1
|
He YY, Wang C, Song X, Zhang L, Chang L, Yuan C, Hu H, Liu CH, Zhu YY. Fabrication of PHFPO Surface-Modified Conductive AgNWs/PNAGA Hydrogels with Enhanced Water Retention Capacity toward Highly Sensitive Strain Sensors. Macromol Rapid Commun 2024; 45:e2400429. [PMID: 39108060 DOI: 10.1002/marc.202400429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Indexed: 11/09/2024]
Abstract
Conductive hydrogels, characterized by their unique features of flexibility, biocompatibility, electrical conductivity, and responsiveness to environmental stimuli, have emerged as promising materials for sensitive strain sensors. In this study, a facile strategy to prepare highly conductive hydrogels is reported. Through rational structural and synthetic design, silver nanowires (AgNWs) are incorporated into poly(N-acryloyl glycinamide) (PNAGA) hydrogels, achieving high electrical conductivity (up to 0.88 S m-1), significantly enhanced mechanical properties, and elevated deformative sensitivity. Furthermore, surface modification with polyhexafluoropropylene oxide (PHFPO) has substantially improved the water retention capacity and dressing comfort of this hydrogel material. Based on the above merits, these hydrogels are employed to fabricate highly sensitive wearable strain sensors which can detect and interpret subtle hand and finger movements and enable precise control of machine interfaces. The AgNWs/PNAGA based strain sensors can effectively sense finger motion, enabling the control of robotic fingers to replicate the human hand's gestures. In addition, the high deformative sensitivity and elevated water retention performance of the hydrogels makes them suitable for flow sensing. These conceptual applications demonstrate the potential of this conductive hydrogel in high-performance strain sensors in the future.
Collapse
Affiliation(s)
- Yuan-Yuan He
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cong Wang
- ZJUI Institute, International Campus, Zhejiang University, Haining, 314400, China
| | - Xue Song
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lansheng Zhang
- ZJUI Institute, International Campus, Zhejiang University, Haining, 314400, China
| | - Long Chang
- ZJUI Institute, International Campus, Zhejiang University, Haining, 314400, China
| | - Chentai Yuan
- ZJUI Institute, International Campus, Zhejiang University, Haining, 314400, China
| | - Huan Hu
- ZJUI Institute, International Campus, Zhejiang University, Haining, 314400, China
| | - Chun-Hua Liu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
2
|
Pan J, Yu P, An H, Huang H, Shu Z, Zhu Y, Xiang Y, Tan L. Multifunctional elastomer-organohydrogel hybrid patch for durable skin epidermal strain-sensing and antibacterial applications. COMPOSITES COMMUNICATIONS 2024; 51:102080. [DOI: 10.1016/j.coco.2024.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Yan J, Wang Z, Bai W, Wang C, Jiang Y, Shi X, Chen Y, Liu JM, Gao J. Kill Two Birds with One Stone: Cracking Lithography Technology for High-Performance Flexible Metallic Network Transparent Conductors and Metallic Micronano Sheets. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59637-59647. [PMID: 39425645 DOI: 10.1021/acsami.4c14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Flexible electronics have sparked a wide range of exciting applications, such as flexible display technologies, lighting, sensing, etc. Flexible conductors are essential components of flexible electronics and seriously affect efficiency and overall performance. Here, a facile and kill-two-birds-with-one-stone strategy of cracking lithography technology has been proposed to simultaneously fabricate two high-performance flexible conductors, flexible metallic network transparent conductors (f-NTCs) and metallic micronano sheets (MMNSs). The PET substrate flexible transparent conductors (FTCs) based on this strategy yield 88.1% transparency within the visible spectrum and a sheet resistance of 9 Ω/sq. In addition, the FTCs show exceptional mechanical stability, with the sheet resistance remaining virtually unchanged even after 6000 s of bending tests. Subsequently, the remaining MMNSs are recycled to manufacture a Ag paste, showing a very low conductive percolation threshold (∼13%) and excellent flexibility with 140% breaking elongation. After 1000 s of stretching tests, it showed excellent mechanical stability. Furthermore, flexible electroluminescent devices based on the FTCs and sensors fabricated with MMNSs both show excellent performance, demonstrating their potential wide applications in flexible electronics.
Collapse
Affiliation(s)
- Jingxin Yan
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zhen Wang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Wenya Bai
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Chengyun Wang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yue Jiang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Xinbo Shi
- Chain Walking New Material Technology Co. Ltd., Guangzhou 511462, China
| | - Yiwang Chen
- Centre for Advanced Optoelectronics, School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China
| | - Jun-Ming Liu
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Jinwei Gao
- Centre for Advanced Optoelectronics, School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
4
|
Zhang X, Zhai H, Zhu X, Geng H, Zhang Y, Cui J, Zhao Y. Polyphenol-Mediated Adhesive and Anti-Inflammatory Double-Network Hydrogels for Repairing Postoperative Intervertebral Disc Defects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53541-53554. [PMID: 39344595 DOI: 10.1021/acsami.4c11901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hydrogels have garnered tremendous attention for their applications in the repair of intervertebral disk (IVD) degeneration and postoperative IVD defects. However, it is still challenging to develop a hydrogel fulfilling the requirements for high mechanical properties, adhesive capability, biocompatibility, antibacterial properties, and anti-inflammatory performance. Herein, we report a multifunctional double-network (DN) hydrogel composed of physically cross-linked carboxymethyl chitosan (CMCS) and tannic acid (TA) networks as well as chemically cross-linked acrylamide (AM) networks, which integrates the properties of high strength, adhesion, biocompatibility, antimicrobial activity, and anti-inflammation for the repair of postoperative IVD defects. The treatment with CMCS/TA/PAM DN hydrogels can significantly decrease the levels of inflammatory cytokines and degeneration-related factors and upregulated collagen type II alpha 1. In addition, the hydrogels can effectively seal the annulus fibrosus defect, prevent nucleus pulposus degeneration, retain IVD height, and restore the biomechanical properties of the disc to some extent. This polyphenol-mediated DN hydrogel is promising for sealing IVD defects and preventing herniation after lumbar discectomy.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Haoxin Zhai
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Xuetao Zhu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuanqiang Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
5
|
Hu Y, Maimaitiyiming X. Gelatin/sodium alginate-based strongly adhesive, environmentally resistant, highly stable hydrogel for 3D printing to prepare multifunctional sensors and flexible supercapacitors. Int J Biol Macromol 2024; 278:134712. [PMID: 39154688 DOI: 10.1016/j.ijbiomac.2024.134712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The increasing demand for environmentally friendly performance materials in the field of wearable electronics has brought renewable and low-cost hydrogels based on natural polymers into the research spotlight. As a biodegradable natural polymer, sodium alginate (SA) shows great promise for applications in wearable electronics. Here, we report a hydrogel with printability, adhesion, and is highly stable based on gelatin (Gel) and SA. SA improves the viscosity of the hydrogel, which can bond iron products weighing up to 20 kg due to metal coordination with the material, and the hydrogel binder is recyclable and reusable. The presence of glycerin allowed the hydrogel sensor device to maintain sensitivity after exposure to air at 25 °C for up to 35 days, and printed hydrogel samples retained their compressive resilience after exposure to air (25 °C, 55 % RH) for 30 days. Hydrogel-based supercapacitors show good stability after 58 h of charge/discharge cycling. This paper provides research ideas for the preparation of hydrogels with strong adhesion properties, as well as hydrogel 3D printing technology for the preparation of flexible sensor devices and flexible energy storage devices.
Collapse
Affiliation(s)
- Yajuan Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China
| | - Xieraili Maimaitiyiming
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, PR China.
| |
Collapse
|
6
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
7
|
Bari GAKMR, Jeong JH, Barai HR. Conductive Gels for Energy Storage, Conversion, and Generation: Materials Design Strategies, Properties, and Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2268. [PMID: 38793335 PMCID: PMC11123231 DOI: 10.3390/ma17102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Gel-based materials have garnered significant interest in recent years, primarily due to their remarkable structural flexibility, ease of modulation, and cost-effective synthesis methodologies. Specifically, polymer-based conductive gels, characterized by their unique conjugated structures incorporating both localized sigma and pi bonds, have emerged as materials of choice for a wide range of applications. These gels demonstrate an exceptional integration of solid and liquid phases within a three-dimensional matrix, further enhanced by the incorporation of conductive nanofillers. This unique composition endows them with a versatility that finds application across a diverse array of fields, including wearable energy devices, health monitoring systems, robotics, and devices designed for interactive human-body integration. The multifunctional nature of gel materials is evidenced by their inherent stretchability, self-healing capabilities, and conductivity (both ionic and electrical), alongside their multidimensional properties. However, the integration of these multidimensional properties into a single gel material, tailored to meet specific mechanical and chemical requirements across various applications, presents a significant challenge. This review aims to shed light on the current advancements in gel materials, with a particular focus on their application in various devices. Additionally, it critically assesses the limitations inherent in current material design strategies and proposes potential avenues for future research, particularly in the realm of conductive gels for energy applications.
Collapse
Affiliation(s)
- Gazi A. K. M. Rafiqul Bari
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Jae-Ho Jeong
- School of Mechanical Smart and Industrial Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
8
|
Chen C, Pang X, Li Y, Yu X. Ultrafast Self-Healing, Superstretchable, and Ultra-Strong Polymer Cluster-Based Adhesive Based on Aromatic Acid Cross-Linkers for Excellent Hydrogel Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305875. [PMID: 38054799 DOI: 10.1002/smll.202305875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/19/2023] [Indexed: 12/07/2023]
Abstract
Synthetic hydrogel strain sensors rarely exhibit a comprehensive combination of mechanical properties such as ultra-stretchability, ultrafast self-healing, and high sensitivity. Herein, seven small molecule enhanced mechanical behaviors of polymer-cluster based hydrogels are demonstrated. The oxidized polyethyleneimine/polymeric acrylic acid (ohPEI/PAA) hydrogels with aromatic formic acids as supramolecular cross-linkers are prepared by simultaneous formation of ohPEI polymer clusters and PAA upon the addition of ammonium persulfate. The optimized hydrogel adhesive exhibits comprehensive excellent properties, such as high extensibility (up to 12 298%), real-time mechanical self-healing capability (<1 s, 93% efficiency), high uniformity, underwater adhesivity, and water-sealing ability. The proper binding strength of hydrogel and skin (47 kPa) allows the hydrogel to be utilized as highly sensitive (gauge factor:16.08), highly conductive (2.58 mS cm-1), and underwater strain sensors. Specially, the adhesive strength of the adhesive to wood after dehydration is extremely high, reaching up to 29.59 MPa. Additionally, when glycerol is introduced, the obtained gel maintains the physical properties even at harsh-temperature conditions (-40 to 80 °C). It presents that multiple and hierarchical non-covalent interactions including multiple hydrogen bonding interactions, π-π stacking, electrostatic interactions, and dipole-dipole interactions of polymer clusters, allow for the energy dissipation and contribute to the excellent performance of the hydrogel.
Collapse
Affiliation(s)
- Chun Chen
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Xuelei Pang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Yajuan Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang, 050080, P. R. China
| |
Collapse
|
9
|
Xu W, Burni FA, Raghavan SR. Reversibly Sticking Metals and Graphite to Hydrogels and Tissues. ACS CENTRAL SCIENCE 2024; 10:695-707. [PMID: 38559296 PMCID: PMC10979492 DOI: 10.1021/acscentsci.3c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
We have discovered that hard, electrical conductors (e.g., metals or graphite) can be adhered to soft, aqueous materials (e.g., hydrogels, fruit, or animal tissue) without the use of an adhesive. The adhesion is induced by a low DC electric field. As an example, when 5 V DC is applied to graphite slabs spanning a tall cylindrical gel of acrylamide (AAm), a strong adhesion develops between the anode (+) and the gel in about 3 min. This adhesion endures after the field is removed, and we term it as hard-soft electroadhesion or EA[HS]. Depending on the material, adhesion occurs at the anode (+), cathode (-), or both electrodes. In many cases, EA[HS] can be reversed by reapplying the field with reversed polarity. Adhesion via EA[HS] to AAm gels follows the electrochemical series: e.g., it occurs with copper, lead, and tin but not nickel, iron, or zinc. We show that EA[HS] arises via electrochemical reactions that generate chemical bonds between the electrode and the polymers in the gel. EA[HS] can create new hybrid materials, thus enabling applications in robotics, energy storage, and biomedical implants. Interestingly, EA[HS] can even be achieved underwater, where typical adhesives cannot be used.
Collapse
Affiliation(s)
- Wenhao Xu
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Faraz A. Burni
- Department
of Chemical & Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| | - Srinivasa R. Raghavan
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
- Department
of Chemical & Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
10
|
Omidian H, Chowdhury SD. High-Performing Conductive Hydrogels for Wearable Applications. Gels 2023; 9:549. [PMID: 37504428 PMCID: PMC10379850 DOI: 10.3390/gels9070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Conductive hydrogels have gained significant attention for their extensive applications in healthcare monitoring, wearable sensors, electronic devices, soft robotics, energy storage, and human-machine interfaces. To address the limitations of conductive hydrogels, researchers are focused on enhancing properties such as sensitivity, mechanical strength, electrical performance at low temperatures, stability, antibacterial properties, and conductivity. Composite materials, including nanoparticles, nanowires, polymers, and ionic liquids, are incorporated to improve the conductivity and mechanical strength. Biocompatibility and biosafety are emphasized for safe integration with biological tissues. Conductive hydrogels exhibit unique properties such as stretchability, self-healing, wet adhesion, anti-freezing, transparency, UV-shielding, and adjustable mechanical properties, making them suitable for specific applications. Researchers aim to develop multifunctional hydrogels with antibacterial characteristics, self-healing capabilities, transparency, UV-shielding, gas-sensing, and strain-sensitivity.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
11
|
Yang J, Cheng J, Qi G, Wang B. Ultrastretchable, Multihealable, and Highly Sensitive Strain Sensor Based on a Double Cross-Linked MXene Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17163-17174. [PMID: 36944184 DOI: 10.1021/acsami.2c23230] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability of a flexible strain sensor to directly adapt the complicated human biological motion or combined gestures and remotely control the artificial intelligence robotics could benefit the wearable electronics such as intelligent robotics and patient healthcare. However, it is a challenge for the flexible strain sensor to simultaneously achieve high sensing performances and stretchability and long sustainability under various deformation stress or damage. Herein, a dual-cross-linked poly(acrylic acid-stearyl methacrylate)/MXene [P(AA-SMA)M] hydrogel with enhanced mechanical stretchability and self-healability is fabricated by importing reversible coordination and hydrophobic interaction into polymer networks. As a result, the hydrogel film not only exhibits high tensile strength (525 kPa) and stretchability (∼2600%) but also achieves repetitive healable property with 843% elongation even after the 20th broken/self-healing cycle. More importantly, the resultant strain sensor delivers a low detection limit, wide sensing range, fast response time, and repeatability of 1000 cycles even after repeated self-healing. So, the sensor can monitor subtle human motions and recognize different handwriting and gestures, which reveals potential applications toward health-care devices, flexible electronics, and human-machine interfacing.
Collapse
Affiliation(s)
- Jie Yang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 621900, China
| | - Jianli Cheng
- Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 621900, China
| | - Guicai Qi
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu 621900, China
| | - Bin Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Institute of Fundamental and Frontiers Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
12
|
Castrejón-Comas V, Alemán C, Pérez-Madrigal MM. Multifunctional conductive hyaluronic acid hydrogels for wound care and skin regeneration. Biomater Sci 2023; 11:2266-2276. [PMID: 36912458 DOI: 10.1039/d2bm02057b] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Although the main function of skin is to act as a protective barrier against external factors, it is indeed an extremely vulnerable tissue. Skincare, regardless of the wound type, requires effective treatments to prevent bacterial infection and local inflammation. The complex biological roles displayed by hyaluronic acid (HA) during the wound healing process have made this multifaceted polysaccharide an alternative biomaterial to prepare wound dressings. Therefore, herein, we present the most advanced research undertaken to engineer conductive and interactive hydrogels based on HA as wound dressings that enhance skin tissue regeneration either through electrical stimulation (ES) or by displaying multifunctional performance. First, we briefly introduce to the reader the effect of ES on promoting wound healing and why HA has become a vogue as a wound healing agent. Then, a selection of systems, chosen according to their multifunctional relevance, is presented. Special care has been taken to highlight those recently reported works (mainly from the last 3 years) with enhanced scalability and biomimicry. By doing that, we have turned a critical eye on the field considering what major challenges must be overcome for these systems to have real commercial, clinical, or other translational impact.
Collapse
Affiliation(s)
- Víctor Castrejón-Comas
- Departament d'Enginyeria Química (EQ), Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain. .,Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química (EQ), Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain. .,Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Maria M Pérez-Madrigal
- Departament d'Enginyeria Química (EQ), Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain. .,Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya · BarcelonaTech (UPC), C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
| |
Collapse
|
13
|
Seong M, Kondaveeti S, Choi G, Kim S, Kim J, Kang M, Jeong HE. 3D Printable Self-Adhesive and Self-Healing Ionotronic Hydrogels for Wearable Healthcare Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11042-11052. [PMID: 36788742 DOI: 10.1021/acsami.2c21704] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ionotronic hydrogels have attracted significant attention in emerging fields such as wearable devices, flexible electronics, and energy devices. To date, the design of multifunctional ionotronic hydrogels with strong interfacial adhesion, rapid self-healing, three-dimensional (3D) printing processability, and high conductivity are key requirements for future wearable devices. Herein, we report the rational design and facile synthesis of 3D printable, self-adhesive, self-healing, and conductive ionotronic hydrogels based on the synergistic dual reversible interactions of poly(vinyl alcohol), borax, pectin, and tannic acid. Multifunctional ionotronic hydrogels exhibit strong adhesion to various substrates with different roughness and chemical components, including porcine skin, glass, nitrile gloves, and plastics (normal adhesion strength of 55 kPa on the skin). In addition, the ionotronic hydrogels exhibit intrinsic ionic conductivity imparting strain-sensing properties with a gauge factor of 2.5 up to a wide detection range of approximately 2000%, as well as improved self-healing behavior. Based on these multifunctional properties, we further demonstrate the use of ionotronic hydrogels in the 3D printing process for implementing complex patterns as wearable strain sensors for human motion detection. This study is expected to provide a new avenue for the design of multifunctional ionotronic hydrogels, enabling their potential applications in wearable healthcare devices.
Collapse
Affiliation(s)
- Minho Seong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Stalin Kondaveeti
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Geonjun Choi
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Somi Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaeil Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
14
|
Qin Z, Li Y, Feng N, Fei X, Tian J, Xu L, Wang Y. Modulating the performance of lipase-hydrogel microspheres in a "micro water environment". Colloids Surf B Biointerfaces 2023; 223:113171. [PMID: 36739676 DOI: 10.1016/j.colsurfb.2023.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
In our previous work, we successfully stimulated lipase activity in an anhydrous reaction system using porous polyacrylamide hydrogel microsphere (PPAHM) as a carrier of lipase and free water. However, the effect of the existence state and content of water in lipase-porous polyacrylamide hydrogel microsphere (L-PPAHM) on the interfacial activation remained unclear. In this work, L-PPAHM with different water contents were obtained by water mist rehydration and were used to catalyze the synthesis of conjugated linoleic acid ethyl ester (CLA-EE). The results revealed that there were three existence states of water in L-PPAHM: bound water, semi-bound water and free water, and free water provided the "micro water environment" for the interfacial activation of lipase. The reusability of L-PPAHM with different water contents showed that the activity and stability of L-PPAHM could be achieved by varying the water content of L-PPAHM. The proportion of free water in L-PPAHM increased, and the activity of L-PPAHM increased, but the strength of hydrogen bond interaction between PPAHM and lipase weakened, resulting in the decrease of stability. L-PPAHM with 2/3 of water absorption could ensure sufficient immobilized lipase activity and stability, and its water absorption property could reduce the free water generated during esterification, thus increasing the yield of CLA-EE.
Collapse
Affiliation(s)
- Zhengqiang Qin
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Nuan Feng
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
15
|
Highly stretchable and conductive hybrid gel polymer electrolytes enabled by a dual cross-linking approach. Macromol Res 2023. [DOI: 10.1007/s13233-023-00120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Yan J, Wang L, Zhao C, Xiang D, Li H, Lai J, Wang B, Li Z, Lu H, Zhou H, Wu Y. Stretchable Semi-Interpenetrating Carboxymethyl Guar Gum-Based Composite Hydrogel for Moisture-Proof Wearable Strain Sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1061-1071. [PMID: 36623252 DOI: 10.1021/acs.langmuir.2c02725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Wearable strain sensors of conductive hydrogels have very broad application prospects in electronic skins and human-machine interfaces. However, conductive hydrogels suffer from unstable signal transmission due to environmental humidity and inherent shortcomings of their materials. Herein, we introduce a novel moisture-proof conductive hydrogel with high toughness (2.89 MJ m-3), mechanical strength (1.00 MPa), and high moisture-proof sensing performance by using dopamine-functionalized gold nanoparticles as conductive fillers into carboxymethyl guar gum and acrylamide. Moreover, the hydrogel can realize real-time monitoring of major and subtle human movements with good sensitivity and repeatability. In addition, the hydrogel-assembled strain sensor exhibits stable sensing signals after being left for 1 h, and the relative resistance change rate under different strains (25-300%) shows no obvious noise signal up to 99% relative humidity. Notably, the wearable strain sensing is suitable for wearable sensor devices with high relative humidity.
Collapse
Affiliation(s)
- Jiao Yan
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Li Wang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Chunxia Zhao
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Dong Xiang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Hui Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Jingjuan Lai
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Bin Wang
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Zhenyu Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu610500, China
| | - Hongwei Zhou
- Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an710021, China
| | - Yuanpeng Wu
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu610500, China
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu610500, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, Southwest Petroleum University, Chengdu610500, China
| |
Collapse
|
17
|
Dong X, Ge Y, Li K, Li X, Liu Y, Xu D, Wang S, Gu X. A high-pressure resistant ternary network hydrogel based flexible strain sensor with a uniaxially oriented porous structure toward gait detection. SOFT MATTER 2022; 18:9231-9241. [PMID: 36427226 DOI: 10.1039/d2sm01286c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gait abnormalities have been widely investigated in the diagnosis and treatment of neurodegenerative diseases. However, it is still a great challenge to achieve a comfortable, convenient, sensitive and high-pressure resistant flexible gait detection sensor for real-time health monitoring. In this work, a polyaniline (PANI)@(polyacrylic acid (PAA)-polyvinyl alcohol (PVA)) (PANI@(PVA-PAA)) ternary network hydrogel with a uniaxially oriented porous featured structure was successfully prepared using a simple freeze-thaw method and in situ polymerization. The PANI@(PVA-PAA) hydrogel shows excellent compressive mechanical properties (423.44 kPa), favorable conductivity (2.02 S m-1) and remarkable durability (500 loading-unloading cycle), and can sensitively detect the effect of pressure with a fast response time (200 ms). The PANI@(PVA-PAA) hydrogel assembled into a flexible sensor can effectively identify the movement state of the shoulder, knee and even the sole of the plantar for gait detection. The uniaxially oriented porous structure enables the hydrogel-based sensor to have a high rate of change in the longitudinal direction and can effectively distinguish various gaits. The construction of a hydrogen bond between PANI and the PVA-PAA hydrogel ensures the uniform distribution of PANI in the hydrogel to form a ternary network structure, which improves the pressure resistance and conductivity of the PANI@(PVA-PAA) hydrogel. Thus, PANI@(PVA-PAA) hydrogel flexible sensor for gait detection can not only effectively monitor some serious diseases but also detect some unscientific exercise in people's daily life.
Collapse
Affiliation(s)
- Xin Dong
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, China.
| | - Yaqing Ge
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
| | - Keyi Li
- College of Chemistry and Chemical Engineering, Shandong University of Technology, China
| | - Xinyi Li
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
| | - Yong Liu
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
| | - Dongyu Xu
- College of Civil Engineering and Architecture, Linyi University, China
| | - Shoude Wang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, China.
| | - Xiangling Gu
- College of Medicine and Nursing, Shandong Provincial Engineering Laboratory of Novel Pharmaceutical Excipients, Sustained and Controlled Release Preparations, Dezhou University, China.
| |
Collapse
|
18
|
Huang H, Xu R, Ni P, Zhang Z, Sun C, He H, Wang X, Zhang L, Liang Z, Liu H. Water-driven noninvasively detachable wet tissue adhesives for wound closure. Mater Today Bio 2022; 16:100369. [PMID: 35937571 PMCID: PMC9352973 DOI: 10.1016/j.mtbio.2022.100369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023] Open
Abstract
Tissue adhesive with on-demand detachment feature is critically important since it can minimize hurt to patient when it is stripped away. Herein, a water-driven noninvasively detachable wet tissue adhesive hydrogel (w-TAgel) was produced by UV-initiated radical copolymerization of N-isopropylacrylamide (NIPAM), acrylamide (AAm), gelatin methacrylate (GelMA), and urushiol. As a w-TAgel, its robust and tough mechanical property makes it suitable for dynamic wound tissue. The polyurushiol segments of it are crucial to the formation of tough adhesion interface with various wet tissues, while polyNIPAM units play an indispensable role in on-demand detachment via thermo-responsive swelling behavior because the hydrophobic aggregation among isopropyl groups is destroyed upon water treatment with temperature of 25 °C or less. Additionally, it exhibits multiple merits including good hemocompatibility, cytocompatibility as well as pro-coagulant activity and hemostasis. Therefore, our w-TAgel with strong adhesion and facile detachment is an advanced prospective dressing for wound closure and rapid hemostasis. The wet tissue adhesion and water-driven detachable mechanism may shed new light on the development of on-demand noninvasively detachable wet tissue adhesives.
Collapse
Affiliation(s)
- Hongjian Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Renfeng Xu
- College of Life Science, Fujian Normal University, Fujian, 350007, China
| | - Peng Ni
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Zhenghong Zhang
- College of Life Science, Fujian Normal University, Fujian, 350007, China
- Corresponding author.
| | - Caixia Sun
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Huaying He
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Xinyue Wang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Lidan Zhang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Ziyi Liang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
| | - Haiqing Liu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian, 350007, China
- Corresponding author. Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350007, China.
| |
Collapse
|
19
|
Lin T, Li S, Hu Y, Sheng L, Chen X, Que X, Peng J, Ma H, Li J, Zhai M. Ultrastretchable and adhesive agarose/Ti 3C 2T x-crosslinked-polyacrylamide double-network hydrogel for strain sensor. Carbohydr Polym 2022; 290:119506. [PMID: 35550781 DOI: 10.1016/j.carbpol.2022.119506] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/27/2022]
Abstract
A novel agarose/Ti3C2Tx-crosslinked-polyacrylamide (AG/T-PAM) double-network (DN) hydrogel is synthesized by combining heating-cooling and γ-ray radiation-induced polymerization. The AG/T-PAM DN hydrogel possesses excellent mechanical properties with 4250% stretchability, and good adhesion to different substrates, such as an adhesive strength of 1148 kPa to copper at 30 °C. The resultant hydrogel also exhibits excellent tensile and compression sensing properties due to the variation of conductive network within hydrogel. The flexible and wearable strain sensor composed of the AG/T-PAM DN hydrogel presents rapid response to strain withstand 1000 cycles, and can monitor various movements of human body with a high sensibility. The AG/T-PAM DN hydrogel-based strain sensor will have broad application in large-scale strain detection scenarios requiring high sensitivity and adhesion.
Collapse
Affiliation(s)
- Tingrui Lin
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Fujian Key Laboratory of Architectural Coating, Skshu Paint Co., Ltd., 518 North Liyuan Avenue, Licheng District, Putian, Fujian 351100, China
| | - Shuangxiao Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yang Hu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lang Sheng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xibang Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute of Chemical Defense, Beijing 100191, China
| | - Xueyan Que
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Huiling Ma
- School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
| | - Jiuqiang Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, The Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Xu L, Fu Y, Wagner RJ, Zou X, He Q, Li T, Pan W, Ding J, Vernerey FJ. Thermosensitive P(AAc-co-NIPAm) hydrogels display enhanced toughness and self-healing via ion-ligand interactions. Macromol Rapid Commun 2022; 43:e2200320. [PMID: 35766135 DOI: 10.1002/marc.202200320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/08/2022] [Indexed: 11/05/2022]
Abstract
Hydrogels containing thermosensitive polymers such as poly(N-isopropylacrylamide) (P(NIPAm)) may contract during heating and show great promise in fields ranging from soft robotics to thermosensitive biosensors. However, these gels often exhibit low stiffness, tensile strength, and mechanical toughness, limiting their applicability. Through copolymerization of P(NIPAm) with poly(Acrylic acid) (P(AAc)) and introduction of ferric ions (Fe3+ ) that coordinate with functional groups along the P(AAc) chains, we here introduce a thermoresponsive hydrogel with significantly enhanced mechanical extensibility, strength, and toughness. Using both experimentation and constitutive modeling, we find that increasing the ratio of m(AAc):m(NIPAm) in the prepolymer decreases strength and toughness but improves extensibility. In contrast, increasing Fe3+ concentration generally improves strength and toughness with little decrease in extensibility. Due to reversible coordination of the Fe3+ bonds, these gels display excellent recovery of mechanical strength during cyclic loading and self-healing ability. While thermosensitive contraction imbued by the underlying P(NIPAm) is reduced slightly with increased Fe3+ concentration, the temperature transition range is widened and shifted upwards towards that of human body temperature (between 30 and 40°C), perhaps rendering these gels suitable as in vivo biosensors. Finally, these gels display excellent adsorptive properties with a variety of materials, rendering them possible candidates in adhesive applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lin Xu
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Yu Fu
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Robert J Wagner
- Material Science & Engineering Program, University of Colorado Boulder, Boulder, CO, USA
| | - Xiang Zou
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Qingrui He
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Tao Li
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Wenlong Pan
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Jianning Ding
- School of Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, P. R. China
| | - Franck J Vernerey
- Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
21
|
Outstanding temperature‐tolerant conductive polyacrylamide/sodium carboxymethylcellulose hydrogel with ultra‐stretchability and good strain sensing performance. J Appl Polym Sci 2022. [DOI: 10.1002/app.52687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
High Refractive Index Diphenyl Sulfide Photopolymers for Solar Cell Antireflection Coatings. ENERGIES 2022. [DOI: 10.3390/en15113972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The anti-reflection film can effectively reduce the surface reflectivity of solar photovoltaics, increase the transmittance of light, and improve the photoelectric conversion efficiency. The high refractive index coating is an important part of the anti-reflection film. However, the traditional metal oxide coating has poor stability and complicated processes. To address this issue, we prepared two organic high refractive index (HRI) photopolymers by modifying epoxy acrylic acid with 4,4′-thiodibenzenethiol, which can be surface patterned by nanoimprinting to prepare antireflection coatings. As a result, two modified photopolymers with high refractive index (n > 1.63), high optical transmittance (T > 95%), and thermal stability (Tg > 100 °C) are obtained after curing. In particular, the diphenyl sulfide photopolymer modified by ethyl isocyanate acrylate has a refractive index up to 1.667 cured by UV light. Our work confirms that the organic HRI photopolymer can be obtained by introducing high molar refractive index groups, with potential to be applied as a PV cell power conversion efficiency material.
Collapse
|
23
|
Huang C, Miao Q, He Z, Fan P, Chen Y, Zhang Q, He X, Li L, Liu X. Ultra-stretchable and self-healable hydrogel driven by sorbitol for flexible strain sensors with anti-freezing and self-adhesive. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Zhao J, Li J, Zeng Q, Wang H, Yu J, Ren K, Dai Z, Zhang H, Zheng J, Hu R. A Chewing Gum Residue-Based Gel with Superior Mechanical Properties and Self-Healability for Flexible Wearable Sensor. Macromol Rapid Commun 2022; 43:e2200234. [PMID: 35483003 DOI: 10.1002/marc.202200234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Chewing gum residue is hard to decompose and easy to cause pollution, which is highly desirable to realize the recycling. In this paper, a chewing gum gel with enhanced mechanical properties and self-healing properties is prepared by using polyvinyl alcohol (PVA) as the backbone in chewing gum residue. The hydrogen bond and the borax ester bond are employed to construct reversible interaction to enhance the self-healing ability. The physical crosslinking is realized by further freeze-thaw treatment to improve its mechanical properties. The gel demonstrates high elongation at break of 610% and strength of 0.11 MPa, as well as excellent self-healing performance and recyclable property. In particular, the gel with a fast signal response is successfully applied as a wearable strain sensor to monitor different types of human motion. The gel as a sensor exhibits self-healing properties suggesting superior safety and stability, and displays wide linear sensitivity (the gauge factor is 0.417 and 0.170). The gel can be further served to explore temperature changes, implying the application in temperature monitoring. This study develops a novel approach for the recycle and reuse of chewing gum residue. The obtained gel may be a promising candidate for the fabrication of flexible wearable sensor. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jing Zhao
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Jiahui Li
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Qiangcheng Zeng
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Huixin Wang
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Jie Yu
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Ke Ren
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Zhongmin Dai
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Hong Zhang
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Junping Zheng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Ruofei Hu
- Shandong Collegial Key Laboratory of Biotechnology and Utilization of Biological Resources, College of Life Science, Dezhou University, Dezhou, 253023, People's Republic of China.,Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, People's Republic of China
| |
Collapse
|
25
|
Wang SJ, Jing X, Mi HY, Chen Z, Zou J, Liu ZH, Feng PY, Liu Y, Zhang Z, Shang Y. Development and Applications of Hydrogel-Based Triboelectric Nanogenerators: A Mini-Review. Polymers (Basel) 2022; 14:1452. [PMID: 35406325 PMCID: PMC9002585 DOI: 10.3390/polym14071452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/31/2022] Open
Abstract
In recent years, with the appearance of the triboelectric nanogenerator (TENG), there has been a wave of research on small energy harvesting devices and self-powered wearable electronics. Hydrogels-as conductive materials with excellent tensile properties-have been widely focused on by researchers, which encouraged the development of the hydrogel-based TENGs (H-TENGs) that use the hydrogel as an electrode. Due to the great feasibility of adjusting the conductivity and mechanical property as well as the microstructure of the hydrogels, many H-TENGs with excellent performance have emerged, some of which are capable of excellent outputting ability with an output voltage of 992 V, and self-healing performance which can spontaneously heal within 1 min without any external stimuli. Although there are numerous studies on H-TENGs with excellent performance, a comprehensive review paper that systematically correlates hydrogels' properties to TENGs is still absent. Therefore, in this review, we aim to provide a panoramic overview of the working principle as well as the preparation strategies that significantly affect the properties of H-TENGs. We review hydrogel classification categories such as their network composition and their potential applications on sensing and energy harvesting, and in biomedical fields. Moreover, the challenges faced by the H-TENGs are also discussed, and relative future development of the H-TENGs are also provided to address them. The booming growth of H-TENGs not only broadens the applications of hydrogels into new areas, but also provides a novel alternative for the sustainable power sources.
Collapse
Affiliation(s)
- Sheng-Ji Wang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Hao-Yang Mi
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China;
| | - Zhuo Chen
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Jian Zou
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450000, China;
| | - Zi-Hao Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Pei-Yong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.-J.W.); (Z.C.); (Z.-H.L.); (P.-Y.F.); (Y.L.)
| | - Zhi Zhang
- Shenzhen Weijian Wuyou Technology Co., Ltd., Shenzhen 518102, China; (Z.Z.); (Y.S.)
| | - Yinghui Shang
- Shenzhen Weijian Wuyou Technology Co., Ltd., Shenzhen 518102, China; (Z.Z.); (Y.S.)
| |
Collapse
|
26
|
A self-adhesive strain sensor based on the synergy of metal complexation and chemical cross-linking. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Fan X, Zhao L, Ling Q, Gu H. Tough, Self-Adhesive, Antibacterial, and Recyclable Supramolecular Double Network Flexible Hydrogel Sensor Based on PVA/Chitosan/Cyclodextrin. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xin Fan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Li Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
28
|
Gan D, Jiang Y, Hu Y, Wang X, Wang Q, Wang K, Xie C, Han L, Lu X. Mussel-inspired extracellular matrix-mimicking hydrogel scaffold with high cell affinity and immunomodulation ability for growth factor-free cartilage regeneration. J Orthop Translat 2022; 33:120-131. [PMID: 35330942 PMCID: PMC8914478 DOI: 10.1016/j.jot.2022.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background Injury to articular cartilage cause certain degree of disability due to poor self-repair ability of cartilage tissue. To promote cartilage regeneration, it is essential to develop a scaffold that properly mimics the native cartilage extracellular matrix (ECM) in the aspect of compositions and functions. Methods A mussel-inspired strategy was developed to construct an ECM-mimicking hydrogel scaffold by incorporating polydopamine-modified hyaluronic acid (PDA/HA) complex into a dual-crosslinked collagen (Col) matrix for growth factor-free cartilage regeneration. The adhesion, proliferation, and chondrogenic differentiation of cells on the scaffold were examined. A well-established full-thickness cartilage defect model of the knee in rabbits was used to evaluated the efficacy and functionality of the engineered Col/PDA/HA hydrogel scaffold. Results The PDA/HA complex incorporated-hydrogel scaffold with catechol moieties exhibited better cell affinity than bare negatively-charged HA incorporated hydrogel scaffold. In addition, the PDA/HA complex endowed the scaffold with immunomodulation ability, which suppressed the expression of inflammatory cytokines and effectively activated the polarization of macrophages toward M2 phenotypes. The in vivo results revealed that the mussel-inspired Col/PDA/HA hydrogel scaffold showed strong cartilage inducing ability to promote cartilage regeneration. Conclusions The PDA/HA complex-incorporated hydrogel scaffold overcame the cell repellency of negatively-charged polysaccharide-based scaffolds, which facilitated the adhesion and clustering of cells on the scaffold, and therefore enhanced cell-HA interactions for efficient chondrogenic differentiation. Moreover, the hydrogel scaffold modulated immune microenvironment, and created a regenerative microenvironment to enhance cartilage regeneration. The translational potential of this article This study gives insight into the mussel-inspired approach to construct the tissue-inducing hydrogel scaffold in a growth-factor-free manner, which show great advantage in the clinical treatment. The hydrogel scaffold composed of collagen and hyaluronic acid as the major component, providing cartilage ECM-mimicking environment, is promising for cartilage defect repair.
Collapse
|
29
|
Zhang W, Xu L, Zhao M, Ma Y, Zheng T, Shi L. Stretchable, self-healing and adhesive sodium alginate-based composite hydrogels as wearable strain sensors for expansion-contraction motion monitoring. SOFT MATTER 2022; 18:1644-1652. [PMID: 35128552 DOI: 10.1039/d1sm01622a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing multifunctional hydrogels with stretchability, self-healing ability, adhesiveness, and conductivity into flexible strain sensors for human motion and health monitoring has attracted great attention and is highly desired. However, the present motion detectors mainly focus on stretching, bending, and twisting of different body parts while the expansion-contraction motion has been rarely investigated. In this study, along with carbon nanotubes (CNTs) as conductive components, sodium alginate (Alg) modified with 3-aminophenylboronic acid (PBA) and dopamine (DA) were synthesized and employed as precursors to prepare a multifunctional Alg-CNT hydrogel. The formed dynamic covalent bonds between PBA and DA endowed the hydrogel with a rapid self-healing property (30 s) while the introduction of CNTs remarkably enhanced the mechanical strength and electrical conductivity of the hydrogel. Moreover, the as-prepared hydrogel displayed a satisfactory stretchability (500%) and self-adhesiveness to various substrates. When used as a strain sensor, the Alg-CNT hydrogel that exhibited a fast response (150 ms) and ultra-durability (over 30 000 cycles) was demonstrated to be capable of monitoring subtle expansion-contraction motions (e.g., human breathing and mouse heart beating) via periodic and repeatable electrical signals. Therefore, this multifunctional hydrogel is highly suitable for monitoring expansion-contraction motions, indicating its potential applications in personal health monitoring.
Collapse
Affiliation(s)
- Wenshuai Zhang
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Lingxiao Xu
- Jinan Tonglu Pharmaceutical Technology and Development Co., LTD, Jinan 250101, China
| | - Meijin Zhao
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Ting Zheng
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Lei Shi
- Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
30
|
Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Li G, Li C, Li G, Yu D, Song Z, Wang H, Liu X, Liu H, Liu W. Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101518. [PMID: 34658130 DOI: 10.1002/smll.202101518] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Conductive hydrogels can be prepared by incorporating various conductive materials into polymeric network hydrogels. In recent years, conductive hydrogels have been developed and applied in the field of strain sensors owing to their unique properties, such as electrical conductivity, mechanical properties, self-healing, and anti-freezing properties. These remarkable properties allow conductive hydrogel-based strain sensors to show excellent performance for identifying external stimuli and detecting human body movement, even at subzero temperatures. This review summarizes the properties of conductive hydrogels and their application in the fabrication of strain sensors working in different modes. Finally, a brief prospectus for the development of conductive hydrogels in the future is provided.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Chenglong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Guodong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan (iAIR), Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Wenxia Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| |
Collapse
|
32
|
Qin Z, Feng N, Li Y, Fei X, Tian J, Xu L, Wang Y. Hydrogen-bonded lipase-hydrogel microspheres for esterification application. J Colloid Interface Sci 2022; 606:1229-1238. [PMID: 34492461 DOI: 10.1016/j.jcis.2021.08.147] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/31/2021] [Accepted: 08/22/2021] [Indexed: 01/06/2023]
Abstract
Lipase is the most widely used enzyme in industry. Due to its unique "lid" structure, lipase can only show high activity at the oil-water interface, which means that water is needed in the catalytic esterification process. However, the traditional lipase catalytic system cannot effectively control "micro-water" in the esterification environment, resulting in the high content of free water, which hinders the esterification reaction and reduces the yield. In this paper, a promising strategy of esterification catalyzed by polyacrylamide hydrogel immobilized lipase is reported. The porous polyacrylamide hydrogel microspheres (PHM) prepared by inverse emulsion polymerization are used as carrier to adsorb lipase by hydrogen bonding interaction. These hydrogel microspheres provide a "micro-water environment" for lipase in the anhydrous reaction system, and further provide an oil-water interface for "interface activation" of lipase. The obtained lipase-porous polyacrylamide hydrogel microspheres (L-PHMs) exhibit higher temperature and pH stability compared with free lipase, and the optimum enzymatic activity reach 1350 U/g (pH 6, 40 °C). L-PHMs can still remain about 49% of their original activity after 20 reuses. Furthermore, L-PHMs have been successfully applied to catalyze the synthesis of conjugated linoleic acid ethyl ester. The results suggest that this immobilization method opens up a new way for the application of lipase in ester synthesis.
Collapse
Affiliation(s)
- Zhengqiang Qin
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Nuan Feng
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
33
|
Nada AA, Eckstein Andicsová A, Mosnáček J. Irreversible and Self-Healing Electrically Conductive Hydrogels Made of Bio-Based Polymers. Int J Mol Sci 2022; 23:842. [PMID: 35055029 PMCID: PMC8776002 DOI: 10.3390/ijms23020842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Electrically conductive materials that are fabricated based on natural polymers have seen significant interest in numerous applications, especially when advanced properties such as self-healing are introduced. In this article review, the hydrogels that are based on natural polymers containing electrically conductive medium were covered, while both irreversible and reversible cross-links are presented. Among the conductive media, a special focus was put on conductive polymers, such as polyaniline, polypyrrole, polyacetylene, and polythiophenes, which can be potentially synthesized from renewable resources. Preparation methods of the conductive irreversible hydrogels that are based on these conductive polymers were reported observing their electrical conductivity values by Siemens per centimeter (S/cm). Additionally, the self-healing systems that were already applied or applicable in electrically conductive hydrogels that are based on natural polymers were presented and classified based on non-covalent or covalent cross-links. The real-time healing, mechanical stability, and electrically conductive values were highlighted.
Collapse
Affiliation(s)
- Ahmed Ali Nada
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia;
- Pretreatment and Finishing of Cellulose Based Textiles Department, National Research Centre, Giza 12622, Egypt
| | | | - Jaroslav Mosnáček
- Centre for Advanced Materials Application, Slovak Academy of Sciences, Dubravska Cesta 9, 845 11 Bratislava, Slovakia;
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41 Bratislava, Slovakia;
| |
Collapse
|
34
|
Lu C, Qiu J, Zhao W, Sakai E, Zhang G. A tough hydrogel with fast self-healing and adhesive performance for wearable sensors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Zhang J, Wang Y, Wei Q, Wang Y, Lei M, Li M, Li D, Zhang L, Wu Y. Self-Healing Mechanism and Conductivity of the Hydrogel Flexible Sensors: A Review. Gels 2021; 7:216. [PMID: 34842713 PMCID: PMC8628684 DOI: 10.3390/gels7040216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sensors are devices that can capture changes in environmental parameters and convert them into electrical signals to output, which are widely used in all aspects of life. Flexible sensors, sensors made of flexible materials, not only overcome the limitations of the environment on detection devices but also expand the application of sensors in human health and biomedicine. Conductivity and flexibility are the most important parameters for flexible sensors, and hydrogels are currently considered to be an ideal matrix material due to their excellent flexibility and biocompatibility. In particular, compared with flexible sensors based on elastomers with a high modulus, the hydrogel sensor has better stretchability and can be tightly attached to the surface of objects. However, for hydrogel sensors, a poor mechanical lifetime is always an issue. To address this challenge, a self-healing hydrogel has been proposed. Currently, a large number of studies on the self-healing property have been performed, and numerous exciting results have been obtained, but there are few detailed reviews focusing on the self-healing mechanism and conductivity of hydrogel flexible sensors. This paper presents an overview of self-healing hydrogel flexible sensors, focusing on their self-healing mechanism and conductivity. Moreover, the advantages and disadvantages of different types of sensors have been summarized and discussed. Finally, the key issues and challenges for self-healing flexible sensors are also identified and discussed along with recommendations for the future.
Collapse
Affiliation(s)
- Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingju Lei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Dinghao Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Longyu Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yu Wu
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (J.Z.); (Y.W.); (M.L.); (M.L.); (D.L.); (L.Z.); (Y.W.)
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
37
|
Li Q, Chen J, Zhang Y, Chi C, Dong G, Lin J, Chen Q. Superelastic, Antifreezing, Antidrying, and Conductive Organohydrogels for Wearable Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51546-51555. [PMID: 34689543 DOI: 10.1021/acsami.1c16368] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sensors based on conductive hydrogels have received extensive attention in various fields, such as artificial intelligence, electronic skin, and health monitoring. However, the poor resilience and fatigue resistance, icing, and water loss of traditional hydrogels greatly limit their application. Herein, an ionic conductive organohydrogel (PAC-Zn) was prepared for the first time by copolymerization of cardanol and acrylic acid in water/1,3-butanediol as a binary solvent system. A very small amount of cardanol (1% cardanol of total monomers) could not only significantly improve the tensile strength (∼4 times) and toughness (∼3 times) of PAA but also improve its extensibility. Due to the presence of 1,3-butanediol, PAC-Zn showed outstanding tolerance for freezing (-45 °C) and drying (over 85% moisture retention after 15 days of storage in a 37 °C oven). Compared with ethylene glycol and glycerol as antifreeze agents used in organohydrogels, the addition of 1,3-butanediol endowed the organohydrogel with not only similar frost resistance but also better mechanical performance. Besides, PAC-Zn exhibited fast resilience (almost no hysteresis loop) and excellent antifatigue ability. More importantly, a PAC-Zn organohydrogel-based sensor could detect human motion in real time (wrist, elbow, finger, and knee joints), revealing its fast response, good sensitivity, and stable electromechanical repeatability. In conclusion, the multifunctional PAC-Zn organohydrogel is expected to become a potential and promising candidate in the field of strain sensors under a broad range of environmental temperatures.
Collapse
Affiliation(s)
- Qinglin Li
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Jiawen Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Yuxia Zhang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Chongyi Chi
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Guofa Dong
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou, Fujian 350108, P. R. China
| | - Jianrong Lin
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
- Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
38
|
Wang C, Li J, Fang Z, Hu Z, Wei X, Cao Y, Han J, Li Y. Temperature-Stress Bimodal Sensing Conductive Hydrogel-Liquid Metal by Facile Synthesis for Smart Wearable Sensor. Macromol Rapid Commun 2021; 43:e2100543. [PMID: 34699666 DOI: 10.1002/marc.202100543] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Conductive hydrogels have attracted great attention due to their promising applications in wearable sensors. However, developing conductive hydrogels with excellent sensor properties and multiple stimuli responsiveness for smart wearable devices is still a challenge. This paper presents a facile synthetic method of a crosslinked chitosan quaternary ammonium salt and liquid metal (CHACC-LM) composite hydrogel with temperature-stress bimodal sensing for smart wearable sensor. LM as liquid fillers toughen the hydrogel matrix (stress: 1.11 MPa) and enhance the hydrogel extensibility (strain: 233%). The CHACC-LM hydrogel exhibits conductivity , excellent antibacterial properties (> 99%), an electrical self-healing property, and strain sensitivity (GF = 1.6). In addition, the CHACC-LM hydrogel can be used as wearable flexible sensors with the ability of monitoring human activities directly and the distinguished ability of discerning subtle motions (handwriting). It also shows sensitivity in the external environment such as low temperature, thermal response, and water solution. Importantly, the composite hydrogel simultaneous response to different stress and temperature stimuli. Furthermore, the CHACC-LM hydrogel can be used for gesture recognition and to control the manipulator in human-computer interaction. All these properties provide a great scope for researchers to achieve practical advances in smart wearable sensors.
Collapse
Affiliation(s)
- Chen Wang
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jie Li
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Zhaozhou Fang
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Zhirui Hu
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Xiaotong Wei
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Yang Cao
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jing Han
- School of Mechatronic Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Yingchun Li
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| |
Collapse
|
39
|
Yang J, Chang L, Ma C, Cao Z, Liu H. Highly Electrically Conductive Flexible Ionogels by Drop-Casting Ionic Liquid/PEDOT:PSS Composite Liquids onto Hydrogel Networks. Macromol Rapid Commun 2021; 43:e2100557. [PMID: 34669220 DOI: 10.1002/marc.202100557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/01/2021] [Indexed: 11/09/2022]
Abstract
Ionogels have been extensively studied as ideal flexible and stretchable materials by virtue of the unique properties of ionic liquids, such as non-volatility, non-flammability, and negligible vapor pressure. However, the generally low ionic conductivity of the current ionogels limits their applications in the market of highly conductive, flexible, and stretchable electrical devices. Here, the fabrication of highly electrically conductive ionogels is reported by combining composite liquids consisting of 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with flexible negative-charged poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) hydrogel. The generated composite film exhibits high electrical conductivity up to about 38 S cm-1 with the maximum tensile strain of 45% and fracture stress of 27 kPa. In addition, it is demonstrated that the composite film can maintain conductivity in a high level under different mechanical deformations, and can also be used as flexible sensors in a wide temperature range from -58 to 120 ℃. It is believed that the designed composite film would expand the applications of flexible conductive materials where both high conductivity and robust mechanical flexibility are required.
Collapse
Affiliation(s)
- Jianmin Yang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Materials, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Chang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Chuao Ma
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ziquan Cao
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hongliang Liu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
40
|
Costa PM, Learmonth DA, Gomes DB, Cautela MP, Oliveira ACN, Andrade R, Espregueira-Mendes J, Veloso TR, Cunha CB, Sousa RA. Mussel-Inspired Catechol Functionalisation as a Strategy to Enhance Biomaterial Adhesion: A Systematic Review. Polymers (Basel) 2021; 13:polym13193317. [PMID: 34641133 PMCID: PMC8513061 DOI: 10.3390/polym13193317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Biomaterials have long been explored in regenerative medicine strategies for the repair or replacement of damaged organs and tissues, due to their biocompatibility, versatile physicochemical properties and tuneable mechanical cues capable of matching those of native tissues. However, poor adhesion under wet conditions (such as those found in tissues) has thus far limited their wider application. Indeed, despite its favourable physicochemical properties, facile gelation and biocompatibility, gellan gum (GG)-based hydrogels lack the tissue adhesiveness required for effective clinical use. Aiming at assessing whether substitution of GG by dopamine (DA) could be a suitable approach to overcome this problem, database searches were conducted on PubMed® and Embase® up to 2 March 2021, for studies using biomaterials covalently modified with a catechol-containing substituent conferring improved adhesion properties. In this regard, a total of 47 reports (out of 700 manuscripts, ~6.7%) were found to comply with the search/selection criteria, the majority of which (34/47, ~72%) were describing the modification of natural polymers, such as chitosan (11/47, ~23%) and hyaluronic acid (6/47, ~13%); conjugation of dopamine (as catechol “donor”) via carbodiimide coupling chemistry was also predominant. Importantly, modification with DA did not impact the biocompatibility and mechanical properties of the biomaterials and resulting hydrogels. Overall, there is ample evidence in the literature that the bioinspired substitution of polymers of natural and synthetic origin by DA or other catechol moieties greatly improves adhesion to biological tissues (and other inorganic surfaces).
Collapse
Affiliation(s)
- Pedro M. Costa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
- Correspondence: ; Tel.: +351–253–165–230
| | - David A. Learmonth
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - David B. Gomes
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Mafalda P. Cautela
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Ana C. N. Oliveira
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Renato Andrade
- Clínica do Dragão, Espregueira-Mendes Sports Centre-FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal; (R.A.); (J.E.-M.)
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - João Espregueira-Mendes
- Clínica do Dragão, Espregueira-Mendes Sports Centre-FIFA Medical Centre of Excellence, 4350-415 Porto, Portugal; (R.A.); (J.E.-M.)
- Dom Henrique Research Centre, 4350-415 Porto, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Tiago R. Veloso
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Cristiana B. Cunha
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| | - Rui A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, Parque de Ciência e Tecnologia Avepark, Zona Industrial da Gandra, 4805-017 Barco, Portugal; (D.A.L.); (D.B.G.); (M.P.C.); (A.C.N.O.); (T.R.V.); (C.B.C.); (R.A.S.)
| |
Collapse
|
41
|
Zheng H, Lin N, He Y, Zuo B. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40013-40031. [PMID: 34375080 DOI: 10.1021/acsami.1c08395] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Flexible and wearable hydrogel strain sensors have attracted tremendous attention for applications in human motion and physiological signal monitoring. However, it is still a great challenge to develop a hydrogel strain sensor with certain mechanical properties and tensile deformation capabilities, which can be in conformal contact with the target organ and also have self-healing properties, self-adhesive capability, biocompatibility, antibacterial properties, high strain sensitivity, and stable electrical performance. In this paper, an ionic conductive hydrogel (named PBST) is rationally designed by proportionally mixing polyvinyl alcohol (PVA), borax, silk fibroin (SF), and tannic acid (TA). SF can not only be a reinforcement to introduce an energy dissipation mechanism into the dynamically cross-linked hydrogel network to stabilize the non-Newtonian behavior of PVA and borax but it can also act as a cross-linking agent to combine with TA to reduce the dissociation of TA on the hydrogel network, improving the mechanical properties and viscoelasticity of the hydrogel. The combination of SF and TA can improve the self-healing ability of the hydrogel and realize the adjustable viscoelasticity of the hydrogel without sacrificing other properties. The obtained hydrogel has excellent stretchability (strain > 1000%) and shows good conformal contact with human skin. When the hydrogel is damaged by external strain, it can rapidly self-repair (mechanical and electrical properties) without external stimuli. It shows adhesiveness and repeatable adhesiveness to different materials (steel, wood, PTFE, glass, iron, and cotton fabric) and biological tissues (pigskin) and is easy to peel off without residue. The obtained PBST conductive hydrogel also has a wide strain-sensing range (>650%) and reliable stability. The hydrogel adhered to the skin surface can monitor large strain movements such as in finger joints, wrist joints, knee joints, and so on and detect swallowing, smiling, facial bulging and calming, and other micro-deformation behaviors. It can also distinguish physical signals such as light smile, big laugh, fast and slow breathing, and deep and shallow breathing. Therefore, the PBST conductive hydrogel material with multiple synergistic functions has great potential as a flexible wearable strain sensor. The PBST hydrogel has antibacterial properties and good biocompatibility at the same time, which provides a safety guarantee for it as a flexible wearable strain sensor. This work is expected to provide a new way for people to develop ideal wearable strain sensors.
Collapse
Affiliation(s)
- Haiyan Zheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
| | - Nan Lin
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
| | - Yanyi He
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
| | - Baoqi Zuo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215100, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
42
|
Tharmatt A, Malhotra D, Sharma H, Bedi N. Pharmaceutical Perspective in Wearable Drug Delivery Systems. Assay Drug Dev Technol 2021; 19:386-401. [PMID: 34339259 DOI: 10.1089/adt.2021.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Humans have been dealing with health problems for millions of years. Normal health services need well-trained personnel and high-cost diagnostic tests, which forces patients to go to hospitals if medical treatment is required. To address this, prototype testing has been carried out into the wearable drug delivery health care perspectives. Researchers have devised a wide variety of formulations for the treatment of various diseases at home by performing real-time monitoring of different routes of drug administration such as ocular, transdermal, intraoral, intracochlear, and several more. A comprehensive review of the different types of wearable drug delivery systems with respect to their manufacturing, mechanism of action and specifications has been done. In the pharmaceutical context, these devices are technologically well-equipped interfaces for diverse physicochemical signals. Above mentioned information with a broader perspective has also been discussed in this article. Several wearable drug delivery systems have been introduced in the market in recent years. But a lot of testing needs to be conducted to address the numerous obstacles before the wearable devices are successfully launched in the market.
Collapse
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Danish Malhotra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Hamayal Sharma
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
43
|
Tseng YM, Narayanan A, Mishra K, Liu X, Joy A. Light-Activated Adhesion and Debonding of Underwater Pressure-Sensitive Adhesives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29048-29057. [PMID: 34110761 DOI: 10.1021/acsami.1c04348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pressure-sensitive adhesives (PSAs) such as sticky notes and labels are a ubiquitous part of modern society. PSAs with a wide range of peel adhesion strength are designed by tailoring the bulk and surface properties of the adhesive. However, designing an adhesive with strong initial adhesion but showing an on-demand decrease in adhesion has been an enduring challenge in the design of PSAs. To address this challenge, we designed alkoxyphenacyl-based polyurethane (APPU) PSAs that show a photoactivated increase and decrease in peel strength. With increasing time of light exposure, the failure mode of our PSAs shifted from cohesive to adhesive failure, providing residue-free removal with up to 83% decrease in peel strength. The APPU-PSAs also adhere to substrates submerged underwater and show a similar photoinduced decrease in adhesion strength.
Collapse
Affiliation(s)
- Yen-Ming Tseng
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Kaushik Mishra
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xinhao Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
44
|
Fan P, Xue C, Zhou X, Yang Z, Ji H. Dynamic Covalent Bonds of Si-OR and Si-OSi Enabled A Stiff Polymer to Heal and Recycle at Room Temperature. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2680. [PMID: 34065375 PMCID: PMC8160654 DOI: 10.3390/ma14102680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
As stiff polymers are difficult to self-heal, the balance between polymers' self-healing ability and mechanical properties is always a big challenge. Herein, we have developed a novel healable stiff polymer based on the Si-OR and Si-OSi dynamic covalent bonds. The self-healing mechanism was tested and proved by the small molecule model experiments and the contrast experiments of polymers. This polymer possesses excellent tensile, bending properties as well as room temperature self-healing abilities. Moreover, due to the sticky and shapeable properties under wetting conditions, the polymer could be used as an adhesive. Besides, even after four cycles of recycling, the polymer maintains its original properties, which meets the requirements of recyclable materials. It was demonstrated that the polymer exhibits potential application in some fields, such as recyclable materials and healable adhesives.
Collapse
Affiliation(s)
- Ping Fan
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
| | - Xiantai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
| | - Zujin Yang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
45
|
Liu C, Lei F, Li P, Wang K, Jiang J. A review on preparations, properties, and applications of cis-ortho-hydroxyl polysaccharides hydrogels crosslinked with borax. Int J Biol Macromol 2021; 182:1179-1191. [PMID: 33895176 DOI: 10.1016/j.ijbiomac.2021.04.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Polysaccharides-based hydrogel has many advantages such as biocompatibility, self-repair property, and biodegradability. It has been widely applied in various fields and has attracted great attention of researchers. The natural polysaccharides involved in this review include fenugreek gum, guar gum, locust bean gum, gellan gum, sodium alginate, agarose, and konjac glucomannan etc. Borax is a highly effective crosslinking agent for cis-ortho-hydroxyl polysaccharides. This paper focused on the synthesis mechanism, functional additives, characteristics, and applications of borax crosslinked cis-ortho-hydroxyl polysaccharides hydrogels (BHs). Moreover, the factors affecting BHs performance such as temperature, pH, and media were analyzed. Its mechanical and self-repair properties are enhanced by the dynamic and reversible borate/di-diol, which play a significant role in sensors, biomedicine, and tissue engineering. This review summarizes the research progress of BHs for the first time. Additionally, hoping to contribute to the development of this field, the review analyzes the correlation of performance through the SPSS 26 software.
Collapse
Affiliation(s)
- Chuanjie Liu
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Pengfei Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, PR China
| | - Kun Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Jianxin Jiang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
46
|
Zhong Y, Seidi F, Li C, Wan Z, Jin Y, Song J, Xiao H. Antimicrobial/Biocompatible Hydrogels Dual-Reinforced by Cellulose as Ultrastretchable and Rapid Self-Healing Wound Dressing. Biomacromolecules 2021; 22:1654-1663. [PMID: 33655745 DOI: 10.1021/acs.biomac.1c00086] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogels as a wound dressing, integrated with ultrastretchability, rapid self-healing, and excellent antimicrobial activity, are in high demand, particularly for joint skin wound healing. Herein, a multifunctional and ductile composite hydrogel was developed using poly(vinyl alcohol) (PVA)-borax gel as a matrix that was synergized or dual-reinforced with dopamine-grafted oxidized carboxymethyl cellulose (OCMC-DA) and cellulose nanofibers (CNF). Moreover, neomycin (NEO), an aminoglycoside antibiotic with multifunctional groups, was incorporated into the hydrogel network as both an antibacterial agent and a cross-linker. The dynamic reversible borate ester linkages and hydrogen bonds between OCMC-DA, PVA, and CNF, along with dynamic cross-linking imine linkages between NEO and OCMC-DA, endowed the hydrogel with excellent self-healing ability and stretchability (3300%). The as-reinforced networks enhanced the mechanical properties of hydrogels significantly. More remarkably, the composite hydrogel with improved biodegradability and biocompatibility is pH-responsive and effective against a broad spectrum of bacteria, which is attributed to the controllable release of NEO for steady availability of the antibiotic on the wound location. Overall, the antimicrobial hydrogel with rapid self-healing and reliable mechanical properties holds significant promise as dressing material for wound healing.
Collapse
Affiliation(s)
- Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Chengcheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Zhangmin Wan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
47
|
Huang H, Han L, Fu X, Wang Y, Yang Z, Pan L, Xu M. A Powder Self-Healable Hydrogel Electrolyte for Flexible Hybrid Supercapacitors with High Energy Density and Sustainability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006807. [PMID: 33590690 DOI: 10.1002/smll.202006807] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Ionic conductive hydrogel electrolyte is considered to be an ideal electrolyte candidate for flexible supercapacitor due to its flexibility and high conductivity. However, due to the lack of effective recycling methods, a large number of ineffective flexible hydrogel supercapacitors caused by some irreversible damages and dryness of hydrogel electrolyte are abandoned, which would induce heavy economic and environmental protection problems. Herein,a smart ionic conductive hydrogel (SPMA-Zn: ZnSO4 /sodium alginate/polymethylacrylic acid) is developed for flexible hybrid supercapacitor (SPMA-ZHS). The SPMA-Zn exhibits an excellent self-healing ability and can recover its electrochemical performance after multiple mechanical damages. More importantly, it possesses an outstanding powder self-healable property, which could easily regenerate the hydrogel electrolyte after powdering, and maintain stable electrochemical performance of SPMA-ZHS. Besides, the SPMA-ZHS displays excellent electrochemical performance with a wide and stable working voltage range of 0-2.2 V, high energy density of 164.13 Wh kg-1 at the power density of 1283.44 Wh kg-1 and good stability with a capacity retention of 95.3% after 5000 charge/discharge cycles at 10 A g-1 . The strategy in this work would provide a new insight in exploring flexible hydrogel electrolyte-based supercapacitor with good sustainability and high energy density for flexible wearable electronic devices.
Collapse
Affiliation(s)
- Hailong Huang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| | - Lu Han
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| | - Xiaobin Fu
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yanling Wang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| | - Zhongli Yang
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| | - Likun Pan
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| | - Min Xu
- School of Physics and Electronic Science & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
48
|
Sun Z, Li Z, Qu K, Zhang Z, Niu Y, Xu W, Ren C. A review on recent advances in gel adhesion and their potential applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Chen Z, Chen Y, Hedenqvist MS, Chen C, Cai C, Li H, Liu H, Fu J. Multifunctional conductive hydrogels and their applications as smart wearable devices. J Mater Chem B 2021; 9:2561-2583. [PMID: 33599653 DOI: 10.1039/d0tb02929g] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, hydrogel-based conductive materials and their applications as smart wearable devices have been paid tremendous attention due to their high stretchability, flexibility, and excellent biocompatibility. Compared with single functional conductive hydrogels, multifunctional conductive hydrogels are more advantageous to match various demands for practical applications. This review focuses on multifunctional conductive hydrogels applied for smart wearable devices. Representative strategies for conduction of hydrogels are discussed firstly: (1) electronic conduction based on the conductive fillers and (2) ionic conduction based on charged ions. Then, the common and intensive research on multiple functionalities of conductive hydrogels, such as mechanical properties, conductive and sensory properties, anti-freezing and moisturizing properties, and adhesion and self-healing properties is presented. The applications of multifunctional conductive hydrogels such as in human motion sensors, sensory skins, and personal healthcare diagnosis are provided in the third part. Finally, we offer our perspective on open challenges and future areas of interest for multifunctional conductive hydrogels used as smart wearable devices.
Collapse
Affiliation(s)
- Zhen Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen Z, Liu J, Chen Y, Zheng X, Liu H, Li H. Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1353-1366. [PMID: 33351585 DOI: 10.1021/acsami.0c16719] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stimulus-responsive hydrogels, such as conductive hydrogels and thermoresponsive hydrogels, have been explored extensively and are considered promising candidates for smart materials such as wearable devices and artificial muscles. However, most of the existing studies on stimulus-responsive hydrogels have mainly focused on their single stimulus-responsive property and have not explored multistimulus-responsive or multifunction properties. Although some works involved multifunctionality, the prepared hydrogels were incompatible. In this work, a multistimulus-responsive and multifunctional hydrogel system (carboxymethyl cellulose/poly acrylic-acrylamide) with good elasticity, superior flexibility, and stable conductivity was prepared. The prepared hydrogel not only showed excellent human motion detection and physiological signal response but also possessed the ability to respond to environmental temperature changes. By integrating a conductive hydrogel with a thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel to form a bilayer hydrogel, the prepared bilayer also functioned as two kinds of actuators owing to the different degrees of swelling and shrinking under different thermal stimuli. Furthermore, the different thermochromic properties of each layer in the bilayer hydrogel endowed the hydrogel with a thermoresponsive "smart" feature, the ability to display and conceal information. Therefore, the prepared hydrogel system has excellent prospects as a smart material in different applications, such as ionic skin, smart info-window, and soft robotics.
Collapse
Affiliation(s)
- Zhen Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yujie Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xu Zheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hezhou Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hua Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|