1
|
Klein M, Fesser P, Zechel S, Hager MD, Schubert US. Self-Healing Behavior of Metallopolymers in Complex3D-Structures Obtained by DLP-Based 3D-Printing. Chemistry 2025; 31:e202404267. [PMID: 39853790 PMCID: PMC11924990 DOI: 10.1002/chem.202404267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
This current study focusses on the investigation of the self-healing abilities of metallopolymers containing different kinds of metal complexes, which were processed by direct digital light processing (DLP) based three-dimensional (3D) printing. For this purpose, 2-phenoxyethyl acrylate is mixed with ligand-containing monomers either based on triphenylmethyl(trt)-histidine or terpyridine, respectively. Either zinc(II) or nickel(II) salts are successfully applied for a complexation of the ligand monomers in solution and, subsequently, photopolymerization is performed. The thermo-mechanical properties of the obtained metallopolymers were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) as well as dynamic mechanical thermal analysis (DMTA). Multiple damages with defined forces ranging from 20 to 1500 mN were introduced into the 3D-structures and successfully healed within 24 h at 70 °C or 120 °C, respectively without losing the structural integrity of the overall 3D-structures. Herein, excellent healing efficiencies up to 97 % were determined. Consequently, these hollow structures not only feature very good self-healing abilities but also excellent retention of the 3D-structure at and above the healing temperature.
Collapse
Affiliation(s)
- Michael Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Patrick Fesser
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Helmholtz-Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstr. 12-14, 07443, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Helmholtz-Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstr. 12-14, 07443, Jena, Germany
- Helmholtz-Zentrum Berlin (HZB), Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| |
Collapse
|
2
|
Bouzari N, Nasseri R, Huang J, Ganguly S, Tang XS, Mekonnen TH, Aghakhani A, Shahsavan H. Hybrid Zwitterionic Hydrogels with Encoded Differential Swelling and Programmed Deformation for Small-Scale Robotics. SMALL METHODS 2025; 9:e2400812. [PMID: 39044713 PMCID: PMC11926519 DOI: 10.1002/smtd.202400812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 07/25/2024]
Abstract
Stimuli-responsive shape-morphing hydrogels with self-healing and tunable physiochemical properties are excellent candidates for functional building blocks of untethered small-scale soft robots. With mechanical properties similar to soft organs and tissues, such robots enable minimally invasive medical procedures, such as cargo/cell transportation. In this work, responsive hydrogels based on zwitterionic/acrylate chemistry with self-healing and stimuli-responsiveness are synthesized. Such hydrogels are then judiciously cut and pasted to form hybrid constructs with predetermined swelling and elastic anisotropy. This method is used to program hydrogel constructs with predetermined 2D-to-3D deformation upon exposure to different environmental ionic strengths. Untethered soft robotic functionalities are demonstrated, such as actuation, magnetic locomotion, and targeted transport of soft and light cargo in flooded media. The proposed hydrogel expands the repertoire of functional materials for fabricating small-scale soft robots.
Collapse
Affiliation(s)
- Negin Bouzari
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Rasool Nasseri
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Junting Huang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sayan Ganguly
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Institute of Polymer Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Amirreza Aghakhani
- Institute of Biomaterials and Biomolecular Systems (IBBS), University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Hamed Shahsavan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
3
|
Huang X, Li L, Zhu H, Lv T, Tang L, Shentu Z, Li H, Gao T, Zhang K, Hu J, Wang W, Xue B, Lei H, Cao Y. Designing High-Damping, Optically Clear Ionogels through Competitive Binding for Flexible and Impact-Resistant Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9830-9840. [PMID: 39874299 DOI: 10.1021/acsami.4c19831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Developing damping materials that are both optically transparent and mechanically robust, while offering broad frequency damping capacity, is a significant challenge─particularly for devices that require protection without compromising visual clarity. Conventional methods often either fail to maintain transparency or involve complex designs that are difficult to implement. Here, we present an ionogel system that integrates a physically cross-linked elastic copolymer network with a viscous ionic liquid. The competitive interactions between the ionic liquid and the polymer network enable fine-tuning of the mechanical stability and damping capacity. The resulting ionogel is transparent and mechanically robust and exhibits excellent damping over a wide frequency range. Remarkably, a thin layer (0.15 mm) absorbs nearly 60% of the impact force and retains its performance after exposure to extreme conditions. This approach offers a straightforward method for designing advanced damping materials that meet both the aesthetic and functional demands of modern technologies.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Haoqi Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Tiancheng Lv
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Lei Tang
- Beijing Xiaomi Mobile Software Co., Ltd, Beijing 100085, China
| | - Zhexian Shentu
- Beijing Xiaomi Mobile Software Co., Ltd, Beijing 100085, China
| | - Haoyue Li
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tian Gao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Kai Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Juntao Hu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Hai Lei
- School of Physics, Institute of Advanced Physics, Zhejiang University, Hangzhou 310027, China
| | - Yi Cao
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Yamamoto T, Taguchi R, Yan Z, Ejima R, Xu L, Nakahata M, Kamon Y, Hashidzume A. Interaction of Cyclodextrins with Amphiphilic Alternating Cooligomers Possessing the Dense Triazole Backbone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7178-7191. [PMID: 38506447 DOI: 10.1021/acs.langmuir.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The interaction of cyclodextrins (CDs) with structure-controlled polymers is expected to provide significant insights into macromolecular recognition. However, the interaction of CDs with structure-controlled polymers has been an underexamined issue of investigation. Herein, alternating amphiphilic cooligomers (oligoCnAH, where n denotes the carbon number of alkyl groups; n = 4, 8, and 12) were synthesized by copper(I)-catalyzed azide-alkyne cycloaddition polymerization of heterodimers of 4-azido-5-hexynoic acid (AH) derivatives carrying N-alkylamide and t-butyl (tBu) ester side chains, followed by hydrolysis of the tBu ester, to study the interaction of CDs with oligoCnAH by 1H NMR, nuclear Overhauser effect spectroscopy, and pulse-field-gradient spin-echo NMR. These NMR studies indicated that αCD interacted with oligoC4AH, αCD and βCD interacted with oligoC8AH, and all CDs interacted with oligoC12AH. Based on the equilibrium models proposed, the binding constants were evaluated for the binary mixtures, which showed interaction. Comparing the interactions of the CDs/oligoC12AH binary mixtures with those of the binary mixtures of CDs and alternating copolymers of sodium maleate and dodecyl vinyl ether (polyC12M), it is concluded that oligoC12AH forms less stable micelles than does polyC12M presumably because of the lower molecular weight, the hydrophilic amide groups in the side chain, and the longer interval between neighboring C12 groups in oligoC12AH.
Collapse
Affiliation(s)
- Tomoaki Yamamoto
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryoichi Taguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Zijun Yan
- Department of Polymer Materials and Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ryo Ejima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Linlin Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuri Kamon
- Administrative Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
5
|
Linke P, Munding N, Kimmle E, Kaufmann S, Hayashi K, Nakahata M, Takashima Y, Sano M, Bastmeyer M, Holstein T, Dietrich S, Müller‐Tidow C, Harada A, Ho AD, Tanaka M. Reversible Host-Guest Crosslinks in Supramolecular Hydrogels for On-Demand Mechanical Stimulation of Human Mesenchymal Stem Cells. Adv Healthc Mater 2024; 13:e2302607. [PMID: 38118064 PMCID: PMC11481031 DOI: 10.1002/adhm.202302607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Stem cells are regulated not only by biochemical signals but also by biophysical properties of extracellular matrix (ECM). The ECM is constantly monitored and remodeled because the fate of stem cells can be misdirected when the mechanical interaction between cells and ECM is imbalanced. A well-defined ECM model for bone marrow-derived human mesenchymal stem cells (hMSCs) based on supramolecular hydrogels containing reversible host-guest crosslinks is fabricated. The stiffness (Young's modulus E) of the hydrogels can be switched reversibly by altering the concentration of non-cytotoxic, free guest molecules dissolved in the culture medium. Fine-adjustment of substrate stiffness enables the authors to determine the critical stiffness level E* at which hMSCs turn the mechano-sensory machinery on or off. Next, the substrate stiffness across E* is switched and the dynamic adaptation characteristics such as morphology, traction force, and YAP/TAZ signaling of hMSCs are monitored. These data demonstrate the instantaneous switching of traction force, which is followed by YAP/TAZ signaling and morphological adaptation. Periodical switching of the substrate stiffness across E* proves that frequent applications of mechanical stimuli drastically suppress hMSC proliferation. Mechanical stimulation across E* level using dynamic hydrogels is a promising strategy for the on-demand control of hMSC transcription and proliferation.
Collapse
Affiliation(s)
- Philipp Linke
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Natalie Munding
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Esther Kimmle
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Stefan Kaufmann
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
| | - Kentaro Hayashi
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
| | - Masaki Nakahata
- Department of Macromolecular ScienceGraduate School of ScienceOsaka UniversityOsaka560‐0043Japan
| | - Yoshinori Takashima
- Department of Macromolecular ScienceGraduate School of ScienceOsaka UniversityOsaka560‐0043Japan
| | - Masaki Sano
- Institute of Natural SciencesShanghai Jiao Tong UniversityShanghai200240China
| | - Martin Bastmeyer
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
- Cell and NeurobiologyZoological InstituteKarlsruhe Institute of Technology76131KarlsruheGermany
- Institute for Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP)Karlsruhe Institute of Technology76334Eggenstein‐LeopoldshafenGermany
| | - Thomas Holstein
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
- Molecular Genetics and EvolutionCentre for Organismal StudiesHeidelberg University69221HeidelbergGermany
| | - Sascha Dietrich
- Department of Internal Medicine VHematology, Oncology, RheumatologyUniversity Hospital Heidelberg69120HeidelbergGermany
- Department of Haematology, Oncology, and Clinical ImmunologyUniversitätsklinikum Düsseldorf40225DüsseldorfGermany
| | - Carsten Müller‐Tidow
- Department of Internal Medicine VHematology, Oncology, RheumatologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Akira Harada
- The Institute of Scientific and Industrial ResearchOsaka University8‐1 MihogaokaIbarakiOsaka567‐0047Japan
| | - Anthony D. Ho
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
- Department of Internal Medicine VHematology, Oncology, RheumatologyUniversity Hospital Heidelberg69120HeidelbergGermany
- Molecular Medicine Partnership Unit HeidelbergEMBL and Heidelberg University69120HeidelbergGermany
| | - Motomu Tanaka
- Physical Chemistry of BiosystemsInstitute of Physical ChemistryHeidelberg University69120HeidelbergGermany
- Center for Integrative Medicine and PhysicsInstitute for Advanced StudyKyoto UniversityKyoto606‐8501Japan
| |
Collapse
|
6
|
Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D Printing of Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305537. [PMID: 37877817 DOI: 10.1002/adma.202305537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Indexed: 10/26/2023]
Abstract
This review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing. The addition of self-healing properties within 3D printed objects is of high interest as it can improve the performance and lifespan of structural components, and even enable the mimicking of living tissues for biomedical applications, such as organs printing. The review will discuss and analyze the most relevant results reported in recent years in the development of self-healing polymeric materials that can be processed via 3D printing. After introducing the chemical and physical self-healing mechanism that can be exploited, the literature review here reported will focus in particular on printability and repairing performances. At last, actual perspective and possible development field will be critically discussed.
Collapse
Affiliation(s)
- Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| |
Collapse
|
7
|
Imato K, Hino T, Kaneda N, Imae I, Shida N, Inagi S, Ooyama Y. Wireless Electrochemical Gel Actuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305067. [PMID: 37858925 DOI: 10.1002/smll.202305067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Soft actuators generate motion in response to external stimuli and are indispensable for soft robots, particularly future miniature robots with complex structure and motion. Similarly to conventional hard robots, electricity is suitable for the stimulation. However, previous electrochemical soft actuators require a tethered connection to a power supply, limiting their size, structure, and motion. Here, wireless electrochemical soft actuators composed of hydrogels and driven by bipolar electrochemistry are reported. Viologen, which dimerizes by one-electron reduction and dissociates by one-electron oxidation, is incorporated in the side chains of the gel networks and works as a reversible cross-link. Wireless and reversible electrochemical actuation of the hydrogels, i.e., muscle-like shrinking and swelling, is demonstrated at microscopic and even macroscopic scales.
Collapse
Affiliation(s)
- Keiichi Imato
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Taichi Hino
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Naoki Kaneda
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Ichiro Imae
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Naoki Shida
- Department of Chemistry and Life Science Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| |
Collapse
|
8
|
Varadarajan A, Badani Prado RM, Elmore K, Mishra S, Kundu S. Effects of concentration of hydrophobic component and swelling in saline solutions on mechanical properties of a stretchable hydrogel. SOFT MATTER 2024; 20:869-876. [PMID: 38170915 DOI: 10.1039/d3sm01215h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An elastic biopolymer, resilin possesses exceptional qualities such as high stretchability and resilience. Such attributes are utilized in nature by many species for mechanical energy storage to facilitate movement. The properties of resilin are attributed to the balanced combination of hydrophilic and hydrophobic segments. To mimic the properties of resilin, we developed a hydrogel system composed of hydrophilic acrylic acid (AAc) and methacrylamide (MAM) chains and hydrophobic poly(propylene glycol diacrylate) (PPGDA) chains. The gel was produced through free-radical polymerization in 0.8 M NaCl solutions using KPS as an initiator. In these gels, AAc and MAM can form hydrogen bonds, whereas the association between PPGDA chains can lead to hydrophobic domains. The PPGDA concentration affects the level of hydrogen bonding and gel mechanical properties. Tensile experiments revealed that the elastic modulus increased with a higher PPGDA concentration. Retraction experiments demonstrated increased velocity and acceleration when released from a stretched state with increasing PPGDA concentration. Swelling and deswelling of gels in saline solutions led to a change in mechanical properties and retraction behavior. This study shows that the stretchability and resilience of these hydrogels can be adjusted by changing the concentration of hydrophobic components.
Collapse
Affiliation(s)
- Anandavalli Varadarajan
- Dave C Swalm School of Chemical Engineering, Mississippi State University, MS State, MS, 39762, USA.
| | - Rosa Maria Badani Prado
- Dave C Swalm School of Chemical Engineering, Mississippi State University, MS State, MS, 39762, USA.
| | - Katherine Elmore
- Dave C Swalm School of Chemical Engineering, Mississippi State University, MS State, MS, 39762, USA.
| | - Satish Mishra
- Dave C Swalm School of Chemical Engineering, Mississippi State University, MS State, MS, 39762, USA.
| | - Santanu Kundu
- Dave C Swalm School of Chemical Engineering, Mississippi State University, MS State, MS, 39762, USA.
| |
Collapse
|
9
|
Li S, Li JJ, Zhao YY, Chen MM, Su SS, Yao SY, Wang ZH, Hu XY, Geng WC, Wang W, Wang KR, Guo DS. Supramolecular Integration of Multifunctional Nanomaterial by Mannose-Decorated Azocalixarene with Ginsenoside Rb1 for Synergistic Therapy of Rheumatoid Arthritis. ACS NANO 2023; 17:25468-25482. [PMID: 38096153 DOI: 10.1021/acsnano.3c09140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The complexity and progressive nature of diseases require the exploitation of multifunctional materials. However, introducing a function inevitably increases the complexity of materials, which complicates preparation and decreases reproducibility. Herein, we report a supramolecular integration of multifunctional nanomaterials based on mannose-modified azocalix[4]arene (ManAC4A) and ginsenoside Rb1 (Rb1), which showed advances of simplicity and reproducibility. ManAC4A possesses reactive oxygen species (ROS) scavenging capacity and hypoxia-responsiveness, together with macrophage-targeting and induction functionality. Collectively, the Rb1@ManAC4A assembly simply prepared by two components is integrated with multifunction, including triple targeting (ELVIS targeting, macrophage-targeting, and hypoxia-targeted release) and triple therapy (ROS scavenging, macrophage polarization, and the anti-inflammatory effect of Rb1). The spontaneous assembly and recognition of ManAC4A, with its precise structure and molecular weight, facilitated the simple and straightforward preparation of Rb1@ManAC4A, leading to excellent batch consistency. Progress in simplicity and reproducibility, as directed by this research, will catalyze the clinical translation of multifunctional materials.
Collapse
Affiliation(s)
- Shihui Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Juan-Juan Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Ying-Ying Zhao
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Meng-Meng Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Shan-Shan Su
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Shun-Yu Yao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Ze-Han Wang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Wei Wang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Ke-Rang Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin 300071, China
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Li X, Cui K, Zheng Y, Ye YN, Yu C, Yang W, Nakajima T, Gong JP. Role of hierarchy structure on the mechanical adaptation of self-healing hydrogels under cyclic stretching. SCIENCE ADVANCES 2023; 9:eadj6856. [PMID: 38117876 PMCID: PMC10732516 DOI: 10.1126/sciadv.adj6856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
Soft materials with mechanical adaptability have substantial potential for various applications in tissue engineering. Gaining a deep understanding of the structural evolution and adaptation dynamics of soft materials subjected to cyclic stretching gives insight into developing mechanically adaptive materials. Here, we investigate the effect of hierarchy structure on the mechanical adaptation of self-healing hydrogels under cyclic stretching training. A polyampholyte hydrogel, composed of hierarchical structures including ionic bonds, transient and permanent polymer networks, and bicontinuous hard/soft-phase networks, is adopted as a model. Conditions for effective training, mild overtraining, and fatal overtraining are demonstrated in soft materials. We further reveal that mesoscale hard/soft-phase networks dominate the long-term memory effect of training and play a crucial role in the asymmetric dynamics of compliance changes and the symmetric dynamics of hydrogel shape evolution. Our findings provide insights into the design of hierarchical structures for adaptive soft materials.
Collapse
Affiliation(s)
- Xueyu Li
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kunpeng Cui
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong Zheng
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Ya Nan Ye
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Chengtao Yu
- Laboratory of Soft and Wet Matter, Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Wenqi Yang
- Laboratory of Soft and Wet Matter, Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tasuku Nakajima
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Laboratory of Soft and Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
11
|
Yamazaki M, Watanabe Y, Kawakami M, Takayama T, Furukawa H, Fujimura T. A new training model using the self-healing properties of supramolecular hydrogels for endoscopic combined intrarenal surgery. Urolithiasis 2023; 52:13. [PMID: 38117339 DOI: 10.1007/s00240-023-01509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
The combination of hydronephrosis formation, ureteroscopic imaging, and ultrasound delineation has not been included in any non-biological training model of percutaneous nephrolithotomy or endoscopic combined intrarenal surgery. We aimed to develop a realistic kidney phantom using the self-healing properties of supramolecular hydrogels for percutaneous nephrolithotomy and endoscopic combined intrarenal surgery and evaluate its suitability as a training model.Expert and resident urologists performed ultrasound-guided renal pelvic punctures and flexible ureteroscopies for endoscopic combined intrarenal surgery using a training model. Subsequently, the training model was evaluated using a 17-item Likert scale questionnaire (range, 1-5 points). After being filled with carrageenan, the collecting system was inflated, and the relationship between the collecting system volume and collecting system pressure was determined. The durability of the model was verified by repeatedly inserting a 16-Fr access sheath. Five novices and seven urology experts performed the procedure. The mean questionnaire score was 4.25 (standard deviation, 0.37). The model was able to hold 50 mL of air, and the pressure in the collecting system ranged from 6 to 33 mmHg. Repeated punctures were possible even when a 16-Fr access sheath was inserted. Our new training model included the self-healing properties of supramolecular hydrogels, which are tough and flexible and can be evaluated using ultrasonography. According to the questionnaire score, the model was highly satisfactory and has potential as a new educational tool.
Collapse
Affiliation(s)
- Masahiro Yamazaki
- Department of Urology, Tochigi Medical Center Shimotsuga, Tochigi, Japan.
- Department of Urology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke City, Tochigi, 329-0498, Japan.
| | - Yosuke Watanabe
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Masaru Kawakami
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Tatsuya Takayama
- Department of Urology, International University of Health and Welfare Hospital, Tochigi, Japan
| | - Hidemitsu Furukawa
- Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Tetsuya Fujimura
- Department of Urology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke City, Tochigi, 329-0498, Japan
| |
Collapse
|
12
|
Grimm LM, Setiadi J, Tkachenko B, Schreiner PR, Gilson MK, Biedermann F. The temperature-dependence of host-guest binding thermodynamics: experimental and simulation studies. Chem Sci 2023; 14:11818-11829. [PMID: 37920355 PMCID: PMC10619620 DOI: 10.1039/d3sc01975f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/24/2023] [Indexed: 11/04/2023] Open
Abstract
The thermodynamic parameters of host-guest binding can be used to describe, understand, and predict molecular recognition events in aqueous systems. However, interpreting binding thermodynamics remains challenging, even for these relatively simple molecules, as they are determined by both direct and solvent-mediated host-guest interactions. In this contribution, we focus on the contributions of water to binding by studying binding thermodynamics, both experimentally and computationally, for a series of nearly rigid, electrically neutral host-guest systems and report the temperature-dependent thermodynamic binding contributions ΔGb(T), ΔHb(T), ΔSb(T), and ΔCp,b. Combining isothermal titration calorimetry (ITC) measurements with molecular dynamics (MD) simulations, we provide insight into the binding forces at play for the macrocyclic hosts cucurbit[n]uril (CBn, n = 7-8) and β-cyclodextrin (β-CD) with a range of guest molecules. We find consistently negative changes in heat capacity on binding (ΔCp,b) for all systems studied herein - as well as for literature host-guest systems - indicating increased enthalpic driving forces for binding at higher temperatures. We ascribe these trends to solvation effects, as the solvent properties of water deteriorate as temperature rises. Unlike the entropic and enthalpic contributions to binding, with their differing signs and magnitudes for the classical and non-classical hydrophobic effect, heat capacity changes appear to be a unifying and more general feature of host-guest complex formation in water. This work has implications for understanding protein-ligand interactions and other complex systems in aqueous environments.
Collapse
Affiliation(s)
- Laura M Grimm
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jeffry Setiadi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego 9255 Pharmacy Lane La Jolla CA 92093 USA
| | - Boryslav Tkachenko
- Institute of Organic Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego 9255 Pharmacy Lane La Jolla CA 92093 USA
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
13
|
Zhong JH, Zhou Y, Tian XX, Sun YL, Shi BR, Zhang ZY, Zhang WH, Liu XD, Yang YM. The Addition of an Ultra-Small Amount of Black Phosphorous Quantum Dots Endow Self-Healing Polyurethane with a Biomimetic Intelligent Response. Macromol Rapid Commun 2023; 44:e2300286. [PMID: 37461093 DOI: 10.1002/marc.202300286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Indexed: 07/25/2023]
Abstract
This study explores new applications of black phosphorus quantum dots (BPQDs) by adding them to self-healing material systems for the first time. Self-healing polyurethane with an ultra-small amount of BPQDs has biomimetic intelligent responsiveness and achieves balance between its mechanical and self-healing properties. By adding 0.0001 wt% BPQDs to self-healing polyurethane, the fracture strength of the material increases from 3.0 to 12.3 MPa, and the elongation at break also increases from 750% to 860%. Meanwhile, the self-healing efficiency remains at 98%. The addition of BPQDs significantly improves the deformation recovery ability of the composite materials and transforms the surface of self-healing polyurethane from hydrophilic to hydrophobic, making it suitable for applications in fields such as electronic skin and flexible wearable devices. This study provides a simple and feasible strategy for endowing self-healing materials with biomimetic intelligent responsiveness using a small amount of BPQDs.
Collapse
Affiliation(s)
- Jia-Hui Zhong
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhou
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xin-Xin Tian
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ying-Lu Sun
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bi-Ru Shi
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Yu Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Hua Zhang
- Power and Environmental Control Research Department, China Special Vehicle Research Institute, Jingmen, 448000, China
| | - Xiang-Dong Liu
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Ming Yang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
14
|
Liu Y, Li Z, Zhang C, Yang B, Ren H. A Self-Healing Thermoset Epoxy Modulated by Dynamic Boronic Ester for Powder Coating. Polymers (Basel) 2023; 15:3894. [PMID: 37835943 PMCID: PMC10575017 DOI: 10.3390/polym15193894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Thermoset powder coatings exhibit distinctive characteristics such as remarkable hardness and exceptional resistance to corrosion. In contrast to conventional paints, powder coatings are environmentally friendly due to the absence of volatile organic compounds (VOCs). However, their irreversible cross-linking structures limit their chain segment mobility, preventing polymers from autonomously repairing cracks. Dynamic cross-linking networks have garnered attention for their remarkable self-healing capabilities, facilitated by rapid internal bond exchange. Herein, we introduce an innovative method for synthesizing thermoset epoxy containing boronic ester moieties which could prolong the life of the powder coating. The epoxy resin system relies on the incorporation of two curing agents: one featuring small-molecule diamines with boronic bonds and the other a modified polyurethane prepolymer. A state of equilibrium in mechanical properties was achieved via precise manipulation of the proportions of these agents, with the epoxy composite exhibiting a fracture stress of 67.95 MPa while maintaining a stable glass transition temperature (Tg) of 51.39 °C. This imparts remarkable self-healing ability to the coating surface, capable of returning to its original state even after undergoing 1000 cycles of rubbing (using 1200-grit abrasive paper). Furthermore, the introduction of carbon nanotube nanoparticles enabled non-contact sequential self-healing. Subsequently, we introduce this method into powder coatings of different materials. Therefore, this work provides a strategy to develop functional interior decoration and ensure its potential for broad-ranging applications, such as aerospace, transportation, and other fields.
Collapse
Affiliation(s)
- Yongqi Liu
- Ningbo Research Institute, Zhejiang University, Ningbo 315807, China; (Y.L.); (B.Y.)
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziyuan Li
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China;
| | - Caifu Zhang
- Tongling Shanwei New Material Technology Inc. Co., Ltd., Tongling 244000, China;
| | - Biru Yang
- Ningbo Research Institute, Zhejiang University, Ningbo 315807, China; (Y.L.); (B.Y.)
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hua Ren
- Ningbo Research Institute, Zhejiang University, Ningbo 315807, China; (Y.L.); (B.Y.)
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
15
|
Park J, Sasaki Y, Ishii Y, Murayama S, Ohshiro K, Nishiura K, Ikura R, Yamaguchi H, Harada A, Matsuba G, Washizu H, Minami T, Takashima Y. Leaf-Inspired Host-Guest Complexation-Dictating Supramolecular Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39777-39785. [PMID: 37565809 DOI: 10.1021/acsami.3c04395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
We report unique conductive leaf-inspired (in particular, stomata-inspired) supramolecular gas sensors in which acetylated cyclodextrin derivatives rule the electric output. The gas sensors consist of polymers bearing acetylated cyclodextrin, adamantane, and carbon black. Host-guest complexes between acetylated cyclodextrin and adamantane corresponding to the closed stomata realize a flexible polymeric matrix. Effective recombination of the cross-links contributes to the robustness. As gas sensors, the supramolecular materials detect ammonia as well as various other gases at 1 ppm in 10 min. The free acetylated cyclodextrin corresponding to open stomata recognized the guest gases to alter the electric resistivity. Interestingly, the conductive device failed to detect ammonia gases at all without acetylated cyclodextrin. The molecular recognition was studied by molecular dynamics simulations. The gas molecules existed stably in the cavity of free acetylated cyclodextrin. These findings show the potential for developing wearable gas sensors.
Collapse
Affiliation(s)
- Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yoshiki Ishii
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima-minamimachi, Chuo, Kobe, Hyogo 650-0047, Japan
| | - Shunsuke Murayama
- Graduate School of Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kengo Nishiura
- Graduate School of Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Harada
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Go Matsuba
- Graduate School of Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hitoshi Washizu
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima-minamimachi, Chuo, Kobe, Hyogo 650-0047, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Mottoul M, Giljean S, Pac M, Landry V, Morin J. Self‐healing polyacrylate coatings with dynamic H‐bonds between urea groups. J Appl Polym Sci 2023. [DOI: 10.1002/app.53853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Marie Mottoul
- Département de chimie and Centre de Recherche sur les Matériaux Avancés (CERMA), 1045 Ave de la Médecine Université Laval Québec Canada
- NSERC‐Canlak Industrial Research Chair in Interior Wood Product Finishes and Centre de Recherche sur les Matériaux Renouvelables (CRMR), Département des sciences du bois et de la forêt, 2425 rue de la Terrasse Université Laval Québec Canada
| | - Sylvain Giljean
- Laboratoire de Physique et Mécanique Textiles (UR 4365) Université de Haute‐Alsace Mulhouse France
| | - Marie‐José Pac
- Laboratoire de Physique et Mécanique Textiles (UR 4365) Université de Haute‐Alsace Mulhouse France
| | - Véronic Landry
- NSERC‐Canlak Industrial Research Chair in Interior Wood Product Finishes and Centre de Recherche sur les Matériaux Renouvelables (CRMR), Département des sciences du bois et de la forêt, 2425 rue de la Terrasse Université Laval Québec Canada
| | - Jean‐François Morin
- Département de chimie and Centre de Recherche sur les Matériaux Avancés (CERMA), 1045 Ave de la Médecine Université Laval Québec Canada
| |
Collapse
|
17
|
Stab-Resistant Polymers-Recent Developments in Materials and Structures. Polymers (Basel) 2023; 15:polym15040983. [PMID: 36850264 PMCID: PMC9965452 DOI: 10.3390/polym15040983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Stab-resistant garments have been used for centuries, utilizing metals, paper, or polymeric structures, often inspired by natural structures such as scales. Nowadays, stab-resistant vests or vest inserts are used by police and security personnel, but also by bus drivers, ambulance officers, and other people who are empirically often attacked on duty. Since stab protection garments are often heavy and thus uncomfortable and not well accepted, whether in the form of chain-mail or metal inserts in protective vests, researchers are striving to find lightweight, drapable alternatives, often based on polymeric materials. These research attempts have recently focused on textile fabrics, mostly with impregnation by shear-thickening fluids (STFs) or ceramic coatings, as well as on lightweight composites. The first studies on 3D printed polymeric objects with tailored shapes, as well as theoretical investigations of the stab-protective effect of different materials, have been published throughout the last years. Here, we discuss different measurement methods, including dynamic and quasistatic methods, and correlations of stab-resistance with other physical properties, before we give an overview of recent developments of stab-resistant polymers, using different materials/material combinations and structures.
Collapse
|
18
|
Zhou Y, Li L, Han Z, Li Q, He J, Wang Q. Self-Healing Polymers for Electronics and Energy Devices. Chem Rev 2023; 123:558-612. [PMID: 36260027 DOI: 10.1021/acs.chemrev.2c00231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polymers are extensively exploited as active materials in a variety of electronics and energy devices because of their tailorable electrical properties, mechanical flexibility, facile processability, and they are lightweight. The polymer devices integrated with self-healing ability offer enhanced reliability, durability, and sustainability. In this Review, we provide an update on the major advancements in the applications of self-healing polymers in the devices, including energy devices, electronic components, optoelectronics, and dielectrics. The differences in fundamental mechanisms and healing strategies between mechanical fracture and electrical breakdown of polymers are underlined. The key concepts of self-healing polymer devices for repairing mechanical integrity and restoring their functions and device performance in response to mechanical and electrical damage are outlined. The advantages and limitations of the current approaches to self-healing polymer devices are systematically summarized. Challenges and future research opportunities are highlighted.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Li Li
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhubing Han
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Qi Li
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jinliang He
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qing Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Chang L, Liu X, Zhu J, Rao Y, Chen D, Wang Y, Zhao Y, Qin J. Cellulose-based thermo-responsive hydrogel with NIR photothermal enhanced DOX released property for anti-tumor chemotherapy. Colloids Surf B Biointerfaces 2022; 218:112747. [DOI: 10.1016/j.colsurfb.2022.112747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
|
20
|
Kimura T, Aoyama T, Nakahata M, Takashima Y, Tanaka M, Harada A, Urayama K. Time-strain inseparability in multiaxial stress relaxation of supramolecular gels formed via host-guest interactions. SOFT MATTER 2022; 18:4953-4962. [PMID: 35748314 DOI: 10.1039/d2sm00285j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supramolecular hydrogels utilizing host-guest interactions (HG gels) exhibit large deformability and pronounced viscoelasticity. The inclusion complexes between β-cyclodextrin (host) and adamantane (guest) units on the water-soluble polymers form transient bonds. The HG gels show significant stress relaxation with finite equilibrium stress following the step strain. The stress relaxation process reflects the detachment dynamics of the transient bonds which sustain the initial stress, while the finite equilibrium stress is preserved by the permanent topological cross-links with a rotaxane structure. Nonlinear stress relaxation experiments in biaxial stretching with various combinations of two orthogonal strains unambiguously reveal that time and strain effects on stress are not separable. The relaxation is accelerated for a short time frame (<102 s) with an increase in the magnitude of strain, whereas it is retarded for a longer time window with an increase in the anisotropy of the imposed biaxial strain. The time-strain inseparability in the HG gels is in contrast to the simple nonlinear viscoelasticity of a dual cross-link gel with covalent and transient cross-links in which the separability was previously validated by the same assessment. We currently interpret that the significant susceptibility of the detachment dynamics to the deformation type results from the structural characteristics of the HG gels, i.e., the host and guest moieties covalently connected to the network chains, the considerably low concentrations (<0.1 M) of these moieties, and the slidability of the permanent rotaxane cross-links.
Collapse
Affiliation(s)
- Takuro Kimura
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masaki Nakahata
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 560-8531 Osaka, Japan
| | - Yoshinori Takashima
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| | - Motomu Tanaka
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501 Kyoto, Japan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, D69120 Heidelberg, Germany
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, 615-8510 Kyoto, Japan.
| |
Collapse
|
21
|
Supramolecular nylon-based actuators with a high work efficiency based on host–guest complexation and the mechanoisomerization of azobenzene. Polym J 2022. [DOI: 10.1038/s41428-022-00666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Chen J, Wang L, Xu X, Liu G, Liu H, Qiao Y, Chen J, Cao S, Cha Q, Wang T. Self-Healing Materials-Based Electronic Skin: Mechanism, Development and Applications. Gels 2022; 8:356. [PMID: 35735699 PMCID: PMC9222937 DOI: 10.3390/gels8060356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
Electronic skin (e-skin) has brought us great convenience and revolutionized our way of life. However, due to physical or chemical aging and damage, they will inevitably be degraded gradually with practical operation. The emergence of self-healing materials enables e-skins to achieve repairment of cracks and restoration of mechanical function by themselves, meeting the requirements of the era for building durable and self-healing electronic devices. This work reviews the current development of self-healing e-skins with various application scenarios, including motion sensor, human-machine interaction and soft robots. The new application fields and present challenges are discussed; meanwhile, thinkable strategies and prospects of future potential applications are conferenced.
Collapse
Affiliation(s)
- Jingjie Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
| | - Lei Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Xiangou Xu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Guming Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Haoyan Liu
- Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Yuxuan Qiao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Honors College, Northwestern Polytechnical University (NPU), Xi’an 710072, China
| | - Jialin Chen
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Siwei Cao
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Quanbin Cha
- Queen Mary University of London Engineering School, Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (S.C.); (Q.C.)
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi’an 710072, China; (J.C.); (L.W.); (X.X.); (G.L.); (Y.Q.)
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| |
Collapse
|
23
|
Smith PT, Altin G, Millik SC, Narupai B, Sietz C, Park JO, Nelson A. Methacrylated Bovine Serum Albumin and Tannic Acid Composite Materials for Three-Dimensional Printing Tough and Mechanically Functional Parts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21418-21425. [PMID: 35471016 DOI: 10.1021/acsami.2c01446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nature uses proteins as building blocks to create three-dimensional (3D) structural components (like spiderwebs and tissue) that are recycled within a closed loop. Furthermore, it is difficult to replicate the mechanical properties of these 3D architectures within synthetic systems. In the absence of biological machinery, protein-based materials can be difficult to process and can have a limited range of mechanical properties. Herein, we present an additive manufacturing workflow to fabricate tough, protein-based composite hydrogels and bioplastics with a range of mechanical properties. Briefly, methacrylated bovine-serum-albumin-based aqueous resins were 3D-printed using a commercial vat photopolymerization system. The printed structures were then treated with tannic acid to introduce additional non-covalent interactions and form tough hydrogels. The hydrogel material could be sutured and withstand mechanical load, even after immersion in water for 24 h. Additionally, a denaturing thermal cure could be used to virtually eliminate rehydration of the material and form a bioplastic. To highlight the functionality of this material, a bioplastic screw was 3D-printed and driven into wood without damage to the screw. Moreover, the 3D-printed constructs enzymatically degraded up to 85% after 30 days in pepsin solution. Thus, these protein-based 3D-printed constructs show great potential for biomedical devices that degrade in situ.
Collapse
Affiliation(s)
- Patrick T Smith
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gokce Altin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - S Cem Millik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjaporn Narupai
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Cameron Sietz
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James O Park
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
24
|
Liao H, Zhong W, Li T, Han J, Sun X, Tong X, Zhang Y. A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
|
26
|
Zaborniak I, Chmielarz P, Wolski K, Grześ G, Wang Z, Górska A, Pielichowska K, Matyjaszewski K. Maltotriose-based star polymers as self-healing materials. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
27
|
Mashkoor F, Lee SJ, Yi H, Noh SM, Jeong C. Self-Healing Materials for Electronics Applications. Int J Mol Sci 2022; 23:622. [PMID: 35054803 PMCID: PMC8775691 DOI: 10.3390/ijms23020622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
Self-healing materials have been attracting the attention of the scientists over the past few decades because of their effectiveness in detecting damage and their autonomic healing response. Self-healing materials are an evolving and intriguing field of study that could lead to a substantial increase in the lifespan of materials, improve the reliability of materials, increase product safety, and lower product replacement costs. Within the past few years, various autonomic and non-autonomic self-healing systems have been developed using various approaches for a variety of applications. The inclusion of appropriate functionalities into these materials by various chemistries has enhanced their repair mechanisms activated by crack formation. This review article summarizes various self-healing techniques that are currently being explored and the associated chemistries that are involved in the preparation of self-healing composite materials. This paper further surveys the electronic applications of self-healing materials in the fields of energy harvesting devices, energy storage devices, and sensors. We expect this article to provide the reader with a far deeper understanding of self-healing materials and their healing mechanisms in various electronics applications.
Collapse
Affiliation(s)
- Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Sun Jin Lee
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Hoon Yi
- Mechanical Technology Group, Global Manufacturing Center, Samsung Electro-Mechanics, 150 Maeyeong-ro, Yeongtong-gu, Suwon 16674, Korea;
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
28
|
Park J, Nagamachi T, Aoyama T, Hanada K, Harada A, Sera M, Takashima Y. Additional crystalline structures of syndiotactic polystyrene composites with acetylated cyclodextrin. Polym Chem 2022. [DOI: 10.1039/d2py00390b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addition of acetylated cyclodextrin to syndiotactic polystyrene forms additional crystalline structures based on molecular recognition.
Collapse
Affiliation(s)
- Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Toshiki Nagamachi
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd, 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Takuma Aoyama
- Performance Materials Laboratories, Idemitsu Kosan Co., Ltd, 1-1 Anesaki-Kaigan, Ichihara, Chiba 299-0193, Japan
| | - Kazuto Hanada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Masanori Sera
- Advanced Technology Research Laboratories, Idemitsu Kosan Co., Ltd, 1280 Kamiizumi, Sodegaura, Chiba 299-0293, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Project Research Centre for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Park J, Ueda T, Kawai Y, Araki K, Kido M, Kure B, Takenaka N, Takashima Y, Tanaka M. Simultaneous control of the mechanical properties and adhesion of human umbilical vein endothelial cells to suppress platelet adhesion on a supramolecular substrate. RSC Adv 2022; 12:27912-27917. [PMID: 36320244 PMCID: PMC9523658 DOI: 10.1039/d2ra04885j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
The demand for artificial blood vessels to treat vascular disease will continue to increase in the future. To expand the application of blood-compatible poly(2-methoxyethyl acrylate) (pMEA) to artificial blood vessels, control of the mechanical properties of pMEA is established using supramolecular cross-links based on inclusion complexation of acetylated cyclodextrin. The mechanical properties, such as Young's modulus and toughness, of these pMEA-based elastomers change with the amount of cross-links, maintaining tissue-like behavior (J-shaped stress–strain curve). Regardless of the cross-links, the pMEA-based elastomers exhibit low platelet adhesion properties (approximately 3% platelet adherence) compared with those of poly(ethylene terephthalate), which is one of the commercialized materials for artificial blood vessels. Contact angle measurements imply a shift of supramolecular cross-links in response to the surrounding environment. When immersed in water, hydrophobic supramolecular cross-links are buried within the interior of the materials, thereby exposing pMEA chains to the aqueous environment; this is why supramolecular cross-links do not affect the platelet adhesion properties. In addition, the elastomers exhibit stable adhesion to human umbilical vein endothelial cells. This report shows the potential of combining supramolecular cross-links and pMEA. Supramolecular cross-links in poly(2-methoxyethyl acrylate) enhanced mechanical properties of the polymers maintaining high blood compatibility. The high blood compatibility suggests a potential for artificial blood vessel.![]()
Collapse
Affiliation(s)
- Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tomoya Ueda
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Yusaku Kawai
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kumiko Araki
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Makiko Kido
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Bunsho Kure
- Nara Laboratory, Kyoeisha Chemical Co., Ltd, 2-5,5-chome, Saikujo-cho, Nara 630-8453, Japan
| | - Naomi Takenaka
- Nara Laboratory, Kyoeisha Chemical Co., Ltd, 2-5,5-chome, Saikujo-cho, Nara 630-8453, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
|
31
|
Wang S, Urban MW. Basic physicochemical processes governing self‐healable polymers
†. POLYM INT 2021. [DOI: 10.1002/pi.6321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering Clemson University Clemson SC USA
| | - Marek W. Urban
- Department of Materials Science and Engineering Clemson University Clemson SC USA
| |
Collapse
|
32
|
Osaki M, Yonei S, Ueda C, Ikura R, Park J, Yamaguchi H, Harada A, Tanaka M, Takashima Y. Mechanical Properties with Respect to Water Content of Host–Guest Hydrogels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Motofumi Osaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Shin Yonei
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Chiharu Ueda
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Self-healing Polymeric Hydrogels: Toward Multifunctional Soft Smart Materials. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2612-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
|
35
|
Zohreband Z, Adeli M, Zebardasti A. Self-healable and flexible supramolecular gelatin/MoS 2 hydrogels with molecular recognition properties. Int J Biol Macromol 2021; 182:2048-2055. [PMID: 34087295 DOI: 10.1016/j.ijbiomac.2021.05.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/28/2022]
Abstract
Two-dimensional MoS2 is emerging as a unique platform for a wide range of biomedical applications including extracellular matrix mimics, drug delivery systems and antimicrobial agents. However, low processability and nonspecific interactions at biointerfaces are serious challenges that hamper the biomedical applications of this nanomaterial. Herein, we show how specific interactions between MoS2 and a gelatin matrix results in a biomimetic hydrogel with the self-healing and molecular recognition properties. β-Cyclodextrin was conjugated to the surface of freshly exfoliated MoS2 through a one pot nucleophilic substitution reaction and the obtained cyclodextrin-functionalized MoS2 was used to construct an injectable, self-healable and flexible supramolecular hydrogel upon host-guest interactions with adamantane-modified gelatin matrix. Incorporation of almost 1 wt% of CDMoS2 into gelatin matrix with 1cm2 cross-section resulted in a hydrogel that was able to tolerate one hundred grams. Also, storage modulus (G'), loss modulus (G″) of the obtained hydrogel was 10 and 25 times higher than that for the neat gelatin, respectively. Due to its self-healing, molecular recognition and mechanical properties as well as its flexibility, injectability, and processability, MoS2gel is a promising candidate for a wide range of future biomedical applications including extracellular matrix mimics and tissue engineering.
Collapse
Affiliation(s)
- Zeinab Zohreband
- Department of Chemistry, Lorestan University, Khorramabad, Lorestan 68151-44316, Iran
| | - Mohsen Adeli
- Department of Chemistry, Lorestan University, Khorramabad, Lorestan 68151-44316, Iran.
| | - Abedin Zebardasti
- Department of Chemistry, Lorestan University, Khorramabad, Lorestan 68151-44316, Iran.
| |
Collapse
|
36
|
Tan YJ, Susanto GJ, Anwar Ali HP, Tee BCK. Progress and Roadmap for Intelligent Self-Healing Materials in Autonomous Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002800. [PMID: 33346389 DOI: 10.1002/adma.202002800] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Robots are increasingly assisting humans in performing various tasks. Like special agents with elite skills, they can venture to distant locations and adverse environments, such as the deep sea and outer space. Micro/nanobots can also act as intrabody agents for healthcare applications. Self-healing materials that can autonomously perform repair functions are useful to address the unpredictability of the environment and the increasing drive toward the autonomous operation. Having self-healable robotic materials can potentially reduce costs, electronic wastes, and improve a robot endowed with such materials longevity. This review aims to serve as a roadmap driven by past advances and inspire future cross-disciplinary research in robotic materials and electronics. By first charting the history of self-healing materials, new avenues are provided to classify the various self-healing materials proposed over several decades. The materials and strategies for self-healing in robotics and stretchable electronics are also reviewed and discussed. It is believed that this article encourages further innovation in this exciting and emerging branch in robotics interfacing with material science and electronics.
Collapse
Affiliation(s)
- Yu Jun Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Institute of Innovation in Health Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
| | - Glenys Jocelin Susanto
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Hashina Parveen Anwar Ali
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Institute of Innovation in Health Technology (iHealthtech), National University of Singapore, Singapore, 117599, Singapore
- Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- N.1 Institute of Health, National University of Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore, 138634, Singapore
| |
Collapse
|
37
|
Pamulaparthi Venkata S, Cui K, Guo J, Zehnder AT, Gong JP, Hui CY. Constitutive modeling of strain-dependent bond breaking and healing kinetics of chemical polyampholyte (PA) gel. SOFT MATTER 2021; 17:4161-4169. [PMID: 33881129 DOI: 10.1039/d1sm00110h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A finite strain nonlinear viscoelastic constitutive model is used to study the uniaxial tension behaviour of chemical polyampholyte (PA) gel. This PA gel is cross-linked by chemical and physical bonds. Our constitutive model attempts to capture the time and strain dependent breaking and healing kinetics of physical bonds. We compare model prediction by uniaxial tension, cyclic and relaxation tests. Material parameters in our model are obtained by least squares optimization. These parameters gave fits that are in good agreement with the experiments.
Collapse
Affiliation(s)
- Sairam Pamulaparthi Venkata
- Field of Theoretical and Applied Mechanics, Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Kunpeng Cui
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Jingyi Guo
- Field of Theoretical and Applied Mechanics, Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Alan T Zehnder
- Field of Theoretical and Applied Mechanics, Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA.
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan and Soft Matter GI-CoRE, Hokkaido University, Sapporo 001-0021, Japan and Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Chung-Yuen Hui
- Field of Theoretical and Applied Mechanics, Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, USA. and Soft Matter GI-CoRE, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
38
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 397] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
39
|
Mohamadhoseini M, Mohamadnia Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213711] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Affiliation(s)
- Yuan Yao
- School of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300350 China
| | - Meng Xiao
- School of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300350 China
| | - Wenguang Liu
- School of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin 300350 China
| |
Collapse
|
41
|
Itami T, Hashidzume A, Kamon Y, Yamaguchi H, Harada A. The macroscopic shape of assemblies formed from microparticles based on host-guest interaction dependent on the guest content. Sci Rep 2021; 11:6320. [PMID: 33737714 PMCID: PMC7973530 DOI: 10.1038/s41598-021-85816-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
Biological macroscopic assemblies have inspired researchers to utilize molecular recognition to develop smart materials in these decades. Recently, macroscopic self-assemblies based on molecular recognition have been realized using millimeter-scale hydrogel pieces possessing molecular recognition moieties. During the study on macroscopic self-assembly based on molecular recognition, we noticed that the shape of assemblies might be dependent on the host-guest pair. In this study, we were thus motivated to study the macroscopic shape of assemblies formed through host-guest interaction. We modified crosslinked poly(sodium acrylate) microparticles, i.e., superabsorbent polymer (SAP) microparticles, with β-cyclodextrin (βCD) and adamantyl (Ad) residues (βCD(x)-SAP and Ad(y)-SAP microparticles, respectively, where x and y denote the mol% contents of βCD and Ad residues). Then, we studied the self-assembly behavior of βCD(x)-SAP and Ad(y)-SAP microparticles through the complexation of βCD with Ad residues. There was a threshold of the βCD content in βCD(x)-SAP microparticles for assembly formation between x = 22.3 and 26.7. On the other hand, the shape of assemblies was dependent on the Ad content, y; More elongated assemblies were formed at a higher y. This may be because, at a higher y, small clusters formed in an early stage can stick together even upon collisions at a single contact point to form elongated aggregates, whereas, at a smaller y, small clusters stick together only upon collisions at multiple contact points to give rather circular assemblies. On the basis of these observations, the shape of assembly formed from microparticles can be controlled by varying y.
Collapse
Affiliation(s)
- Takahiro Itami
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Akihito Hashidzume
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| | - Yuri Kamon
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
42
|
Kashiwagi Y, Urakawa O, Zhao S, Takashima Y, Harada A, Inoue T. Dynamics of the Topological Network Formed by Movable Crosslinks: Effect of Sliding Motion on Dielectric and Viscoelastic Relaxation Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yu Kashiwagi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Osamu Urakawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sheng Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Knoxville, Tennessee 37996, United States
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Tadashi Inoue
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
43
|
Highly stretchable and tough alginate-based cyclodextrin/Azo-polyacrylamide interpenetrating network hydrogel with self-healing properties. Carbohydr Polym 2021; 256:117595. [PMID: 33483080 DOI: 10.1016/j.carbpol.2020.117595] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/13/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022]
Abstract
Most structural self-healing materials were developed based on either reversible supramolecular interaction or dynamic covalent bonding. It seems a good idea to incorporate self-healing properties into high-performance materials. In this study, we fabricated the alginate-based cyclodextrin and polyacrylamide azobenzene highly stretchable and tough interpenetrating composite hydrogel with self-repairing behavior under light irradiation. Initially, the alginate-based cyclodextrin and polyacrylamide azobenzene were designed and synthesized. The corresponding structural, thermal, and morphological properties of hydrogels were characterized. The reversible transformation of the sol-gel can be achieved by the irradiation upon ultraviolet light and visible light. The self-healing behavior of this composited gel is based on the host-guest interaction between cyclodextrin and azobenzene. The recovery gel elongation at 48 h healing in the dark condition was is 0.04 MPa, with an elongation of 1140 %. Therefore, this gel can achieve self-healing ability while maintaining highly stretchable and tough performance.
Collapse
|
44
|
Pourjavadi A, Heydarpour R, Tehrani ZM. Multi-stimuli-responsive hydrogels and their medical applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02260a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review highlights the medical applications of multi-stimuli-responsive hydrogels as self-healing hydrogels, antibacterial materials and drug-delivery systems.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9516, Tehran, Iran
| | - Rozhin Heydarpour
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9516, Tehran, Iran
| | - Zahra Mazaheri Tehrani
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9516, Tehran, Iran
| |
Collapse
|
45
|
Behera PK, Mohanty S, Gupta VK. Self-healing elastomers based on conjugated diolefins: a review. Polym Chem 2021. [DOI: 10.1039/d0py01458c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The introduction of dynamic covalent and physical crosslinks into diolefin-based elastomers improves mechanical and self-healing properties. The presence of dynamic crosslinks also helps in the reprocessing of elastomers.
Collapse
Affiliation(s)
- Prasanta Kumar Behera
- Polymer Synthesis & Catalysis Group
- Reliance Research and Development Center
- Reliance Industries Limited
- Navi Mumbai 400701
- India
| | - Subhra Mohanty
- Polymer Synthesis & Catalysis Group
- Reliance Research and Development Center
- Reliance Industries Limited
- Navi Mumbai 400701
- India
| | - Virendra Kumar Gupta
- Polymer Synthesis & Catalysis Group
- Reliance Research and Development Center
- Reliance Industries Limited
- Navi Mumbai 400701
- India
| |
Collapse
|
46
|
Particle packing into loose networks for tough and sticky composite gels. Sci Rep 2020; 10:17173. [PMID: 33057084 PMCID: PMC7560882 DOI: 10.1038/s41598-020-74355-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/30/2020] [Indexed: 02/03/2023] Open
Abstract
AbstractHydrogel is an attractive material, but its application is limited due to its low mechanical strength. In this study, a tough composite gel could be prepared by synthesizing polymer particles within a polymer network having relatively loose cross-linking. Since the polymer network acts as a dispersion stabilizer during the synthesis of the hydrophobic polymer particles, a large amount of particles could be introduced into the gel without agglomeration. It was suggested that the high level of toughness was induced by the adsorption and desorption of the polymer chains on the surface of the finely packed particles. By using a stimuli-responsive polymer network, elasticity and plasticity of composite gels could be controlled in response to external stimuli, and adhesion on the gel surface could also be modulated.
Collapse
|
47
|
Yang Y, Kamon Y, Lynd NA, Hashidzume A. Self-Healing Thermoplastic Elastomers Formed from Triblock Copolymers with Dense 1,2,3-Triazole Blocks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanqiong Yang
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuri Kamon
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
48
|
Imato K, Nakajima H, Yamanaka R, Takeda N. Self-healing polyurethane elastomers based on charge-transfer interactions for biomedical applications. Polym J 2020. [DOI: 10.1038/s41428-020-00432-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Kappelt A, Giese M. Photo-switchable Fluorescence in Hydrogen-Bonded Liquid Crystals. Chemistry 2020; 26:13347-13351. [PMID: 32428261 PMCID: PMC7693191 DOI: 10.1002/chem.202001696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 11/05/2022]
Abstract
A series of hydrogen-bonded liquid crystals showing switchable fluorescence is reported. The fluorescence behavior results from the unique combination of hydrogen bonding, liquid crystallinity, and photobasicity. Thus, the molecular mobility in the mesophase is essential for the reversible photo-initiated proton transfer switching on the fluorescence of the assemblies. The application potential of the materials for photo-patterning was demonstrated.
Collapse
Affiliation(s)
- Alexander Kappelt
- Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Michael Giese
- Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| |
Collapse
|
50
|
Park J, Murayama S, Osaki M, Yamaguchi H, Harada A, Matsuba G, Takashima Y. Extremely Rapid Self-Healable and Recyclable Supramolecular Materials through Planetary Ball Milling and Host-Guest Interactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002008. [PMID: 32844527 DOI: 10.1002/adma.202002008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The host-guest interaction as noncovalent bonds can make polymeric materials tough and flexible based on the reversibility property, which is a promising approach to extend the lifetime of polymeric materials. Supramolecular materials with cyclodextrin and adamantane are prepared by mixing host polymers and guest polymers by planetary ball milling. The toughness of the supramolecular materials prepared by ball milling is approximately 2 to 5 times higher than that of supramolecular materials prepared by casting, which is the conventional method. The materials maintain their mechanical properties during repeated ball milling treatments. They are also applicable as self-healable bulk materials and coatings, and they retain the transparency of the substrate. Moreover, fractured pieces of the materials can be re-adhered within 10 min. Dynamic mechanical analysis, thermal property measurements, small-angle X-ray scattering, and microscopy observations reveal these behaviors in detail. Scars formed on the coating disappear within a few seconds at 60 °C. At the same time, the coating shows scratch resistance due to its good mechanical properties. The ball milling method mixes the host polymer and guest polymer at the nano level to achieve the self-healing and recycling properties.
Collapse
Affiliation(s)
- Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Shunsuke Murayama
- Graduate School of Organic Material Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Motofumi Osaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Go Matsuba
- Graduate School of Organic Material Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|