1
|
Muteeb G, Kazi RNA, Aatif M, Azhar A, Oirdi ME, Farhan M. Antimicrobial resistance: Linking molecular mechanisms to public health impact. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 33:100232. [PMID: 40216324 DOI: 10.1016/j.slasd.2025.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Antimicrobial resistance (AMR) develops into a worldwide health emergency through genetic and biochemical adaptations which enable microorganisms to resist antimicrobial treatment. β-lactamases (blaNDM, blaKPC) and efflux pumps (MexAB-OprM) working with mobile genetic elements facilitate fast proliferation of multidrug-resistant (MDR) and exttreme drug-resistant (XDR) phenotypes thus creating major concerns for healthcare systems and community health as well as the agricultural sector. OBJECTIVES The review dissimilarly unifies molecular resistance pathways with public health implications through the study of epidemiological data and monitoring approaches and innovative therapeutic solutions. Previous studies separating their attention between molecular genetics and clinical outcomes have been combined into our approach which delivers an all-encompassing analysis of AMR. KEY INSIGHTS The report investigates the resistance mechanisms which feature enzymatic degradation and efflux pump overexpression together with target modification and horizontal gene transfer because these factors represent important contributors to present-day AMR developments. This review investigates AMR effects on hospital and community environments where it affects pathogens including MRSA, carbapenem-resistant Klebsiella pneumoniae, and drug-resistant Pseudomonas aeruginosa. This document explores modern AMR management methods that comprise WHO GLASS molecular surveillance systems and three innovative strategies such as CRISPR-modified genome editing and bacteriophage treatments along with antimicrobial peptides and artificial intelligence diagnostic tools. CONCLUSION The resolution of AMR needs complete scientific and global operational methods alongside state-of-the-art therapeutic approaches. Worldwide management of drug-resistant infection burden requires both enhanced infection prevention procedures with next-generation antimicrobial strategies to reduce cases effectively.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Raisa Nazir Ahmed Kazi
- Department of Respiratory Therapy, College of Applied Medical Science, King Faisal, University, Al-Ahsa, Saudi Arabia
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Asim Azhar
- NAP Life Sciences; Metropolitan Region, Maharashtra 401208, India
| | - Mohamed El Oirdi
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia; Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.
| |
Collapse
|
2
|
Daller B, Auer DL, Buchalla W, Bartsch S, Gessner A, Jakubovics NS, Al-Ahmad A, Hiergeist A, Cieplik F. Genomic and Transcriptomic Adaptation to Chlorhexidine in Streptococcus spp. J Dent Res 2025:220345251320912. [PMID: 40181292 DOI: 10.1177/00220345251320912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Antiseptics such as chlorhexidine digluconate (CHX) are widely used in clinical dental practice, but their potential risks, particularly regarding antimicrobial resistance (AMR), are not yet known. This study explores the genomic and transcriptomic mechanisms of CHX adaptation in 3 clinical isolates of Streptococcus spp. and their adapted counterparts. The genomic analysis revealed mutations in genes related to membrane structure, DNA repair, and metabolic processes. Mutations include those in diacylglycerol kinase that occurred in Streptococcus salivarius and the autolysin N-acetylmuramoyl-L-alanine amidase homologues in both Streptococcus mitis and Streptococcus vestibularis, which may contribute to enhanced CHX resistance. Our findings showed stress response genes constantly expressed in all 3 CHX-adapted strains, regardless of acute CHX exposure. Commonly upregulated genes were related to oxidative stress, DNA repair, and metabolic pathway changes, especially amino acid related metabolism. In addition, cell surface restructuring, multiple ABC transporter genes, as well as antimicrobial resistance-associated genes were constitutively expressed. Homologue genes that were significantly upregulated across all 3 species after mutation included recD (DNA repair), potE (amino acid transport), and groEL (stress response). In addition, we saw an increase in a gene associated with the penicillin-binding protein PBP2a in all strains. Beyond these conserved adaptations, we observed species-specific shifts under prolonged CHX exposure. In S. vestibularis, glutathione synthesis genes increased while fatty acid metabolism genes were downregulated. S. salivarius showed elevated expression of genes related to organic anion transport and RNA modification. S. mitis exhibited changes in pyrimidine metabolism, ion homeostasis, and pyruvate dehydrogenase complex genes. Uniquely, S. mitis also showed acute CHX response with upregulation of carbohydrate metabolism and phosphotransferase system genes. These findings highlight the complexity of CHX-induced adaptation, suggesting connections to genetic mutations and emphasizing the need for further research to understand and mitigate AMR risks.
Collapse
Affiliation(s)
- B Daller
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - D L Auer
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - W Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - S Bartsch
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg, Medical Faculty, University of Freiburg, Freiburg i. Br., Germany
| | - A Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - N S Jakubovics
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - A Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg, Medical Faculty, University of Freiburg, Freiburg i. Br., Germany
| | - A Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - F Cieplik
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center, University of Freiburg, Medical Faculty, University of Freiburg, Freiburg i. Br., Germany
| |
Collapse
|
3
|
Hussain A, Bhando T, Casius A, Gupta R, Pathania R. Deciphering meropenem persistence in Acinetobacter baumannii facilitates discovery of anti-persister activity of thymol. Antimicrob Agents Chemother 2025; 69:e0138124. [PMID: 39976427 PMCID: PMC11963602 DOI: 10.1128/aac.01381-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Decades of antibiotic misuse have accelerated the emergence of multi- and extensively drug-resistant bacteria. Bacterial pathogens employ several strategies such as antibiotic resistance, tolerance, and biofilm formation in response to extreme environments and antibiotic stress. Another crucial survival mechanism involves the stochastic generation of bacterial subpopulations known as persisters, which can endure high concentrations of antibiotics. Upon removal of antibiotic stress, these subpopulations revert back to their original phenotype which links them to the relapse and recalcitrance of chronic infections, a significant problem in clinical settings. Persistent infections are particularly notable in Acinetobacter baumannii, a top-priority ESKAPE pathogen, where carbapenems serve as last-resort antibiotics. Several reports indicate the rising therapeutic failure of carbapenems due to persistence, underscoring the importance of developing anti-persister therapeutics. In this study, we explored the mechanisms of transient persister formation in A. baumannii against meropenem. Our investigation revealed significant changes in membrane properties and energetics in meropenem persisters of A. baumannii, including a noteworthy increase in tolerance to other antibiotics. This understanding guided the evaluation of an in-house collection of GRAS status compounds for their potential anti-persister activity. The compound thymol demonstrated remarkable inhibitory activity against meropenem persisters of A. baumannii and other ESKAPE pathogens. Further investigation revealed its impact on persister cell physiology, including efflux pump inhibition and disruption of cellular respiration. Given our results, we propose a compelling strategy where thymol could be employed either as a monotherapy or in combination with meropenem in anti-persister therapeutics.
Collapse
Affiliation(s)
- Arsalan Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Timsy Bhando
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ananth Casius
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rinki Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
4
|
Chong CSC, Lau YY, Michels PAM, Lim CSY. Insights into biofilm-mediated mechanisms driving last-resort antibiotic resistance in clinical ESKAPE pathogens. Crit Rev Microbiol 2025:1-26. [PMID: 40098357 DOI: 10.1080/1040841x.2025.2473332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
The rise of antibiotic-resistant bacteria poses a grave threat to global health, with the ESKAPE pathogens, which comprise Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. being among the most notorious. The World Health Organization has reserved a group of last-resort antibiotics for treating multidrug-resistant bacterial infections, including those caused by ESKAPE pathogens. This situation calls for a comprehensive understanding of the resistance mechanisms as it threatens public health and hinder progress toward the Sustainable Development Goal (SDG) 3: Good Health and Well-being. The present article reviews resistance mechanisms, focusing on emerging resistance mutations in multidrug-resistant ESKAPE pathogens, particularly against last-resort antibiotics, and describes the role of biofilm formation in multidrug-resistant ESKAPE pathogens. It discusses the latest therapeutic advances, including the use of antimicrobial peptides and CRISPR-Cas systems, and the modulation of quorum sensing and iron homeostasis, which offer promising strategies for countering resistance. The integration of CRISPR-based tools and biofilm-targeted approaches provides a potential framework for managing ESKAPE infections. By highlighting the spread of current resistance mutations and biofilm-targeted approaches, the review aims to contribute significantly to advancing our understanding and strategies in combatting this pressing global health challenge.
Collapse
Affiliation(s)
- Christina Shook Cheng Chong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| | - Yin Yin Lau
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| | - Paul A M Michels
- School of Biological Sciences, University of Edinburgh, The King's Buildings, Edinburgh 3FL, UK
| | - Crystale Siew Ying Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, No 1, Jalan UCSI, UCSI Heights, Taman Connaught, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Alavi M, Pedro SN, Freire MG, Ashengroph M, Khan H. Theaflavins Applications to Ameliorate Implant Failure and Eradicate Microbial Infections and Foodborne Pathogens: A Comprehensive Review. Phytother Res 2025; 39:494-504. [PMID: 39608406 DOI: 10.1002/ptr.8383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024]
Abstract
Theaflavins, powerful antioxidants found in black tea ( Camellia sinensis ), have garnered increasing interest for their promising therapeutic potential. Experimental studies have contributed to enlightening about the advantages of theaflavins, including their antioxidant, anti-inflammatory, anticancer, antiosteoporosis, and antimicrobial properties. Theaflavin and its derivatives, particularly theaflavin-3,3'-digallate, have been particularly noted for their enhanced action in different areas. These compounds have found an important role as alternatives or adjuvants in the pharmaceutical sector, food industry, and in the improvement of health conditions. This review focuses on the antioxidant and anti-inflammatory aspects of theaflavins, particularly their potential in addressing peri-implant osteolysis. We explore mechanisms and pathways involved in this therapeutic action. Furthermore, we cover some of the relevant studies on the antimicrobial action of theaflavins in both the health and food sectors. Specifically, we explore the use of theaflavins for the treatment of dental infections, where these compounds have shown particular efficacy against several bacterial strains and their antimicrobial application in food matrices. Given the low solubility and stability of theaflavins in physiological conditions, we emphasize the benefits of the development of biocompatible and biodegradable nanoformulations to enhance the stability, bioavailability, and efficacy of these polyphenols, to promote their broader research and application. Given the potential demonstrated so far by in vitro and in vivo studies, the application of theaflavins stands as a promising alternative to enhance the existing strategies and fight prosthetic failure and antimicrobial resistance in the health and food sectors.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Sónia N Pedro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mara G Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Morahem Ashengroph
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
6
|
Rajput P, Nahar KS, Rahman KM. Evaluation of Antibiotic Resistance Mechanisms in Gram-Positive Bacteria. Antibiotics (Basel) 2024; 13:1197. [PMID: 39766587 PMCID: PMC11672434 DOI: 10.3390/antibiotics13121197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The prevalence of resistance in Gram-positive bacterial infections is rapidly rising, presenting a pressing global challenge for both healthcare systems and economies. The WHO categorizes these bacteria into critical, high, and medium priority groups based on the urgency for developing new antibiotics. While the first priority pathogen list was issued in 2017, the 2024 list remains largely unchanged. Despite six years having passed, the progress that has been made in developing novel treatment approaches remains insufficient, allowing antimicrobial resistance to persist and worsen on a global scale. Various strategies have been implemented to address this growing threat by targeting specific resistance mechanisms. This review evaluates antimicrobial resistance (AMR) in Gram-positive bacteria, highlighting its critical impact on global health due to the rise of multidrug-resistant pathogens. It focuses on the unique cell wall structure of Gram-positive bacteria, which influences their identification and susceptibility to antibiotics. The review explores the mechanisms of AMR, including enzymatic inactivation, modification of drug targets, limiting drug uptake, and increased drug efflux. It also examines the resistance strategies employed by high-priority Gram-positive pathogens such as Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecium, as identified in the WHO's 2024 priority list.
Collapse
Affiliation(s)
- Pratiksing Rajput
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| | - Kazi S. Nahar
- Department of Natural Sciences, Faculty of Science & Technology, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK;
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, London SE1 9NH, UK;
| |
Collapse
|
7
|
Ates A, Tastan C, Ermertcan S. CRISPR-Cas9-Mediated Targeting of Multidrug Resistance Genes in Methicillin-Resistant Staphylococcus aureus. CRISPR J 2024; 7:374-384. [PMID: 39514329 DOI: 10.1089/crispr.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Antibiotic resistance poses a global health crisis limiting the efficacy of available therapeutic agents. We explored CRISPR-Cas-based antimicrobials to combat multidrug resistance in methicillin-resistant Staphylococcus aureus (MRSA), targeting methicillin (mecA), gentamicin (aacA), and ciprofloxacin (grlA, grlB) resistance genes. Engineered CRISPR plasmids with specific single-guide RNAs were electroporated into MRSA strains. Real-time polymerase chain reaction assessed gene expression changes, while antibiotic susceptibility tests (ASTs) evaluated resistance status. Results showed a 1.5-fold decrease in mecA, a 5.5-fold decrease in grlA, a 6-fold decrease in grlB, and a 4-fold decrease in aacA expression. ASTs demonstrated the reversal of resistance to beta-lactam, quinolone, and aminoglycoside antibiotics. Western blot analysis revealed a 70% decrease in penicillin-binding protein 2a expression. Sanger sequencing confirmed point mutations in the grlB and aacA genes. Our findings highlight the potential of CRISPR-Cas9 technology to restore antibiotic efficacy against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Aysegul Ates
- Pharmeceutical Microbiology Department, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Cihan Tastan
- Transgenic Cell Technologies and Epigenetic Application and Research Center (TRGENMER), Üsküdar University, Istanbul, Turkey
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Science, Üsküdar University, Istanbul, Turkey
| | - Safak Ermertcan
- Pharmeceutical Microbiology Department, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
8
|
Dong C, Liu Z, Zhu L, Zhang B, Chi T, Yu Z, Zhou M, Sun L, Zhao Y, Zhu L, Hu B. Dynamic migration and risk of cephalosporin antibiotic resistance genes: Move from pharmaceutical plants through wastewater treatment plants to coastal tidal flats sediments. WATER RESEARCH 2024; 261:121983. [PMID: 38924951 DOI: 10.1016/j.watres.2024.121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
The migration and dissemination of antibiotics and their corresponding antibiotic resistance genes (ARGs) from pharmaceutical plants through wastewater treatment to the environment introduce exogenous ARGs, increasing the risk of antibiotic resistance. Cephalosporin antibiotics (Ceps) are among the most widely used antibiotics with the largest market scale today, and the issue of resistance is becoming increasingly severe. In this study, a cephalosporin pharmaceutical plant was selected and metagenomic analysis was employed to investigate the dissemination patterns of cephalosporin antibiotics (Ceps) and their ARGs (CepARGs) from the pharmaceutical plant through the wastewater treatment plant to tidal flats sediments. The findings revealed a significant reduction in the total concentration of Ceps by 90.32 % from the pharmaceutical plant's Pioneer Bio Reactor (PBR) to the effluent of the wastewater treatment plant, and a notable surge of 172.13 % in the relative abundance of CepARGs. It was observed that CepARGs originating from the PBR could migrate along the dissemination chain, contributing to 60 % of the CepARGs composition in tidal flats sediments. Microorganisms play a crucial role in the migration of CepARGs, with efflux-mediated CepARGs, as an intrinsic resistance mechanism, exhibiting a higher prospensity for migration due to their presence in multiple hosts. While Class I risk CepARGs are present at the pharmaceutical and wastewater plant stages, Class I ina-CepARGs are completely removed during wastewater treatment and do not migrate to the environment. This study reveals the dynamic migration characteristics and potential risk changes regarding Ceps and CepARGs in real dissemination chains, providing new theoretical evidence for the mitigation, control, and risk prevention of CepARGs.
Collapse
Affiliation(s)
- Chifei Dong
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zishu Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou 310007, China
| | - Taolve Chi
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhendi Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingtao Sun
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiang Zhao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lizhong Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, China; College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Khairullah AR, Widodo A, Riwu KHP, Yanestria SM, Moses IB, Effendi MH, Fauzia KA, Fauziah I, Hasib A, Kusala MKJ, Raissa R, Silaen OSM, Ramandinianto SC, Afnani DA. Spread of livestock-associated methicillin-resistant Staphylococcus aureus in poultry and its risks to public health: A comprehensive review. Open Vet J 2024; 14:2116-2128. [PMID: 39553759 PMCID: PMC11563600 DOI: 10.5455/ovj.2024.v14.i9.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/09/2024] [Indexed: 11/19/2024] Open
Abstract
The livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) strains are prevalent in the poultry farming environment and are a common component of the bacterial microbiota on the skin and mucous membranes of healthy animals. The origin and spread of LA-MRSA are attributed to the use of antibiotics in animals, and close contact between people and different animal species increases the risk of animal exposure to humans. The epidemiology of LA-MRSA in poultry significantly changed when ST398 and ST9 were found in food-producing animals. The significance of LA-MRSA and zoonotic risk associated with handling and processing foods of avian origin is highlighted by the LA-MRSA strain's ability to infect chickens. People who work with poultry are more prone to contract LA-MRSA than the general population. There is scientific consensus that individuals who have close contact with chickens can become colonized and subsequently infected with LA-MRSA; these individuals could include breeders, medical professionals, or personnel at chicken slaughterhouses. The prevention of LA-MRSA infections and diseases of poultry origin requires taking precautions against contamination across the entire chicken production chain.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| | | | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, Australia
| | | | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Mataram, Indonesia
| |
Collapse
|
10
|
Kakooza S, Eneku W, Nabatta E, Wampande EM, Ssajjakambwe P, Wanyana M, Munyiirwa DFN, Ndoboli D, Namuyinda D, Athieno G, Kayaga E, Okwasiimire R, Tsuchida S, Ushida K, Sakurai K, Mutebi F. Integrating multi-wet laboratory diagnostics to study staphylococci in animals in Uganda. BMC Microbiol 2024; 24:298. [PMID: 39127665 DOI: 10.1186/s12866-024-03442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Several diagnostic environments in Uganda lack real-time, robust and high-throughput technologies for comprehensive typing of microbes, which is a setback to infectious disease surveillance. This study combined various wet laboratory diagnostics to understand the epidemiology of pathogenic staphylococci isolated from animals in Uganda and the implications for global health security priorities. METHODS A retrospective study was conducted employing records and pathogenic staphylococci (from animals) archived at the Central Diagnostic Laboratory (CDL), Makerere University, Uganda, between January 2012 and December 2019. The bacteria were speciated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tested for virulence factors [beta lactamases, lecithinase, deoxyribonuclease (DNase), haemolysins] and resistance to ten antimicrobials of clinical and veterinary relevance. Tetracycline and methicillin resistance genes were also tested. RESULTS The prevalent diseases were mastitis in cattle and skin infections in dogs. Of the 111 staphylococci tested by MALDI-TOF MS, 79 (71.2%) were Staphylococcus aureus, 27 (24.3%) were Staphylococcus pseudintermedius and 5 (4.5%) were Staphylococcus schleiferi. All these strains expressed haemolysins. The prevalence of strains with lecithinase, penicillinase, cephalosporinase and DNase was 35.9% (14/39), 89.7% (35/39), 0.0% (0/39) and 87.2% (34/39), respectively. Staphylococci were primarily resistant to early penicillins (over 80%), tetracycline (57.7%), and chloramphenicol (46.2%). Minimal resistance was noted with cloxacillin (0.0%), ciprofloxacin (9.6%), and cefoxitin (3.8%). The prevalence of multidrug resistance (MDR) was 78.8% for general staphylococci, 82.2% for S. aureus, 73.1% for S. pseudintermedius, and 60.0% for S. schleiferi. Multidrug resistant staphylococci were significantly more prevalent in the cattle isolates than in the dog isolates (P < 0.05). The prevalence of methicillin-resistant staphylococci (MRS) tested by resistance to cefoxitin and mecA carriage was 3.8%. These four strains were all isolated from dog skin infections. The tetK gene was the most predominant (35.4%), followed by tetM (25.0%). CONCLUSION In resource-constrained settings, the approach of integrated diagnostics promises sustainable disease surveillance and the addressing of current capacity gaps. The emergence of MRS (zoonotic bacteria) in companion animals creates a likelihood of reduced treatment options for related human infections, a threat to global health.
Collapse
Affiliation(s)
- Steven Kakooza
- Central Diagnostic Laboratory, College of Veterinary medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda.
| | - Wilfred Eneku
- Department of Veterinary Pharmacy, Clinics and Comparative Medicine, College of Veterinary Medicine, Animal Resources and Bio-Security Makerere University, Kampala, Uganda
| | - Esther Nabatta
- National Animal Disease Diagnostic and Epidemiology Centre, Entebbe, Uganda
| | - Eddie M Wampande
- Department of Veterinary Pharmacy, Clinics and Comparative Medicine, College of Veterinary Medicine, Animal Resources and Bio-Security Makerere University, Kampala, Uganda
| | - Paul Ssajjakambwe
- Department of Veterinary Pharmacy, Clinics and Comparative Medicine, College of Veterinary Medicine, Animal Resources and Bio-Security Makerere University, Kampala, Uganda
| | - Mariam Wanyana
- Central Diagnostic Laboratory, College of Veterinary medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Damien F N Munyiirwa
- Central Diagnostic Laboratory, College of Veterinary medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Dickson Ndoboli
- Central Diagnostic Laboratory, College of Veterinary medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Dorcus Namuyinda
- Central Diagnostic Laboratory, College of Veterinary medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Grace Athieno
- Central Diagnostic Laboratory, College of Veterinary medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Edrine Kayaga
- Central Diagnostic Laboratory, College of Veterinary medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Rodney Okwasiimire
- Central Diagnostic Laboratory, College of Veterinary medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Sayaka Tsuchida
- College of Bioscience and Biotechnology, Biotechnolorere University, Aichi, Japan
| | - Kazunari Ushida
- College of Bioscience and Biotechnology, Biotechnolorere University, Aichi, Japan
| | - Ken'ichi Sakurai
- Faculty of Life and Environmental Sciences, Department of Animal Sciences, Teikyo University of Science, Tokyo, Japan
| | - Francis Mutebi
- Central Diagnostic Laboratory, College of Veterinary medicine, Animal resources and Biosecurity, Makerere University, Kampala, Uganda
| |
Collapse
|
11
|
Dhamodiran M, Chinnaperumal K, J D, Venkatesan G, A Alshiekheid M, Suseem SR. Isolation, structural elucidation of bioactive compounds and their wound-healing ability, antibacterial and In silico molecular docking applications. ENVIRONMENTAL RESEARCH 2024; 252:119023. [PMID: 38685295 DOI: 10.1016/j.envres.2024.119023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Andrographis echioides has been extensively utilized in traditional Indian folk medicines for several skin disorders and other biological actions such as diuretic, antimicrobial, anthelmintic, anti-ulcer, and hepatoprotective properties. Different crude extracts were extracted from A. echioides leaves using various solvents such as methanol and water. The prepared crude extracts were utilized to formulate different herbal ointments. Further, the prepared ointments were examined against wounds and bacterial pathogens. The wound healing ability of the prepared formulations was observed for F1, F2, and F3, to be (89.84%, 95.11%, and 95.75%) respectively. Moreover, wound healing capabilities were compared with standard Betadine which exhibits 98.12%, those results indicating that the prepared herbal ointment also has a promising wound healing ability. The F2 formulations outperform the other two formulations (F1 and F2) in terms of their antibacterial ability to combat Staphylococcus aureus, Klebsiella pneumoniae Bacillus subtilis, and Escherichia coli. Moreover, there are two compounds were successfully isolated and identified from methanolic extract, which are 2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol and 3-(3,4-Dihydroxyphenyl)-2-propenoic acid. Meanwhile, the molecular docking investigation exposed high binding energy Staphylococcus aureus TyrRS (-8.9 kcal/mol), Isoleucyl-tRNA synthetase (-7.5 kcal/mol), Penicillin-binding protein 2a (-8.0 kcal/mol), S. aureus DNA Gyrase (-7.2 kcal/mol), GSK-3beta (Glycogen synthase kinase-3 beta) (-8.3 kcal/mol) and TGF - Beta Receptor Type 1 Kinase Domain (-8.7 kcal/mol) indicating high degree of interaction between Compound-1 2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol (DHPDHC) and 7 clinically important skin infective pathogen Staphylococcus aureus proteins at the active sites. Additionally, the standard drug Povidone iodine, Sulphothiazole, and Nitrofurazone (<-8 kcal/mol), displayed low binding affinity on targeted proteins. A molecular dynamics simulation research with high free energy showed stable interaction between the ligand and protein. Which endorses the capabilities of A. echioides derived compounds as a potential wound healer and antibacterial therapeutic candidate for drug development in the future.
Collapse
Affiliation(s)
- Mathivanan Dhamodiran
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Kamaraj Chinnaperumal
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India.
| | - Dhanish J
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Geetha Venkatesan
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, India
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh - 11451, Saudi Arabia
| | - S R Suseem
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Marciniak K, Tyczewska A, Grzywacz K. Genetics of antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA). BIOTECHNOLOGIA 2024; 105:169-177. [PMID: 38988369 PMCID: PMC11231996 DOI: 10.5114/bta.2024.139756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 07/12/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) strains pose a significant threat as common causes of bacterial infections in hospitals, often resistant to available antibiotics such as daptomycin, vancomycin, and linezolid. The continuous emergence of new MRSA isolates with no effective treatment options underscores a real threat to health among humans and animals, and the number of effective antibiotic therapies decreases with each passing year. In this review, we provide an overview of the most common genetic mechanisms of resistance to a broad spectrum of antibiotics in methicillin-resistant S. aureus.
Collapse
Affiliation(s)
| | - Agata Tyczewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Kamilla Grzywacz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
13
|
Ozanique PR, Helena AL, Menezes RDP, Gonçalves DS, Santiago MB, Dilarri G, Sardi JDCO, Ferreira H, Martins CHG, Regasini LO. Synthesis, Antibacterial Effects, and Toxicity of Licochalcone C. Pharmaceuticals (Basel) 2024; 17:634. [PMID: 38794203 PMCID: PMC11124413 DOI: 10.3390/ph17050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Drug-resistant bacteria constitute a big barrier against current pharmacotherapy. Efforts are urgent to discover antibacterial drugs with novel chemical and biological features. Our work aimed at the synthesis, evaluation of antibacterial effects, and toxicity of licochalcone C (LCC), a naturally occurring chalcone. The synthetic route included six steps, affording a 10% overall yield. LCC showed effects against Gram-positive bacteria (MIC = 6.2-50.0 µg/mL), Mycobacterium species (MIC = 36.2-125 µg/mL), and Helicobacter pylori (MIC = 25 µg/mL). LCC inhibited the biofilm formation of MSSA and MRSA, demonstrating MBIC50 values of 6.25 μg/mL for both strains. The investigations by fluorescence microscopy, using PI and SYTO9 as fluorophores, indicated that LCC was able to disrupt the S. aureus membrane, similarly to nisin. Systemic toxicity assays using Galleria mellonella larvae showed that LCC was not lethal at 100 µg/mL after 80 h treatment. These data suggest new uses for LCC as a compound with potential applications in antibacterial drug discovery and medical device coating.
Collapse
Affiliation(s)
- Patrick Rômbola Ozanique
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (P.R.O.); (A.L.H.)
| | - Alvaro Luiz Helena
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (P.R.O.); (A.L.H.)
| | - Ralciane de Paula Menezes
- Department Microbiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Umuarama 38405-320, MG, Brazil; (R.d.P.M.); (D.S.G.); (M.B.S.); (C.H.G.M.)
| | - Daniela Silva Gonçalves
- Department Microbiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Umuarama 38405-320, MG, Brazil; (R.d.P.M.); (D.S.G.); (M.B.S.); (C.H.G.M.)
| | - Mariana Brentini Santiago
- Department Microbiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Umuarama 38405-320, MG, Brazil; (R.d.P.M.); (D.S.G.); (M.B.S.); (C.H.G.M.)
| | - Guilherme Dilarri
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, SP, Brazil; (G.D.); (H.F.)
| | | | - Henrique Ferreira
- Department of Biochemistry and Microbiology, Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, SP, Brazil; (G.D.); (H.F.)
| | - Carlos Henrique Gomes Martins
- Department Microbiology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Umuarama 38405-320, MG, Brazil; (R.d.P.M.); (D.S.G.); (M.B.S.); (C.H.G.M.)
| | - Luis Octávio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (Unesp), São José do Rio Preto 15054-000, SP, Brazil; (P.R.O.); (A.L.H.)
| |
Collapse
|
14
|
Araten AH, Brooks RS, Choi SDW, Esguerra LL, Savchyn D, Wu EJ, Leon G, Sniezek KJ, Brynildsen MP. Cephalosporin resistance, tolerance, and approaches to improve their activities. J Antibiot (Tokyo) 2024; 77:135-146. [PMID: 38114565 DOI: 10.1038/s41429-023-00687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Cephalosporins comprise a β-lactam antibiotic class whose first members were discovered in 1945 from the fungus Cephalosporium acremonium. Their clinical use for Gram-negative bacterial infections is widespread due to their ability to traverse outer membranes through porins to gain access to the periplasm and disrupt peptidoglycan synthesis. More recent members of the cephalosporin class are administered as last resort treatments for complicated urinary tract infections, MRSA, and other multi-drug resistant pathogens, such as Neisseria gonorrhoeae. Unfortunately, there has been a global increase in cephalosporin-resistant strains, heteroresistance to this drug class has been a topic of increasing concern, and tolerance and persistence are recognized as potential causes of cephalosporin treatment failure. In this review, we summarize the cephalosporin antibiotic class from discovery to their mechanisms of action, and discuss the causes of cephalosporin treatment failure, which include resistance, tolerance, and phenomena when those qualities are exhibited by only small subpopulations of bacterial cultures (heteroresistance and persistence). Further, we discuss how recent efforts with cephalosporin conjugates and combination treatments aim to reinvigorate this antibiotic class.
Collapse
Affiliation(s)
- Alison H Araten
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Rachel S Brooks
- Department of English, Princeton University, Princeton, NJ, USA
| | - Sarah D W Choi
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Laura L Esguerra
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Diana Savchyn
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Emily J Wu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Gabrielle Leon
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Katherine J Sniezek
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Mark P Brynildsen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
15
|
Amr K, Elissawy AM, Ibrahim N, Elnaggar MS, Fawzy IM, Singab ANB. Unveiling the Antimicrobial and Larvicidal Potential of Butyrolactones and Orsellinic Acid Derivatives from the Morus alba-derived Fungus Aspergillus terreus via Integrated In vitro and In silico Approaches. Chem Biodivers 2024; 21:e202301900. [PMID: 38282171 DOI: 10.1002/cbdv.202301900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
The emergence of multi-drug-resistant microbial strains spurred the search for antimicrobial agents; as a result, two distinct approaches were combined: four in vitro studies and four corresponding molecular docking investigations. Antituberculosis, anti-methicillin-resistant Staphylococcus aureus (anti-MRSA), antifungal, and larvicidal activities of the crude extract, two fractions, and seven isolated compounds from Aspergillus terreus derived from Morus alba roots were explored. The isolated compounds (5 butyrolactones and 2 orsellinic acid derivatives) showed potent to moderate antitubercular activity with MIC values ranging from 1.95 to 62.5 μg/mL (compared to isoniazid, 0.24 μg/mL) and promising anti-MRSA potential with inhibition zone diameters ranging from 8 to 25 mm. Additionally, the in silico study proved that the isolated compounds bind to the two corresponding proteins' active sites with high to moderate -(C-Docker interaction energies) and stable interactions. The isolated compounds displayed antifungal activities against different fungal strains at diverse degrees of activity, among them compound (8"S,9")-dihydroxy-dihydrobutyrolactone I eliciting the best antifungal activity. Meanwhile, all isolated compounds, fractions, and the crude extract demonstrated extremely selective potent to moderate activity against Cryptococcus neoformans. The isolated five butyrolactone derivatives could develop potential mosquito larvicidal agents as a result of promising docking outcomes in the larval enzyme carboxylesterase.
Collapse
Affiliation(s)
- Khadiga Amr
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566, Cairo, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Organization of African Unity Street 1, 11566, Cairo, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566, Cairo, Egypt
| | - Mohamed S Elnaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566, Cairo, Egypt
| | - Iten M Fawzy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Organization of African Unity Street 1, 11566, Cairo, Egypt
| |
Collapse
|
16
|
Saeed SI, Kamaruzzaman NF, Gahamanyi N, Nguyen TTH, Hossain D, Kahwa I. Confronting the complexities of antimicrobial management for Staphyloccous aureus causing bovine mastitis: an innovative paradigm. Ir Vet J 2024; 77:4. [PMID: 38418988 PMCID: PMC10900600 DOI: 10.1186/s13620-024-00264-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Globally, Mastitis is a disease commonly affecting dairy cattle which leads to the use of antimicrobials. The majority of mastitis etiological agents are bacterial pathogens and Staphylococcus aureus is the predominant causative agent. Antimicrobial treatment is administered mainly via intramammary and intramuscular routes. Due to increasing antimicrobial resistance (AMR) often associated with antimicrobial misuse, the treatment of mastitis is becoming challenging with less alternative treatment options. Besides, biofilms formation and ability of mastitis-causing bacteria to enter and adhere within the cells of the mammary epithelium complicate the treatment of bovine mastitis. In this review article, we address the challenges in treating mastitis through conventional antibiotic treatment because of the rising AMR, biofilms formation, and the intracellular survival of bacteria. This review article describes different alternative treatments including phytochemical compounds, antimicrobial peptides (AMPs), phage therapy, and Graphene Nanomaterial-Based Therapy that can potentially be further developed to complement existing antimicrobial therapy and overcome the growing threat of AMR in etiologies of mastitis.
Collapse
Affiliation(s)
- Shamsaldeen Ibrahim Saeed
- Nanotechnology in Veterinary Medicine Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kelantan, 16100, Malaysia.
- Microbiology Department, Faculty of Veterinary Science, University of Nyala, PO Box 155, Nyala, Sudan.
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology in Veterinary Medicine Research Group, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kelantan, 16100, Malaysia
| | - Noel Gahamanyi
- Biology Department, School of Science, College of Science and Technology, University of Rwanda, P.O. Box 3900, Kigali, Rwanda
- Microbiology Unit, National Reference Laboratory, Rwanda Biomedical, P.O. Box 7162, Kigali, Rwanda
| | - Thi Thu Hoai Nguyen
- Research Center for Infectious Diseases, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Delower Hossain
- Department of Veterinary Medicine and Animal Sciences (DIVAS), Università degli Studi di Milano, Lodi, 26900, Italy
- Department of Medicine and Public Health, Faculty of Animal Science and Veterinary Medicine, Sher-e -Bangla Agricultural University (SAU), Dhaka, 1207, Bangladesh
- Udder Health Bangladesh (UHB), Chattogram, 4225, Bangladesh
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
| |
Collapse
|
17
|
Hayles A, Bright R, Nguyen NH, Truong VK, Vongsvivut J, Wood J, Kidd SP, Vasilev K. Staphylococcus aureus surface attachment selectively influences tolerance against charged antibiotics. Acta Biomater 2024; 175:369-381. [PMID: 38141932 DOI: 10.1016/j.actbio.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/21/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
The threat of infection during implant placement surgery remains a considerable burden for millions of patients worldwide. To combat this threat, clinicians employ a range of anti-infective strategies and practices. One of the most common interventions is the use of prophylactic antibiotic treatment during implant placement surgery. However, these practices can be detrimental by promoting the resilience of biofilm-forming bacteria and enabling them to persist throughout treatment and re-emerge later, causing a life-threatening infection. Thus, it is of the utmost importance to elucidate the events occurring during the initial stages of bacterial surface attachment and determine whether any biological processes may be targeted to improve surgical outcomes. Using gene expression analysis, we identified a cellular mechanism of S. aureus which modifies its cell surface charge following attachment to a medical grade titanium surface. We determined the upregulation of two systems involved in the d-alanylation of teichoic acids and the lysylation of phosphatidylglycerol. We supported these molecular findings by utilizing synchrotron-sourced attenuated total reflection Fourier-transform infrared microspectroscopy to analyze the biomolecular properties of the S. aureus cell surface following attachment. As a direct consequence, S. aureus quickly becomes substantially more tolerant to the positively charged vancomycin, but not the negatively charged cefazolin. The present study can assist clinicians in rationally selecting the most potent antibiotic in prophylaxis treatments. Furthermore, it highlights a cellular process that could potentially be targeted by novel technologies and strategies to improve the outcome of antibiotic prophylaxis during implant placement surgery. STATEMENT OF SIGNIFICANCE: The antibiotic tolerance of bacteria in biofilm is a well-established phenomenon. However, the physiological adaptations employed by Staphylococcus aureus to increase its antibiotic tolerance during the early stages of surface attachment are poorly understood. Using multiple techniques, including gene expression analysis and synchrotron-sourced Fourier-transform infrared microspectroscopy, we generated insights into the physiological response of S. aureus following attachment to a medical grade titanium surface. We showed that this phenotypic transition enables S. aureus to better tolerate the positively charged vancomycin, but not the negatively charged cefazolin. These findings shed light on the antibiotic tolerance mechanisms employed by S. aureus to survive prophylactically administered antibiotics and can help clinicians to protect patients from infections.
Collapse
Affiliation(s)
- Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia.
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia
| | - Ngoc Huu Nguyen
- School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO ‒ Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Jonathan Wood
- Academic Unit of STEM, University of South Australia, Adelaide 5095, South Australia, Australia
| | - Stephen P Kidd
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042 Australia.
| |
Collapse
|
18
|
Khairullah AR, Kurniawan SC, Sudjarwo SA, Effendi MH, Widodo A, Moses IB, Hasib A, Zahra RLA, Gelolodo MA, Kurniawati DA, Riwu KHP, Silaen OSM, Afnani DA, Ramandinianto SC. Kinship analysis of mecA gene of methicillin-resistant Staphylococcus aureus isolated from milk and risk factors from the farmers in Blitar, Indonesia. Vet World 2024; 17:216-225. [PMID: 38406357 PMCID: PMC10884576 DOI: 10.14202/vetworld.2024.216-225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/02/2024] [Indexed: 02/27/2024] Open
Abstract
Background and Aim There are numerous reports of subclinical mastitis cases in Blitar, which is consistent with the region's high milk production and dairy cattle population. Staphylococcus aureus, which is often the cause of mastitis cases, is widely known because of its multidrug-resistant properties and resistance to β-lactam antibiotic class, especially the methicillin-resistant S. aureus (MRSA) strains. This study aimed to molecular detection and sequence analysis of the mecA gene in milk and farmer's hand swabs to show that dairy cattle are reservoirs of MRSA strains. Materials and Methods A total of 113 milk samples and 39 farmers' hand swab samples were collected from a dairy farm for the isolation of S. aureus using Mannitol salt agar. The recovered isolates were further characterized using standard microbiological techniques. Isolates confirmed as S. aureus were tested for sensitivity to antibiotics. Oxacillin Resistance Screening Agar Base testing was used to confirm the presence of MRSA, whereas the mecA gene was detected by polymerase chain reaction and sequencing. Results A total of 101 samples were confirmed to be S. aureus. There were 2 S. aureus isolates that were multidrug-resistant and 14 S. aureus isolates that were MRSA. The mecA gene was detected in 4/14 (28.6%) phenotypically identified MRSA isolates. Kinship analysis showed identical results between mecA from milk and farmers' hand swabs. No visible nucleotide variation was observed in the two mecA sequences of isolates from Blitar, East Java. Conclusion The spread of MRSA is a serious problem because the risk of zoonotic transmission can occur not only to people who are close to livestock in the workplace, such as dairy farm workers but also to the wider community through the food chain.
Collapse
Affiliation(s)
- Aswin Rafif Khairullah
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Shendy Canadya Kurniawan
- Master Program of Animal Sciences, Department of Animal Sciences, Specialisation in Molecule, Cell and Organ Functioning, Wageningen University and Research, Wageningen 6708 PB, Netherlands
| | - Sri Agus Sudjarwo
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Mustofa Helmi Effendi
- Division of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Agus Widodo
- Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Jl. Dharmawangsa Dalam Selatan No. 28-30, Kampus B Airlangga, Surabaya 60115, East Java, Indonesia
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki 480211, Nigeria
| | - Abdullah Hasib
- School of Agriculture and Food Sustainability, The University of Queensland, Gatton, QLD 4343, Queensland, Australia
| | - Reichan Lisa Az Zahra
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Jl. Dr. Ir. H. Soekarno, Kampus C Mulyorejo, Surabaya 60115, East Java, Indonesia
| | - Maria Aega Gelolodo
- Department of Animal Infectious Diseases and Veterinary Public Health, Faculty of Medicine and Veterinary Medicine, Universitas Nusa Cendana, Jl. Adisucipto Penfui, Kupang 85001, East Nusa Tenggara, Indonesia
| | - Dyah Ayu Kurniawati
- Indonesia Research Center for Veterinary Science, Jl. RE Martadinata No. 30, Bogor 16114, West Java, Indonesia
| | - Katty Hendriana Priscilia Riwu
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Dasan Agung Baru, Mataram 83125, West Nusa Tenggara, Indonesia
| | - Otto Sahat Martua Silaen
- Doctoral Program of Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya No. 6 Senen, Jakarta 10430, Indonesia
| | - Daniah Ashri Afnani
- Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, Universitas Pendidikan Mandalika, Jl. Pemuda No. 59A, Dasan Agung Baru, Mataram 83125, West Nusa Tenggara, Indonesia
| | | |
Collapse
|
19
|
Jeong JY, Jung IG, Yum SH, Hwang YJ. In Vitro Synergistic Inhibitory Effects of Plant Extract Combinations on Bacterial Growth of Methicillin-Resistant Staphylococcus aureus. Pharmaceuticals (Basel) 2023; 16:1491. [PMID: 37895962 PMCID: PMC10610001 DOI: 10.3390/ph16101491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most common pathogens of healthcare-associated infections. Medicinal plants have long been used in the traditional treatment of diseases or syndromes worldwide. Combined use of plant extracts could improve the effectiveness of pharmacological action by obtaining synergism, acting on multiple targets simultaneously, reducing the doses of individual components, and minimizing side effects. We aimed to investigate the synergistic inhibitory effects of selected medicinal plants (Caesalpinia sappan L. (CS), Glycyrrhiza uralensis Fisch. (GU), Sanguisorba officinalis L. (SO), and Uncaria gambir Roxb. (UG)) on the bacterial growth of MRSA and its clinical isolates. SO and UG extracts generated the best synergistic interaction as adjudged by checkerboard synergy assays. MICs of the individual extracts decreased 4-fold from 250 to 62.5 μg/mL, respectively. The SO + UG combination was further evaluated for its effects on bacterial growth inhibition, minimum bactericidal/inhibitory concentration (MBC/MIC) ratio, and time-kill kinetics. The results indicate that the SO + UG combination synergistically inhibited the bacterial growth of MRSA strains with bactericidal effects. SO + UG combination also exhibited more potent effects against clinical isolates. In multistep resistance selection experiments, both standard and isolates of MRSA showed no resistance to the SO + UG combination even after repeated exposure over fourteen passages. Our data suggest that using plant extract combinations could be a potential strategy to treat MRSA infections.
Collapse
Affiliation(s)
- Jae-Young Jeong
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
| | - In-Geun Jung
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - Seung-Hoon Yum
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| | - You-Jin Hwang
- Department of Health Sciences & Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Republic of Korea
- Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
20
|
Shil A, Mukherjee S, Biswas P, Majhi S, Sikdar S, Bishayi B, Sikdar née Bhakta M. Catharanthus roseus (L.) G. Don counteracts the ampicillin resistance in multiple antibiotic-resistant Staphylococcus aureus by downregulation of PBP2a synthesis. Open Life Sci 2023; 18:20220718. [PMID: 37772260 PMCID: PMC10523281 DOI: 10.1515/biol-2022-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023] Open
Abstract
It is essential to revisit the global biodiversity, search for ethnopharmacologically relevant plants, and unveil their untapped potential to overcome the complications associated while treating infections triggered by multiple antibiotic-resistant Staphylococcus aureus. Catharanthus roseus (L.) G. Don of the Apocynaceae family is a medicinal plant used for remedial purposes against infectious diseases from ancient times. In this study, we intended to evaluate the mechanism by which the ethanolic extract of C. roseus root (EECRR) causes the reversal of ampicillin resistance in S. aureus. To achieve this goal, we have stained EECRR-treated S. aureus with acridine orange, analysed DNA damage by comet assay, and studied the alteration of plasmid band pattern and expression of penicillin-binding protein 2a (PBP2a) protein. Experiments revealed better S. aureus killing efficiency of EECRR at its minimum inhibitory concentration (MIC) doses due to DNA damage and reducing plasmid band intensities along with a decline in the expression of PBP2a in EECRR-treated cells at half-MIC dose. EECRR proved to be an efficient growth inhibitor of S. aureus that reduces the expression of PBP2a. Therefore, EECRR can also render ampicillin-resistant S. aureus susceptible to the antibiotic.
Collapse
Affiliation(s)
- Aparna Shil
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Sushmit Mukherjee
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Prerona Biswas
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Sudipta Majhi
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Sima Sikdar
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, Kolkata700009, India
| | - Mausumi Sikdar née Bhakta
- Microbiology, Nutrition and Dietetics Laboratory, Physiology Unit, Department of Life Sciences, Presidency University, Kolkata700073, India
| |
Collapse
|
21
|
Junaidi NSSA, Shakrin NNSM, Desa MNM, Yunus WMZW. Dissemination Pattern of Hospital-Acquired Methicillin-Resistant Staphylococcus aureus and Community-Acquired MRSA Isolates from Malaysian Hospitals: A Review from a Molecular Perspective. Malays J Med Sci 2023; 30:26-41. [PMID: 37102054 PMCID: PMC10125240 DOI: 10.21315/mjms2023.30.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/06/2022] [Indexed: 04/28/2023] Open
Abstract
The global emergence of methicillin-resistant Staphylococcus aureus (MRSA) that unsusceptible to a wide selection of antimicrobial agents and any newly introduced antimicrobial over the past decades has triggered more extensive holistic measures to put an end to this situation. Molecular surveillance of MRSA clones is important to understand their evolutionary dynamics for investigating outbreaks, propagating precautionary measures, as well as planning for appropriate treatment. This review includes peer-reviewed reports on the molecular characterisation of clinical Staphylococcus aureus isolates within Malaysian hospitals from year 2008 to 2020. This work highlights the molecular clones of hospital-acquired MRSA (HA-MRSA) and community-acquired MRSA (CA-MRSA) isolates from Malaysian hospitals, with description on their ever-changing pattern. Among HA-MRSA, the ST22-t032-SCCmec IV MRSA clone was reported to supplant the previous dominating clone, ST239-t037-SCCmec III. Meanwhile, ST30, ST772, ST6 and ST22 were repeatedly detected in CA-MRSA, however, none of the strains became predominant. Future in-depth study on molecular epidemiology of MRSA clone is essential for the investigation of the extent of the clonal shift, especially in Malaysia.
Collapse
Affiliation(s)
| | - Nik Noorul Shakira Mohamed Shakrin
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
- Centre for Tropicalization, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Selangor, Malaysia
| | - Wan Md Zin Wan Yunus
- Centre for Tropicalization, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Ma Q, Wang G, Li N, Wang X, Kang X, Mao Y, Wang G. Insights into the Effects and Mechanism of Andrographolide-Mediated Recovery of Susceptibility of Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics. Microbiol Spectr 2023; 11:e0297822. [PMID: 36602386 PMCID: PMC9927479 DOI: 10.1128/spectrum.02978-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
The frequent resistance associated with β-lactam antibiotics and the high frequency of mutations in β-lactamases constitute a major clinical challenge that can no longer be ignored. Andrographolide (AP), a natural active compound, has been shown to restore susceptibility to β-lactam antibiotics. Fluorescence quenching and molecular simulation showed that AP quenched the intrinsic fluorescence of β-lactamase BlaZ and stably bound to the residues in the catalytic cavity of BlaZ. Of note, AP was found to reduce the stability of the cell wall (CW) in methicillin-resistant Staphylococcus aureus (MRSA), and in combination with penicillin G (PEN), it significantly induced CW roughness and dispersion and even caused its disintegration, while the same concentration of PEN did not. In addition, transcriptome sequencing revealed that AP induced a significant stress response and increased peptidoglycan (PG) synthesis but disrupted its cross-linking, and it repressed the expression of critical genes such as mecA, blaZ, and sarA. We also validated these findings by quantitative reverse transcription-PCR (qRT-PCR). Association analysis using the GEO database showed that the alterations caused by AP were similar to those caused by mutations in the sarA gene. In summary, AP was able to restore the susceptibility of MRSA to β-lactam antibiotics, mainly by inhibiting the β-lactamase BlaZ, by downregulating the expression of critical resistance genes such as mecA and blaZ, and by disrupting CW homeostasis. In addition, restoration of susceptibility to antibiotics could be achieved by inhibiting the global regulator SarA, providing an effective solution to alleviate the problem of bacterial resistance. IMPORTANCE Increasingly, alternatives to antibiotics are being used to mitigate the rapid onset and development of bacterial resistance, and the combination of natural compounds with traditional antibiotics has become an effective therapeutic strategy. Therefore, we attempted to discover more mechanisms to restore susceptibility and effective dosing strategies. Andrographolide (AP), as a natural active ingredient, can mediate recovery of susceptibility of MRSA to β-lactam antibiotics. AP bound stably to the β-lactamase BlaZ and impaired its hydrolytic activity. Notably, AP was able to downregulate the expression of critical resistance genes such as mecA, blaZ, and sarA. Meanwhile, it disrupted the CW cross-linking and homeostasis, while the same concentration of penicillin could not. The multiple inhibitory effect of AP resensitizes intrinsically resistant bacteria to β-lactam antibiotics, effectively prolonging the use cycle of these antibiotics and providing an effective solution to reduce the dosage of antibiotics and providing a theoretical reference for the prevention and control of MRSA.
Collapse
Affiliation(s)
- Qiang Ma
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Guilai Wang
- Yinchuan Hospital of Traditional Chinese Medicine, Yinchuan, Ningxia, China
| | - Na Li
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xin Wang
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xinyun Kang
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yanni Mao
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Guiqin Wang
- Veterinary Pharmacology Lab, College of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
23
|
Tchamba CN, Touzain F, Fergestad M, De Visscher A, L'Abee-Lund T, De Vliegher S, Wasteson Y, Blanchard Y, Argudín MA, Mainil J, Thiry D. Identification of staphylococcal cassette chromosome mec in Staphylococcus aureus and non-aureus staphylococci from dairy cattle in Belgium: Comparison of multiplex PCR and whole genome sequencing. Res Vet Sci 2023; 155:150-155. [PMID: 36696786 DOI: 10.1016/j.rvsc.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/06/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
The present study compared multiplex PCR (mPCR) and Whole Genome Sequencing (WGS) using the SCCmecFinder database to identify the Staphylococcal Cassette Chromosome (SCC) mec in five Staphylococcus aureus (SA) and nine non-aureus staphylococci (NAS) isolated from dairy cattle. mPCR identified an SCCmecIV in four SA and one NAS, but could not differentiate between SCCmecII and IV in the fifth SA, that all harbored the mecA gene and were phenotypically resistant to cefoxitin. SCCmecFinder confirmed the presence of an SCCmecIVc(2B) in four SA and of the SCCmecIVa(2B) in the fifth SA and the one NAS. Both methods also detected one untypeable SCCmec in another cefoxitin-resistant NAS harboring the mecA gene and a pseudo SCCmec in one cefoxitin-sensitive NAS harboring one mecC-related gene. No SCCmec elements were identified either in one cefoxitin-sensitive NAS harboring the mecA2 gene, or in five NAS (one resistant and four sensitive to cefoxitin) harboring the mecA1 gene. SCCmecFinder could even not identify the presence of any mecA1 gene in these five NAS, whose presence was nevertheless confirmed by ResFinder. The conclusions of this study are: (i) mPCR and WGS sequencing using SCCmecFinder are complementary methodologies to identify SCCmec; (ii) SCCmecFinder and ResFinder to a lesser extent cannot identify all mec gene allotypes; (iii) a specific classification of the SCCmec in NAS would be epidemiologically helpful; (iv) presence of a mecA gene and a complete SCCmec is linked to cefoxitin resistance, whereas presence of other mec genes and of pseudo or no SCCmec is not.
Collapse
Affiliation(s)
- Cyrille Ngassam Tchamba
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège Liège, Belgium
| | - Fabrice Touzain
- Viral Genetics and Bio-security Unit, ANSES, Ploufragan-Plouzané-Niort laboratory, Ploufragan, France
| | - Marte Fergestad
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Anneleen De Visscher
- M-team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Trine L'Abee-Lund
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Sarne De Vliegher
- M-team & Mastitis and Milk Quality Research Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Merelbeke, Belgium
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Yannick Blanchard
- Viral Genetics and Bio-security Unit, ANSES, Ploufragan-Plouzané-Niort laboratory, Ploufragan, France
| | - Maria A Argudín
- Molecular Biology, Cliniques universitaires Saint Luc, Catholic University of Louvain, Brussels, Belgium
| | - Jacques Mainil
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège Liège, Belgium
| | - Damien Thiry
- Bacteriology, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine and Institute for Fundamental and Applied Research in Animals and Health (FARAH), University of Liège Liège, Belgium.
| |
Collapse
|
24
|
Ivanovic I, Boss R, Romanò A, Guédon E, Le-Loir Y, Luini M, Graber H. Penicillin resistance in bovine Staphylococcus aureus: Genomic evaluation of the discrepancy between phenotypic and molecular test methods. J Dairy Sci 2022; 106:462-475. [DOI: 10.3168/jds.2022-22158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022]
|
25
|
Celastrol mitigates staphyloxanthin biosynthesis and biofilm formation in Staphylococcus aureus via targeting key regulators of virulence; in vitro and in vivo approach. BMC Microbiol 2022; 22:106. [PMID: 35421933 PMCID: PMC9011992 DOI: 10.1186/s12866-022-02515-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/01/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Staphylococcus aureus is a leading cause of human infections. The spread of antibiotic-resistant staphylococci has driven the search for novel strategies to supersede antibiotics use. Thus, targeting bacterial virulence rather than viability could be a possible alternative.
Results
The influence of celastrol on staphyloxanthin (STX) biosynthesis, biofilm formation, antibiotic susceptibility and host pathogenesis in S. aureus has been investigated. Celastrol efficiently reduced STX biosynthesis in S. aureus. Liquid chromatography-mass spectrometry (LC–MS) and molecular docking revealed that celastrol inhibits STX biosynthesis through its effect on CrtM. Quantitative measurement of STX intermediates showed a significant pigment inhibition via interference of celastrol with CrtM and accumulation of its substrate, farnesyl diphosphate. Importantly, celastrol-treated S. aureus was more sensitive to environmental stresses and human blood killing than untreated bacteria. Similarly, inhibition of STX upon celastrol treatment rendered S. aureus more susceptible to membrane targeting antibiotics. In addition to its anti-pigment capability, celastrol exhibits significant anti-biofilm activity against S. aureus as indicated by crystal violet assay and microscopy. Celastrol-treated cells showed deficient exopolysaccharide production and cell hydrophobicity. Moreover, celastrol markedly synergized the action of conventional antibiotics against S. aureus and reduced bacterial pathogenesis in vivo using mice infection model. These findings were further validated using qRT-PCR, demonstrating that celastrol could alter the expression of STX biosynthesis genes as well as biofilm formation related genes and bacterial virulence.
Conclusions
Celastrol is a novel anti-virulent agent against S. aureus suggesting, a prospective therapeutic role for celastrol as a multi-targeted anti-pathogenic agent.
Collapse
|
26
|
Gouveia A, Pinto D, Veiga H, Antunes W, Pinho MG, São-José C. Synthetic antimicrobial peptides as enhancers of the bacteriolytic action of staphylococcal phage endolysins. Sci Rep 2022; 12:1245. [PMID: 35075218 PMCID: PMC8786859 DOI: 10.1038/s41598-022-05361-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/10/2022] [Indexed: 01/09/2023] Open
Abstract
Bacteriophage endolysins degrade the bacterial cell wall and are therefore considered promising antimicrobial alternatives to fight pathogens resistant to conventional antibiotics. Gram-positive bacteria are usually considered easy targets to exogenously added endolysins, since their cell walls are not shielded by an outer membrane. However, in nutrient rich environments these bacteria can also tolerate endolysin attack if they keep an energized cytoplasmic membrane. Hence, we have hypothesized that the membrane depolarizing action of antimicrobial peptides (AMPs), another attractive class of alternative antibacterials, could be explored to overcome bacterial tolerance to endolysins and consequently improve their antibacterial potential. Accordingly, we show that under conditions supporting bacterial growth, Staphylococcus aureus becomes much more susceptible to the bacteriolytic action of endolysins if an AMP is also present. The bactericidal gain resulting from the AMP/endolysin combined action ranged from 1 to 3 logs for different S. aureus strains, which included drug-resistant clinical isolates. In presence of an AMP, as with a reduced content of cell wall teichoic acids, higher endolysin binding to cells is observed. However, our results indicate that this higher endolysin binding alone does not fully explain the higher susceptibility of S. aureus to lysis in these conditions. Other factors possibly contributing to the increased endolysin susceptibility in presence of an AMP are discussed.
Collapse
Affiliation(s)
- Ana Gouveia
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Daniela Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Helena Veiga
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Républica, 2780-157, Oeiras, Portugal
| | - Wilson Antunes
- Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Instituto Universitário Militar, Centro de Investigação da Academia Militar (CINAMIL), Av. Dr. Alfredo Bensaúde, 1849-012, Lisbon, Portugal
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da Républica, 2780-157, Oeiras, Portugal
| | - Carlos São-José
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
27
|
Designing a novel in-silico multi-epitope vaccine against penicillin-binding protein 2A in Staphylococcus aureus. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Singh G, Soni H, Tandon S, Kumar V, Babu G, Gupta V, Chaudhuri (Chattopadhyay) P. Identification of natural DHFR inhibitors in MRSA strains: Structure-based drug design study. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
29
|
Shahimi S, Elias A, Abd Mutalib S, Salami M, Fauzi F, Mohd Zaini NA, Abd Ghani M, Azuhairi A. Antibiotic resistance and determination of resistant genes among cockle (Anadara granosa) isolates of Vibrio alginolyticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44002-44013. [PMID: 33846919 DOI: 10.1007/s11356-021-13665-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
A total of 24 strains of Vibrio alginolyticus were isolated from cockles (Anadara granosa) and identified for VibA and gyrB genes. All V. alginolyticus isolates were then tested against nine different antibiotics. In this study, the highest percentage of antibiotic resistance was obtained against penicillin (37.50%), followed by ampicillin, vancomycin (12.50%) and erythromycin (8.33%). All of V. alginolyticus isolates were susceptible against streptomycin, kanamycin, tetracycline, chloramphenicol and sulfamethoxazole. Polymerase chain reaction (PCR) assay has confirmed the presence of four antibiotic resistance genes of penicillin (pbp2a), ampicillin (blaOXA), erythromycin (ermB) and vancomycin (vanB). Out of 24 V. alginolyticus isolates, 2 isolates possessed the tdh-related hemolysin (trh) (strains VA15 and VA16) and none for the thermostable direct hemolysin (tdh) gene. Both strains of the tdh-related hemolysin (trh) were susceptible to all antibiotics tested. The multiple antibiotic resistance (MAR) index ranging between 0.2 and 0.3 with 5 antibiograms (A1-A5) was observed. Combination of enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and antibiotic resistance indicated 18 genome types which showed genetic heterogeneity of those V. alginolyticus isolates. The results demonstrated the presence of V. alginolyticus strain found in cockles can be a potential risk to consumers and can contribute to the deterioration of human health in the study area. Thus, it is essential for local authority to provide the preventive measures in ensuring the cockles are safe for consumption.
Collapse
Affiliation(s)
- Safiyyah Shahimi
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
- Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, 72000, Kuala Pilah, Malaysia
| | - Aishah Elias
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
| | - Sahilah Abd Mutalib
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia.
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia.
| | - Mokry Salami
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
| | - Fazlina Fauzi
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
| | - Nurul Aqilah Mohd Zaini
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
| | - Ma'aruf Abd Ghani
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), UKM, 43600, Bangi, Malaysia
| | - Ahmad Azuhairi
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Malaysia
| |
Collapse
|
30
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
31
|
Fergestad ME, Stamsås GA, Morales Angeles D, Salehian Z, Wasteson Y, Kjos M. Penicillin-binding protein PBP2a provides variable levels of protection toward different β-lactams in Staphylococcus aureus RN4220. Microbiologyopen 2020; 9:e1057. [PMID: 32419377 PMCID: PMC7424258 DOI: 10.1002/mbo3.1057] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/31/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is resistant to most β-lactams due to the expression of an extra penicillin-binding protein, PBP2a, with low β-lactam affinity. It has long been known that heterologous expression of the PBP2a-encoding mecA gene in methicillin-sensitive S. aureus (MSSA) provides protection towards β-lactams, however, some reports suggest that the degree of protection can vary between different β-lactams. To test this more systematically, we introduced an IPTG-inducible mecA into the MSSA laboratory strain RN4220. We confirm, by growth assays as well as single-cell microfluidics time-lapse microscopy experiments, that PBP2a expression protects against β-lactams in S. aureus RN4220. By testing a panel of ten different β-lactams, we conclude that there is also a great variation in the level of protection conferred by PBP2a. Expression of PBP2a resulted in an only fourfold increase in minimum inhibitory concentration (MIC) for imipenem, while a 32-fold increase in MIC was observed for cefaclor and cephalexin. Interestingly, in our experimental setup, PBP2a confers the highest protection against cefaclor and cephalexin-two β-lactams that are known to have a high specific affinity toward the transpeptidase PBP3 of S. aureus. Notably, using a single-cell microfluidics setup we demonstrate a considerable phenotypic variation between cells upon β-lactam exposure and show that mecA-expressing S. aureus can survive β-lactam concentrations much higher than the minimal inhibitory concentrations. We discuss possible explanations and implications of these results including important aspects regarding treatment of infection.
Collapse
Affiliation(s)
- Marte Ekeland Fergestad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.,Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Gro Anita Stamsås
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Zhian Salehian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|