1
|
Xiao L, Pu Y, Cui Y, Chen C, Xiao Q, Wang Y, Wei Y, Feng M, Zhang T, Yang S, Zhou J, Ni Y, Zhang J, Liao H, Wu J, Zhang Y. Elongation factor Tu promotes the onset of periodontitis through mediating bacteria adhesion. NPJ Biofilms Microbiomes 2025; 11:47. [PMID: 40113820 PMCID: PMC11926244 DOI: 10.1038/s41522-025-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
Periodontitis, a leading cause of adult tooth loss and linked to various systemic diseases, is promoted by subgingival plaque biofilms, with Streptococci as early colonizers responsible for surface adhesion. Current studies of Streptococci adhesion have focused on bacteria surface adhesins with acquired protein membranes on the tooth surface, yet no critical proteins with implications for the overall early adhesion of subgingival plaque have been reported. Here, we identified that the "Barrel-like adhesion domain" of streptococcal EF-Tu facilitates cell-surface attachment, promotes biofilm formation, and contributes to the development of periodontitis. In the adherent state, EF-Tu is transported from the cytoplasm to the cell surface through membrane vesicles. Furthermore, we first found that simeprevir, an FDA-approved drug, binds to the "Barrel-like adhesion domain" of EF-Tu and effectively inhibits the protein's surface adhesion and secretory pathways. Simeprevir showed the ability to inhibit dental plaque formation and provided prevention and treatments for periodontitis.
Collapse
Affiliation(s)
- Leyi Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yingying Pu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
- Medical Research Institute School of Medicine Wuhan University, 430071, Wuhan, China
| | - Yu Cui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Chen Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Qi Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yulan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yan Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Mengge Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Tiange Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Shanyi Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Jingxuan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yueqi Ni
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Jinglun Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Hebin Liao
- Medical Research Institute School of Medicine Wuhan University, 430071, Wuhan, China
| | - Jingwen Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China
| | - Yufeng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan University, 430079, Wuhan, China.
- Medical Research Institute School of Medicine Wuhan University, 430071, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
2
|
Stocke KS, Pandey SD, Jin S, Perpich JD, Yakoumatos L, Kosaki H, Wilkey DW, Fitzsimonds ZR, Vashishta A, Snider I, Sriwastva MK, Li H, Jin JZ, Miller DP, Merchant ML, Bagaitkar J, Uriarte SM, Potempa J, Lamont RJ. Tyrosine phosphorylation coupling of one carbon metabolism and virulence in an endogenous pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642667. [PMID: 40161850 PMCID: PMC11952473 DOI: 10.1101/2025.03.11.642667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Endogenous pathogens can constrain virulence to ensure survival in the host. Pathogenic state can be controlled by metabolic responses to the prevailing microenvironment; however, the coupling and effector mechanisms are not well understood. Flux through the One Carbon Metabolism (OCM) pathway can modulate virulence of the oral pathobiont Porphyromonas gingivalis , and here we show that this is controlled by tyrosine phosphorylation-dependent differential partitioning of gingipain proteases. The OCM essential precursor pABA inhibits the low molecular weight tyrosine phosphatase Ltp1, and consequently relieves inhibition of its cognate kinase, Ptk1. We found that in the absence of pABA, reduced Ptk1 kinase activity blocks extracellular release of gingipains. Surface retention of gingipains confers resistance to neutrophil mobilization and killing, and virulence in animal models of disease is elevated. Reciprocally, Ptk1 and gingipains are required for maximal flux through OCM, and Ptk1 can phosphorylate the OCM pathway enzymes GlyA and GcvT. Further, ALP, an alkaline phosphatase involved in synthesis of DHPPP, which combines with pABA to make DHP, is phosphorylated and activated by Ptk1. We propose, therefore, that although the primary function of Ptk1 is to maintain OCM balance, it mechanistically couples metabolism with tunable pathogenic potential through directing the location of proteolytic virulence factors.
Collapse
|
3
|
Zhang W, Yin Y, Jiang Y, Yang Y, Wang W, Wang X, Ge Y, Liu B, Yao L. Relationship between vaginal and oral microbiome in patients of human papillomavirus (HPV) infection and cervical cancer. J Transl Med 2024; 22:396. [PMID: 38685022 PMCID: PMC11059664 DOI: 10.1186/s12967-024-05124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The aim of this study was to assess the microbial variations and biomarkers in the vaginal and oral environments of patients with human papillomavirus (HPV) and cervical cancer (CC) and to develop novel prediction models. MATERIALS AND METHODS This study included 164 samples collected from both the vaginal tract and oral subgingival plaque of 82 women. The participants were divided into four distinct groups based on their vaginal and oral samples: the control group (Z/KZ, n = 22), abortion group (AB/KAB, n = 17), HPV-infected group (HP/KHP, n = 21), and cervical cancer group (CC/KCC, n = 22). Microbiota analysis was conducted using full-length 16S rDNA gene sequencing with the PacBio platform. RESULTS The vaginal bacterial community in the Z and AB groups exhibited a relatively simple structure predominantly dominated by Lactobacillus. However, CC group shows high abundances of anaerobic bacteria and alpha diversity. Biomarkers such as Bacteroides, Mycoplasma, Bacillus, Dialister, Porphyromonas, Anaerococcus, and Prevotella were identified as indicators of CC. Correlations were established between elevated blood C-reactive protein (CRP) levels and local/systemic inflammation, pregnancy, childbirth, and abortion, which contribute to unevenness in the vaginal microenvironment. The altered microbial diversity in the CC group was confirmed by amino acid metabolism. Oral microbial diversity exhibited an inverse pattern to that of the vaginal microbiome, indicating a unique relationship. The microbial diversity of the KCC group was significantly lower than that of the KZ group, indicating a link between oral health and cancer development. Several microbes, including Fusobacterium, Campylobacter, Capnocytophaga, Veillonella, Streptococcus, Lachnoanaerobaculum, Propionibacterium, Prevotella, Lactobacillus, and Neisseria, were identified as CC biomarkers. Moreover, periodontal pathogens were associated with blood CRP levels and oral hygiene conditions. Elevated oral microbial amino acid metabolism in the CC group was closely linked to the presence of pathogens. Positive correlations indicated a synergistic relationship between vaginal and oral bacteria. CONCLUSION HPV infection and CC impact both the vaginal and oral microenvironments, affecting systemic metabolism and the synergy between bacteria. This suggests that the use of oral flora markers is a potential screening tool for the diagnosis of CC.
Collapse
Affiliation(s)
- Wei Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Yanfei Yin
- Healthy Examination & Management Center of Lanzhou University Second Hospital, Lanzhou, China
| | - Yisha Jiang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yangyang Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Wentao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Xiaoya Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yan Ge
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gynecology, Lanzhou University First Hospital, Lanzhou, China
| | - Bin Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, China.
| | - Lihe Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.
- Department of Neurology, Lanzhou University First Hospital, Lanzhou, China.
| |
Collapse
|
4
|
Liu C, Chen Y, Bai H, Niu Y, Wu Y. Characterization and application of in situ curcumin/ZNP hydrogels for periodontitis treatment. BMC Oral Health 2024; 24:395. [PMID: 38549147 PMCID: PMC10976734 DOI: 10.1186/s12903-024-04054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease that occurs in tooth-supporting tissues. Controlling inflammation and alleviating periodontal tissue destruction are key factors in periodontal therapy. This study aimed to develop an in situ curcumin/zinc oxide (Cur/ZNP) hydrogel and investigate its characteristics and effectiveness in the treatment of periodontitis. METHODS Antibacterial activity and cytotoxicity assays were performed in vitro. To evaluate the effect of the in situ Cur/ZNP hydrogel on periodontitis in vivo, an experimental periodontitis model was established in Sprague‒Dawley rats via silk ligature and inoculation of the maxillary first molar with Porphyromonas gingivalis. After one month of in situ treatment with the hydrogel, we examined the transcriptional responses of the gingiva to the Cur/ZNP hydrogel treatment and detected the alveolar bone level as well as the expression of osteocalcin (OCN) and osteoprotegerin (OPG) in the periodontal tissues of the rats. RESULTS Cur/ZNPs had synergistic inhibitory effects on P. gingivalis and good biocompatibility. RNA sequencing of the gingiva showed that immune effector process-related genes were significantly induced by experimental periodontitis. Carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1), which is involved in the negative regulation of bone resorption, was differentially regulated by the Cur/ZNP hydrogel but not by the Cur hydrogel or ZNP hydrogel. The Cur/ZNP hydrogel also had a stronger protective effect on alveolar bone resorption than both the Cur hydrogel and the ZNP hydrogel. CONCLUSION The Cur/ZNP hydrogel effectively inhibited periodontal pathogenic bacteria and alleviated alveolar bone destruction while exhibiting favorable biocompatibility.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Ying Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Huimin Bai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Yulong Niu
- College of Life Science, Sichuan University, No.24, 1st South Section, Yihuan Road, Chengdu, 610065, Sichuan, China.
| | - Yafei Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Periodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Renmin South Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Porphyromonas gingivalis Tyrosine Kinase Is a Fitness Determinant in Polymicrobial Infections. Infect Immun 2022; 90:e0017022. [PMID: 35575504 PMCID: PMC9202411 DOI: 10.1128/iai.00170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many pathogenic microbial ecosystems are polymicrobial, and community function can be shaped by interbacterial interactions. Little is known, however, regarding the genetic determinants required for fitness in heterotypic community environments. In periodontal diseases, Porphyromonas gingivalis is a primary pathogen, but only within polymicrobial communities. Here, we used a transposon sequencing (Tn-Seq) library of P. gingivalis to screen for genes that influence fitness of the organism in a coinfection murine abscess model with the oral partner species Streptococcus gordonii and Fusobacterium nucleatum. Genes impacting fitness with either organism were involved in diverse processes, including metabolism and energy production, along with cell wall and membrane biogenesis. Despite the overall similarity of function, the majority of identified genes were specific to the partner species, indicating that synergistic mechanisms of P. gingivalis vary to a large extent according to community composition. Only two genes were identified as essential for P. gingivalis fitness in abscess development with both S. gordonii and F. nucleatum: ptk1, encoding a tyrosine kinase, and inlJ, encoding an internalin family surface protein. Ptk1, but not InlJ, is required for community development with S. gordonii, and we found that the action of this kinase is similarly required for P. gingivalis to accumulate in a community with F. nucleatum. A limited number of P. gingivalis genes are therefore required for species-independent synergy, and the Ptk1 tyrosine kinase network may integrate and coordinate input from multiple organisms.
Collapse
|
6
|
Wu L, Shi R, Bai H, Wang X, Wei J, Liu C, Wu Y. Porphyromonas gingivalis Induces Increases in Branched-Chain Amino Acid Levels and Exacerbates Liver Injury Through livh/livk. Front Cell Infect Microbiol 2022; 12:776996. [PMID: 35360107 PMCID: PMC8961321 DOI: 10.3389/fcimb.2022.776996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis, a keystone periodontal pathogen, has emerged as a risk factor for systemic chronic diseases, including non-alcoholic fatty liver disease (NAFLD). To clarify the mechanism by which this pathogen induces such diseases, we simultaneously analyzed the transcriptome of intracellular P. gingivalis and infected host cells via dual RNA sequencing. Pathway analysis was also performed to determine the differentially expressed genes in the infected cells. Further, the infection-induced notable expression of P. gingivalis livk and livh genes, which participate in branched-chain amino acid (BCAA) transfer, was also analyzed. Furthermore, given that the results of recent studies have associated NAFLD progression with elevated serum BCAA levels, which reportedly, are upregulated by P. gingivalis, we hypothesized that this pathogen may induce increases in serum BCAA levels and exacerbate liver injury via livh/livk. To verify this hypothesis, we constructed P. gingivalis livh/livk-deficient strains (Δlivk, Δlivh) and established a high-fat diet (HFD)-fed murine model infected with P. gingivalis. Thereafter, the kinetic growth and exopolysaccharide (EPS) production rates as well as the invasion efficiency and in vivo colonization of the mutant strains were compared with those of the parental strain. The serum BCAA and fasting glucose levels of the mice infected with either the wild-type or mutant strains, as well as their liver function were also further investigated. It was observed that P. gingivalis infection enhanced serum BCAA levels and aggravated liver injury in the HFD-fed mice. Additionally, livh deletion had no effect on bacterial growth, EPS production, invasion efficiency, and in vivo colonization, whereas the Δlivk strain showed a slight decrease in invasion efficiency and in vivo colonization. More importantly, however, both the Δlivk and Δlivh strains showed impaired ability to upregulate serum BCAA levels or exacerbate liver injury in HFD-fed mice. Overall, these results suggested that P. gingivalis possibly aggravates NAFLD progression in HFD-fed mice by increasing serum BCAA levels, and this effect showed dependency on the bacterial BCAA transport system.
Collapse
Affiliation(s)
- Leng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
| | - Xingtong Wang
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jian Wei
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu, ; Yafei Wu,
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Department of Periodontics, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu, ; Yafei Wu,
| |
Collapse
|
7
|
Lamont RJ, Miller DP. Tyrosine Kinases and Phosphatases: Enablers of the Porphyromonas gingivalis Lifestyle. FRONTIERS IN ORAL HEALTH 2022; 3:835586. [PMID: 35224543 PMCID: PMC8863745 DOI: 10.3389/froh.2022.835586] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Tyrosine phosphorylation modifies the functionality of bacterial proteins and forms the basis of a versatile and tunable signal transduction system. The integrated action of tyrosine kinases and phosphatases controls bacterial processes important for metabolism and virulence. Porphyromonas gingivalis, a keystone pathogen in periodontal disease, possesses an extensive phosphotyrosine signaling network. The phosphorylation reaction is catalyzed by a bacterial tyrosine (BY) kinase, Ptk1, and a Ubiquitous bacterial Kinase UbK1. Dephosphorylation is mediated by a low-molecular-weight phosphatase, Ltp1 and a polymerase and histidinol phosphatase, Php1. Phosphotyrosine signaling controls exopolysaccharide production, gingipain activity, oxidative stress responses and synergistic community development with Streptococcus gordonii. Additionally, Ltp1 is secreted extracellularly and can be delivered inside gingival epithelial cells where it can override host cell signaling and readjust cellular physiology. The landscape of coordinated tyrosine kinase and phosphatase activity thus underlies the adaptive responses of P. gingivalis to both the polymicrobial environment of bacterial communities and the intracellular environment of gingival epithelial cells.
Collapse
Affiliation(s)
- Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
- *Correspondence: Richard J. Lamont
| | - Daniel P. Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University Richmond, Richmond, VA, United States
| |
Collapse
|
8
|
Ren L, Shen D, Liu C, Ding Y. Protein Tyrosine and Serine/Threonine Phosphorylation in Oral Bacterial Dysbiosis and Bacteria-Host Interaction. Front Cell Infect Microbiol 2022; 11:814659. [PMID: 35087767 PMCID: PMC8787120 DOI: 10.3389/fcimb.2021.814659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/13/2021] [Indexed: 02/05/2023] Open
Abstract
The human oral cavity harbors approximately 1,000 microbial species, and dysbiosis of the microflora and imbalanced microbiota-host interactions drive many oral diseases, such as dental caries and periodontal disease. Oral microbiota homeostasis is critical for systemic health. Over the last two decades, bacterial protein phosphorylation systems have been extensively studied, providing mounting evidence of the pivotal role of tyrosine and serine/threonine phosphorylation in oral bacterial dysbiosis and bacteria-host interactions. Ongoing investigations aim to discover novel kinases and phosphatases and to understand the mechanism by which these phosphorylation events regulate the pathogenicity of oral bacteria. Here, we summarize the structures of bacterial tyrosine and serine/threonine kinases and phosphatases and discuss the roles of tyrosine and serine/threonine phosphorylation systems in Porphyromonas gingivalis and Streptococcus mutans, emphasizing their involvement in bacterial metabolism and virulence, community development, and bacteria-host interactions.
Collapse
Affiliation(s)
- Liang Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Daonan Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Nowakowska Z, Madej M, Grad S, Wang T, Hackett M, Miller DP, Lamont RJ, Potempa J. Phosphorylation of major Porphyromonas gingivalis virulence factors is crucial for their processing and secretion. Mol Oral Microbiol 2021; 36:316-326. [PMID: 34569151 PMCID: PMC10148667 DOI: 10.1111/omi.12354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
The main etiological agent of periodontitis is the anaerobic bacterium Porphyromonas gingivalis. Virulence of this pathogen is controlled by various mechanisms and executed by major virulence factors including the gingipain proteases, peptidylarginine deiminase (PPAD), and RagB, an outer membrane macromolecular transport component. Although the structures and functions of these proteins are well characterized, little is known about their posttranslational maturation. Here, we determined the phosphoproteome of P. gingivalis in which phosphorylated tyrosine residues constitute over 80% of all phosphoresidues. Multiple phosphotyrosines were found in gingipains, PPAD, and RagB. Although mutation of phosphorylated residues in PPAD and RagB had no effect on secretion or activity, site-directed mutagenesis showed that phosphorylation in hemagglutinin/adhesin domains of RgpA and Kgp, and in the catalytic domain of RgpB, had a strong influence on secretion, processing, and enzymatic activity. Moreover, preventing phosphorylation of one gingipain influenced the others, suggesting multiple phosphorylation-dependent pathways of gingipain maturation in P. gingivalis. Various candidate kinases including Ptk1 BY kinase and ubiquitous bacterial kinase 1 (UbK1) may be involved, but their contribution to gingipain processing and activation remains to be confirmed.
Collapse
Affiliation(s)
- Zuzanna Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Grad
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tiansong Wang
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Murray Hackett
- Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
| | - Daniel P. Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Perpich JD, Yakoumatos L, Johns P, Stocke KS, Fitzsimonds ZR, Wilkey DW, Merchant ML, Miller DP, Lamont RJ. Identification and characterization of a UbK family kinase in Porphyromonas gingivalis that phosphorylates the RprY response regulator. Mol Oral Microbiol 2021; 36:258-266. [PMID: 34241965 DOI: 10.1111/omi.12347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023]
Abstract
Phosphorylation of proteins is a key component of bacterial signaling systems that can control important functions such as community development and virulence. We report here the identification of a Ubiquitous bacterial Kinase (UbK) family member, designated UbK1, in the anaerobic periodontal pathogen, Porphyromonas gingivalis. UbK1 contains conserved SPT/S, Hanks-type HxDxYR, EW, and Walker A motifs, and a mutation analysis established the Walker A domain and the Hanks-type domain as required for both autophosphorylation and transphosphorylation. UbK1 autophosphorylates on the proximal serine in the SPT/S domain as well as the tyrosine residue within the HxDxYR domain and the tyrosine residue immediately proximal, indicating both serine/threonine and tyrosine specificity. The orphan two-component system response regulator (RR) RprY was phosphorylated on Y41 in the receiver domain by UbK1. The ubk1 gene is essential in P. gingivalis; however, overexpression of UbK1 showed that UbK1-mediated phosphorylation of RprY functions predominantly to augment its properties as a transcriptional enhancer. These results establish that P. gingivalis possesses an active UbK kinase in addition to a previously described Bacterial Tyrosine family kinase. The RR RprY is identified as the first transcriptional regulator controlled by a UbK enzyme.
Collapse
Affiliation(s)
- John D Perpich
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA.,Department of Pharmaceutical Sciences, Sullivan University College of Pharmacy and Health Sciences, Louisville, Kentucky, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Parker Johns
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Kendall S Stocke
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Daniel W Wilkey
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Michael L Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
11
|
Kim HM, Ranjit DK, Walker AR, Getachew H, Progulske-Fox A, Davey ME. A Novel Regulation of K-antigen Capsule Synthesis in Porphyromonas gingivalis Is Driven by the Response Regulator PG0720-Directed Antisense RNA. FRONTIERS IN ORAL HEALTH 2021; 2:701659. [PMID: 35048039 PMCID: PMC8757827 DOI: 10.3389/froh.2021.701659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
The periodontal pathogen Porphyromonas gingivalis strain W83 displays at least three different surface glycans, specifically two types of lipopolysaccharides (O-LPS and A-LPS) and K-antigen capsule. Despite the importance of K-antigen capsule to the virulence of P. gingivalis, little is known as to how expression of genes involved in the synthesis of this surface glycan is regulated. The genes required for K-antigen capsule synthesis are located in a locus that encodes a number of transcripts, including an operon (PG0104 to PG0121, generating ~19.4-kb transcript) which contains a non-coding 77-bp inverted repeat (77 bpIR) region near the 5'-end. Previously, we identified a 550-nucleotide antisense RNA molecule (designated asSuGR for antisense Surface Glycan Regulator) encoded within the 77-bpIR element that influences the synthesis of surface glycans. In this study, we demonstrate that the DNA-binding response regulator PG0720 can bind the promoter region of asSuGR and activate expression of asSuGR, indicating that PG0720 may indirectly influence transcript levels of the K-antigen capsule operon expressed from the sense strand. The data show that deletion of the PG0720 gene confers a defect in the presentation of surface polysaccharides compared with the parent strain and quantitative RT-PCR (qPCR) analysis determined that the overall expression of genes involved in K-antigen capsule synthesis were down-regulated in the PG0720 mutant. Furthermore, the defects of the PG0720 deletion mutant were restored by complementation. Importantly, the PG0720 deletion mutant showed reduced virulence. Altogether, our data show that the response regulator PG0720 regulates expression of asSuGR, a trans-acting antisense RNA molecule involved in modulating the production of surface polysaccharides in P. gingivalis strain W83. The data provide further evidence that surface glycans are key virulence determinants and significantly advances our understanding of the molecular mechanisms controlling the synthesis of P. gingivalis K-antigen capsule, a key virulence determinant.
Collapse
Affiliation(s)
- Hey-Min Kim
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Dev K. Ranjit
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Heran Getachew
- Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Mary E. Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
A bacterial tyrosine phosphatase modulates cell proliferation through targeting RGCC. PLoS Pathog 2021; 17:e1009598. [PMID: 34015051 PMCID: PMC8172045 DOI: 10.1371/journal.ppat.1009598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/02/2021] [Accepted: 04/30/2021] [Indexed: 01/22/2023] Open
Abstract
Tyrosine phosphatases are often weaponized by bacteria colonizing mucosal barriers to manipulate host cell signal transduction pathways. Porphyromonas gingivalis is a periodontal pathogen and emerging oncopathogen which interferes with gingival epithelial cell proliferation and migration, and induces a partial epithelial mesenchymal transition. P. gingivalis produces two tyrosine phosphatases, and we show here that the low molecular weight tyrosine phosphatase, Ltp1, is secreted within gingival epithelial cells and translocates to the nucleus. An ltp1 mutant of P. gingivalis showed a diminished ability to induce epithelial cell migration and proliferation. Ltp1 was also required for the transcriptional upregulation of Regulator of Growth and Cell Cycle (RGCC), one of the most differentially expressed genes in epithelial cells resulting from P. gingivalis infection. A phosphoarray and siRNA showed that P. gingivalis controlled RGCC expression through Akt, which was activated by phosphorylation on S473. Akt activation is opposed by PTEN, and P. gingivalis decreased the amount of PTEN in epithelial cells. Ectopically expressed Ltp1 bound to PTEN, and reduced phosphorylation of PTEN at Y336 which controls proteasomal degradation. Ltp-1 induced loss of PTEN stability was prevented by chemical inhibition of the proteasome. Knockdown of RGCC suppressed upregulation of Zeb2 and mesenchymal markers by P. gingivalis. RGCC inhibition was also accompanied by a reduction in production of the proinflammatory cytokine IL-6 in response to P. gingivalis. Elevated IL-6 levels can contribute to periodontal destruction, and the ltp1 mutant of P. gingivalis incited less bone loss compared to the parental strain in a murine model of periodontal disease. These results show that P. gingivalis can deliver Ltp1 within gingival epithelial cells, and establish PTEN as the target for Ltp1 phosphatase activity. Disruption of the Akt1/RGCC signaling axis by Ltp1 facilitates P. gingivalis-induced increases in epithelial cell migration, proliferation, EMT and inflammatory cytokine production. Bacteria colonizing the oral cavity can induce inflammatory destruction of the periodontal tissues, and are increasingly associated with oral squamous cell carcinoma. P. gingivalis, a major periodontal pathogen, can subvert epithelial pathways that control important physiological processes relating to innate immunity and cell fate; however, little is known about the effector molecules. Here we show that P. gingivalis can deliver a tyrosine phosphatase, Ltp1, within epithelial cells, and Ltp1 phosphatase activity destabilizes PTEN, a negative regulator of Akt1 signaling. The production of RGCC is thus increased and this leads to increased epithelial cell migration, proliferation, a partial mesenchymal phenotype and inflammatory cytokine production. Ltp1 phosphatase activity thus provides a mechanistic basis for a number of P. gingivalis properties that contribute to disease. Indeed, an Ltp1-deficient mutant was less pathogenic in a murine model of periodontitis. These results contribute to deciphering the pathophysiological events that underlie oral bacterial diseases that initiate at mucosal barriers.
Collapse
|
13
|
The Roles of FOXO1 in Periodontal Homeostasis and Disease. J Immunol Res 2021; 2021:5557095. [PMID: 33860060 PMCID: PMC8026307 DOI: 10.1155/2021/5557095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/07/2021] [Accepted: 03/13/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is an oral chronic inflammatory disease that is initiated by periodontal microbial communities and requires disruption of the homeostatic responses. The prevalence of periodontal disease increases with age; more than 70% of adults 65 years and older have periodontal disease. A pathogenic microbial community is required for initiating periodontal disease. Dysbiotic immune-inflammatory response and bone remodeling are characteristics of periodontitis. The transcription factor forkhead box protein O1 (FOXO1) is a key regulator of a number of cellular processes, including cell survival and differentiation, immune status, reactive oxygen species (ROS) scavenging, and apoptosis. Although accumulating evidence indicates that FOXO1 activity can be induced by periodontal pathogens, the roles of FOXO1 in periodontal homeostasis and disease have not been well documented. The present review summarizes how the FOXO1 signaling axis can regulate periodontal bacteria-epithelial interactions, immune-inflammatory response, bone remodeling, and wound healing.
Collapse
|
14
|
Hajishengallis G, Lamont RJ. Polymicrobial communities in periodontal disease: Their quasi-organismal nature and dialogue with the host. Periodontol 2000 2021; 86:210-230. [PMID: 33690950 DOI: 10.1111/prd.12371] [Citation(s) in RCA: 151] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/11/2022]
Abstract
In health, indigenous polymicrobial communities at mucosal surfaces maintain an ecological balance via both inter-microbial and host-microbial interactions that promote their own and the host's fitness, while preventing invasion by exogenous pathogens. However, genetic and acquired destabilizing factors (including immune deficiencies, immunoregulatory defects, smoking, diet, obesity, diabetes and other systemic diseases, and aging) may disrupt this homeostatic balance, leading to selective outgrowth of species with the potential for destructive inflammation. This process, known as dysbiosis, underlies the development of periodontitis in susceptible hosts. The pathogenic process is not linear but involves a positive-feedback loop between dysbiosis and the host inflammatory response. The dysbiotic community is essentially a quasi-organismal entity, where constituent organisms communicate via sophisticated physical and chemical signals and display functional specialization (eg, accessory pathogens, keystone pathogens, pathobionts), which enables polymicrobial synergy and dictates the community's pathogenic potential or nososymbiocity. In this review, we discuss early and recent studies in support of the polymicrobial synergy and dysbiosis model of periodontal disease pathogenesis. According to this concept, disease is not caused by individual "causative pathogens" but rather by reciprocally reinforced interactions between physically and metabolically integrated polymicrobial communities and a dysregulated host inflammatory response.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Shen D, Perpich JD, Stocke KS, Yakoumatos L, Fitzsimonds ZR, Liu C, Miller DP, Lamont RJ. Role of the RprY response regulator in P. gingivalis community development and virulence. Mol Oral Microbiol 2020; 35:231-239. [PMID: 32940001 DOI: 10.1111/omi.12311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022]
Abstract
Porphyromonas gingivalis expresses a limited number of two-component systems, including RprY, an orphan response regulator which lacks a cognate sensor kinase. In this study, we examined cross-phosphorylation of RprY on tyrosine residues and its importance for RprY function. We show that RprY reacts with phosphotyrosine antibodies, and found that the tyrosine (Y) residue at position 41 is predicted to be solvent accessible. Loss of RprY increased the level of heterotypic community development with Streptococcus gordonii, and the community-suppressive function of RprY required Y41. Expression of the Mfa1 fimbrial adhesin was increased in the rprY mutant and in the mutant complemented with rprY containing a Y41F mutation. In a microscale thermophoresis assay, recombinant RprY protein bound to the promoter region of mfa1, and binding was diminished with RprY containing the Y41F substitution. RprY was required for virulence of P. gingivalis in a murine model of alveolar bone loss. Transcriptional profiling indicated that RprY can control the expression of genes encoding the type IX secretion system (T9SS) machinery and virulence factors secreted through the T9SS, including the gingipain proteases and peptidylarginine deiminase (PPAD). Collectively, these results establish the RprY response regulator as a component of the tyrosine phosphorylation regulon in P. gingivalis, which can independently control heterotypic community development through the Mfa1 fimbriae and virulence through the T9SS.
Collapse
Affiliation(s)
- Daonan Shen
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - John D Perpich
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Kendall S Stocke
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Lan Yakoumatos
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Chengcheng Liu
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| |
Collapse
|
16
|
Schwechheimer C, Hebert K, Tripathi S, Singh PK, Floyd KA, Brown ER, Porcella ME, Osorio J, Kiblen JTM, Pagliai FA, Drescher K, Rubin SM, Yildiz FH. A tyrosine phosphoregulatory system controls exopolysaccharide biosynthesis and biofilm formation in Vibrio cholerae. PLoS Pathog 2020; 16:e1008745. [PMID: 32841296 PMCID: PMC7485978 DOI: 10.1371/journal.ppat.1008745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/11/2020] [Accepted: 06/25/2020] [Indexed: 11/19/2022] Open
Abstract
Production of an extracellular matrix is essential for biofilm formation, as this matrix both secures and protects the cells it encases. Mechanisms underlying production and assembly of matrices are poorly understood. Vibrio cholerae, relies heavily on biofilm formation for survival, infectivity, and transmission. Biofilm formation requires Vibrio polysaccharide (VPS), which is produced by vps gene-products, yet the function of these products remains unknown. Here, we demonstrate that the vps gene-products vpsO and vpsU encode respectively for a tyrosine kinase and a cognate tyrosine phosphatase. Collectively, VpsO and VpsU act as a tyrosine phosphoregulatory system to modulate VPS production. We present structures of VpsU and the kinase domain of VpsO, and we report observed autocatalytic tyrosine phosphorylation of the VpsO C-terminal tail. The position and amount of tyrosine phosphorylation in the VpsO C-terminal tail represses VPS production and biofilm formation through a mechanism involving the modulation of VpsO oligomerization. We found that tyrosine phosphorylation enhances stability of VpsO. Regulation of VpsO phosphorylation by the phosphatase VpsU is vital for maintaining native VPS levels. This study provides new insights into the mechanism and regulation of VPS production and establishes general principles of biofilm matrix production and its inhibition. The biofilm life style protects microbes from a plethora of harm, to increase their survival and pathogenicity. Exopolysaccharides are the essential glue of the microbial biofilm matrix, and loss of this glue negates biofilm formation and renders cells more sensitive to antimicrobial agents. Here, we show that a tyrosine phosphoregulatory system controls the biosynthesis and abundance of Vibrio exopolysaccharide (VPS), an essential biofilm component of the pathogen Vibrio cholerae. The phosphorylation state of the tyrosine autokinase VpsO, mediated by the tyrosine phosphatase VpsU, directly modulates VPS production and also affects the kinase’s own degradation, to regulate VPS production. This study provides new insights into the mechanisms of V. cholerae biofilm formation and consequently ways to combat pathogens more broadly, due to conservation of tyrosine phosphoregulatory systems among exopolysaccharide producing bacteria.
Collapse
Affiliation(s)
- Carmen Schwechheimer
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Kassidy Hebert
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Praveen K. Singh
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kyle A. Floyd
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Elise R. Brown
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Monique E. Porcella
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Jacqueline Osorio
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Joseph T. M. Kiblen
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Fernando A. Pagliai
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Seth M. Rubin
- Department of Chemistry and Biochemistry, University of California—Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (SMR), (FHY)
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California—Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (SMR), (FHY)
| |
Collapse
|
17
|
Kalimuthu S, Cheung BP, Yau JY, Shanmugam K, Solomon AP, Neelakantan P. A Novel Small Molecule, 1,3-di-m-tolyl-urea, Inhibits and Disrupts Multispecies Oral Biofilms. Microorganisms 2020; 8:E1261. [PMID: 32825310 PMCID: PMC7570320 DOI: 10.3390/microorganisms8091261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
An imbalance of homeostasis between the microbial communities and the host system leads to dysbiosis in oral micro flora. DMTU (1,3-di-m-tolyl-urea) is a biocompatible compound that was shown to inhibit Streptococcus mutans biofilm by inhibiting its communication system (quorum sensing). Here, we hypothesized that DMTU is able to inhibit multispecies biofilms. We developed a multispecies oral biofilm model, comprising an early colonizer Streptococcus gordonii, a bridge colonizer Fusobacterium nucleatum, and late colonizers Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. We performed comprehensive investigations to demonstrate the effect of DMTU on planktonic cells and biofilms. Our findings showed that DMTU inhibits and disrupts multispecies biofilms without bactericidal effects. Mechanistic studies revealed a significant down regulation of biofilm and virulence-related genes in P. gingivalis. Taken together, our study highlights the potential of DMTU to inhibit polymicrobial biofilm communities and their virulence.
Collapse
Affiliation(s)
- Shanthini Kalimuthu
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Becky P.K. Cheung
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| | - Joyce Y.Y. Yau
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Center of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, India;
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong; (S.K.); (B.P.K.C.); (J.Y.Y.Y.)
| |
Collapse
|
18
|
Teles FRF, Alawi F, Castilho RM, Wang Y. Association or Causation? Exploring the Oral Microbiome and Cancer Links. J Dent Res 2020; 99:1411-1424. [PMID: 32811287 DOI: 10.1177/0022034520945242] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Several epidemiological investigations have found associations between poor oral health and different types of cancer, including colorectal, lung, pancreatic, and oral malignancies. The oral health parameters underlying these relationships include deficient oral hygiene, gingival bleeding, and bone and tooth loss. These parameters are related to periodontal diseases, which are directly and indirectly mediated by oral bacteria. Given the increased accessibility of microbial sequencing platforms, many recent studies have investigated the link between the oral microbiome and these cancers. Overall, it seems that oral dysbiotic states can contribute to tumorigenesis in the oral cavity as well as in distant body sites. Further, it appears that certain oral bacterial species can contribute to carcinogenesis, in particular, Fusobacterium nucleatum and Porphyromonas gingivalis, based on results from epidemiological as well as mechanistic studies. Yet, the strength of the findings from these investigations is hampered by the heterogeneity of the methods used to measure oral diseases, the treatment of confounding factors, the study design, the platforms employed for microbial analysis, and types of samples analyzed. Despite these limitations, there is an overall indication that the presence of oral dysbiosis that leads to oral diseases may directly and/or indirectly contribute to carcinogenesis. Proper methodological standardized approaches should be implemented in future epidemiological studies as well as in the mechanistic investigations carried out to explore these results.
Collapse
Affiliation(s)
- F R F Teles
- Department of Basic and Translational Sciences, School Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Phildelphia, PA, USA
| | - F Alawi
- Department of Basic and Translational Sciences, School Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R M Castilho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Y Wang
- Department of Periodontics, School Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Chopra A, Bhat SG, Sivaraman K. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J Oral Microbiol 2020; 12:1801090. [PMID: 32944155 PMCID: PMC7482874 DOI: 10.1080/20002297.2020.1801090] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022] Open
Abstract
is an obligate, asaccharolytic, gram-negative bacteria commonly associated with increased periodontal and systemic inflammation. P. gingivalis is known to survive and persist within the host tissues as it modulates the entire ecosystem by either engineering its environment or modifying the host's immune response. It interacts with various host receptors and alters signaling pathways of inflammation, complement system, cell cycle, and apoptosis. P. gingivalis is even known to induce suicidal cell death of the host and other microbes in its vicinity with the emergence of pathobiont species. Recently, new molecular and immunological mechanisms and virulence factors of P. gingivalis that increase its chance of survival and immune evasion within the host have been discovered. Thus, the present paper aims to provide a consolidated update on the new intricate and unique molecular mechanisms and virulence factors of P. gingivalis associated with its survival, persistence, and immune evasion within the host.
Collapse
Affiliation(s)
- Aditi Chopra
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya G. Bhat
- College of Dentistry, Imam Abdul Rahman Faisal University, Dammam, KSA
| | - Karthik Sivaraman
- Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
20
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
21
|
Hutcherson JA, Gogenini H, Lamont GJ, Miller DP, Nowakowska Z, Lasica AM, Liu C, Potempa J, Lamont RJ, Yoder-Himes D, Scott DA. Porphyromonas gingivalis genes conferring fitness in a tobacco-rich environment. Mol Oral Microbiol 2020; 35:10-18. [PMID: 31742917 PMCID: PMC8202090 DOI: 10.1111/omi.12273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023]
Abstract
Smokers are more likely than non-smokers to harbour Porphyromonas gingivalis, they are more susceptible to destructive periodontal disease and smokers may, ultimately, benefit from tobacco-specific preventive and treatment strategies. A Mariner transposon insertion library for P. gingivalis ATCC 33277 was exploited to define 256 genes as essential for P. gingivalis survival in a tobacco-rich environment. Genes whose products play roles in protein transport and catabolism, nicotinamide processing, protection against oxidative stress, drug resistance, and transcriptional regulation have all been identified as essential for CSE survival. Many of these tobacco-essential genes are also requisite for epithelial colonization and abscess formation, suggestive of a core stress-related P. gingivalis genome. Single-gene deletions in several of the TnSeq-implicated genes led to significantly reduced P. gingivalis fitness upon competition with the parent strain, under conditions of cigarette smoke extract-induced stress (1,000 ng/ml nicotine equivalents). This study identifies, for the first time, a subset of P. gingivalis genes required for surviving the plethora of insults present in cigarette smoke. Such conditionally essential genes may delineate bacterial persistence strategies and represent novel therapeutic foci for the prevention of P. gingivalis infection and related diseases in smokers and in general.
Collapse
Affiliation(s)
| | | | | | - Daniel P. Miller
- Oral Immunology and Infectious Diseases, University of Louisville
| | - Zuzanna Nowakowska
- Oral Immunology and Infectious Diseases, University of Louisville
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland
| | - Anna M. Lasica
- Oral Immunology and Infectious Diseases, University of Louisville
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Chengcheng Liu
- Oral Immunology and Infectious Diseases, University of Louisville
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jan Potempa
- Oral Immunology and Infectious Diseases, University of Louisville
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Poland
| | | | | | - David A. Scott
- Oral Immunology and Infectious Diseases, University of Louisville
| |
Collapse
|
22
|
Jung YJ, Miller DP, Perpich JD, Fitzsimonds ZR, Shen D, Ohshima J, Lamont RJ. Porphyromonas gingivalis Tyrosine Phosphatase Php1 Promotes Community Development and Pathogenicity. mBio 2019; 10:e02004-19. [PMID: 31551334 PMCID: PMC6759763 DOI: 10.1128/mbio.02004-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/23/2019] [Indexed: 01/17/2023] Open
Abstract
Protein-tyrosine phosphorylation in bacteria plays a significant role in multiple cellular functions, including those related to community development and virulence. Metal-dependent protein tyrosine phosphatases that belong to the polymerase and histindinol phosphatase (PHP) family are widespread in Gram-positive bacteria. Here, we show that Porphyromonas gingivalis, a Gram-negative periodontal pathogen, expresses a PHP protein, Php1, with divalent metal ion-dependent tyrosine phosphatase activity. Php1 tyrosine phosphatase activity was attenuated by mutation of conserved histidine residues that are important for the coordination of metal ions and by mutation of a conserved arginine residue, a key residue for catalysis in other bacterial PHPs. The php1 gene is located immediately downstream of the gene encoding the bacterial tyrosine (BY) kinase Ptk1, which was a substrate for Php1 in vitro Php1 rapidly caused the conversion of Ptk1 to a state of low tyrosine phosphorylation in the absence of discernible intermediate phosphoforms. Active Php1 was required for P. gingivalis exopolysaccharide production and for community development with the antecedent oral biofilm constituent Streptococcus gordonii under nutrient-depleted conditions. In contrast, the absence of Php1 had no effect on the ability of P. gingivalis to form monospecies biofilms. In vitro, Php1 enzymatic activity was resistant to the effects of the streptococcal secreted metabolites pABA and H2O2, which inhibited Ltp1, an enzyme in the low-molecular-weight (LMW) phosphotyrosine phosphatase family. Ptk1 reciprocally phosphorylated Php1 on tyrosine residues 159 and 161, which independently impacted phosphatase activity. Loss of Php1 rendered P. gingivalis nonvirulent in an animal model of periodontal disease. Collectively, these results demonstrate that P. gingivalis possesses active PHP and LMW tyrosine phosphatases, a unique configuration in Gram-negatives which may allow P. gingivalis to maintain phosphorylation/dephosphorylation homeostasis in multispecies communities. Moreover, Php1 contributes to the pathogenic potential of the organism.IMPORTANCE Periodontal diseases are among the most common infections of humans and are also associated with systemic inflammatory conditions. Colonization and pathogenicity of P. gingivalis are regulated by signal transduction pathways based on protein tyrosine phosphorylation and dephosphorylation. Here, we identify and characterize a novel component of the tyrosine (de)phosphorylation axis: a polymerase and histindinol phosphatase (PHP) family enzyme. This tyrosine phosphatase, designated Php1, was required for P. gingivalis community development with other oral bacteria, and in the absence of Php1 activity P. gingivalis was unable to cause disease in a mouse model of periodontitis. This work provides significant insights into the protein tyrosine (de)phosphorylation network in P. gingivalis, its adaptation to heterotypic communities, and its contribution to colonization and virulence.
Collapse
Affiliation(s)
- Young-Jung Jung
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - John D Perpich
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Zackary R Fitzsimonds
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Daonan Shen
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Jun Ohshima
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
23
|
Wu L, Gong T, Zhou X, Zeng J, Huang R, Wu Y, Li Y. Global analysis of lysine succinylome in the periodontal pathogen Porphyromonas gingivalis. Mol Oral Microbiol 2019; 34:74-83. [PMID: 30672658 DOI: 10.1111/omi.12255] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/22/2018] [Accepted: 01/21/2019] [Indexed: 02/05/2023]
Abstract
The gram-negative anaerobe Porphyromonas gingivalis is not only a keystone periodontal pathogen but also an emerging systemic pathogen. Although the newly discovered protein post-translational modification (PTM), lysine succinylation (Ksuc), appears to play an important role in modulating metabolic processes in bacteria, this PTM has not been investigated in P gingivalis. In this study, we used a highly sensitive proteomics approach combining affinity enrichment with high-resolution liquid chromatography coupled with tandem mass spectrometry to examine Ksuc in P gingivalis. In total, 345 Ksuc sites in 233 proteins were identified and determined to be involved in a variety of cellular processes. In the region surrounding Ksuc sites, lysine residues were drastically overrepresented and sequence motifs with succinyl-lysine flanked by a lysine at the +3 or +6 positions appear to be unique to this pathogen. Additionally, our results suggest a crosstalk between Ksuc and glycosylation, but the overlap between Ksuc and acetylation in P gingivalis is quite different from that observed in other organisms. Notably, Ksuc was observed in proteins associated with established virulence factors, including gingipains, fimbriae, RagB, and PorR. Moreover, products of the factors necessary for P gingivalis in vitro survival (18.5%) were found to be succinylated at lysine sites and the same was observed in products of fitness factors for P gingivalis survival in both abscess and epithelial cell colonization environments (12%). Collectively, these results suggest that Ksuc may be a new mechanism in modulating the virulence, adaptation, and fitness of P gingivalis.
Collapse
Affiliation(s)
- Leng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.,Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Jumei Zeng
- Department of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| |
Collapse
|
24
|
Miller DP, Lamont RJ. Signaling Systems in Oral Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:27-43. [PMID: 31732932 DOI: 10.1007/978-3-030-28524-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The supra- and subgingival plaque biofilm communities of plaque are composed of hundreds of different microbes. These communities are spatially and temporally structured, largely due to cell-cell communications that coordinate synergistic interactions, and intracellular signaling systems to sense changes in the surrounding environment. Homeostasis is maintained through metabolic communication, mutualistic cross-feeding, and cross-respiration. These nutritional symbioses can reciprocally influence the local microenvironments by altering the pH and by detoxifying oxidative compounds. Signal transduction mechanisms include two-component systems, tyrosine phosphorelays, quorum sensing systems, and cyclic nucleotide secondary messengers. Signaling converges on transcriptional programs and can result in synergistic or antagonistic interbacterial interactions that sculpt community development. The sum of all these interactions can be a well-organized polymicrobial community that remains in homeostasis with the host, or a dysbiotic community that provokes pathogenic responses in the host.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| |
Collapse
|
25
|
Abstract
The dynamic and polymicrobial oral microbiome is a direct precursor of diseases such as dental caries and periodontitis, two of the most prevalent microbially induced disorders worldwide. Distinct microenvironments at oral barriers harbour unique microbial communities, which are regulated through sophisticated signalling systems and by host and environmental factors. The collective function of microbial communities is a major driver of homeostasis or dysbiosis and ultimately health or disease. Despite different aetiologies, periodontitis and caries are each driven by a feedforward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that favours the emergence and persistence of dysbiosis. In this Review, we discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis that have both enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches for oral diseases.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Lee JY, Miller DP, Wu L, Casella CR, Hasegawa Y, Lamont RJ. Maturation of the Mfa1 Fimbriae in the Oral Pathogen Porphyromonas gingivalis. Front Cell Infect Microbiol 2018; 8:137. [PMID: 29868494 PMCID: PMC5954841 DOI: 10.3389/fcimb.2018.00137] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
The Mfa1 fimbriae of the periodontal pathogen Porphyromonas gingivalis are involved in adhesion, including binding to synergistic species in oral biofilms. Mfa1 fimbriae are comprised of 5 proteins: the structural component Mfa1, the anchor Mfa2, and Mfa3-5 which constitute the fimbrial tip complex. Interactions among the Mfa proteins and the polymerization mechanism for Mfa1 are poorly understood. Here we show that Mfa3 can bind to Mfa1, 2, 4, and 5 in vitro, and may function as an adaptor protein interlinking other fimbrial subunits. Polymerization of Mfa1 is independent of Mfa3-5 and requires proteolytic processing mediated by the RgpA/B arginine gingipains of P. gingivalis. Both the N- and C- terminal regions of Mfa1 are necessary for polymerization; however, potential β-strand disrupting amino acid substitutions in these regions do not impair Mfa1 polymerization. In contrast, substitution of hydrophobic amino acids with charged residues in either the N- or C- terminal domains yielded Mfa1 proteins that failed to polymerize. Collectively, these results indicate that Mfa3 serves as an adaptor protein between Mfa1 and other accessory fimbrial proteins. Mfa1 fimbrial polymerization is dependent on hydrophobicity in both the N- and C-terminal regions, indicative of an assembly mechanism involving the terminal regions forming a hydrophobic binding interface between Mfa1 subunits.
Collapse
Affiliation(s)
- Jae Y Lee
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Leng Wu
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| | - Carolyn R Casella
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, United States
| |
Collapse
|
27
|
Macrophage Polarization Alters Postphagocytosis Survivability of the Commensal Streptococcus gordonii. Infect Immun 2018; 86:IAI.00858-17. [PMID: 29229734 DOI: 10.1128/iai.00858-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Oral streptococci are generally considered commensal organisms; however, they are becoming recognized as important associate pathogens during the development of periodontal disease as well as being associated with several systemic diseases, including as a causative agent of infective endocarditis. An important virulence determinant of these bacteria is an ability to evade destruction by phagocytic cells, yet how this subversion occurs is mostly unknown. Using Streptococcus gordonii as a model commensal oral streptococcus that is also associated with disease, we find that resistance to reactive oxygen species (ROS) with an active ability to damage phagosomes allows the bacterium to avoid destruction within macrophages. This ability to survive relies not only on the ROS resistance capabilities of the bacterium but also on ROS production by macrophages, with both being required for maximal survival of internalized bacteria. Importantly, we also show that this dependence on ROS production by macrophages for resistance has functional significance: S. gordonii intracellular survival increases when macrophages are polarized toward an activated (M1) profile, which is known to result in prolonged phagosomal ROS production compared to that of alternatively (M2) polarized macrophages. We additionally find evidence of the bacterium being capable of both delaying the maturation of and damaging phagosomes. Taken together, these results provide essential insights regarding the mechanisms through which normally commensal oral bacteria can contribute to both local and systemic inflammatory disease.
Collapse
|
28
|
Kuboniwa M, Houser JR, Hendrickson EL, Wang Q, Alghamdi SA, Sakanaka A, Miller DP, Hutcherson JA, Wang T, Beck DAC, Whiteley M, Amano A, Wang H, Marcotte EM, Hackett M, Lamont RJ. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol 2017; 2:1493-1499. [PMID: 28924191 PMCID: PMC5678995 DOI: 10.1038/s41564-017-0021-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/04/2017] [Indexed: 02/06/2023]
Abstract
Many human infections are polymicrobial in origin, and interactions among community inhabitants shape colonization patterns and pathogenic potential 1 . Periodontitis, which is the sixth most prevalent infectious disease worldwide 2 , ensues from the action of dysbiotic polymicrobial communities 3 . The keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii interact to form communities in vitro and exhibit increased fitness in vivo 3,4 . The mechanistic basis of this polymicrobial synergy, however, has not been fully elucidated. Here we show that streptococcal 4-aminobenzoate/para-amino benzoic acid (pABA) is required for maximal accumulation of P. gingivalis in dual-species communities. Metabolomic and proteomic data showed that exogenous pABA is used for folate biosynthesis, and leads to decreased stress and elevated expression of fimbrial adhesins. Moreover, pABA increased the colonization and survival of P. gingivalis in a murine oral infection model. However, pABA also caused a reduction in virulence in vivo and suppressed extracellular polysaccharide production by P. gingivalis. Collectively, these data reveal a multidimensional aspect to P. gingivalis-S. gordonii interactions and establish pABA as a critical cue produced by a partner species that enhances the fitness of P. gingivalis while diminishing its virulence.
Collapse
Affiliation(s)
- Masae Kuboniwa
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - John R Houser
- Institute for Cellular and Molecular Biology, and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik L Hendrickson
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Samar A Alghamdi
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akito Sakanaka
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Justin A Hutcherson
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Tiansong Wang
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - David A C Beck
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of eScience, University of Washington, Seattle, WA, 98195, USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Atsuo Amano
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA
| | - Edward M Marcotte
- Institute for Cellular and Molecular Biology, and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Murray Hackett
- Center for Microbial Proteomics and Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40292, USA.
| |
Collapse
|
29
|
Miller DP, Hutcherson JA, Wang Y, Nowakowska ZM, Potempa J, Yoder-Himes DR, Scott DA, Whiteley M, Lamont RJ. Genes Contributing to Porphyromonas gingivalis Fitness in Abscess and Epithelial Cell Colonization Environments. Front Cell Infect Microbiol 2017; 7:378. [PMID: 28900609 PMCID: PMC5581868 DOI: 10.3389/fcimb.2017.00378] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Porphyromonas gingivalis is an important cause of serious periodontal diseases, and is emerging as a pathogen in several systemic conditions including some forms of cancer. Initial colonization by P. gingivalis involves interaction with gingival epithelial cells, and the organism can also access host tissues and spread haematogenously. To better understand the mechanisms underlying these properties, we utilized a highly saturated transposon insertion library of P. gingivalis, and assessed the fitness of mutants during epithelial cell colonization and survival in a murine abscess model by high-throughput sequencing (Tn-Seq). Transposon insertions in many genes previously suspected as contributing to virulence showed significant fitness defects in both screening assays. In addition, a number of genes not previously associated with P. gingivalis virulence were identified as important for fitness. We further examined fitness defects of four such genes by generating defined mutations. Genes encoding a carbamoyl phosphate synthetase, a replication-associated recombination protein, a nitrosative stress responsive HcpR transcription regulator, and RNase Z, a zinc phosphodiesterase, showed a fitness phenotype in epithelial cell colonization and in a competitive abscess infection. This study verifies the importance of several well-characterized putative virulence factors of P. gingivalis and identifies novel fitness determinants of the organism.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Justin A Hutcherson
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Yan Wang
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Zuzanna M Nowakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States.,Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian UniversityKrakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian UniversityKrakow, Poland
| | | | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at AustinAustin, TX, United States
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of LouisvilleLouisville, KY, United States
| |
Collapse
|
30
|
Liu C, Mo L, Niu Y, Li X, Zhou X, Xu X. The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage. Front Physiol 2017; 8:439. [PMID: 28690552 PMCID: PMC5481360 DOI: 10.3389/fphys.2017.00439] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/09/2017] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease that causes damage to periodontal tissues, which include the gingiva, periodontal ligament, and alveolar bone. The major cause of periodontal tissue destruction is an inappropriate host response to microorganisms and their products. Specifically, a homeostatic imbalance between reactive oxygen species (ROS) and antioxidant defense systems has been implicated in the pathogenesis of periodontitis. Elevated levels of ROS acting as intracellular signal transducers result in autophagy, which plays a dual role in periodontitis by promoting cell death or blocking apoptosis in infected cells. Autophagy can also regulate ROS generation and scavenging. Investigations are ongoing to elucidate the crosstalk mechanisms between ROS and autophagy. Here, we review the physiological and pathological roles of ROS and autophagy in periodontal tissues. The redox-sensitive pathways related to autophagy, such as mTORC1, Beclin 1, and the Atg12-Atg5 complex, are explored in depth to provide a comprehensive overview of the crosstalk between ROS and autophagy. Based on the current evidence, we suggest that a potential linkage between ROS and autophagy is involved in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Longyi Mo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Yulong Niu
- Key Lab of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Xin Li
- Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| |
Collapse
|
31
|
Martin B, Tamanai-Shacoori Z, Bronsard J, Ginguené F, Meuric V, Mahé F, Bonnaure-Mallet M. A new mathematical model of bacterial interactions in two-species oral biofilms. PLoS One 2017; 12:e0173153. [PMID: 28253369 PMCID: PMC5333920 DOI: 10.1371/journal.pone.0173153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022] Open
Abstract
Periodontitis are bacterial inflammatory diseases, where the bacterial biofilms present on the tooth-supporting tissues switch from a healthy state towards a pathogenic state. Among bacterial species involved in the disease, Porphyromonas gingivalis has been shown to induce dysbiosis, and to induce virulence of otherwise healthy bacteria like Streptococcus gordonii. During biofilm development, primary colonizers such as S. gordonii first attach to the surface and allow the subsequent adhesion of periodontal pathogens such as P. gingivalis. Interactions between those two bacteria have been extensively studied during the adhesion step of the biofilm. The aim of the study was to understand interactions of both species during the growing phase of the biofilm, for which little knowledge is available, using a mathematical model. This two-species biofilm model was based on a substrate-dependent growth, implemented with damage parameters, and validated thanks to data obtained on experimental biofilms. Three different hypothesis of interactions were proposed and assayed using this model: independence, competition between both bacteria species, or induction of toxicity by one species for the other species. Adequacy between experimental and simulated biofilms were found with the last hypothetic mathematical model. This new mathematical model of two species bacteria biofilms, dependent on different substrates for growing, can be applied to any bacteria species, environmental conditions, or steps of biofilm development. It will be of great interest for exploring bacterial interactions in biofilm conditions.
Collapse
Affiliation(s)
- Bénédicte Martin
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
| | - Zohreh Tamanai-Shacoori
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
| | - Julie Bronsard
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
| | - Franck Ginguené
- Institut de Recherche Mathématique de Rennes, Université de Rennes I, CNRS, Université Européenne de Bretagne, Rennes, France
| | - Vincent Meuric
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
- Centre hospitalo-universitaire, Rennes, France
| | - Fabrice Mahé
- Institut de Recherche Mathématique de Rennes, Université de Rennes I, CNRS, Université Européenne de Bretagne, Rennes, France
| | - Martine Bonnaure-Mallet
- EA 1254 Microbiologie Risques infectieux, Université de Rennes 1, Université Européenne de Bretagne, Rennes, France
- Centre hospitalo-universitaire, Rennes, France
| |
Collapse
|
32
|
Hendrickson EL, Beck DAC, Miller DP, Wang Q, Whiteley M, Lamont RJ, Hackett M. Insights into Dynamic Polymicrobial Synergy Revealed by Time-Coursed RNA-Seq. Front Microbiol 2017; 8:261. [PMID: 28293219 PMCID: PMC5329018 DOI: 10.3389/fmicb.2017.00261] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/07/2017] [Indexed: 01/31/2023] Open
Abstract
Many bacterial infections involve polymicrobial communities in which constituent organisms are synergistically pathogenic. Periodontitis, a commonly occurring chronic inflammatory disorder, is induced by multispecies bacterial communities. The periodontal keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii exhibit polymicrobial synergy in animal models of disease. Mechanisms of co-adhesion and community formation by P. gingivalis and S. gordonii are well-established; however, little is known regarding the basis for increased pathogenicity. In this study we used time-coursed RNA-Seq to comprehensively and quantitatively examine the dynamic transcriptional landscape of P. gingivalis in a model consortium with S. gordonii. Genes encoding a number of potential virulence determinants had higher relative mRNA levels in the context of dual species model communities than P. gingivalis alone, including adhesins, the Type IX secretion apparatus, and tetratricopeptide repeat (TPR) motif proteins. In contrast, genes encoding conjugation systems and many of the stress responses showed lower levels of expression in P. gingivalis. A notable exception to reduced abundance of stress response transcripts was the genes encoding components of the oxidative stress-related OxyR regulon, indicating an adaptation of P. gingivalis to detoxify peroxide produced by the streptococcus. Collectively, the results are consistent with evolutionary adaptation of P. gingivalis to a polymicrobial oral environment, one outcome of which is increased pathogenic potential.
Collapse
Affiliation(s)
- Erik L Hendrickson
- Center for Microbial Proteomics and Chemical Engineering, University of Washington Seattle, WA, USA
| | - David A C Beck
- Center for Microbial Proteomics and Chemical Engineering, University of WashingtonSeattle, WA, USA; eScience Institute, University of WashingtonSeattle, WA, USA
| | - Daniel P Miller
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville, KY, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville, KY, USA
| | - Marvin Whiteley
- Department of Molecular Biosciences, University of Texas at Austin Austin, TX, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry Louisville, KY, USA
| | - Murray Hackett
- Center for Microbial Proteomics and Chemical Engineering, University of Washington Seattle, WA, USA
| |
Collapse
|
33
|
Cheng X, Liu J, Li J, Zhou X, Wang L, Liu J, Xu X. Comparative effect of a stannous fluoride toothpaste and a sodium fluoride toothpaste on a multispecies biofilm. Arch Oral Biol 2017; 74:5-11. [DOI: 10.1016/j.archoralbio.2016.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/16/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
|
34
|
Izumigawa M, Hasegawa Y, Ikai R, Horie T, Inomata M, Into T, Kitai N, Yoshimura F, Murakami Y. Separation of novel phosphoproteins of Porphyromonas gingivalis using phosphate-affinity chromatography. Microbiol Immunol 2016; 60:702-707. [PMID: 27663267 DOI: 10.1111/1348-0421.12441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022]
Abstract
Phosphorylation of serine, threonine and tyrosine is a central mechanism for regulating the structure and function of proteins in both eukaryotes and prokaryotes. However, the action of phosphorylated proteins present in Porphyromonas gingivalis, a major periodontopathogen, is not fully understood. Here, six novel phosphoproteins that possess metabolic activities were identified, namely PGN_0004, PGN_0375, PGN_0500, PGN_0724, PGN_0733 and PGN_0880, having been separated by phosphate-affinity chromatography. The identified proteins were detectable by immunoblotting specific to phosphorylated Ser (P-Ser), P-Thr, and/or P-Tyr. These results imply that novel phosphorylated proteins might play an important role for regulation of metabolism in P. gingivalis.
Collapse
Affiliation(s)
- Masashi Izumigawa
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan.
| | - Ryota Ikai
- Department of Community Oral Health, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Toshi Horie
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Megumi Inomata
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Noriyuki Kitai
- Department of Orthodontic, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Aichi, Japan
| | - Yukitaka Murakami
- Department of Oral Microbiology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| |
Collapse
|
35
|
Liu C, Miller DP, Wang Y, Merchant M, Lamont RJ. Structure-function aspects of the Porphyromonas gingivalis tyrosine kinase Ptk1. Mol Oral Microbiol 2016; 32:314-323. [PMID: 27498608 DOI: 10.1111/omi.12173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 02/05/2023]
Abstract
The development of synergistically pathogenic communities of Porphyromonas gingivalis and Streptococcus gordonii is controlled by a tyrosine-phosphorylation-dependent signaling pathway in P. gingivalis. The Ptk1 bacterial tyrosine (BY) kinase of P. gingivalis is required for maximal community development and for the production of extracellular polysaccharide. We show that the consensus BY kinase Walker A and B domains, the RK cluster, and the YC domain of Ptk1 are necessary for autophosphorylation and for substrate phosphorylation. Mass spectrometry showed that six tyrosine residues in a 16-amino-acid C-terminal region were phosphorylated in recombinant (r) Ptk1. Complementation of a ptk1 mutant with the wild-type ptk1 allele in trans restored community development between P. gingivalis and S. gordonii, and extracellular polysaccharide production by P. gingivalis. In contrast, complementation of Δptk1 with ptk1 containing a mutation in the Walker A domain failed to restore community development or extracellular polysaccharide production. rPtk1 was capable of phosphorylating the tyrosine phosphatase Ltp1 and the transcriptional regulator CdhR, both of which are involved in the development of P. gingivalis communities with S. gordonii.
Collapse
Affiliation(s)
- C Liu
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.,State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - D P Miller
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - Y Wang
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Merchant
- Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
36
|
NADPH oxidase-derived H2O2 subverts pathogen signaling by oxidative phosphotyrosine conversion to PB-DOPA. Proc Natl Acad Sci U S A 2016; 113:10406-11. [PMID: 27562167 DOI: 10.1073/pnas.1605443113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Strengthening the host immune system to fully exploit its potential as antimicrobial defense is vital in countering antibiotic resistance. Chemical compounds released during bidirectional host-pathogen cross-talk, which follows a sensing-response paradigm, can serve as protective mediators. A potent, diffusible messenger is hydrogen peroxide (H2O2), but its consequences on extracellular pathogens are unknown. Here we show that H2O2, released by the host on pathogen contact, subverts the tyrosine signaling network of a number of bacteria accustomed to low-oxygen environments. This defense mechanism uses heme-containing bacterial enzymes with peroxidase-like activity to facilitate phosphotyrosine (p-Tyr) oxidation. An intrabacterial reaction converts p-Tyr to protein-bound dopa (PB-DOPA) via a tyrosinyl radical intermediate, thereby altering antioxidant defense and inactivating enzymes involved in polysaccharide biosynthesis and metabolism. Disruption of bacterial signaling by DOPA modification reveals an infection containment strategy that weakens bacterial fitness and could be a blueprint for antivirulence approaches.
Collapse
|
37
|
Hajishengallis G, Lamont RJ. Dancing with the Stars: How Choreographed Bacterial Interactions Dictate Nososymbiocity and Give Rise to Keystone Pathogens, Accessory Pathogens, and Pathobionts. Trends Microbiol 2016; 24:477-489. [PMID: 26968354 DOI: 10.1016/j.tim.2016.02.010] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/06/2016] [Accepted: 02/19/2016] [Indexed: 12/25/2022]
Abstract
Many diseases that originate on mucosal membranes ensue from the action of polymicrobial communities of indigenous organisms working in concert to disrupt homeostatic mechanisms. Multilevel physical and chemical communication systems among constituent organisms underlie polymicrobial synergy and dictate the community's pathogenic potential or nososymbiocity, that is, disease arising from living together with a susceptible host. Functional specialization of community participants, often originating from metabolic codependence, has given rise to several newly appreciated designations within the commensal-to-pathogen spectrum. Accessory pathogens, while inherently commensal in a particular microenvironment, nonetheless enhance the colonization or metabolic activity of pathogens. Keystone pathogens (bacterial drivers or alpha-bugs) exert their influence at low abundance by modulating both the composition and levels of community participants and by manipulating host responses. Pathobionts (or bacterial passengers) exploit disrupted host homeostasis to flourish and promote inflammatory disease. In this review we discuss how commensal or pathogenic properties of organisms are not intrinsic features, and have to be considered within the context of both the microbial community in which they reside and the host immune status.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
38
|
Mijakovic I, Grangeasse C, Turgay K. Exploring the diversity of protein modifications: special bacterial phosphorylation systems. FEMS Microbiol Rev 2016; 40:398-417. [PMID: 26926353 DOI: 10.1093/femsre/fuw003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/02/2016] [Indexed: 12/31/2022] Open
Abstract
Protein modifications not only affect protein homeostasis but can also establish new cellular protein functions and are important components of complex cellular signal sensing and transduction networks. Among these post-translational modifications, protein phosphorylation represents the one that has been most thoroughly investigated. Unlike in eukarya, a large diversity of enzyme families has been shown to phosphorylate and dephosphorylate proteins on various amino acids with different chemical properties in bacteria. In this review, after a brief overview of the known bacterial phosphorylation systems, we focus on more recently discovered and less widely known kinases and phosphatases. Namely, we describe in detail tyrosine- and arginine-phosphorylation together with some examples of unusual serine-phosphorylation systems and discuss their potential role and function in bacterial physiology, and regulatory networks. Investigating these unusual bacterial kinase and phosphatases is not only important to understand their role in bacterial physiology but will help to generally understand the full potential and evolution of protein phosphorylation for signal transduction, protein modification and homeostasis in all cellular life.
Collapse
Affiliation(s)
- Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Christophe Grangeasse
- Unité Microbiologie Moléculaire et Biochimie Structurale, UMR 5086-CNRS/ Université Lyon 1, Lyon 69367, France
| | - Kürşad Turgay
- Institut für Mikrobiologie, Leibniz Universität Hannover, D-30419 Hannover, Germany
| |
Collapse
|
39
|
Sztukowska MN, Ojo A, Ahmed S, Carenbauer AL, Wang Q, Shumway B, Jenkinson HF, Wang H, Darling DS, Lamont RJ. Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells. Cell Microbiol 2016; 18:844-58. [PMID: 26639759 DOI: 10.1111/cmi.12554] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
The oral anaerobe Porphyromonas gingivalis is associated with the development of cancers including oral squamous cell carcinoma (OSCC). Here, we show that infection of gingival epithelial cells with P. gingivalis induces expression and nuclear localization of the ZEB1 transcription factor, which controls epithelial-mesenchymal transition. P. gingivalis also caused an increase in ZEB1 expression as a dual species community with Fusobacterium nucleatum or Streptococcus gordonii. Increased ZEB1 expression was associated with elevated ZEB1 promoter activity and did not require suppression of the miR-200 family of microRNAs. P. gingivalis strains lacking the FimA fimbrial protein were attenuated in their ability to induce ZEB1 expression. ZEB1 levels correlated with an increase in expression of mesenchymal markers, including vimentin and MMP-9, and with enhanced migration of epithelial cells into matrigel. Knockdown of ZEB1 with siRNA prevented the P. gingivalis-induced increase in mesenchymal markers and epithelial cell migration. Oral infection of mice by P. gingivalis increased ZEB1 levels in gingival tissues, and intracellular P. gingivalis were detected by antibody staining in biopsy samples from OSCC. These findings indicate that FimA-driven ZEB1 expression could provide a mechanistic basis for a P. gingivalis contribution to OSCC.
Collapse
Affiliation(s)
- Maryta N Sztukowska
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Akintunde Ojo
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Saira Ahmed
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Anne L Carenbauer
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Brain Shumway
- Department of Surgical and Hospital Dentistry, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | | | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
40
|
Deletion of a 77-base-pair inverted repeat element alters the synthesis of surface polysaccharides in Porphyromonas gingivalis. J Bacteriol 2015; 197:1208-20. [PMID: 25622614 DOI: 10.1128/jb.02589-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacterial cell surface glycans, such as capsular polysaccharides and lipopolysaccharides (LPS), influence host recognition and are considered key virulence determinants. The periodontal pathogen Porphyromonas gingivalis is known to display at least three different types of surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown that PG0121 (in strain W83) encodes a DNABII histone-like protein and that this gene is transcriptionally linked to the K-antigen capsule synthesis genes, generating a large ∼19.4-kb transcript (PG0104-PG0121). Furthermore, production of capsule is deficient in a PG0121 mutant strain. In this study, we report on the identification of an antisense RNA (asRNA) molecule located within a 77-bp inverted repeat (77bpIR) element located near the 5' end of the locus. We show that overexpression of this asRNA decreases the amount of capsule produced, indicating that this asRNA can impact capsule synthesis in trans. We also demonstrate that deletion of the 77bpIR element and thereby synthesis of the large 19.4-kb transcript also diminishes, but does not eliminate, capsule synthesis. Surprisingly, LPS structures were also altered by deletion of the 77bpIR element, and reactivity to monoclonal antibodies specific to both O-LPS and A-LPS was eliminated. Additionally, reduced reactivity to these antibodies was also observed in a PG0106 mutant, indicating that this putative glycosyltransferase, which is required for capsule synthesis, is also involved in LPS synthesis in strain W83. We discuss our finding in the context of how DNABII proteins, an antisense RNA molecule, and the 77bpIR element may modulate expression of surface polysaccharides in P. gingivalis. IMPORTANCE The periodontal pathogen Porphyromonas gingivalis displays at least three different types of cell surface glycans: O-LPS, A-LPS, and K-antigen capsule. We have shown using Northern analysis that the K-antigen capsule locus encodes a large transcript (∼19.4 kb), encompassing a 77-bp inverted repeat (77bpIR) element near the 5' end. Here, we report on the identification of an antisense RNA (asRNA) encoded within the 77bpIR. We show that overexpression of this asRNA or deletion of the element decreases the amount of capsule. LPS structures were also altered by deletion of the 77bpIR, and reactivity to monoclonal antibodies to both O-LPS and A-LPS was eliminated. Our data indicate that the 77bpIR element is involved in modulating both LPS and capsule synthesis in P. gingivalis.
Collapse
|
41
|
Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med 2014; 21:172-83. [PMID: 25498392 DOI: 10.1016/j.molmed.2014.11.004] [Citation(s) in RCA: 372] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 12/17/2022]
Abstract
Uncontrolled inflammation of the periodontal area may arise when complex microbial communities transition from a commensal to a pathogenic entity. Communication among constituent species leads to polymicrobial synergy between metabolically compatible organisms that acquire functional specialization within the developing community. Keystone pathogens, even at low abundance, elevate community virulence, and the resulting dysbiotic community targets specific aspects of host immunity to further disable immune surveillance while promoting an overall inflammatory response. Inflammophilic organisms benefit from proteinaceous substrates derived from inflammatory tissue breakdown. Inflammation and dysbiosis reinforce each other, and the escalating environmental changes further select for a pathobiotic community. We have synthesized the polymicrobial synergy and dysbiotic components of the process into a new model for inflammatory diseases.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Wright CJ, Wu H, Melander RJ, Melander C, Lamont RJ. Disruption of heterotypic community development by Porphyromonas gingivalis with small molecule inhibitors. Mol Oral Microbiol 2014; 29:185-93. [PMID: 24899524 DOI: 10.1111/omi.12060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2014] [Indexed: 12/13/2022]
Abstract
Porphyromonas gingivalis is one of the main etiological organisms in periodontal disease. On oral surfaces P. gingivalis is a component of multispecies biofilm communities and can modify the pathogenic potential of the community as a whole. Accumulation of P. gingivalis in communities is facilitated by interspecies binding and communication with the antecedent colonizer Streptococcus gordonii. In this study we screened a library of small molecules to identify structures that could serve as lead compounds for the development of inhibitors of P. gingivalis community development. Three small molecules were identified that effectively inhibited accumulation of P. gingivalis on a substratum of S. gordonii. The structures of the small molecules are derived from the marine alkaloids oroidin and bromoageliferin and contain a 2-aminoimidazole or 2-aminobenzimidazole moiety. The most active compounds reduced expression of mfa1 and fimA in P. gingivalis, genes encoding the minor and major fimbrial subunits, respectively. These fimbrial adhesins are necessary for P. gingivalis co-adhesion with S. gordonii. These results demonstrate the potential for a small molecular inhibitor-based approach to the prevention of diseases associated with P. gingivalis.
Collapse
Affiliation(s)
- C J Wright
- Oral Health and Systemic Disease, University of Louisville, Louisville, KY, USA
| | | | | | | | | |
Collapse
|