1
|
Chen X, Liu F. Synthesis and Phase Behavior of a Linear Amphiphilic Multiblock Copolymer. ACS OMEGA 2022; 7:19319-19327. [PMID: 35722003 PMCID: PMC9202289 DOI: 10.1021/acsomega.2c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Linear amphiphilic multiblock copolymer PPMPEs, obtained through a stepwise method, and linear amphiphilic random copolymer PPMPEs-1, obtained through a one-pot method, were synthesized using poly(propylene glycol) diglycidyl ether (PPGDGE), poly(ethylene glycol) diglycidyl ether (PEGDGE), and monoethanolamine (MEA) as the main raw materials. The structures of PPMPEs and PPMPEs-1 were characterized by FT-IR, 1H NMR, and gel permeation chromatography, which proved that the copolymers were synthesized with different components. Transmittance of the copolymer was tested by UV-vis. By changing the ratio of PEGDGE content and the concentration of the copolymer aqueous solution, the phase behaviors of PPMPEs and PPMPEs-1 were compared and studied in depth. It mainly highlighted the advantages of the stepwise method compared to the one-pot method. The transmittance of the polymer solutions could be improved by lowering the pH value in the acidic solution or increasing the pH value in the alkaline solution. Moreover, as the reaction degree of the PPMPEs hydrophobic chain segment increased, the transmittance decreased.
Collapse
|
2
|
Jazani AM, Arezi N, Shetty C, Oh JK. Shell-Sheddable/Core-Degradable ABA Triblock Copolymer Nanoassemblies: Synthesis via RAFT and Concurrent ATRP/RAFT Polymerization and Drug Delivery Application. Mol Pharm 2022. [DOI: 10.1021/acs.molpharmaceut.1c00622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Newsha Arezi
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Chaitra Shetty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
3
|
Advances in amphiphilic polylactide/vinyl polymer based nano-assemblies for drug delivery. Adv Colloid Interface Sci 2021; 294:102483. [PMID: 34274723 DOI: 10.1016/j.cis.2021.102483] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 01/14/2023]
Abstract
Micelles from self-assembled amphiphilic copolymers are highly attractive in drug delivery, due to their small size and hydrophilic stealth corona allowing prolonged lifetimes in the bloodstream and thus improved drug bioavailability. Polylactide (PLA)-based amphiphilic copolymer micelles are key candidates in this field, owing to the well-established biodegradability and biocompatibility of PLA. While PLA-b-poly(ethylene glycol) (PEG) block copolymer micelles can be seen as the "gold standard" in drug delivery research so far, the progresses in controlled radical polymerizations (Atom Transfer Radical Polymerization, Reversible Addition-Fragmentation Transfer and Nitroxide Mediated Polymerization) have offered new opportunities in the design of advanced amphiphilic copolymers for drug delivery due to their flexibility in many regards: (i) they can be easily combined with ring-opening polymerization (ROP) of lactide, with a diversity in types of architectures (e.g., block, graft, star), (ii) they allow (co)polymerization of a wide range of vinyl monomers, possibly circumventing PEG limitations, (iii) functionalization (with biomolecules or stimuli-cleavable moieties) is versatile due to end-group fidelity and copolymerization ability with reactive/functional comonomers. In this review, we report on the advances in the past decade of such amphiphilic PLA/vinyl polymer based nano-carriers, regarding key properties such as stealth character, cell targeting and stimuli-responsiveness.
Collapse
|
4
|
Tsai MF, Lo YL, Huang YC, Yu CC, Wu YT, Su CH, Wang LF. Multi-Stimuli-Responsive DOX Released from Magnetosome for Tumor Synergistic Theranostics. Int J Nanomedicine 2020; 15:8623-8639. [PMID: 33177822 PMCID: PMC7652232 DOI: 10.2147/ijn.s275655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background To improve responses to tumor microenvironments for achieving a better therapeutic outcome in combination cancer therapy, poly(ε-caprolactone)-SS-poly(methacrylic acid) diblock copolymer (PCL-SS-PMAA) with a disulfide linkage between the hydrophobic and hydrophilic junctions was synthesized. Materials and Methods Repeating units of PCL and PMAA in PCL-SS-PMAA were controlled and formulated into polymersomes (PSPps). Truncated octahedral Fe3O4 nanoparticles (IONPs) were synthesized and encapsulated to produce IONPs-PSPps NPs and doxorubicin (DOX) was further loaded to produce IONPs-PSPps@DOX NPs for theranostic applications. Results IONPs-PSPps NPs remained a superparamagnetic property with a saturation magnetization value of 85 emu⋅gFe3O4 -1 and a relaxivity value of 180 mM-1⋅s-1. Upon exposure to an alternating magnetic field (AMF), IONPs-PSPps NPs increased temperature from 25°C to 54°C within 15 min. Among test groups, the cell apoptosis was greatest in the group exposed to IONPs-PSPps@DOX NPs with AMF and magnet assistance. In vivo T2-weighted magnetic resonance images of A549 tumor-bearing mice also showed highest contrast and greatest tumor suppression in the tumor with AMF and magnet assistance. Conclusion IONPs-PSPps@DOX NPs are a potential theranostic agent having multifaceted applications involving magnetic targeting, MRI diagnosis, hyperthermia and chemotherapy.
Collapse
Affiliation(s)
- Ming-Fong Tsai
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Lun Lo
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuan-Chun Huang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yi-Ting Wu
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei 112, Taiwan
| | - Li-Fang Wang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Lo YL, Huang XS, Chen HY, Huang YC, Liao ZX, Wang LF. ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids Surf B Biointerfaces 2020; 198:111443. [PMID: 33203600 DOI: 10.1016/j.colsurfb.2020.111443] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Combining dual drugs in one vehicle to cancer cells offers spatiotemporal localization of drug at the site of action, leading to synergistic therapeutic effects and reduced side effects. To improve pH/redox responsiveness to the tumor microenvironments for cancer therapy, a pH/redox-responsive micelle based on poly(ε-caprolactone)-SS-poly(methacrylic acid) (PCL-SS-PMAA) diblock copolymer was fabricated for dual drug delivery. The PCL-SS-PMAA was formulated into a core-shell micelle (PSPm) in an aqueous solution. The critical micelle concentration (CMC) values of PSPm were 7.94 × 10-3 mg mL-1 at pH 5.0 and 1.00 × 10-2 mg mL-1 at pH 7.4. The hydrodynamic diameters of PSPm were within 210-270 nm, depending on pH values. Changes in morphology and size of PSPm were clearly observed before and after exposure to a reducing agent. Paclitaxel (PTX) was encapsulated into the core and cisplatin (CDDP) was chelated on the shell of PSPm, with both PTX and CDDP being efficiently released from PSPm in the presence of a reducing agent in an acid condition. MTT and annexin V/propidium iodide dual staining results demonstrated that co-loading of CDDP and PTX into PSPm had a synergistic effect in killing lung cancer cells and exerted superior antitumor activity over the combination of single drug-loaded PSPm or the combination of free-CDDP and free-PTX at equivalent drug amounts. Hence, encapsulating the dual drugs into PSPm exhibits a synergistic effect for potential lung cancer therapy.
Collapse
Affiliation(s)
- Yu-Lun Lo
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Xiao-Shan Huang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Hsuan-Ying Chen
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yuan-Chun Huang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
| | - Li-Fang Wang
- Department of Medicinal & Applied Chemistry, College of Life Sciences, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
6
|
Song F, Wang Z, Gao W, Fu Y, Wu Q, Liu S. Novel Temperature/Reduction Dual-Stimulus Responsive Triblock Copolymer [P(MEO 2MA- co- OEGMA)- b-PLLA-SS-PLLA- b-P(MEO 2MA- co-OEGMA)] via a Combination of ROP and ATRP: Synthesis, Characterization and Application of Self-Assembled Micelles. Polymers (Basel) 2020; 12:polym12112482. [PMID: 33114693 PMCID: PMC7694170 DOI: 10.3390/polym12112482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Novel temperature/reduction dual stimulus-responsive triblock copolymers, poly [2-(2-methoxyethoxy) ethyl methacrylate-co-oligo (ethylene glycol) methacrylate]-b-(L-polylactic acid)-SS-b-(L-polylactic acid)-b-poly[2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol)methacrylate] [P(MEO2MA-co-OEGMA)-b-PLLA-SS-PLLA-b-P(MEO2MA-co-OEGMA)] (SPMO), were synthesized by ring opening polymerization (ROP) of L-lactide and 2,2’-dithio diethanol (SS-DOH), and random copolymerization of MEO2MA and OEGMA monomers via atom transfer radical polymerization (ATRP) technology. The chemical structures and compositions of the novel copolymers were demonstrated by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR). The molecular weights of the novel copolymers were measured by size exclusive chromatography (SEC) and proved to have a relatively narrow molecular weight distribution coefficient (ÐM ≤ 1.50). The water solubility and transmittance of the novel copolymers were tested via visual observation and UV–Vis spectroscopy, which proved the SPMO had a good hydrophilicity and suitable low critical solution temperature (LCST). The critical micelle concentration (CMC) of the novel polymeric micelles were determined using surface tension method and fluorescent probe technology. The particle size and morphology of the novel polymeric micelles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The sol–gel transition behavior of the novel copolymers was studied via vial flip experiments. Finally, the hydrophobic anticancer drug doxorubicin (DOX) was used to study the in vitro release behavior of the novel drug-loaded micelles. The results show that the novel polymeric micelles are expected to become a favorable drug carrier. In addition, they exhibit reductive responsiveness to the small molecule reducing agent dithiothreitol (DTT) and temperature responsiveness with temperature changes.
Collapse
|
7
|
Huang Y, Jazani AM, Howell EP, Reynolds LA, Oh JK, Moffitt MG. Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery. ACS Biomater Sci Eng 2020; 6:5069-5083. [DOI: 10.1021/acsbiomaterials.0c00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuhang Huang
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Elliot P. Howell
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Matthew G. Moffitt
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
8
|
|
9
|
Chibh S, Kour A, Yadav N, Kumar P, Yadav P, Chauhan VS, Panda JJ. Redox-Responsive Dipeptide Nanostructures toward Targeted Cancer Therapy. ACS OMEGA 2020; 5:3365-3375. [PMID: 32118151 PMCID: PMC7045500 DOI: 10.1021/acsomega.9b03547] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/23/2020] [Indexed: 05/27/2023]
Abstract
Materials that exhibit responsiveness toward biological signals are currently subjected to intense research in the field of drug delivery. In our study, we tried to develop cancer-targeted and redox-responsive nanoparticles (NPs) from disulfide-linked oxidized cysteine-phenylalanine (CFO). The NPs were conjugated with folic acid (FA) to specifically target cancer cells, and the presence of disulfide bonds would enabled the disintegration of the particles in the presence of elevated levels of glutathione (GSH) in cancer cells. Anticancer drug doxorubicin (Dox) was successfully loaded inside the disulfide-linked nanoparticles (CFO-Dox-NPs), which further demonstrated stimuli-responsive drug release in the presence of GSH. We have also demonstrated enhanced uptake of FA-derivatized NPs (FA-CFO-NPs) in cancerous cells (C6 glioma and B16F10 melanoma cells) than in normal cells (HEK293T cells) due to the overexpression of FA receptors on the surface of cancer cells. Cytotoxicity studies in C6 cells and B16F10 cells further revealed enhanced efficacy of Dox loaded (FA-CFO-Dox-NPs) as compared to the native drug. The findings of this study clearly demonstrated that the disulfide-linked nanoparticle system may provide a promising selective drug delivery platform in cancer cells.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute
of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India
| | - Avneet Kour
- Institute
of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India
| | - Nitin Yadav
- International
Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pankaj Kumar
- Institute
of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India
| | - Pratik Yadav
- Kirori
Mal College, University of Delhi, New Delhi 110007, India
| | | | - Jiban Jyoti Panda
- Institute
of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
10
|
Huang Y, Moini Jazani A, Howell EP, Oh JK, Moffitt MG. Controlled Microfluidic Synthesis of Biological Stimuli-Responsive Polymer Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:177-190. [PMID: 31820915 DOI: 10.1021/acsami.9b17101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microfluidic flow-directed self-assembly of biological stimuli-responsive block copolymers is demonstrated with dual-location cleavable linkages at the junction between hydrophilic and hydrophobic blocks and on pendant group within the hydrophobic blocks. On-chip self-assembly within a two-phase microfluidic reactor forms various "DualM" polymer nanoparticles (PNPs), including cylinders and multicompartment vesicles, with sizes and morphologies that are tunable with manufacturing flow rate. Complex kinetically trapped intermediates between shear-dependent states provide the most detailed mechanism to date of microfluidic PNP formation in the presence of flow-variable high shear. Glutathione (GSH)-triggered changes in PNP size and internal structure depend strongly on the initial flow-directed size and internal structure. Upon incubation in GSH, flow-directed PNPs with smaller average sizes showed a faster hydrodynamic size increase (attributed to junction cleavage) and those with higher excess Gibbs free energy showed faster inner compartment growth (attributed to pendant cleavage). These results demonstrate that the combination of chemical control of the location of biologically responsive linkages with microfluidic shear processing offers promising routes for tunable "smart" polymeric nanomedicines.
Collapse
Affiliation(s)
- Yuhang Huang
- Department of Chemistry , University of Victoria , PO Box 1700 Stn CSC, Victoria , BC V8W 2Y2 Canada
| | - Arman Moini Jazani
- Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke St. West , Montreal , Quebec H4B 1R6 , Canada
| | - Elliot P Howell
- Department of Chemistry , University of Victoria , PO Box 1700 Stn CSC, Victoria , BC V8W 2Y2 Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke St. West , Montreal , Quebec H4B 1R6 , Canada
| | - Matthew G Moffitt
- Department of Chemistry , University of Victoria , PO Box 1700 Stn CSC, Victoria , BC V8W 2Y2 Canada
| |
Collapse
|
11
|
Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym Chem 2019. [DOI: 10.1039/c8py01808a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Review on recent strategies to synthesize novel disulfide-containing reductively-degradable block copolymers and their nanoassemblies as being classified with the number, position, and location of the disulfide linkages toward effective tumor-targeting intracellular drug delivery exhibiting enhanced release of encapsulated drugs.
Collapse
Affiliation(s)
- Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
12
|
Bawa KK, Jazani AM, Shetty C, Oh JK. PLA-Based Triblock Copolymer Micelles Exhibiting Dual Acidic pH/Reduction Responses at Dual Core and Core/Corona Interface Locations. Macromol Rapid Commun 2018; 39:e1800477. [DOI: 10.1002/marc.201800477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Kamaljeet Kaur Bawa
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec H4B 1R6 Canada
| | - Arman Moini Jazani
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec H4B 1R6 Canada
| | - Chaitra Shetty
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec H4B 1R6 Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry; Concordia University; Montreal Quebec H4B 1R6 Canada
| |
Collapse
|
13
|
Ji X, Tang Q, Pang P, Wu J, Kirk TB, Xu J, Ma D, Xue W. Redox-responsive chemosensitive polyspermine delivers ursolic acid targeting to human breast tumor cells: The depletion of intracellular GSH contents arouses chemosensitizing effects. Colloids Surf B Biointerfaces 2018; 170:293-302. [PMID: 29936382 DOI: 10.1016/j.colsurfb.2018.06.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/16/2018] [Accepted: 06/17/2018] [Indexed: 01/08/2023]
Abstract
Antitumor efficacy of ursolic acid (UA) is seriously limited due to its low hydrophilicity and needy bioavailability. To overcome these obstacles, chemosensitive polyspermine (CPSP) conjugated with UA and folic acid (FA) as a novel targeted prodrug was designed and successfully synthesized in this investigation. This prodrug not only showed high aqueous solubility, GSH-triggered degradation and good biocompatibility, but also exhibited better inhibition effect on the tumor cells proliferation in comparison with free UA. FA-CPSP-UA could down-regulate the generation of GSH and manifest excellent ability in enhancing antitumor efficacy. In addition, FA-CPSP-UA could inhibit the expression of MMP-9, which led to restricting MCF-7 cells migration. Taken together, the results indicated that FA-CPSP-UA, as a carrier, can efficiently deliver UA to folate receptor positive cancer cells and improve tumor therapy of UA by Chemosensitive effect.
Collapse
Affiliation(s)
- Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Qiao Tang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Peng Pang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jianping Wu
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering, Curtin University, Australia
| | - Thomas Brett Kirk
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering, Curtin University, Australia
| | - Jiake Xu
- The School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Yildirim I, Weber C, Schubert US. Old meets new: Combination of PLA and RDRP to obtain sophisticated macromolecular architectures. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kim HC, Kim E, Ha TL, Lee SG, Lee SJ, Jeong SW. Highly stable and reduction responsive micelles from a novel polymeric surfactant with a repeating disulfide-based gemini structure for efficient drug delivery. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Bawa KK, Oh JK. Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery. Mol Pharm 2017; 14:2460-2474. [DOI: 10.1021/acs.molpharmaceut.7b00284] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kamaljeet K. Bawa
- Department of Chemistry and
Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and
Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
17
|
Wang W, Wang B, Liu S, Shang X, Yan X, Liu Z, Ma X, Yu X. Bioreducible Polymer Nanocarrier Based on Multivalent Choline Phosphate for Enhanced Cellular Uptake and Intracellular Delivery of Doxorubicin. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15986-15994. [PMID: 28481098 DOI: 10.1021/acsami.7b03317] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Limited cellular uptake and inefficient intracellular drug release severely hamper the landscape of polymer drug nanocarriers in cancer chemotherapy. Herein, to address these urgent challenges in tumor treatment simultaneously, we integrated the multivalent choline phosphate (CP) and bioreducible linker into a single polymer chain, designed and synthesized a neoteric bioreducible polymer nanocarrier. The excellent hydrophility of these zwitterionic CP groups endowed high drug loading content and drug loading efficiency of doxorubicin to this drug delivery system (∼22.1 wt %, ∼95.9%). Meanwhile, we found that the multivalent choline phosphate can effectively enhance the internalization efficiency of this drug-loaded nanocarrier over few seconds, and the degree of improvement depended on the CP density in a single polymer chain. In addition, after these nanocarriers entered into the tumor cells, the accelerated cleavage of bioreducible linker made it possible for more cargo escape from the delivery system to cytoplasm to exert their cytostatic effects more efficiently. The enhanced therapeutic efficacy in various cell lines indicated the great potential of this system in anticancer drug delivery applications.
Collapse
Affiliation(s)
- Wenliang Wang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| | - Bo Wang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Sanrong Liu
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Xudong Shang
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - XinXin Yan
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| | - Zonghua Liu
- Department of Biomedical Engineering, Jinan University , Guangzhou 510632, P.R. China
| | - Xiaojing Ma
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
| | - Xifei Yu
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P.R. China
- University of Science and Technology of China , Hefei 230026, P.R. China
| |
Collapse
|
18
|
Yao Y, Xu H, Liu C, Guan Y, Xu D, Zhang J, Su Y, Zhao L, Luo J. Biodegradable multi-blocked polyurethane micelles for intracellular drug delivery: the effect of disulfide location on the drug release profile. RSC Adv 2016. [DOI: 10.1039/c5ra24903a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Polyurethane micelles with disulfide bonds positioned mainly either at the hydrophobic PCL junctions (PU-SS-C) or at the connections between the hydrophilic PEG and hydrophobic PCL blocks (PU-SS-I) were developed as a antitumor drug carriers.
Collapse
Affiliation(s)
- Yongchao Yao
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Sichuan
- China
| | - He Xu
- Department of Immunology
- West China School of Preclinical and Forensic Medicine
- Sichuan University
- China
| | - Chang Liu
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Sichuan
- China
| | - Yayuan Guan
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Sichuan
- China
| | - Deqiu Xu
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Sichuan
- China
| | - Jiya Zhang
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Sichuan
- China
| | - Yuling Su
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Sichuan
- China
| | - Lili Zhao
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Sichuan
- China
| | - Jianbin Luo
- College of Chemistry and Environmental Protection Engineering
- Southwest University for Nationalities
- 610041 Sichuan
- China
| |
Collapse
|
19
|
Deng B, Ma P, Xie Y. Reduction-sensitive polymeric nanocarriers in cancer therapy: a comprehensive review. NANOSCALE 2015; 7:12773-12795. [PMID: 26176593 DOI: 10.1039/c5nr02878g] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Redox potential is regarded as a significant signal to distinguish between the extra-cellular and intra-cellular environments, as well as between tumor and normal tissues. Taking advantage of this physiological differentiation, various reduction-sensitive polymeric nanocarriers (RSPNs) have been designed and explored to demonstrate excellent stability during blood circulation but rapidly degrade and effectively trigger drug release in tumor cells. Therefore, this smart RSPN delivery system has attracted much attention in recent years, as it represents one of the most promising drug delivery strategies in cancer therapy. In this review, we will provide a comprehensive overview of RSPNs with various reducible linkages and functional groups up to date, including their design and synthetic strategies, preparation methods, drug release behavior, and their in vitro and in vivo efficacy in cancer therapy. In addition, dual- and triple-sensitive nanocarriers based on reducible disulfide bond-containing linkages will also be discussed.
Collapse
Affiliation(s)
- Bing Deng
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | | | | |
Collapse
|
20
|
Zhang Q, Ren H, Baker GL. Synthesis and click chemistry of a new class of biodegradable polylactide towards tunable thermo-responsive biomaterials. Polym Chem 2015; 6:1275-1285. [PMID: 25685199 PMCID: PMC4326109 DOI: 10.1039/c4py01425a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of clickable and biodegradable polylactide was designed and prepared via bulk polymerization of 3,6-dipropargyloxymethyl-1,4-dioxane-2,5-dione (1) which was synthesized from easily accessible propargyloxylactic acid (5). A homopolymer of 1 and random copolymer of 1 with l-lactide were obtained as amorphous materials and exhibit low Tg of 8.5 and 34 °C, respectively, indicating their promising potentials for biomedical applications. The statistical nature of random copolymers was investigated by DSC analysis and 13C NMR spectroscopy, which implies the random distribution of terminal alkyne groups along the back bone of copolymers. The efficient click post-modification of this new class of polylactide with alkyl and mPEG azides affords novel hydrophilic biomaterials, which exhibit reversible thermo-responsive properties as evidenced by their tunable LCST ranging from 22 to 69 °C depending on the balance of the incorporated hydrophilic/hydrophobic side chains. These results indicate the generality of this new class of clickable polylactide in preparing novel smart biomaterials in a simple and efficient manner via click chemistry.
Collapse
Affiliation(s)
- Quanxuan Zhang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Hong Ren
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Gregory L. Baker
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Kim HC, Kim E, Ha TL, Jeong SW, Lee SG, Lee SJ, Lee B. Thiol-responsive gemini poly(ethylene glycol)-poly(lactide) with a cystine disulfide spacer as an intracellular drug delivery nanocarrier. Colloids Surf B Biointerfaces 2015; 127:206-12. [PMID: 25679493 DOI: 10.1016/j.colsurfb.2015.01.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/30/2014] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
Thiol-responsive gemini micelles consisting of hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic polylactide (PLA) blocks with a cystine disulfide spacer were reported as effective intracellular nanocarriers of drugs. In the presence of cellular glutathione (GSH) as a reducing agent, gemini micelles gradually destabilize into monomeric micelles through cleavage of the cystine linkage. This destabilization of the gemini micelles changed their size distribution, with the appearance of small aggregates, and led to the enhanced release of encapsulated doxorubicin (DOX). The results obtained from cell culture via confocal laser scanning microscopy (CLSM) for cellular uptake, as well as cell viability measurements for anticancer efficacy suggest the potential of disulfide-based gemini polymeric micelles as controlled drug delivery carriers.
Collapse
Affiliation(s)
- Hyun-Chul Kim
- Nano & Bio Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea.
| | - Eunjoo Kim
- Nano & Bio Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea.
| | - Tae-Lin Ha
- Nano & Bio Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Sang Won Jeong
- Nano & Bio Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Se Guen Lee
- Nano & Bio Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Sung Jun Lee
- Nano & Bio Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| | - Boram Lee
- Nano & Bio Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Republic of Korea
| |
Collapse
|
22
|
|
23
|
Biswas D, Li P, Liu D, Oh JK. Enhanced encapsulation of superparamagnetic Fe3O4 in acidic core-containing micelles for magnetic resonance imaging. RSC Adv 2015. [DOI: 10.1039/c5ra24582f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Block copolymer-based magnetic nanoassembled structures with acidic cores exhibiting enhanced loading level of superparamagnetic iron oxide nanoparticles, thus having great potential for theranostics based on MRI.
Collapse
Affiliation(s)
- Depannita Biswas
- Department of Chemistry and Biochemistry
- Centre for NanoScience Research
- Concordia University
- Montreal
- Canada H4B 1R6
| | - Puzhen Li
- Department of Chemistry and Biochemistry
- Centre for NanoScience Research
- Concordia University
- Montreal
- Canada H4B 1R6
| | - Dapeng Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada N2L 3G1
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Centre for NanoScience Research
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
24
|
Cao Y, Zhao J, Zhang Y, Liu J, Liu J, Dong A, Deng L. pH/redox dual-sensitive nanoparticles based on the PCL/PEG triblock copolymer for enhanced intracellular doxorubicin release. RSC Adv 2015; 5:28060-28069. [DOI: 10.1039/c5ra01833a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Acid/redox-dual sensitivities of nanoparticles based on PEG/PCL enhance the intracellular drug release of cancer cells.
Collapse
Affiliation(s)
- Yan Cao
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Junqiang Zhao
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine
- Institute of Radiation Medicine
- Chinese Academy of Medical Science and Peking Union Medical College
- Tianjin
- China
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
25
|
Ko NR, Cheong J, Noronha A, Wilds CJ, Oh JK. Reductively-sheddable cationic nanocarriers for dual chemotherapy and gene therapy with enhanced release. Colloids Surf B Biointerfaces 2014; 126:178-87. [PMID: 25561416 DOI: 10.1016/j.colsurfb.2014.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/29/2014] [Accepted: 12/05/2014] [Indexed: 12/31/2022]
Abstract
The development of a versatile strategy to synthesize cationic nanocarriers capable of co-delivery and enhanced release of drugs and oligonucleotides is promising for synergic dual chemotherapy and gene therapy. Herein, we report a novel cationic amphiphilic diblock copolymer having a single reduction-responsive disulfide linkage at a junction between a FDA-approved polylactide (PLA) block and a cationic methacrylate block (C-ssABP). The amphiphilic design of the C-ssABP enables the formation of cationic micellar aggregates possessing hydrophobic PLA cores, encapsulating anticancer drugs; cationic coronas, ensuring complementary complexation with negatively-charged oligonucleotides through electrostatic interactions; and disulfides at interfaces, leading to enhanced release of both encapsulated drugs and complexed oligonucleotides. The reduction-responsive intracellular trafficking results from flow cytometry, confocal laser scanning microscopy, and cell viability, as well as in vitro gene transfection assay suggest that C-ssABP offers versatility as an effective nanocarrier platform for dual chemotherapy and gene therapy.
Collapse
Affiliation(s)
- Na Re Ko
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Jack Cheong
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Anne Noronha
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec, Canada H4B 1R6.
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Centre for NanoScience Research, Concordia University, Montreal, Quebec, Canada H4B 1R6.
| |
Collapse
|
26
|
Cunningham A, Ko NR, Oh JK. Synthesis and reduction-responsive disassembly of PLA-based mono-cleavable micelles. Colloids Surf B Biointerfaces 2014; 122:693-700. [DOI: 10.1016/j.colsurfb.2014.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 12/21/2022]
|
27
|
Ko NR, Oh JK. Glutathione-Triggered Disassembly of Dual Disulfide Located Degradable Nanocarriers of Polylactide-Based Block Copolymers for Rapid Drug Release. Biomacromolecules 2014; 15:3180-9. [DOI: 10.1021/bm5008508] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Na Re Ko
- Department of Chemistry and
Biochemistry and Center for Nanoscience Research, Concordia University, Montreal, Quebec Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and
Biochemistry and Center for Nanoscience Research, Concordia University, Montreal, Quebec Canada H4B 1R6
| |
Collapse
|
28
|
Patenaude M, Smeets NMB, Hoare T. Designing Injectable, Covalently Cross-Linked Hydrogels for Biomedical Applications. Macromol Rapid Commun 2014; 35:598-617. [PMID: 24477984 DOI: 10.1002/marc.201300818] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/11/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Mathew Patenaude
- Department of Chemical Engineering; McMaster University; 1280 Main St. W. Hamilton Ontario Canada L8S 4L7
| | - Niels M. B. Smeets
- Department of Chemical Engineering; McMaster University; 1280 Main St. W. Hamilton Ontario Canada L8S 4L7
| | - Todd Hoare
- Associate Professor, Department of Chemical Engineering; McMaster University; 1280 Main St. W. Hamilton Ontario Canada L8S 4L7
| |
Collapse
|
29
|
|
30
|
Chan N, An SY, Oh JK. Dual location disulfide degradable interlayer-crosslinked micelles with extended sheddable coronas exhibiting enhanced colloidal stability and rapid release. Polym Chem 2014. [DOI: 10.1039/c3py00852e] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Kim HC, Kim E, Lee SG, Lee SJ, Kim H, Jeong SW. Thiol-responsive micelles based on nonionic gemini surfactants with a cystine disulfide spacer. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.27036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hyun-Chul Kim
- Nano and Bio Research Division; Daegu Gyeongbuk Institute of Science and Technology (DGIST); Daegu 711-873 Korea
| | - Eunjoo Kim
- Nano and Bio Research Division; Daegu Gyeongbuk Institute of Science and Technology (DGIST); Daegu 711-873 Korea
| | - Se Guen Lee
- Nano and Bio Research Division; Daegu Gyeongbuk Institute of Science and Technology (DGIST); Daegu 711-873 Korea
| | - Sung Jun Lee
- Nano and Bio Research Division; Daegu Gyeongbuk Institute of Science and Technology (DGIST); Daegu 711-873 Korea
| | - Hyunmin Kim
- Nano and Bio Research Division; Daegu Gyeongbuk Institute of Science and Technology (DGIST); Daegu 711-873 Korea
| | - Sang Won Jeong
- Nano and Bio Research Division; Daegu Gyeongbuk Institute of Science and Technology (DGIST); Daegu 711-873 Korea
| |
Collapse
|
32
|
Morsbach J, Natalello A, Elbert J, Winzen S, Kroeger A, Frey H, Gallei M. Redox-Responsive Block Copolymers: Poly(vinylferrocene)-b-poly(lactide) Diblock and Miktoarm Star Polymers and Their Behavior in Solution. Organometallics 2013. [DOI: 10.1021/om400536q] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jan Morsbach
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Johannes Gutenberg-University (JGU),
Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Adrian Natalello
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Johannes Gutenberg-University (JGU),
Duesbergweg 10-14, D-55099 Mainz, Germany
- Graduate School
Materials Science, University of Mainz, Staudinger Weg 9, D-55128 Mainz, Germany
| | - Johannes Elbert
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Petersenstraße 22, D-64287 Darmstadt, Germany
| | - Svenja Winzen
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz,
Germany
| | - Anja Kroeger
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz,
Germany
| | - Holger Frey
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Johannes Gutenberg-University (JGU),
Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Petersenstraße 22, D-64287 Darmstadt, Germany
| |
Collapse
|
33
|
Khorsand B, Lapointe G, Brett C, Oh JK. Intracellular Drug Delivery Nanocarriers of Glutathione-Responsive Degradable Block Copolymers Having Pendant Disulfide Linkages. Biomacromolecules 2013; 14:2103-11. [DOI: 10.1021/bm4004805] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Behnoush Khorsand
- Department
of Chemistry and
Biochemistry and Center for Nanoscience Research, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Gabriel Lapointe
- Department of Biology, Concordia University, Montreal, Quebec, Canada H4B
1R6
| | - Christopher Brett
- Department of Biology, Concordia University, Montreal, Quebec, Canada H4B
1R6
| | - Jung Kwon Oh
- Department
of Chemistry and
Biochemistry and Center for Nanoscience Research, Concordia University, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|