. The current review focuses on drug delivery and futuristic aspects of corneal protection from ocular toxicity using contact lenses.
Collapse
Affiliation(s)
- Shalini Sanyal
- Laboratory of Self Assembled Biomaterials and Translational Science, Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bengaluru, 560065, Karnataka, India.
| | - Venkatesh Ravula
- Laboratory of Self Assembled Biomaterials and Translational Science, Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem), GKVK Post, Bellary Road, Bengaluru, 560065, Karnataka, India
| |
Collapse
|
7
|
Wu J, Huang Y, Yu H, Li K, Zhang S, Qiao G, Liu X, Duan H, Huang Y, So KF, Yang Z, Li X, Wang L. Chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor for neurotrophic keratopathy. Neural Regen Res 2024; 19:680-686. [PMID: 37721301 PMCID: PMC10581555 DOI: 10.4103/1673-5374.380908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 09/19/2023] Open
Abstract
Neurotrophic keratopathy is a persistent defect of the corneal epithelium, with or without stromal ulceration, due to corneal nerve deficiency caused by a variety of etiologies. The treatment options for neurotrophic keratopathy are limited. In this study, an ophthalmic solution was constructed from a chitosan-based thermosensitive hydrogel with long-term release of murine nerve growth factor (CTH-mNGF). Its effectiveness was evaluated in corneal denervation (CD) mice and patients with neurotrophic keratopathy. In the preclinical setting, CTH-mNGF was assessed in a murine corneal denervation model. CTH-mNGF was transparent, thermosensitive, and ensured sustained release of mNGF for over 20 hours on the ocular surface, maintaining the local mNGF concentration around 1300 pg/mL in vivo. Corneal denervation mice treated with CTH-mNGF for 10 days showed a significant increase in corneal nerve area and total corneal nerve length compared with non-treated and CTH treated mice. A subsequent clinical trial of CTH-mNGF was conducted in patients with stage 2 or 3 neurotrophic keratopathy. Patients received topical CTH-mNGF twice daily for 8 weeks. Fluorescein sodium images, Schirmer's test, intraocular pressure, Cochet-Bonnet corneal perception test, and best corrected visual acuity were evaluated. In total, six patients (total of seven eyes) diagnosed with neurotrophic keratopathy were enrolled. After 8 weeks of CTH-mNGF treatment, all participants showed a decreased area of corneal epithelial defect, as stained by fluorescence. Overall, six out of seven eyes had fluorescence staining scores < 5. Moreover, best corrected visual acuity, intraocular pressure, Schirmer's test and Cochet-Bonnet corneal perception test results showed no significant improvement. An increase in corneal nerve density was observed by in vivo confocal microscopy after 8 weeks of CTH-mNGF treatment in three out of seven eyes. This study demonstrates that CTH-mNGF is transparent, thermosensitive, and has sustained-release properties. Its effectiveness in healing corneal epithelial defects in all eyes with neurotrophic keratopathy suggests CTH-mNGF has promising application prospects in the treatment of neurotrophic keratopathy, being convenient and cost effective.
Collapse
Affiliation(s)
- Jie Wu
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
- The PLA Medical College, Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
- Department of Ophthalmology, Hainan Hospital of Chinese PLA General Hospital, Sanya, Hainan Province, China
| | - Yulei Huang
- Medical School of Chinese PLA, Beijing, China
| | - Hanrui Yu
- Medical School of Chinese PLA, Beijing, China
| | - Kaixiu Li
- Medical School of Chinese PLA, Beijing, China
| | | | | | - Xiao Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- School of Engineering Medicine, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beihang University, Beijing, China
- Beijing International Cooperation Bases for Science and Technology on Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, the Third Medical Center, Chinese PLA General Hospital, Beijing, China
- The PLA Medical College, Department of Nephrology, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing, China
| |
Collapse
|
8
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Chung HS, Ye EA, Lee H, Kim JY. Current Advances in Regenerative Strategies for Dry Eye Diseases: A Comprehensive Review. Bioengineering (Basel) 2023; 11:39. [PMID: 38247916 PMCID: PMC10813666 DOI: 10.3390/bioengineering11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/17/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Dry eye disease (DED) is an emerging health issue affecting millions of individuals annually. Ocular surface disorders, such as DED, are characterized by inflammation triggered by various factors. This condition can lead to tear deficiencies, resulting in the desiccation of the ocular surface, corneal ulceration/perforation, increased susceptibility to infections, and a higher risk of severe visual impairment and blindness. Currently, the clinical management of DED primarily relies on supportive and palliative measures, including the frequent and lifelong use of different lubricating agents. While some advancements like punctal plugs, non-steroidal anti-inflammatory drugs, and salivary gland autografts have been attempted, they have shown limited effectiveness. Recently, there have been promising developments in the treatment of DED, including biomaterials such as nano-systems, hydrogels, and contact lenses for drug delivery, cell-based therapies, biological approaches, and tissue-based regenerative therapy. This article specifically explores the different strategies reported so far for treating DED. The aim is to discuss their potential as long-term cures for DED while also considering the factors that limit their feasibility and effectiveness. These advancements offer hope for more effective and sustainable treatment options in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jae-Yong Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (B.B.); (S.-H.O.); (C.-M.K.); (Y.-J.Y.); (H.-S.C.); (E.-A.Y.); (H.L.)
| |
Collapse
|
9
|
Kong F, Sun J, Hu Y, Huo W, Li D, Zhang W. Liver-Targeting Composite Nanocarrier Delivery System Based on Chitosan Nanoparticles and Phospholipid Complexes. Assay Drug Dev Technol 2023; 21:357-368. [PMID: 38096118 DOI: 10.1089/adt.2023.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Liver fibrosis is mainly caused by excessive accumulation of extracellular matrix and structural changes in the liver, ultimately leading to cirrhosis if left untreated. Reducing hyaluronan synthesis by inhibiting hyaluronic acid deposition or regulating the expression of hyaluronic synthase can ameliorate liver fibrosis symptoms. In this study, we aimed to improve the bioavailability and liver-targeting capacity of hydroxymethyl coumarin (4-MU) using a newly developed phospholipid complex chitosan nanoparticle (4-MU PC/CNP) optimized using the Box-Behnken design. The composite nanocarrier delivery system was formulated using solvent evaporation technology, and formulation and process parameters were evaluated. Furthermore, 4-MU PC/CNPs and their pharmacokinetics were characterized. The established 4-MU PC/CNPs had an average particle size of 153.07 ± 0.29 nm, a polydispersity index value of 0.383, and a positive zeta potential of ∼35.4 mV. Compared with 4-MUs, 4-MU PC/CNPs exhibited significantly improved water solubility, faster plasma clearance and tissue distribution, and better liver targeting. Pharmacokinetic analysis showed that the oral bioavailability of 4-MU in 4-MU PC/CNPs was significantly higher than that of simple 4-MU. In conclusion, 4-MU PC improved drug lipid (oil-water distribution coefficient of 1.31 ± 0.03) and water solubilities (2.05 times the drug substance). 4-MU PC/CNPs significantly improved 4-MU oral bioavailability, representing a promising approach for enhancing drug solubility. This study demonstrates that the targeting parameters of 4-MU PC/CNPs in the liver were all greater than 1, indicating that they specifically targeted the liver, thereby potentially alleviating liver fibrosis.
Collapse
Affiliation(s)
- Fanming Kong
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jingmeng Sun
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Yue Hu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Wenkai Huo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dongdong Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Weiyu Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Zhu Q, Zhang Q, Fu DY, Su G. Polysaccharides in contact lenses: From additives to bulk materials. Carbohydr Polym 2023; 316:121003. [PMID: 37321708 DOI: 10.1016/j.carbpol.2023.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/17/2023]
Abstract
As the number of applications has increased, so has the demand for contact lenses comfort. Adding polysaccharides to lenses is a popular way to enhance comfort for wearers. However, this may also compromise some lens properties. It is still unclear how to balance the variation of individual lens parameters in the design of contact lenses containing polysaccharides. This review provides a comprehensive overview of how polysaccharide addition impacts lens wear parameters, such as water content, oxygen permeability, surface wettability, protein deposition, and light transmittance. It also examines how various factors, such as polysaccharide type, molecular weight, amount, and mode of incorporation into lenses modulate these effects. Polysaccharide addition can improve some wear parameters while reducing others depending on the specific conditions. The optimal method, type, and amount of added polysaccharides depend on the trade-off between various lens parameters and wear requirements. Simultaneously, polysaccharide-based contact lenses may be a promising option for biodegradable contact lenses as concerns regarding environmental risks associated with contact lens degradation continue to increase. It is hoped that this review will shed light on the rational use of polysaccharides in contact lenses to make personalized lenses more accessible.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Qiao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ding-Yi Fu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
11
|
Yuan W, Zhao F, Liu X, Xu J. Development of corneal contact lens materials and current clinical application of contact lenses: A review. Biointerphases 2023; 18:050801. [PMID: 37756594 DOI: 10.1116/6.0002618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Unlike conventional glasses, corneal contact lenses (CLs) can directly contact the surface of the tear film through the application of biopolymer materials, to achieve therapeutic and cosmetic purposes. Since the advent of polymethylmethacrylate, a material that has gained widespread use and attention, statistically, there are now more than 150 × 106 people around the world who wear corneal contact lenses. However, the associated complications caused by the interaction of contact lenses with the ocular surface, tear film, endogenous and environmental microorganisms, and components of the solution affect nearly one-third of the wearer population. The application of corneal contact lenses in correcting vision and myopia control has been widely recognized. With the development of related materials, corneal contact lenses are applied to the treatment of ocular surface diseases, including corneal bandage lenses, drug-loaded corneal contact lenses, biosensors, and other new products, while minimizing the side effects associated with CL wear. This paper summarized the development history and material properties of CLs, focused on the current main clinical applications and mechanisms, as well as clarified the possible complications in wearing therapeutic contact lenses and the direction for improvement in the future.
Collapse
Affiliation(s)
- Weichen Yuan
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Fangkun Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110005, China
| | - Xiaoyu Liu
- Department of Ophthalmology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian 116033, China
| | - Jun Xu
- Department of Ophthalmology, Dalian Third People's Hospital Affiliated to Dalian Medical University, Dalian 116033, China
| |
Collapse
|
12
|
Tsung TH, Tsai YC, Lee HP, Chen YH, Lu DW. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. Int J Mol Sci 2023; 24:12976. [PMID: 37629157 PMCID: PMC10455181 DOI: 10.3390/ijms241612976] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular drug delivery is a challenging field due to the unique anatomical and physiological barriers of the eye. Biodegradable polymers have emerged as promising tools for efficient and controlled drug delivery in ocular diseases. This review provides an overview of biodegradable polymer-based drug-delivery systems for ocular diseases with emphasis on the potential for biodegradable polymers to overcome the limitations of conventional methods, allowing for sustained drug release, improved bioavailability, and targeted therapy. Natural and synthetic polymers are both discussed, highlighting their biodegradability and biocompatibility. Various formulation strategies, such as nanoparticles, hydrogels, and microemulsions, among others, are investigated, detailing preparation methods, drug encapsulation, and clinical applications. The focus is on anterior and posterior segment drug delivery, covering glaucoma, corneal disorders, ocular inflammation, retinal diseases, age-related macular degeneration, and diabetic retinopathy. Safety considerations, such as biocompatibility evaluations, in vivo toxicity studies, and clinical safety, are addressed. Future perspectives encompass advancements, regulatory considerations, and clinical translation challenges. In conclusion, biodegradable polymers offer potential for efficient and targeted ocular drug delivery, improving therapeutic outcomes while reducing side effects. Further research is needed to optimize formulation strategies and address regulatory requirements for successful clinical implementation.
Collapse
Affiliation(s)
- Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| |
Collapse
|
13
|
Ghezzi M, Ferraboschi I, Fantini A, Pescina S, Padula C, Santi P, Sissa C, Nicoli S. Hyaluronic acid - PVA films for the simultaneous delivery of dexamethasone and levofloxacin to ocular tissues. Int J Pharm 2023; 638:122911. [PMID: 37028574 DOI: 10.1016/j.ijpharm.2023.122911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Ocular drug delivery is challenging due to the poor drug penetration across ocular barriers and short retention time of the formulation at the application site. Films, applied as inserts or implants, can be used to increase residence time while controlling drug release. In this work, hydrophilic films made of hyaluronic acid and two kinds of PVA were loaded with dexamethasone (included as hydroxypropylcyclodextrin complex) and levofloxacin. This association represents one of the main treatments for the post cataract surgery management, and it is also promising for eye infections whith pain and inflammation. Films were characterized in terms of swelling and drug release and were then applied to porcine eye bulbs and isolated ocular tissues. Film swelling leads to the formation of either a gel (3D swelling) or a larger film (2D swelling) depending on the type of PVA used. Films, prepared in an easy and scalable method, demonstrated high loading capacity, controlled drug release and the capability to deliver dexamethasone and levofloxacin to the cornea and across the sclera, to potentially target also the posterior eye segment. Overall, this device can be considered a multipurpose delivery platform intended for the concomitant release of lipophilic and hydrophilic drugs.
Collapse
|
14
|
Liu D, Cao Y, Jiang P, Wang Y, Lu Y, Ji Z, Wang X, Liu W. Tough, Transparent, and Slippery PVA Hydrogel Led by Syneresis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206819. [PMID: 36592418 DOI: 10.1002/smll.202206819] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Slippery and transparent polyvinyl alcohol (PVA) hydrogels with mechanical robustness exhibit broad applications in artificial biological soft tissues, flexible wearable electronics, and implantable biomedical devices. Most of the current PVA hydrogels, however, are unable to integrate these features, which compromises its performance in biological and engineering applications. To achieve such purpose, herein, a novel tactic is proposed, salting-out-after-syneresis of PVA, to realize a mechanically robust and highly transparent slippery PVA hydrogel. The syneresis of PVA sol is first conducted to form highly dense and transparent PVA polymer networks, then the salting-out effect tunes the aggregation of the polymer chains to rapidly induce the phase separation and crystallization. The resultant hydrogels show the transparency up to 98% in the visible region, the tribological coefficient down to 0.0081, and the excellent mechanical properties with strength, modulus, and toughness of 26.72 ± 1.05, 6.66 ± 0.29 MPa, and 55.21 ± 1.62 MJ m-3 , respectively. To reveal the potentials, PVA contact lens that combine remarkable lubrication, anti-protein adhesion, biocompatibility, and drug-loading functions are demonstrated. This strategy provides a simple and new avenue for developing the mechanically robust, transparent, and hydrated hydrogels, showing the potential in biomedicine and wearable devices.
Collapse
Affiliation(s)
- Desheng Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Cao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Pan Jiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yixian Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, China
| | - Yaozhong Lu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhongying Ji
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Xiaolong Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai, 264006, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Akbari E, Imani R, Shokrollahi P, Jarchizadeh R, Heidari keshel S. Hydrogel-based formulations for drug delivery to the anterior segment of the eye. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Thacker M, Singh V, Basu S, Singh S. Biomaterials for dry eye disease treatment: Current overview and future perspectives. Exp Eye Res 2023; 226:109339. [PMID: 36470431 DOI: 10.1016/j.exer.2022.109339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/09/2022]
Abstract
Dry eye disease (DED) is an emerging health problem affecting millions of individuals every year. The current treatments for DED include lubricating eye drops and anti-inflammatory agents. These agents have to be used frequently and contain preservatives, which can damage the ocular surface. A substantially long-acting treatment with better bioavailability on the ocular surface might reduce the frequency of drug use and its side effects. This review summarizes the current state of different biomaterials-nanosystems, hydrogels, and contact lenses used as drug delivery systems in DED. The explored drugs in biomaterial formulation are cyclosporin, ocular lubricants, and topical steroids. Most of the data is from animal models where increased drug delivery and desired therapeutic effects could be obtained; however, trials involving human participants are yet to happen. There is no published study comparing the different types of biomaterials for DED use. Long-term studies evaluating their ocular toxicity and biocompatibility would enhance their transition to human use. Overall they look promising for DED treatment, but they are still in the stage of technological advancement and clinical studies.
Collapse
Affiliation(s)
- Minal Thacker
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Vivek Singh
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Sayan Basu
- Brien Holden Center for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; The Cornea Institute, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Swati Singh
- Centre for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India; Ophthalmic Plastic Surgery Services, L V Prasad Eye Institute, Hyderabad, 500034, Telangana, India.
| |
Collapse
|
17
|
Akbari E, Imani R, Shokrollahi P, Heidari Keshel S. Corneal sustained delivery of hyaluronic acid from nanofiber-containing ring-implanted contact lens. J Biomater Appl 2023; 37:992-1006. [PMID: 36564919 DOI: 10.1177/08853282221146390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dry eye syndrome, as a persist corneal epithelial defect (PED), is an inconvenient ocular disorder that is generally treated by high-dosage, conventional eye drops. Addressing low efficacy and rather restricted bioavailability of the conventional eye drops, drug-eluting contact lenses (CLs) are widely used as alternatives in ophthalmic drug delivery applications. In the present study, a nanofiber-containing ring implant poly (vinyl alcohol) (PVA) hydrogel is designed as a carrier for hyaluronic acid (HA) delivery. hyaluronic acid is physically encapsulated in a nanofiber-containing ring-shaped hydrogel with a 2 mm width that is implanted in the final CLs hydrogel. The designed CL has 59% porosity, 275% swelling ratio and undergoes no weight loss at physiological conditions in14 days. In-vitro release studies were performed on the CLs with and without nanofibers. The results showed that nanofiber incorporation in the designed CL was highly influential in decreasing burst release and supported sustained release of HA over 14 days. In addition, nanofiber incorporation in the designed system strengthened the lens, and the young modulus of the PVA hydrogel increased from 6 to 10 kPa. Cell viability study also revealed no cell cytotoxicity and cell attachment. Overall, the study demonstrated the effective role of nanofibers in the physical strengthening of the CL. Also, the designed system holds promise as a potential candidate for HA delivery over an extended period for treating dry eye syndrome.
Collapse
Affiliation(s)
- Elham Akbari
- Biomedical Engineering Department, 48410Amirkabir University of Technology, Tehran, Iran
| | - Rana Imani
- Biomedical Engineering Department, 48410Amirkabir University of Technology, Tehran, Iran
| | - Parvin Shokrollahi
- Faculty of Science, Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies InMedicine, 556492Shahid Beheshti University of Medical Sciences, Iran
| |
Collapse
|
18
|
Engineering Advanced Drug Delivery Systems for Dry Eye: A Review. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010053. [PMID: 36671625 PMCID: PMC9854618 DOI: 10.3390/bioengineering10010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023]
Abstract
Dry eye disease (DED) is a widespread and frequently reported multifactorial ocular disease that not only causes ocular discomfort but also damages the cornea and conjunctiva. At present, topical administration is the most common treatment modality for DED. Due to the existence of multiple biological barriers, instilled drugs generally exhibit short action times and poor penetration on the ocular surface. To resolve these issues, several advanced drug delivery systems have been proposed. This review discusses new dosage forms of drugs for the treatment of DED in terms of their characteristics and advantages. Innovative formulations that are currently available in the market and under clinical investigation are elaborated. Meanwhile, their deficiencies are discussed. It is envisioned that the flourishing of advanced drug delivery systems will lead to improved management of DED in the near future.
Collapse
|
19
|
Pollard TD, Seoane-Viaño I, Ong JJ, Januskaite P, Awwad S, Orlu M, Bande MF, Basit AW, Goyanes A. Inkjet drug printing onto contact lenses: Deposition optimisation and non-invasive dose verification. Int J Pharm X 2022; 5:100150. [PMID: 36593987 PMCID: PMC9804110 DOI: 10.1016/j.ijpx.2022.100150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Inkjet printing has the potential to advance the treatment of eye diseases by printing drugs on demand onto contact lenses for localised delivery and personalised dosing, while near-infrared (NIR) spectroscopy can further be used as a quality control method for quantifying the drug but has yet to be demonstrated with contact lenses. In this study, a glaucoma therapy drug, timolol maleate, was successfully printed onto contact lenses using a modified commercial inkjet printer. The drug-loaded ink prepared for the printer was designed to match the properties of commercial ink, whilst having maximal drug loading and avoiding ocular inflammation. This setup demonstrated personalised drug dosing by printing multiple passes. Light transmittance was found to be unaffected by drug loading on the contact lens. A novel dissolution model was built, and in vitro dissolution studies showed drug release over at least 3 h, significantly longer than eye drops. NIR was used as an external validation method to accurately quantify the drug dose. Overall, the combination of inkjet printing and NIR represent a novel method for point-of-care personalisation and quantification of drug-loaded contact lenses.
Collapse
Affiliation(s)
- Thomas D. Pollard
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Iria Seoane-Viaño
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group (GI-2109), Faculty of Pharmacy, and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sahar Awwad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Manuel F. Bande
- Department of Ophthalmology, University Hospital of Santiago de Compostela, Ramon Baltar S/N, Santiago de Compostela 15706, Spain
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK,FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK,Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK,FabRx Ltd., Henwood House, Henwood, Ashford TN24 8DH, UK,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, iMATUS and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela 15782, Spain,Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
20
|
Recent Advances in Hydrogels for the Diagnosis and Treatment of Dry Eye Disease. Gels 2022; 8:gels8120816. [PMID: 36547340 PMCID: PMC9778550 DOI: 10.3390/gels8120816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye disease (DED) is the most common clinical ocular surface disease. Given its multifactorial etiology, no consensus has been reached on the diagnosis criteria for dry eye disease. Topical drug administration remains the mainstay of treatment but is limited to the rapid clearance from the eye surface. To address these problems, hydrogel-based materials were designed to detect biomarkers or act as drug delivery systems by taking advantage of their good biocompatibility, excellent physical and mechanical properties, and long-term implant stability. Biosensors prepared using biocompatible hydrogels can be sensitive in diagnosing DED, and the designed hydrogels can also improve the drug bioavailability and retention time for more effective and long-term treatment. This review summarizes recent advances in the use of hydrogels for diagnosing and treating dry eye, aiming to provide a novel reference for the eventual clinical translation of hydrogels in the context of dry eye disease.
Collapse
|
21
|
Zhu Y, Li S, Li J, Falcone N, Cui Q, Shah S, Hartel MC, Yu N, Young P, de Barros NR, Wu Z, Haghniaz R, Ermis M, Wang C, Kang H, Lee J, Karamikamkar S, Ahadian S, Jucaud V, Dokmeci MR, Kim HJ, Khademhosseini A. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108389. [PMID: 35130584 PMCID: PMC9233032 DOI: 10.1002/adma.202108389] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Indexed: 05/09/2023]
Abstract
The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp Shah
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Zhuohong Wu
- Department of Nanoengineering, University of California-San Diego, San Diego, CA, 92093, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
22
|
Sánchez-Cid P, Jiménez-Rosado M, Rubio-Valle JF, Romero A, Ostos FJ, Rafii-El-Idrissi Benhnia M, Perez-Puyana V. Biocompatible and Thermoresistant Hydrogels Based on Collagen and Chitosan. Polymers (Basel) 2022; 14:272. [PMID: 35054678 PMCID: PMC8781623 DOI: 10.3390/polym14020272] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/08/2023] Open
Abstract
Hydrogels are considered good biomaterials for soft tissue regeneration. In this sense, collagen is the most used raw material to develop hydrogels, due to its high biocompatibility. However, its low mechanical resistance, thermal stability and pH instability have generated the need to look for alternatives to its use. In this sense, the combination of collagen with another raw material (i.e., polysaccharides) can improve the final properties of hydrogels. For this reason, the main objective of this work was the development of hydrogels based on collagen and chitosan. The mechanical, thermal and microstructural properties of the hydrogels formed with different ratios of collagen/chitosan (100/0, 75/25, 50/50, 25/75 and 0/100) were evaluated after being processed by two variants of a protocol consisting in two stages: a pH change towards pH 7 and a temperature drop towards 4 °C. The main results showed that depending on the protocol, the physicochemical and microstructural properties of the hybrid hydrogels were similar to the unitary system depending on the stage carried out in first place, obtaining FTIR peaks with similar intensity or a more porous structure when chitosan was first gelled, instead of collagen. As a conclusion, the synergy between collagen and chitosan improved the properties of the hydrogels, showing good thermomechanical properties and cell viability to be used as potential biomaterials for Tissue Engineering.
Collapse
Affiliation(s)
- Pablo Sánchez-Cid
- Chemical Engineering Department, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (P.S.-C.); (A.R.)
| | - Mercedes Jiménez-Rosado
- Chemical Engineering Department, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (P.S.-C.); (A.R.)
| | - José Fernando Rubio-Valle
- Pro2TecS-Chemical Product and Process Technology Research Centre, Chemical Engineering Department, University of Huelva, 21071 Huelva, Spain;
| | - Alberto Romero
- Chemical Engineering Department, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (P.S.-C.); (A.R.)
| | - Francisco J. Ostos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain; (F.J.O.); (M.R.-E.-I.B.)
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Mohammed Rafii-El-Idrissi Benhnia
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain; (F.J.O.); (M.R.-E.-I.B.)
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Victor Perez-Puyana
- Chemical Engineering Department, Faculty of Chemistry, University of Seville, 41012 Seville, Spain; (P.S.-C.); (A.R.)
| |
Collapse
|
23
|
Gómez-Aguado I, Rodríguez-Castejón J, Beraza-Millor M, Vicente-Pascual M, Rodríguez-Gascón A, Garelli S, Battaglia L, del Pozo-Rodríguez A, Solinís MÁ. mRNA-Based Nanomedicinal Products to Address Corneal Inflammation by Interleukin-10 Supplementation. Pharmaceutics 2021; 13:1472. [PMID: 34575548 PMCID: PMC8466377 DOI: 10.3390/pharmaceutics13091472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
The anti-inflammatory cytokine Interleukin-10 (IL-10) is considered an efficient treatment for corneal inflammation, in spite of its short half-life and poor eye bioavailability. In the present work, mRNA-based nanomedicinal products based on solid lipid nanoparticles (SLNs) were developed in order to produce IL-10 to treat corneal inflammation. mRNA encoding green fluorescent protein (GFP) or human IL-10 was complexed with different SLNs and ligands. After, physicochemical characterization, transfection efficacy, intracellular disposition, cellular uptake and IL-10 expression of the nanosystems were evaluated in vitro in human corneal epithelial (HCE-2) cells. Energy-dependent mechanisms favoured HCE-2 transfection, whereas protein production was influenced by energy-independent uptake mechanisms. Nanovectors with a mean particle size between 94 and 348 nm and a positive superficial charge were formulated as eye drops containing 1% (w/v) of polyvinyl alcohol (PVA) with 7.1-7.5 pH. After three days of topical administration to mice, all formulations produced GFP in the corneal epithelium of mice. SLNs allowed the obtaining of a higher transfection efficiency than naked mRNA. All formulations produce IL-10, and the interleukin was even observed in the deeper layers of the epithelium of mice depending on the formulation. This work shows the potential application of mRNA-SLN-based nanosystems to address corneal inflammation by gene augmentation therapy.
Collapse
Affiliation(s)
- Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Sara Garelli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (S.G.); (L.B.)
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Torino, Italy; (S.G.); (L.B.)
| | - Ana del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-A.); (J.R.-C.); (M.B.-M.); (M.V.-P.); (A.R.-G.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
24
|
Novel Contact Lenses Embedded with Drug-Loaded Zwitterionic Nanogels for Extended Ophthalmic Drug Delivery. NANOMATERIALS 2021; 11:nano11092328. [PMID: 34578644 PMCID: PMC8465176 DOI: 10.3390/nano11092328] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022]
Abstract
Therapeutic ophthalmic contact lenses with prolonged drug release and improved bioavailability have been developed to circumvent tedious eye drop instillation. In this work, zwitterionic nanogels based on poly(sulfobetaine methacrylate) (PSBMA) were easily fabricated by one-step reflux-precipitation polymerization, with the advantages of being surfactant-free and morphology controlled. Then, the ophthalmic drug levofloxacin (LEV) was encapsulated into the nanogels. A set of contact lenses with varied nanogel-loading content was fabricated by the cast molding method, with the drug-loaded nanogels dispersed in pre-monomer solutions composed of 2-hydroxyethyl methacrylate (HEMA) and N-vinyl-2-pyrrolidone (NVP). The structure, surface morphology, water contact angle (WCA), equilibrium water content (EWC), transmittance, and mechanical properties of the contact lenses were subsequently investigated, and in vitro drug release and biocompatibility were further evaluated. As a result, the optimized contact lens with nanogel-loading content of 8 wt% could sustainably deliver LEV for ten days, with critical lens properties within the range of recommended values for commercial contact lenses. Moreover, cell viability assays revealed that the prepared contact lenses were cytocompatible, suggesting their significant potential as an alternative to traditional eye drops or ointment formulations for long-term oculopathy treatment.
Collapse
|