1
|
Fatima R, Almeida B. Methods to achieve tissue-mimetic physicochemical properties in hydrogels for regenerative medicine and tissue engineering. J Mater Chem B 2024; 12:8505-8522. [PMID: 39149830 DOI: 10.1039/d4tb00716f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Hydrogels are water-swollen polymeric matrices with properties that are remarkably similar in function to the extracellular matrix. For example, the polymer matrix provides structural support and adhesion sites for cells in much of the same way as the fibers of the extracellular matrix. In addition, depending on the polymer used, bioactive sites on the polymer may provide signals to initiate certain cell behavior. However, despite their potential as biomaterials for tissue engineering and regenerative medicine applications, fabricating hydrogels that truly mimic the physicochemical properties of the extracellular matrix to physiologically-relevant values is a challenge. Recent efforts in the field have sought to improve the physicochemical properties of hydrogels using advanced materials science and engineering methods. In this review, we highlight some of the most promising methods, including crosslinking strategies and manufacturing approaches such as 3D bioprinting and granular hydrogels. We also provide a brief perspective on the future outlook of this field and how these methods may lead to the clinical translation of hydrogel biomaterials for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Rabia Fatima
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| | - Bethany Almeida
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699, USA.
| |
Collapse
|
2
|
Peng X, Zhang J, Xiao P. Photopolymerization Approach to Advanced Polymer Composites: Integration of Surface-Modified Nanofillers for Enhanced Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400178. [PMID: 38843462 DOI: 10.1002/adma.202400178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/08/2024] [Indexed: 06/28/2024]
Abstract
The incorporation of functionalized nanofillers into polymers via photopolymerization approach has gained significant attention in recent years due to the unique properties of the resulting composite materials. Surface modification of nanofillers plays a crucial role in their compatibility and polymerization behavior within the polymer matrix during photopolymerization. This review focuses on the recent developments in surface modification of various nanofillers, enabling their integration into polymer systems through photopolymerization. The review discusses the key aspects of surface modification of nanofillers, including the selection of suitable surface modifiers, such as photoinitiators and polymerizable groups, as well as the optimization of modification conditions to achieve desired surface properties. The influence of surface modification on the interfacial interactions between nanofillers and the polymer matrix is also explored, as it directly impacts the final properties of the nanocomposites. Furthermore, the review highlights the applications of nanocomposites prepared by photopolymerization, such as sensors, gas separation membranes, purification systems, optical devices, and biomedical materials. By providing a comprehensive overview of the surface modification strategies and their impact on the photopolymerization process and the resulting nanocomposite properties, this review aims to inspire new research directions and innovative ideas in the development of high-performance polymer nanocomposites for diverse applications.
Collapse
Affiliation(s)
- Xiaotong Peng
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Jing Zhang
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Pu Xiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
3
|
Dumur F. Recent Advances in Monocomponent Visible Light Photoinitiating Systems Based on Sulfonium Salts. Polymers (Basel) 2023; 15:4202. [PMID: 37959882 PMCID: PMC10649563 DOI: 10.3390/polym15214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
During the last decades, multicomponent photoinitiating systems have been the focus of intense research efforts, especially for the design of visible light photoinitiating systems. Although highly reactive three-component and even four-component photoinitiating systems have been designed, the complexity to elaborate such mixtures has incited researchers to design monocomponent Type II photoinitiators. Using this approach, the photosensitizer and the radical/cation generator can be combined within a unique molecule, greatly simplifying the elaboration of the photocurable resins. In this field, sulfonium salts are remarkable photoinitiators but these structures lack absorption in the visible range. Over the years, various structural modifications have been carried out in order to redshift their absorptions in the visible region. In this work, an overview of the different sulfonium salts activable under visible light and reported to date is proposed.
Collapse
Affiliation(s)
- Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
4
|
Dumur F. Recent advances on water-soluble photoinitiators of polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Moon SH, Hwang HJ, Jeon HR, Park SJ, Bae IS, Yang YJ. Photocrosslinkable natural polymers in tissue engineering. Front Bioeng Biotechnol 2023; 11:1127757. [PMID: 36970625 PMCID: PMC10037533 DOI: 10.3389/fbioe.2023.1127757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Natural polymers have been widely used in scaffolds for tissue engineering due to their superior biocompatibility, biodegradability, and low cytotoxicity compared to synthetic polymers. Despite these advantages, there remain drawbacks such as unsatisfying mechanical properties or low processability, which hinder natural tissue substitution. Several non-covalent or covalent crosslinking methods induced by chemicals, temperatures, pH, or light sources have been suggested to overcome these limitations. Among them, light-assisted crosslinking has been considered as a promising strategy for fabricating microstructures of scaffolds. This is due to the merits of non-invasiveness, relatively high crosslinking efficiency via light penetration, and easily controllable parameters, including light intensity or exposure time. This review focuses on photo-reactive moieties and their reaction mechanisms, which are widely exploited along with natural polymer and its tissue engineering applications.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Jin Hwang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Ryeong Jeon
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Sol Ji Park
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - In Sun Bae
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
- *Correspondence: Yun Jung Yang,
| |
Collapse
|
6
|
Substituent effect on the visible light initiating ability of chalcones. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
7
|
Yu D, Basumatary IB, Kumar S, Ye F, Dutta J. Chitosan modified with bio-extract as an antibacterial coating with UV filtering feature. Int J Biol Macromol 2023; 230:123145. [PMID: 36621742 DOI: 10.1016/j.ijbiomac.2023.123145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Benzophenone-3 grafted chitosan (CS-BP-3) was successfully synthesized and applied as an antibacterial coating for the first time. The grafting mechanism is based on the reaction between ketone and primary amine to form imine derivatives and the chemical structure of grafted chitosan was studied by Fourier transform infrared (FT-IR) spectroscopy. Water solubility of BP-3 is enhanced after covalently grafted on chitosan and consequently renders the chitosan coating with UV blocking property. Results of thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) further confirmed the thermal stability of BP-3 modified chitosan is enhanced. The CS-BP-3 coating was applied on a variety of substrates of glass, plastics, wood, and metal. The surface features of the coatings such as morphology, water contact angle (WCA), and surface roughness were investigated. The optical and thermal stabilities of the coatings under UV irradiation were studied for 16 h. Antibacterial activity of CS-BP-3 was evaluated against both Gram-negative and Gram-positive bacteria. And the results of bacterial inhibition by CS-BP-3 coating indicate its potential for future application in food packaging.
Collapse
Affiliation(s)
- Dongkun Yu
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| | - Indra Bhusan Basumatary
- Department of Food Engineering and Technology, Central Institute of Technology, Kokrajhar 783370, India
| | - Santosh Kumar
- Department of Food Engineering and Technology, Central Institute of Technology, Kokrajhar 783370, India
| | - Fei Ye
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden.
| | - Joydeep Dutta
- Functional Materials Group, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden.
| |
Collapse
|
8
|
Dumur F. Recent Advances on Photoinitiating Systems Designed for Solar Photocrosslinking Polymerization Reactions. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
9
|
Dumur F. Recent Advances on Anthraquinone-based Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Recent Advances on Furan-Based Visible Light Photoinitiators of Polymerization. Catalysts 2023. [DOI: 10.3390/catal13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Photopolymerization is an active research field enabling to polymerize in greener conditions than that performed with traditional thermal polymerization. At present, a great deal of effort is devoted to developing visible light photoinitiating systems. Indeed, the traditional UV photoinitiating systems are currently the focus of numerous safety concerns so alternatives to UV light are being actively researched. However, visible light photons are less energetic than UV photons so the reactivity of the photoinitiating systems should be improved to address this issue. In this field, furane constitutes an interesting candidate for the design of photocatalysts of polymerization due to its low cost and its easy chemical modification. In this review, an overview concerning the design of furane-based photoinitiators is provided. Comparisons with reference systems are also established to demonstrate evidence of the interest of these photoinitiators in innovative structures.
Collapse
|
11
|
Recent Advances on Photobleachable Visible Light Photoinitiators of Polymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
High-Performance Photoinitiating Systems for LED-Induced Photopolymerization. Polymers (Basel) 2023; 15:polym15020342. [PMID: 36679223 PMCID: PMC9860695 DOI: 10.3390/polym15020342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Currently, increasing attention has been focused on light-emitting diodes (LEDs)-induced photopolymerization. The common LEDs (e.g., LED at 365 nm and LED at 405 nm) possess narrow emission bands. Due to their light absorption properties, most commercial photoinitiators are sensitive to UV light and cannot be optimally activated under visible LED irradiation. Although many photoinitiators have been designed for LED-induced free radical polymerization and cationic polymerization, there is still the issue of the mating between photoinitiators and LEDs. Therefore, the development of novel photoinitiators, which could be applied under LED irradiation, is significant. Many photoinitiating systems have been reported in the past decade. In this review, some recently developed photoinitiators used in LED-induced photopolymerization, mainly in the past 5 years, are summarized and categorized as Type Ⅰ photoinitiators, Type Ⅱ photoinitiators, and dye-based photoinitiating systems. In addition, their light absorption properties and photoinitiation efficiencies are discussed.
Collapse
|
13
|
Zhang B, Song L, Feng C, Tian W. Study on Synthesis, Optical properties and Application of Benzophenone derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202203948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Bianxiang Zhang
- School of Chemistry and Chemical Engineering Shanxi University 030006 Taiyuan China
| | - Lu Song
- School of Chemistry and Chemical Engineering Shanxi University 030006 Taiyuan China
| | - Chao Feng
- School of Chemistry and Chemical Engineering Shanxi University 030006 Taiyuan China
| | - Wenjuan Tian
- Nanocluster Laboratory Institute of Molecular Science Shanxi University 030006 Taiyuan China
| |
Collapse
|
14
|
Dumur F. Recent advances on benzylidene cyclopentanones as visible light photoinitiators of polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
|
16
|
Chen P, Zhou Y, Li Q, Xiao Q, Lun Y, Huang Y, Ye G. Study on the photopolymerization mechanism of allyl monomers: A photo-driven radical-mediated [3+2] cyclopolymerization mechanism to reduce degradation chain transfer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Synthesis and free radical photopolymerization of one-component type II photoinitiator based on benzophenone segment. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
|
19
|
Liu Z, Dumur F. Recent Advances on Visible Light Coumarin-based Oxime Esters as Initiators of Polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
|
21
|
Meng T, Lu Y, Lei P, Li S, Deng K, Xiao X, Ogino K, Zeng Q. Self-Assembly of Triphenylamine Macrocycles and Co-assembly with Guest Molecules at the Liquid-Solid Interface Studied by STM: Influence of Different Side Chains on Host-Guest Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3568-3574. [PMID: 35276043 DOI: 10.1021/acs.langmuir.2c00188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The side chains of macrocyclic molecules have a non-negligible effect on the two-dimensional (2D) supramolecular networks at the liquid-solid interface. In this study, we investigate the self-assembly behaviors of two conjugated triphenylamine macrocycles modified with different alkyl chains and construct the host-guest supramolecular nanopatterns on the highly oriented pyrolytic graphite with a scanning tunneling microscope. In combination with density functional theory calculations, how different side chains affect the host-guest interaction is discussed. This work provides insights into constructing a 2D host-guest dynamic co-assembly on the surface.
Collapse
Affiliation(s)
- Ting Meng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Yingbo Lu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Peng Lei
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijun Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xunwen Xiao
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
|
23
|
|
24
|
|
25
|
He X, Jia W, Gao Y, Jiang S, Nie J, Sun F. Water-soluble benzoylformic acid photoinitiators for water-based LED-triggered deep-layer photopolymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Sun K, Pigot C, Zhang Y, Borjigin T, Morlet‐Savary F, Graff B, Nechab M, Xiao P, Dumur F, Lalevée J. Sunlight Induced Polymerization Photoinitiated by Novel Push–Pull Dyes: Indane‐1,3‐Dione, 1H‐Cyclopenta[b]Naphthalene‐1,3(2H)‐Dione and 4‐Dimethoxyphenyl‐1‐Allylidene Derivatives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ke Sun
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| | - Corentin Pigot
- Aix Marseille Univ CNRS ICR UMR 7273 Marseille F‐13397 France
| | - Yijun Zhang
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| | - Timur Borjigin
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| | - Fabrice Morlet‐Savary
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| | - Bernadette Graff
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| | - Malek Nechab
- Aix Marseille Univ CNRS ICR UMR 7273 Marseille F‐13397 France
| | - Pu Xiao
- Research School of Chemistry Australian National University Canberra Australian Capital Territory 2601 Australia
| | - Frédéric Dumur
- Aix Marseille Univ CNRS ICR UMR 7273 Marseille F‐13397 France
| | - Jacques Lalevée
- Université de Haute‐Alsace CNRS IS2M UMR 7361 Mulhouse F‐68100 France
- Université de Strasbourg France
| |
Collapse
|
27
|
Synthesis of Crosslinkable Polyetherimide and Application as an Additive in 3D Printing of Photopolymers. Macromol Res 2022. [DOI: 10.1007/s13233-022-0007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
|
29
|
|
30
|
Len’shina NA, Shurygina MP, Chesnokov SA. Photoreduction Reaction of Carbonyl-Containing Compounds in the Synthesis and Modification of Polymers. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421060130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
|
32
|
|
33
|
Zhang L, Gan Y, Wu B, Chen Z, Ren J, Zhang C, Zhang S, Chen C, Pan B. Photochemical Synthesis of Selenium Nanospheres of Tunable Size and Colloidal Stability with Simple Diketones. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9793-9801. [PMID: 34351154 DOI: 10.1021/acs.langmuir.1c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Temporal and spatial segregations are two fundamental requirements for the successful synthesis of nanoparticles (NPs). To obtain colloidally stable selenium nanospheres (SeNSs), surfactants or polymers are generally needed as structure-directing agents or stabilizers in the reduction approaches for SeNP synthesis. The addition of such chemicals sacrifices the purity of the obtained SeNPs and, therefore, is detrimental to the applications. Here, for the first time, we report that low-molecular weight (less than six carbons) diketones are excellent photoreductants for green and tunable synthesis of SeNPs, owing to their merits in temporal and spatial control. With simple diketones as the photoreductants, the resultant SeNPs were pure and colloidally stable with nice photoelectronic properties. This finding not only provides a useful strategy for the synthesis of SeNPs but also might be a milestone in the development of ketone photochemistry.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yonghai Gan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jie Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Esen DS, Cakir Yigit N, Tunca U, Hizal G, Arsu N. Synthesis and characterization of multiarm (
Benzoin‐PS
)
m
‐polyDVB
star polymer as a polymeric photoinitiator for polymerization of acrylates and methacrylates. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Duygu Sevinc Esen
- Art and Science Faculty, Department of Chemistry Yildiz Technical University Yildiz Istanbul Turkey
| | - Nese Cakir Yigit
- Art and Science Faculty, Department of Chemistry İstanbul Technical University Maslak Istanbul Turkey
- Faculty of Engineering, Department of Polymer Materials Engineering Yalova University Yalova Turkey
| | - Umit Tunca
- Art and Science Faculty, Department of Chemistry İstanbul Technical University Maslak Istanbul Turkey
| | - Gurkan Hizal
- Art and Science Faculty, Department of Chemistry İstanbul Technical University Maslak Istanbul Turkey
| | - Nergis Arsu
- Art and Science Faculty, Department of Chemistry Yildiz Technical University Yildiz Istanbul Turkey
| |
Collapse
|
35
|
Zou X, Zhu J, Hu P, Liu R. Methods to Evaluate Near‐Infrared Photoinitiating Systems for Photopolymerisation Reactions Assisted By Upconversion Materials. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiucheng Zou
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
- International Research Center for Photoresponsive Molecules and Materials Jiangnan University 214122 Wuxi Jiangsu P. R. China
| | - Junzhe Zhu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
- International Research Center for Photoresponsive Molecules and Materials Jiangnan University 214122 Wuxi Jiangsu P. R. China
| | - Peng Hu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
- International Research Center for Photoresponsive Molecules and Materials Jiangnan University 214122 Wuxi Jiangsu P. R. China
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
- International Research Center for Photoresponsive Molecules and Materials Jiangnan University 214122 Wuxi Jiangsu P. R. China
| |
Collapse
|
36
|
Giacoletto N, Dumur F. Recent Advances in bis-Chalcone-Based Photoinitiators of Polymerization: From Mechanistic Investigations to Applications. Molecules 2021; 26:3192. [PMID: 34073491 PMCID: PMC8199041 DOI: 10.3390/molecules26113192] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/01/2023] Open
Abstract
Over the past several decades, photopolymerization has become an active research field, and the ongoing efforts to develop new photoinitiating systems are supported by the different applications in which this polymerization technique is involved-including dentistry, 3D and 4D printing, adhesives, and laser writing. In the search for new structures, bis-chalcones that combine two chalcones' moieties within a unique structure were determined as being promising photosensitizers to initiate both the free-radical polymerization of acrylates and the cationic polymerization of epoxides. In this review, an overview of the different bis-chalcones reported to date is provided. Parallel to the mechanistic investigations aiming at elucidating the polymerization mechanisms, bis-chalcones-based photoinitiating systems were used for different applications, which are detailed in this review.
Collapse
Affiliation(s)
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR UMR 7273, F-13397 Marseille, France
| |
Collapse
|
37
|
Liu S, Graff B, Xiao P, Dumur F, Lalevée J. Nitro-Carbazole Based Oxime Esters as Dual Photo/Thermal Initiators for 3D Printing and Composite Preparation. Macromol Rapid Commun 2021; 42:e2100207. [PMID: 33938080 DOI: 10.1002/marc.202100207] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Indexed: 01/27/2023]
Abstract
A series of Type I photoinitiators (PIs) based on a nitrocarbazole scaffold are developed and examined for the first time as photoinitiators for visible light photopolymerization. Three oxime esters (OXE-M, OXE-V, OXE-P) varying by the terminal groups (acetyl, acryloyl and benzoyl) attached via the oxime ester group are originally prepared. As a result of this, the three PIs exhibit excellent photoinitiation abilities in the presence of acrylate monomers upon LED@ 405 nm irradiation. Markedly, OXE-M exhibits a better performance than the benchmark Type I phosphine-oxide (diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide TPO). Chemical mechanisms supporting the polymerization process with these PIs are investigated by steady state photolysis, molecular orbital calculations and real-time Fourier transformed infrared spectroscopy. After the cleavage of N─O bond and decarboxylation, free radicals are generated to initiate the free radical polymerization efficiently. Free radical photopolymerization of OXE-M is applied in direct laser write and 3D printing. Interestingly, OXE-M exhibits thermal initiation behaviors in monomers and can be used as dual photo and thermal initiators. The highly opaque feature of carbon fibers makes it difficult for light penetration, so dual photo/thermal curing are used here to prepare carbon fiber composites.
Collapse
Affiliation(s)
- Shaohui Liu
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, France
| | - Bernadette Graff
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, France
| | - Pu Xiao
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Frédéric Dumur
- Aix Marseille University, CNRS, ICR UMR 7273, Marseille, F-13397, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse, F-68100, France.,Université de Strasbourg, France
| |
Collapse
|
38
|
Giacoletto N, Ibrahim-Ouali M, Dumur F. Recent advances on squaraine-based photoinitiators of polymerization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110427] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
|
40
|
Liu S, Zhang Y, Sun K, Graff B, Xiao P, Dumur F, Lalevée J. Design of photoinitiating systems based on the chalcone-anthracene scaffold for LED cationic photopolymerization and application in 3D printing. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Mutlu S, Metin E, Aydin Yuksel S, Bayrak U, Nuhoglu C, Arsu N. In-situ photochemical synthesis and dielectric properties of nanocomposite thin films containing Au, Ag and MnO nanoparticles. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|