1
|
da C. Pinaffi-Langley AC, Tarantini S, Hord NG, Yabluchanskiy A. Polyphenol-Derived Microbiota Metabolites and Cardiovascular Health: A Concise Review of Human Studies. Antioxidants (Basel) 2024; 13:1552. [PMID: 39765880 PMCID: PMC11673714 DOI: 10.3390/antiox13121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Polyphenols, plant-derived secondary metabolites, play crucial roles in plant stress responses, growth regulation, and environmental interactions. In humans, polyphenols are associated with various health benefits, particularly in cardiometabolic health. Despite growing evidence of polyphenols' health-promoting effects, their mechanisms remain poorly understood due to high interindividual variability in bioavailability and metabolism. Recent research highlights the bidirectional relationship between dietary polyphenols and the gut microbiota, which can influence polyphenol metabolism and, conversely, be modulated by polyphenol intake. In this concise review, we summarized recent advances in this area, with a special focus on isoflavones and ellagitannins and their corresponding metabotypes, and their effect on cardiovascular health. Human observational studies published in the past 10 years provide evidence for a consistent association of isoflavones and ellagitannins and their metabotypes with better cardiovascular risk factors. However, interventional studies with dietary polyphenols or isolated microbial metabolites indicate that the polyphenol-gut microbiota interrelationship is complex and not yet fully elucidated. Finally, we highlighted various pending research questions that will help identify effective targets for intervention with precision nutrition, thus maximizing individual responses to dietary and lifestyle interventions and improving human health.
Collapse
Affiliation(s)
- Ana Clara da C. Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, 1085 Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Norman G. Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences, Oklahoma City, OK 73117, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Suzuki JY, Herkenhoff ME, Brödel O, Cucick ACC, Frohme M, Saad SMI. Exploring the potential of red pitaya pulp (Hylocererus sp.) as a plant-based matrix for probiotic delivery and effects on betacyanin content and flavoromics. Food Res Int 2024; 192:114820. [PMID: 39147472 DOI: 10.1016/j.foodres.2024.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
This study evaluated the potential of red pitaya pulp fermented with Lacticaseibacillus paracasei subsp. paracasei F-19 (F-19) as a base for probiotic products. Physicochemical parameters, sugar, betacyanin, and phenolic contents, and antioxidant activity were analyzed over 28 days at 4 °C and compared to a non-fermented pulp, and to a pulp fermented with Bifidobacterium animalis subsp. lactis BB-12 (BB-12). Volatile compounds were identified using HS-SPME/GC-MS. Probiotic viability during storage and survival through in vitro-simulated gastrointestinal tract (GIT) stress were assessed. Red pitaya pulp, rich in moisture (85.83 g/100 g), carbohydrates (11.65 g/100 g), and fibers (2.49 g/100 g), supported fermentation by both strains. F-19 and BB-12 lowered pH, with F-19 showing stronger acidification, and maintained high viability (8.85-8.90 log CFU/mL). Fermentation altered sugar profiles and produced unique volatile compounds, enhancing aroma and sensory attributes. F-19 generated 2-phenylethanol, a unique flavor compound, absent in BB-12. Phenolic content initially increased but antioxidant activity decreased during storage. Betacyanin remained stable for up to 14 days. Red pitaya improved F-19 viability through the simulated GIT, while BB-12 populations significantly decreased (p < 0.05). These results suggest red pitaya pulp is a promising plant-based matrix for F-19, offering protection during digestion and highlighting its potential as a functional food with enhanced bioactive compound bioavailability and sensory attributes.
Collapse
Affiliation(s)
- Juliana Yumi Suzuki
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | | | - Ana Clara Candelaria Cucick
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | | | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| |
Collapse
|
3
|
Qadri H, Shah AH, Almilaibary A, Mir MA. Microbiota, natural products, and human health: exploring interactions for therapeutic insights. Front Cell Infect Microbiol 2024; 14:1371312. [PMID: 39035357 PMCID: PMC11257994 DOI: 10.3389/fcimb.2024.1371312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/03/2024] [Indexed: 07/23/2024] Open
Abstract
The symbiotic relationship between the human digestive system and its intricate microbiota is a captivating field of study that continues to unfold. Comprising predominantly anaerobic bacteria, this complex microbial ecosystem, teeming with trillions of organisms, plays a crucial role in various physiological processes. Beyond its primary function in breaking down indigestible dietary components, this microbial community significantly influences immune system modulation, central nervous system function, and disease prevention. Despite the strides made in microbiome research, the precise mechanisms underlying how bacterial effector functions impact mammalian and microbiome physiology remain elusive. Unlike the traditional DNA-RNA-protein paradigm, bacteria often communicate through small molecules, underscoring the imperative to identify compounds produced by human-associated bacteria. The gut microbiome emerges as a linchpin in the transformation of natural products, generating metabolites with distinct physiological functions. Unraveling these microbial transformations holds the key to understanding the pharmacological activities and metabolic mechanisms of natural products. Notably, the potential to leverage gut microorganisms for large-scale synthesis of bioactive compounds remains an underexplored frontier with promising implications. This review serves as a synthesis of current knowledge, shedding light on the dynamic interplay between natural products, bacteria, and human health. In doing so, it contributes to our evolving comprehension of microbiome dynamics, opening avenues for innovative applications in medicine and therapeutics. As we delve deeper into this intricate web of interactions, the prospect of harnessing the power of the gut microbiome for transformative medical interventions becomes increasingly tantalizing.
Collapse
Affiliation(s)
- Hafsa Qadri
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdullah Almilaibary
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Bahah, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
4
|
Alqudah S, Claesen J. Mechanisms of gut bacterial metabolism of dietary polyphenols into bioactive compounds. Gut Microbes 2024; 16:2426614. [PMID: 39540668 PMCID: PMC11572103 DOI: 10.1080/19490976.2024.2426614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
The fruits and vegetables we consume as part of our diet are rich in bioactive metabolites that can prevent and ameliorate cardiometabolic diseases, cancers, and neurological conditions. Polyphenols are a major metabolite family that has been intensively investigated in this context. However, for these compounds to exert their optimal bioactivity, they rely on the enzymatic capacity of an individual's gut microbiota. Indeed, for most polyphenols, the human host is restricted to more basic metabolism such as deglycosylation and hepatic conjugation. In this review, we discuss the mechanisms by which gut bacteria metabolize the core scaffold of polyphenol substrates, and how their conversion into bioactive small molecules impacts host health.
Collapse
Affiliation(s)
- Sara Alqudah
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Lerner Research Institute of the Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Machado M, Ferreira H, Oliveira MBPP, Alves RC. Coffee by-products: An underexplored source of prebiotic ingredients. Crit Rev Food Sci Nutr 2023; 64:7181-7200. [PMID: 36847145 DOI: 10.1080/10408398.2023.2181761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Consumers' demand for foods with high nutritional value and health benefits has fueled the development of prebiotic foods. In coffee industry, cherries transformation into roasted beans generates a large amount of waste/by-products (pulp/husks, mucilage, parchment, defective beans, silverskin and spent coffee grounds) that usually end up in landfills. The possibility to use coffee by-products as relevant sources of prebiotic ingredients is herein ascertained. As a prelude to this discussion, an overview of pertinent literature on prebiotic action was conducted, including on biotransformation of prebiotics, gut microbiota, and metabolites. Existing research indicates that coffee by-products contain significant levels of dietary fiber and other components that can improve gut health by stimulating beneficial bacteria in the colon, making them excellent candidates for prebiotic ingredients. Oligosaccharides from coffee by-products have lower digestibility than inulin and can be fermented by gut microbiota into functional metabolites, such as short-chain fatty acids. Depending on the concentration, melanoidins and chlorogenic acids may also have prebiotic action. Nevertheless, there is still a lack of in vivo studies to validate such findings in vitro. This review shows how coffee by-products can be interesting for the development of functional foods, contributing to sustainability, circular economy, food security, and health.
Collapse
Affiliation(s)
- Marlene Machado
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ferreira
- REQUIMTE/UCIBIO, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rita C Alves
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Zhao Y, Zhong X, Yan J, Sun C, Zhao X, Wang X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front Microbiol 2022; 13:956378. [PMID: 36246222 PMCID: PMC9560768 DOI: 10.3389/fmicb.2022.956378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have been extensively applied in clinical practice, characterized by multi-component and multi-target, many pharmacodynamic substances, complex action mechanisms, and various physiological activities. For the oral administration of natural products, the gut microbiota and clinical efficacy are closely related, but this relationship remains unclear. Gut microbes play an important role in the transformation and utilization of natural products caused by the diversity of enzyme systems. Effective components such as flavonoids, alkaloids, lignans, and phenols cannot be metabolized directly through human digestive enzymes but can be transformed by enzymes produced by gut microorganisms and then utilized. Therefore, the focus is paid to the metabolism of natural products through the gut microbiota. In the present study, we systematically reviewed the studies about gut microbiota and their effect on the biotransformation of various components of natural products and highlighted the involved common bacteria, reaction types, pharmacological actions, and research methods. This study aims to provide theoretical support for the clinical application in the prevention and treatment of diseases and provide new ideas for studying natural products based on gut biotransformation.
Collapse
Affiliation(s)
- Yucui Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyuan Yan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xin Zhao,
| | - Xiaoying Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Xiaoying Wang,
| |
Collapse
|
7
|
Padilla P, Estévez M, Andrade MJ, Peña FJ, Delgado J. Proteomics reveal the protective effects of chlorogenic acid on Enterococcus faecium Q233 in a simulated pro-oxidant colonic environment. Food Res Int 2022; 157:111464. [PMID: 35761697 DOI: 10.1016/j.foodres.2022.111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
Certain phytochemicals have been found to promote the beneficial effects of probiotic bacteria although the molecular mechanisms of such interactions are poorly understood. The objective of the present study was to evaluate the impact of the exposure to 0.5 mM chlorogenic acid (CA) on the redox status and proteome of Enterococcus faecium isolated from cheese and challenged with 2.5 mM hydrogen peroxide (H2O2). The bacterium was incubated in anaerobic conditions for 48 h at 37 °C. CA exposure led to a more intense oxidative stress and accretion of bacterial protein carbonyls than those induced by H2O2. The oxidative damage to bacterial proteins was even more severe in the bacterium treated with both CA and H2O2, yet, such combination led to a strengthening of the antioxidant defenses, namely, a catalase-like activity. The proteomic study indicated that H2O2 caused a decrease in energy supply and the bacterium responded by reinforcing the membrane and wall structures and counteracting the redox and pH imbalance. CA stimulated the accretion of proteins related to translation and transcription regulators, and hydrolases. This phytochemical was able to counteract certain proteomic changes induced by H2O2 (i.e. increase of ATP binding cassete (ABC) transporter complex) and cause the increase of Rex, a redox-sensitive protein implicated in controlling metabolism and responses to oxidative stress. Although this protection should be confirmed under in vivo conditions, such effects point to benefits in animals or humans affected by disorders in which oxidative stress plays a major role.
Collapse
Affiliation(s)
- P Padilla
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain; Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| | - M Estévez
- Food Technology and Quality (TECAL), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain.
| | - M J Andrade
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| | - F J Peña
- Spermatology Laboratory, University of Extremadura, Cáceres, Spain
| | - J Delgado
- Food Hygiene and Safety (HISEALI), Institute of Meat and Meat Products (IPROCAR), University of Extremadura, Cáceres, Spain
| |
Collapse
|
8
|
Shen Y, Wang Y, Wei X, Wen B, Liu S, Tan H, Zhang J, Shao S, Xin F. Engineering the Active Site Pocket to Enhance the Catalytic Efficiency of a Novel Feruloyl Esterase Derived From Human Intestinal Bacteria Dorea formicigenerans. Front Bioeng Biotechnol 2022; 10:936914. [PMID: 35795165 PMCID: PMC9251316 DOI: 10.3389/fbioe.2022.936914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The human gut microbiota play essential roles in metabolism and human health, especially by enzymatically utilizing dietary fiber that the host cannot directly digest and releasing functional components including short-chain fatty acids (SCFAs) and hydroxycinnamic acids (e.g., ferulic acid). In our previous study, seven potential feruloyl esterase (FAE) genes were identified from the gut microbiota. In the current work, one of the genes encoding a novel FAE (DfFAE) from Dorea formicigenerans of Firmicutes was bacterially expressed, purified and characterized. The 30.5 kDa type-A DfFAE has an optimum pH and temperature of 8.4 and 40 °C, respectively, exhibiting a higher substrate specificity toward short-chain acyl-ester substrate (pNPA). The AlphaFold2 based ab initio structural modeling revealed a five α-helices cap domain that shaped an unusually narrow and deep active site pocket containing a specific substrate access tunnel in DfFAE. Furthermore, rational design strategy was subjected to the active site pocket in an aim of improving its enzymatic activities. The mutants V252A, N156A, W255A, P149A, and P186A showed 1.8 to 5.7-fold increase in catalytic efficiency toward pNPA, while W255A also exhibited altered substrate preference toward long-chain substrate pNPO (45.5-fold). This study highlighted an unusual active site architecture in DfFAE that influenced its substrate selectivity and illustrated the applicability of rational design for enhanced enzymatic properties.
Collapse
Affiliation(s)
- Yang Shen
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, China
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huishuang Tan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingjian Zhang
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Shuli Shao
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, China
- *Correspondence: Fengjiao Xin, ; Shuli Shao,
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Fengjiao Xin, ; Shuli Shao,
| |
Collapse
|
9
|
Yang L, Yu S, Qin X, Li Z. Analysis of inter-individual variability of antitussive effect of Farfarae Flos and its fecal metabolites based on gut microbiota. J Pharm Biomed Anal 2022; 217:114836. [DOI: 10.1016/j.jpba.2022.114836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
10
|
Peng R, Han P, Fu J, Zhang ZW, Ma SR, Pan LB, Xia YY, Yu H, Xu H, Liu CX, Wang Y. Esterases From Bifidobacteria Exhibit the Conversion of Albiflorin in Gut Microbiota. Front Microbiol 2022; 13:880118. [PMID: 35464989 PMCID: PMC9019491 DOI: 10.3389/fmicb.2022.880118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 12/21/2022] Open
Abstract
Bifidobacteria is an important microbe that inhabits the human gut. It is capable of metabolizing complex compounds in the human diet. Albiflorin, an antidepressant natural product from Radix Paeoniae Alba in China, is difficult to absorb after oral administration, and its metabolism has been proven to be closely related to the gut microbiota. In this study, we demonstrated in vitro that several Bifidobacteria species were able to convert albiflorin to benzoic acid, and four esterases (B2, B3, B4, and BL) from Bifidobacterium breve and Bifidobacterium longum were found through genome mining and modeled by SWISS-MODEL. B2 and B3 presented the strongest albiflorin metabolism ability. The optimal conditions, including temperature, buffer, and pH, for the conversion of albiflorin by the four esterases were investigated. Furthermore, the effect of esterase on the metabolism of albiflorin in vivo was confirmed by transplanting bacteria containing esterase B2. This study demonstrated the vital role of esterases from Bifidobacteria in the metabolism of natural compounds containing ester bonds, which could contribute to the development of new enzymes, microbial evolution, and probiotic adjuvant compounds for treatment.
Collapse
Affiliation(s)
- Ran Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Yuan Xia
- Tianjin Institute of Pharmaceutical Research, Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Tianjin, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-Xiao Liu
- Tianjin Institute of Pharmaceutical Research, Research Unit for Drug Metabolism, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Health Benefits of Postbiotics Produced by E. coli Nissle 1917 in Functional Yogurt Enriched with Cape Gooseberry (Physalis peruviana L.). FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Changes in the activities of antimicrobial, antitumor, and antioxidant properties of postbiotics (YCG) are related to changes in the composition of phenolic compounds. Antimicrobial activity was found to be highest in postbiotic (YCG-7) against P. aeruginosa, S. aureus, and E. faecalis with an MIC of 3.1 µg/mL. YCG-7 revealed the most cytotoxicity against LS-174T and PC-3 cell lines with an IC50 of 5.78 and 6.56 µg/mL, respectively. YCG-7 was far more effective for scavenging free radicals in the NO• and DPPH assays with a scavenging activity of 70.73% and 85.6%, respectively. YCG-7’s total phenolic acid content is up to eightfold higher compared with control. Escherichia coli Nissle 1917 retained high viable counts during refrigerated storage, particularly in YCG (>108 cells g−1) revealing a potential prebiotic activity of Cape gooseberry juice. EcN affected the phenolic profile of the YCG. Pyrogallol, p-coumaric acid, ellagic acid, 4-hydroxybenzoic acid, salicylic acid, gallic acid, vanillic acid, o-coumaric acid, caffeic acid, catechol, syringic acid, and rutin were the predominant phenolic compounds in YCG-7 or YCG-15. Chlorogenic, rosmarinic, cinnamic acid, naringin, and kaempferol were degraded by EcN in YCG-7 and YCG-15. The YCG had significantly higher sensory scores for appearance, smoothness, sourness, mouthfeel, and overall acceptance. These results provide the basis to target the functional benefits of YCG for further human health applications.
Collapse
|
12
|
Davinelli S, Scapagnini G. Interactions between dietary polyphenols and aging gut microbiota: A review. Biofactors 2022; 48:274-284. [PMID: 34559427 DOI: 10.1002/biof.1785] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Aging induces significant shifts in the composition of gut microbiota associated with decreased microbial diversity. Age-related changes in gut microbiota include a loss of commensals and an increase in disease-associated pathobionts. These alterations are accelerated by lifestyle factors, such as poor nutritional habits, physical inactivity, and medications. Given that diet is one of the main drivers shaping the gut microbiota, nutritional interventions for restoring gut homeostasis are of great importance to the overall health of older adults. Polyphenols, ubiquitously present in fruits and vegetables, have emerged as promising anti-aging candidates because of their ability to modulate some of the common denominators of aging, including gut dysbiosis. These compounds can influence the composition of the gut microbiota, and gut bacteria metabolize polyphenols into bioactive compounds that produce relevant health effects. Although the role of polyphenols on the aging gut has not been fully characterized, accumulating evidence suggests that these compounds exert selective effects on the gut microbial community. Here, we discuss the reciprocal interactions between polyphenols and gut microbiota and summarize the latest findings on the effects of polyphenols on modulating intestinal bacteria during aging.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
13
|
Kongdang P, Dukaew N, Pruksakorn D, Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114547. [PMID: 34425138 DOI: 10.1016/j.jep.2021.114547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amaranthus is phytonutrients-rich plant distributed worldwide and has been recognized as having medicinal value in traditional use against several diseases and conditions. There are a large amount of research data on the polyphenol profiles of Amaranthus plants and their links with potential benefits against gastrointestinal disorders. AIM OF THE REVIEW This review article aims to provide a comprehensive review of Amaranthus phenolic compounds and their microbial metabolites, as well as the biological and/or pharmacological effects of those compounds/metabolites. METHODOLOGY The relevant information about the genus Amaranthus was collected from various sources and databases, including Google Scholar, Google Books, PubMed, Web of Science, Scopus, Science Direct, and other internet sources. The World Flora Online (2021) database was used to verify the scientific names of the plants. RESULTS Comprehensive review of identified compounds in Amaranthus plants revealed the presence of phenolic acids, flavonoids, and coumarins in each part of the plants. The biotransformation by gut microbiota enzymes prominently produces diverse bioactive metabolites that are potentially active than their precursors. Lines of the evidence support the beneficial roles of Amaranthus extracts in several gastrointestinal diseases, particularly with the polar extracts of several plant parts. Dietary fibers in Amaranthus plants also coordinate the alteration of gut microbiota-related metabolisms and may be beneficial to certain gastrointestinal disorders in particular, such as constipation. CONCLUSIONS Amaranthus plants are rich in polyphenols and dietary fibers. Several microbial metabolites are biologically active, so alteration of gut microbiota is largely linked to the metabolic feature of the plants. Based on the evidence available to date, several Amaranthus plants containing a combination of phytonutrients, particularly polyphenols and dietary fibers, may be a promising candidate that is of interest to be further developed for use in the treatment of certain gastrointestinal conditions/disorders.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
14
|
Kasprzak-Drozd K, Oniszczuk T, Soja J, Gancarz M, Wojtunik-Kulesza K, Markut-Miotła E, Oniszczuk A. The Efficacy of Black Chokeberry Fruits against Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22126541. [PMID: 34207143 PMCID: PMC8235034 DOI: 10.3390/ijms22126541] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Epidemiological studies have emphasized the association between a diet rich in fruits and vegetables and a lower frequency of occurrence of inflammatory-related disorders. Black chokeberry (Aronia melanocarpa L.) is a valuable source of biologically active compounds that have been widely investigated for their role in health promotion and cardiovascular disease prevention. Many in vitro and in vivo studies have demonstrated that consumption of these fruits is associated with significant improvements in hypertension, LDL oxidation, lipid peroxidation, total plasma antioxidant capacity and dyslipidemia. The mechanisms for these beneficial effects include upregulation of endothelial nitric oxide synthase, decreased oxidative stress, and inhibition of inflammatory gene expression. Collected findings support the recommendation of such berries as an essential fruit group in a heart-healthy diet. The aim of this review was to summarize the reports on the impact of black chokeberry fruits and extracts against several cardiovascular diseases, e.g., hyperlipidemia, hypercholesterolemia, hypertension, as well as to provide an analysis of the antioxidant and anti-inflammatory effect of these fruits in the abovementioned disorders.
Collapse
Affiliation(s)
- Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (K.W.-K.)
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
- Correspondence: (T.O.); (A.O.)
| | - Jakub Soja
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
| | - Marek Gancarz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland;
| | - Karolina Wojtunik-Kulesza
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (K.W.-K.)
| | - Ewa Markut-Miotła
- Department of Lung Diseases & Rheumatology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (K.K.-D.); (K.W.-K.)
- Correspondence: (T.O.); (A.O.)
| |
Collapse
|
15
|
Diet-Derived Antioxidants and Their Role in Inflammation, Obesity and Gut Microbiota Modulation. Antioxidants (Basel) 2021; 10:antiox10050708. [PMID: 33946864 PMCID: PMC8146040 DOI: 10.3390/antiox10050708] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
It is generally accepted that gut microbiota, inflammation and obesity are linked to the development of cardiovascular diseases and other chronic/non-communicable pathological conditions, including cancer, neurodegenerative diseases and ageing-related disorders. In this scenario, oxidative stress plays a pivotal role. Evidence suggests that the global dietary patterns may represent a tool in counteracting oxidative stress, thus preventing the onset of diseases related to oxidative stress. More specifically, dietary patterns based on the regular consumption of fruits and vegetables (i.e., Mediterranean diet) have been licensed by various national nutritional guidelines in many countries for their health-promoting effects. Such patterns, indeed, result in being rich in specific components, such as fiber, minerals, vitamins and antioxidants, whose beneficial effects on human health have been widely reported. This suggests a potential nutraceutical power of specific dietary components. In this manuscript, we summarize the most relevant evidence reporting the impact of dietary antioxidants on gut microbiota composition, inflammation and obesity, and we underline that antioxidants are implicated in a complex interplay between gut microbiota, inflammation and obesity, thus suggesting their possible role in the development and modulation of chronic diseases related to oxidative stress and in the maintenance of wellness. Do all roads lead to Rome?
Collapse
|
16
|
Liu Y, Xie M, Wan P, Chen G, Chen C, Chen D, Yu S, Zeng X, Sun Y. Purification, characterization and molecular cloning of a dicaffeoylquinic acid-hydrolyzing esterase from human-derived Lactobacillus fermentum LF-12. Food Funct 2021; 11:3235-3244. [PMID: 32219251 DOI: 10.1039/d0fo00029a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dicaffeoylquinic acids (DiCQAs), the main components of kudingcha made from the leaves of Ilex kudingcha, could be transformed by gut microbiota. However, the information about the related microorganisms and enzymes involved in the biotransformation of DiCQAs in the human gut is limited. Therefore, a strain of bacteria that could hydrolyze DiCQAs, belonging to Lactobacillus fermentum named L. fermentum LF-12, was isolated from human feces in the present study. Furthermore, an esterase for the hydrolysis of DiCQAs was purified from L. fermentum LF-12 and heterogeneously expressed in Escherichia coli. The esterase could be induced to exert superior hydrolytic activity in the presence of lactose as the carbon source. The molecular weight of the purified esterase was determined to be 31.9 kDa, and the isoelectric point, optimal pH and temperature for the esterase were 4.71, 6.5 and 45 °C, respectively. The enzyme activity was improved by Mg2+ and Ca2+, and reduced by Co2+, Cu2+, EDTA and some kinds of organic solvents. The present results provide new insights into the metabolism of DiCQAs by the human gut.
Collapse
Affiliation(s)
- Yujin Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Minhao Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China. and Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Chunxu Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Dan Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Shijie Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
17
|
Kelly SM, Munoz-Munoz J, van Sinderen D. Plant Glycan Metabolism by Bifidobacteria. Front Microbiol 2021; 12:609418. [PMID: 33613480 PMCID: PMC7889515 DOI: 10.3389/fmicb.2021.609418] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the genus Bifidobacterium, of which the majority have been isolated as gut commensals, are Gram-positive, non-motile, saccharolytic, non-sporulating, anaerobic bacteria. Many bifidobacterial strains are considered probiotic and therefore are thought to bestow health benefits upon their host. Bifidobacteria are highly abundant among the gut microbiota of healthy, full term, breast-fed infants, yet the relative average abundance of bifidobacteria tends to decrease as the human host ages. Because of the inverse correlation between bifidobacterial abundance/prevalence and health, there has been an increasing interest in maintaining, increasing or restoring bifidobacterial populations in the infant, adult and elderly gut. In order to colonize and persist in the gastrointestinal environment, bifidobacteria must be able to metabolise complex dietary and/or host-derived carbohydrates, and be resistant to various environmental challenges of the gut. This is not only important for the autochthonous bifidobacterial species colonising the gut, but also for allochthonous bifidobacteria provided as probiotic supplements in functional foods. For example, Bifidobacterium longum subsp. longum is a taxon associated with the metabolism of plant-derived poly/oligosaccharides in the adult diet, being capable of metabolising hemicellulose and various pectin-associated glycans. Many of these plant glycans are believed to stimulate the metabolism and growth of specific bifidobacterial species and are for this reason classified as prebiotics. In this review, bifidobacterial carbohydrate metabolism, with a focus on plant poly-/oligosaccharide degradation and uptake, as well as its associated regulation, will be discussed.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Microbial Enzymology Group, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Mussap M, Siracusano M, Noto A, Fattuoni C, Riccioni A, Rajula HSR, Fanos V, Curatolo P, Barberini L, Mazzone L. The Urine Metabolome of Young Autistic Children Correlates with Their Clinical Profile Severity. Metabolites 2020; 10:metabo10110476. [PMID: 33238400 PMCID: PMC7700197 DOI: 10.3390/metabo10110476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Autism diagnosis is moving from the identification of common inherited genetic variants to a systems biology approach. The aims of the study were to explore metabolic perturbations in autism, to investigate whether the severity of autism core symptoms may be associated with specific metabolic signatures; and to examine whether the urine metabolome discriminates severe from mild-to-moderate restricted, repetitive, and stereotyped behaviors. We enrolled 57 children aged 2–11 years; thirty-one with idiopathic autism and twenty-six neurotypical (NT), matched for age and ethnicity. The urine metabolome was investigated by gas chromatography-mass spectrometry (GC-MS). The urinary metabolome of autistic children was largely distinguishable from that of NT children; food selectivity induced further significant metabolic differences. Severe autism spectrum disorder core deficits were marked by high levels of metabolites resulting from diet, gut dysbiosis, oxidative stress, tryptophan metabolism, mitochondrial dysfunction. The hierarchical clustering algorithm generated two metabolic clusters in autistic children: 85–90% of children with mild-to-moderate abnormal behaviors fell in cluster II. Our results open up new perspectives for the more general understanding of the correlation between the clinical phenotype of autistic children and their urine metabolome. Adipic acid, palmitic acid, and 3-(3-hydroxyphenyl)-3-hydroxypropanoic acid can be proposed as candidate biomarkers of autism severity.
Collapse
Affiliation(s)
- Michele Mussap
- Department of Surgical Sciences, School of Medicine, University of Cagliari, 09042 Monserrato, Italy; (H.S.R.R.); (V.F.)
- Correspondence: ; Tel.: +39-070-51093403
| | - Martina Siracusano
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (A.N.); (L.B.)
| | - Claudia Fattuoni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy;
| | - Assia Riccioni
- Child Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy; (A.R.); (P.C.); (L.M.)
| | - Hema Sekhar Reddy Rajula
- Department of Surgical Sciences, School of Medicine, University of Cagliari, 09042 Monserrato, Italy; (H.S.R.R.); (V.F.)
| | - Vassilios Fanos
- Department of Surgical Sciences, School of Medicine, University of Cagliari, 09042 Monserrato, Italy; (H.S.R.R.); (V.F.)
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy; (A.R.); (P.C.); (L.M.)
| | - Luigi Barberini
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy; (A.N.); (L.B.)
| | - Luigi Mazzone
- Child Neurology and Psychiatry Unit, System Medicine Department, Tor Vergata University Hospital of Rome, 00133 Rome, Italy; (A.R.); (P.C.); (L.M.)
| |
Collapse
|
19
|
Zhang Y, Cheng L, Zhang X. Interactions of tea polyphenols with intestinal microbiota and their effects on cerebral nerves. J Food Biochem 2020; 45:e13575. [PMID: 33222220 DOI: 10.1111/jfbc.13575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/28/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022]
Abstract
Tea polyphenols (TP) are important functional components in tea. TP can regulate the composition of human intestinal flora, meanwhile, TP can be bio-transformed by the intestinal microbiota, resulting in relative metabolites, which prevent nerve damage, promote neurocognition, and increase resistance to oxidative stress. In recent years, cerebral nerves have become a hot topic of research, and studies have marked the importance of microbial flora and TP in protecting cerebral nerves. This paper reviews the effects of TP on intestinal microflora and the microbial degradation of TP. Furthermore, the potential effects of TP on cerebral nerves have been highlighted. PRACTICAL APPLICATIONS: Neuroscience studies are primarily focused on discerning the functional mechanism of the nervous system. The functional role of intestinal microbiota in host physiology regulation, especially neurological functions, has become a hotspot for neurological research. TP play a vital role in maintaining the steady status of intestinal flora and protecting cerebral nerve damage. An in-depth understanding of the TP and intestinal microbiota interaction, its implication on cerebral nerve protection, and the associated underlying mechanism will allow us to expand the therapeutic applications of TP.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
20
|
Sales AL, dePaula J, Mellinger Silva C, Cruz A, Lemos Miguel MA, Farah A. Effects of regular and decaffeinated roasted coffee (Coffea arabica and Coffea canephora) extracts and bioactive compounds on in vitro probiotic bacterial growth. Food Funct 2020; 11:1410-1424. [PMID: 31970371 DOI: 10.1039/c9fo02589h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate the effects of coffee species, roast degree and decaffeination on in vitro probiotic bacterial growth, and to identify the major coffee compounds responsible for such effects. Six C. arabica and C. canephora extracts (regular medium and dark roasted and decaffeinated medium roasted), and five bioactive compounds (chlorogenic acid, galactomannan, type 2 arabinogalactan, caffeine and trigonelline) were individually incorporated into a modified low-carbon broth medium-(mMRS), at different concentrations (0.5 to 1.5% soluble coffee and 0.05 to 0.8 mg mL-1 standard solutions). Inulin and fructooligosaccharides (FOS) were used as prebiotic references. MRS and mMRS were used as rich and poor medium controls, respectively. The growth of Lactobacillus rhamnosus GG ATCC 53103-(GG), L. acidophilus LA-5-(LA), Bifidobacterium animalis DN-173010-(BA) and B. animalis subsp. lactis BB12-(BB12), as well as the growth inhibition of non-probiotic Escherichia coli ATCC 25922 were evaluated. Differences in growth between mMRS and treatments (Δlog CFU mL-1) were compared by ANOVA and Tukey's test, and considered when p ≤ 0.05. Overall, after 48 h incubation, the medium roasted arabica coffee extract increased the growth of GG, LA and BA (range: Δlog CFU mL-1 = 0.5 to 1.8), while the dark roasted arabica coffee extract increased BB12 growth (range: Δlog CFU mL-1 = 0.9 to 1.7), in a dose dependent manner. Improved performances of GG, LA and BA were promoted by higher polysaccharides and CGA concentrations, with better performance for Lactobacillus sp. The tested coffee bioactive compounds promoted the poor growth of BB12. Plain caffeine did not promote Bifidobacterium sp. growth and limited the growth of Lactobacillus sp. Regular C. arabica and C. canephora extracts inhibited the growth of E. coli, while the decaffeinated extracts promoted its growth. The present results show that coffee consumption can selectively improve the growth of probiotic strains, thus exerting a prebiotic effect, and show that coffee roasting and decaffeination affect this property and that different strains utilize different coffee components to grow.
Collapse
Affiliation(s)
- Amanda Luísa Sales
- Food Chemistry and Bioactivity Laboratory & Coffee Research Core (NUPECAFÉ), Nutrition Institute, Federal University of Rio de Janeiro (UFRJ), Brazil.
| | | | | | | | | | | |
Collapse
|
21
|
Leonard W, Zhang P, Ying D, Fang Z. Hydroxycinnamic acids on gut microbiota and health. Compr Rev Food Sci Food Saf 2020; 20:710-737. [DOI: 10.1111/1541-4337.12663] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Affiliation(s)
- William Leonard
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Pangzhen Zhang
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| | - Danyang Ying
- CSIRO Agriculture & Food Werribee Victoria Australia
| | - Zhongxiang Fang
- School of Agriculture and Food The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
22
|
Iqbal Y, Cottrell JJ, Suleria HA, Dunshea FR. Gut Microbiota-Polyphenol Interactions in Chicken: A Review. Animals (Basel) 2020; 10:E1391. [PMID: 32796556 PMCID: PMC7460082 DOI: 10.3390/ani10081391] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/03/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract of the chicken harbors very complex and diverse microbial communities including both beneficial and harmful bacteria. However, a dynamic balance is generally maintained in such a way that beneficial bacteria predominate over harmful ones. Environmental factors can negatively affect this balance, resulting in harmful effects on the gut, declining health, and productivity. This means modulating changes in the chicken gut microbiota is an effective strategy to improve gut health and productivity. One strategy is using modified diets to favor the growth of beneficial bacteria and a key candidate are polyphenols, which have strong antioxidant potential and established health benefits. The gut microbiota-polyphenol interactions are of vital importance in their effects on the gut microbiota modulation because it affects not only the composition of gut bacteria but also improves bioavailability of polyphenols through generation of more bioactive metabolites enhancing their health effects on morphology and composition of the gut microbiota. The object of this review is to improve the understanding of polyphenol interactions with the gut microbiota and highlights their potential role in modulation of the gut microbiota of chicken.
Collapse
Affiliation(s)
- Yasir Iqbal
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Jeremy J. Cottrell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia; (Y.I.); (J.J.C.); (H.A.R.S.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
23
|
Westfall S, Pasinetti GM. The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Front Neurosci 2019; 13:1196. [PMID: 31749681 PMCID: PMC6848798 DOI: 10.3389/fnins.2019.01196] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
The pathophysiology of depression is multifactorial yet generally aggravated by stress and its associated physiological consequences. To effectively treat these diverse risk factors, a broad acting strategy is required and is has been suggested that gut-brain-axis signaling may play a pinnacle role in promoting resilience to several of these stress-induced changes including pathogenic load, inflammation, HPA-axis activation, oxidative stress and neurotransmitter imbalances. The gut microbiota also manages the bioaccessibility of phenolic metabolites from dietary polyphenols whose multiple beneficial properties have known therapeutic efficacy against depression. Although several potential therapeutic mechanisms of dietary polyphenols toward establishing cognitive resilience to neuropsychiatric disorders have been established, only a handful of studies have systematically identified how the interaction of the gut microbiota with dietary polyphenols can synergistically alleviate the biological signatures of depression. The current review investigates several of these potential mechanisms and how synbiotics, that combine probiotics with dietary polyphenols, may provide a novel therapeutic strategy for depression. In particular, synbiotics have the potential to alleviate neuroinflammation by modulating microglial and inflammasome activation, reduce oxidative stress and balance serotonin metabolism therefore simultaneously targeting several of the major pathological risk factors of depression. Overall, synbiotics may act as a novel therapeutic paradigm for neuropsychiatric disorders and further understanding the fundamental mechanisms of gut-brain-axis signaling will allow full utilization of the gut microbiota's as a therapeutic tool.
Collapse
Affiliation(s)
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Jain A, Li XH, Chen WN. An untargeted fecal and urine metabolomics analysis of the interplay between the gut microbiome, diet and human metabolism in Indian and Chinese adults. Sci Rep 2019; 9:9191. [PMID: 31235863 PMCID: PMC6591403 DOI: 10.1038/s41598-019-45640-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
Gut microbiome plays a vital role in human health. Human fecal and urine metabolome could provide a functional readout of gut microbial metabolism as well as its interaction with host and diet. However, this relationship still needs to be fully characterized. We established an untargeted GC-MS metabolomics method which enabled the detection of 122 and 86 metabolites including amino acids, phenolics, indoles, carbohydrates, sugars and metabolites of microbial origin from fecal and urine samples respectively. 41 compounds were confirmed using external standards. Next, we compared the fecal and urine metabolome of 16 healthy Indian and Chinese adults, ages 22–35 years, using a combined GC-MS and LC-MS approach. We showed dietary habit or ethnicity wise grouping of urine and fecal metabolite profiles of Indian and Chinese adults. Our analysis revealed 53 differentiating metabolites including higher abundance of amino acids and phenolics in Chinese and higher abundance of fatty acids, glycocholic acid, metabolites related to tryptophan metabolism in Indian adults. Correlation analysis showed a strong association of metabolites with gut bacterial profiles of the same subjects in the genus and species level. Thus, our results suggest that gut bacterial compositional changes could be eventually monitored and probed using a metabolomics approach.
Collapse
Affiliation(s)
- Abhishek Jain
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.,Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 CleanTech Loop, Singapore, 637141, Singapore
| | - Xin Hui Li
- Zhong Feng International, Hengyang City, China
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
25
|
Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA. The effects of polyphenols and other bioactives on human health. Food Funct 2019; 10:514-528. [PMID: 30746536 DOI: 10.1039/c8fo01997e] [Citation(s) in RCA: 609] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although deficiencies in polyphenol intake do not result in specific deficiency diseases, adequate intake of polyphenols could confer health benefits, especially with regard to chronic diseases. Tea, cocoa, fruits, and berries, as well as vegetables, are rich in polyphenols. Flavan-3-ols from cocoa have been found to be associated with a reduced risk of stroke, myocardial infarction, and diabetes, as well as improvements in lipids, endothelial-dependent blood flow and blood pressure, insulin resistance, and systemic inflammation. The flavonoid quercetin and the stilbene resveratrol have also been associated with cardiometabolic health. Although polyphenols have been associated with improved cerebral blood flow, evidence of an impact on cognition is more limited. The ability of dietary polyphenols to produce clinical effects may be due, at least in part, to a bi-directional relationship with the gut microbiota. Polyphenols can impact the composition of the gut microbiota (which are independently associated with health benefits), and gut bacteria metabolize polyphenols into bioactive compounds that produce clinical benefits. Another critical interaction is that of polyphenols with other phytochemicals, which could be relevant to interpreting the health parameter effects of polyphenols assayed as purified extracts, whole foods, or whole food extracts.
Collapse
Affiliation(s)
- César G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
26
|
Oat bran, but not its isolated bioactive β-glucans or polyphenols, have a bifidogenic effect in an in vitro fermentation model of the gut microbiota. Br J Nutr 2019; 121:549-559. [PMID: 30688188 DOI: 10.1017/s0007114518003501] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wholegrain oats are known to modulate the human gut microbiota and have prebiotic properties (increase the growth of some health-promoting bacterial genera within the colon). Research to date mainly attributes these effects to the fibre content; however, oat is also a rich dietary source of polyphenols, which may contribute to the positive modulation of gut microbiota. In vitro anaerobic batch-culture experiments were performed over 24 h to evaluate the impact of two different doses (1 and 3 % (w/v)) of oat bran, matched concentrations of β-glucan extract or polyphenol mix, on the human faecal microbiota composition using 16S RNA gene sequencing and SCFA analysis. Supplementation with oats increased the abundance of Proteobacteria (P <0·01) at 10 h, Bacteroidetes (P <0·05) at 24 h and concentrations of acetic and propionic acid increased at 10 and 24 h compared with the NC. Fermentation of the 1 % (w/v) oat bran resulted in significant increase in SCFA production at 24 h (86 (sd 27) v. 28 (sd 5) mm; P <0·05) and a bifidogenic effect, increasing the relative abundance of Bifidobacterium unassigned at 10 h and Bifidobacterium adolescentis (P <0·05) at 10 and 24 h compared with NC. Considering the β-glucan treatment induced an increase in the phylum Bacteroidetes at 24 h, it explains the Bacteriodetes effects of oats as a food matrix. The polyphenol mix induced an increase in Enterobacteriaceae family at 24 h. In conclusion, in this study, we found that oats increased bifidobacteria, acetic acid and propionic acid, and this is mediated by the synergy of all oat compounds within the complex food matrix, rather than its main bioactive β-glucan or polyphenols. Thus, oats as a whole food led to the greatest impact on the microbiota.
Collapse
|
27
|
Kim JH, Baik SH. Probiotic properties of Lactobacillus strains with high cinnamoyl esterase activity isolated from jeot-gal, a high-salt fermented seafood. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1424-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
28
|
Kelly SM, O'Callaghan J, Kinsella M, van Sinderen D. Characterisation of a Hydroxycinnamic Acid Esterase From the Bifidobacterium longum subsp. longum Taxon. Front Microbiol 2018; 9:2690. [PMID: 30473685 PMCID: PMC6237967 DOI: 10.3389/fmicb.2018.02690] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
Bifidobacterium longum subsp. longum, a common member of the human gut microbiota with perceived positive health effects, is capable of metabolising certain complex, plant-derived carbohydrates which are commonly found in the (adult) human diet. These plant glycans may be employed to favourably modulate the microbial communities in the intestine. Hydroxycinnamic acids (HCAs) are plant phenolic compounds, which are attached to glycans, and which are associated with anti-oxidant and other beneficial properties. However, very little information is available regarding metabolism of HCA-containing glycans by bifidobacteria. In the current study, a gene encoding a hydroxycinnamic acid esterase was found to be conserved across the B. longum subsp. longum taxon and was present in a conserved locus associated with plant carbohydrate utilisation. The esterase was shown to be active against various HCA-containing substrates and was biochemically characterised in terms of substrate preference, and pH and temperature optima of the enzyme. This novel hydroxycinnamic acid esterase is presumed to be responsible for the release of HCAs from plant-based dietary sources, a process that may have benefits for the gut environment and thus host health.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Mike Kinsella
- Pharmaceutical and Molecular Biotechnology Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
29
|
Naranjo Pinta M, Montoliu I, Aura AM, Seppänen-Laakso T, Barron D, Moco S. In Vitro Gut Metabolism of [U-13C]-Quinic Acid, The Other Hydrolysis Product of Chlorogenic Acid. Mol Nutr Food Res 2018; 62:e1800396. [DOI: 10.1002/mnfr.201800396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/23/2018] [Indexed: 01/06/2023]
Affiliation(s)
| | - Ivan Montoliu
- Nestle Institute of Health Sciences; Lausanne Switzerland
| | | | | | - Denis Barron
- Nestle Institute of Health Sciences; Lausanne Switzerland
| | - Sofia Moco
- Nestle Institute of Health Sciences; Lausanne Switzerland
| |
Collapse
|
30
|
Site-specific hydrolysis of chlorogenic acids by selected Lactobacillus species. Food Res Int 2018; 109:426-432. [DOI: 10.1016/j.foodres.2018.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 11/23/2022]
|
31
|
Morton K, Knight K, Kalman D, Hewlings S. A Prospective Randomized, Double-Blind, Two-Period Crossover Pharmacokinetic Trial Comparing Green Coffee Bean Extract-A Botanically Sourced Caffeine-With a Synthetic USP Control. Clin Pharmacol Drug Dev 2018; 7:871-879. [PMID: 29659178 PMCID: PMC6220787 DOI: 10.1002/cpdd.451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022]
Abstract
Coffee is a primary dietary source of the chlorogenic acids (CGAs) of phenolic compounds. Coffee contains caffeine and other phytonutrients, including CGAs. Caffeine on its own has been well characterized and descried pharmacokinetically in the literature, less so for CGAs. The purpose of this double‐blind crossover study was to determine the comparative pharmacokinetics of CGAs with caffeine (natural extract) with synthetic caffeine (US Pharmacopeia [USP] standard). Sixteen healthy male subjects were randomly assigned to take 1 dose of product 1, 60 mg of botanically sourced caffeine from 480 mg of green coffee bean extract, or product 2, 60 mg of synthetic USP caffeine, with 5 days between. Blood analysis was done to determine the levels of CGA compounds, more specifically 3‐, 4‐, and 5‐caffeoylquinic acid (CQA), and serum caffeine. The natural caffeine extract exhibited mean peak concentrations (Cmax) of 3‐CQA (11.4 ng/mL), 4‐CQA (6.84 ng/mL), and 5‐CQA (7.20 ng/mL). The mean systemic 4‐hour exposure (AUC0–4 h) was 3‐CQA (27.3 ng·h/mL), 4‐CQA (16.1 ng·h/mL), and 5‐CQA (15.7 ng·h/mL). The median tmax was 3‐CQA (1.00 hour), 4‐CQA (1.00 hour), and 5‐CQA (1.50 hours). The tmax of caffeine was 0.75 hours (natural extract) and 0.63 hours (synthetic caffeine). Cmax and AUC0–4 h of serum caffeine were statistically equivalent between products. The geometric least‐squares mean ratios (GMRs) of Cmax and AUC0–4 h of caffeine were 97.77% (natural extract) and 98.33% (synthetic caffeine). It would appear that CGA compounds from the natural caffeine extract are bioavailable, and 3‐CGA may be the compound most absorbed. In addition, caffeine sourced from natural extract versus synthetic were statistically similar for pharmacokinetic parameters. There were no adverse events or safety concerns.
Collapse
Affiliation(s)
| | - Katelin Knight
- Central Michigan University, Substantiation Sciences, Mt. Pleasant, MI, USA
| | | | - Susan Hewlings
- Central Michigan University, Substantiation Sciences, Mt. Pleasant, MI, USA
| |
Collapse
|
32
|
Mayta-Apaza AC, Pottgen E, De Bodt J, Papp N, Marasini D, Howard L, Abranko L, Van de Wiele T, Lee SO, Carbonero F. Impact of tart cherries polyphenols on the human gut microbiota and phenolic metabolites in vitro and in vivo. J Nutr Biochem 2018; 59:160-172. [PMID: 30055451 DOI: 10.1016/j.jnutbio.2018.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/19/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
Abstract
Tart cherries have been reported to exert potential health benefits attributed to their specific and abundant polyphenol content. However, there is a need to study the impact and fate of tart cherries polyphenols in the gut microbiota. Here, tart cherries, pure polyphenols (and apricots) were submitted to in vitro bacterial fermentation assays and assessed through 16S rRNA gene sequence sequencing and metabolomics. A short-term (5 days, 8 oz. daily) human dietary intervention study was also conducted for microbiota analyses. Tart cherry concentrate juices were found to contain expected abundances of anthocyanins (cyanidin-glycosylrutinoside) and flavonoids (quercetin-rutinoside) and high amounts of chlorogenic and neochlorogenic acids. Targeted metabolomics confirmed that gut microbes were able to degrade those polyphenols mainly to 4-hydroxyphenylpropionic acids and to lower amounts of epicatechin and 4-hydroxybenzoic acids. Tart cherries were found to induce a large increase of Bacteroides in vitro, likely due to the input of polysaccharides, but prebiotic effect was also suggested by Bifidobacterium increase from chlorogenic acid. In the human study, two distinct and inverse responses to tart cherry consumption were associated with initial levels of Bacteroides. High-Bacteroides individuals responded with a decrease in Bacteroides and Bifidobacterium, and an increase of Lachnospiraceae, Ruminococcus and Collinsella. Low-Bacteroides individuals responded with an increase in Bacteroides or Prevotella and Bifidobacterium, and a decrease of Lachnospiraceae, Ruminococcus and Collinsella. These data confirm that gut microbiota metabolism, in particular the potential existence of different metabotypes, needs to be considered in studies attempting to link tart cherries consumption and health.
Collapse
Affiliation(s)
| | - Ellen Pottgen
- Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Jana De Bodt
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of BioScience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Nora Papp
- Faculty of Food Science, Department of Applied Chemistry, Szent István University, 1118 Budapest, Hungary
| | - Daya Marasini
- Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Luke Howard
- Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Laszlo Abranko
- Faculty of Food Science, Department of Applied Chemistry, Szent István University, 1118 Budapest, Hungary
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology (LabMET), Faculty of BioScience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Sun-Ok Lee
- Food Science, University of Arkansas, Fayetteville, AR, United States; Center for Human Nutrition, Division of Agriculture, University of Arkansas, United States
| | - Franck Carbonero
- Food Science, University of Arkansas, Fayetteville, AR, United States; Center for Human Nutrition, Division of Agriculture, University of Arkansas, United States.
| |
Collapse
|
33
|
Jurikova T, Mlcek J, Skrovankova S, Sumczynski D, Sochor J, Hlavacova I, Snopek L, Orsavova J. Fruits of Black Chokeberry Aronia melanocarpa in the Prevention of Chronic Diseases. Molecules 2017; 22:E944. [PMID: 28590446 PMCID: PMC6152740 DOI: 10.3390/molecules22060944] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022] Open
Abstract
In recent years, growing attention has been focused on the utilization of natural sources of antioxidants in the prevention of chronic diseases. Black chokeberry (Aronia melanocarpa) represents a lesser known fruit species utilized mainly as juices, purees, jams, jellies and wine, as important food colorants or nutritional supplements. The fruit is valued as a great source of antioxidants, especially polyphenols, such as phenolic acids (neochlorogenic and chlorogenic acids) and flavonoids (anthocyanins, proanthocyanidins, flavanols and flavonols), particularly cyanidin-3-galactoside and cyanidin-3-arabinoside, as well as (-)-epicatechin units. The berries of A. melanocarpa, due to the presence and the high content of these bioactive components, exhibit a wide range of positive effects, such as strong antioxidant activity and potential medicinal and therapeutic benefits (gastroprotective, hepatoprotective, antiproliferative or anti-inflammatory activities). They could be also contributory toward the prevention of chronic diseases including metabolic disorders, diabetes and cardiovascular diseases, because of supportive impacts on lipid profiles, fasting plasma glucose and blood pressure levels.
Collapse
Affiliation(s)
- Tunde Jurikova
- Institute for teacher training, Faculty of Central European Studies, Constantine the Philosopher University in Nitra, Drazovska 4, Nitra SK-949 74, Slovakia.
| | - Jiri Mlcek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| | - Sona Skrovankova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| | - Daniela Sumczynski
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic.
| | - Irena Hlavacova
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| | - Lukas Snopek
- Department of Food Analysis and Chemistry, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| | - Jana Orsavova
- Language Centre, Faculty of Humanities, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, CZ-760 01 Zlín, Czech Republic.
| |
Collapse
|
34
|
The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol 2017; 139:82-93. [PMID: 28483461 DOI: 10.1016/j.bcp.2017.04.033] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
(Poly)phenols (PPs) constitute a large family of phytochemicals with high chemical diversity that are known to be active principles of plant-derived nutraceuticals and herbal medicinal products. Their pharmacological activity, however, is difficult to demonstrate due to their mild physiological effects, and to the large inter-individual variability observed. Many PPs have little bioavailability and reach the colon almost unaltered. There they encounter the gut microbes resulting in a two-way interaction in which PPs modulate the gut microbiota composition, and the intestinal microbes catabolize the ingested PPs to release metabolites that are often more active and better absorbed than the native phenolic compounds. The type and quantity of the PP metabolites produced in humans depend on the gut microbiota composition and function, and different metabotypes have been identified. However, not all the metabolites have the same biological activity, and therefore the final health effects of dietary PPs depend on the gut microbiota composition. Stratification in clinical trials according to individuals' metabotypes is necessary to fully understand the health effects of PPs. In this review, we present and discuss the most significant and updated knowledge regarding the reciprocal interrelation of the gut microbiota with dietary PPs as a key factor that modulates the health effects of these compounds. The review will focus in those PPs that are known to be metabolized by gut microbiota resulting in bioactive metabolites.
Collapse
|
35
|
Biochemical characteristics of three feruloyl esterases with a broad substrate spectrum from Bacillus amyloliquefaciens H47. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Song YR, Baik SH. Molecular cloning, purification, and characterization of a novel thermostable cinnamoyl esterase from Lactobacillus helveticus KCCM 11223. Prep Biochem Biotechnol 2017; 47:496-504. [PMID: 28045590 DOI: 10.1080/10826068.2016.1275011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A gene encoding cinnamoyl esterase (CE), which breaks down chlorogenic acid (ChA) into caffeic and quinic acids, was cloned from Lactobacillus helveticus KCCM 11223. The gene with an open reading frame of 759 nucleotides was expressed in Escherichia coli, which resulted in a 51.6-fold increase in specific activity compared to L. helveticus KCCM 11223. The recombinant CE exists as a monomeric enzyme having a molecular weight of 27.4 kDa. Although the highest activity was observed at pH 7, the enzyme showed stable activity at pH 4.0-10.0. Its optimum temperature was 65°C, and it also possessed a thermophilic activity: the half-life of CE was 24.4 min at 65°C. The half-life of CE was 145.5, 80.5, and 24.4 min at 60, 62, and 65°C, respectively. The Km and Vmax values for ChA were 0.153 mM and 559.6 µM/min, respectively. Moreover, the CE showed the highest substrate specificity with methyl caffeate among other methyl esters of hydroxycinnamic acids such as methyl ferulate, methyl sinapinate, methyl p-coumarate, and methyl caffeate. Ca2+, Cu2+, and Fe2+ significantly reduced the relative activity on ChA up to 70%. This is the first report on a thermostable CE from lactic acid bacteria that can be useful to hydrolyze ChA from plant cell walls.
Collapse
Affiliation(s)
- Young-Ran Song
- a Department of Food Science and Human Nutrition, and Fermented Food Research Center , Chonbuk National University , Jeonju , Korea.,b Korea Food Research Institute , Sungnam , Gyeonggi-do , Korea
| | - Sang-Ho Baik
- a Department of Food Science and Human Nutrition, and Fermented Food Research Center , Chonbuk National University , Jeonju , Korea
| |
Collapse
|
37
|
Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria. Curr Microbiol 2016; 74:247-256. [DOI: 10.1007/s00284-016-1182-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
|
38
|
Sheflin AM, Melby CL, Carbonero F, Weir TL. Linking dietary patterns with gut microbial composition and function. Gut Microbes 2016; 8:113-129. [PMID: 27960648 PMCID: PMC5390824 DOI: 10.1080/19490976.2016.1270809] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Emerging insights have implicated the gut microbiota as an important factor in the maintenance of human health. Although nutrition research has focused on how direct interactions between dietary components and host systems influence human health, it is becoming increasingly important to consider nutrient effects on the gut microbiome for a more complete picture. Understanding nutrient-host-microbiome interactions promises to reveal novel mechanisms of disease etiology and progression, offers new disease prevention strategies and therapeutic possibilities, and may mandate alternative criteria to evaluate the safety of food ingredients. Here we review the current literature on diet effects on the microbiome and the generation of microbial metabolites of dietary constituents that may influence human health. We conclude with a discussion of the relevance of these studies to nutrition and public health and summarize further research needs required to realize the potential of exploiting diet-microbiota interactions for improved health.
Collapse
Affiliation(s)
- Amy M. Sheflin
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Christopher L. Melby
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Franck Carbonero
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Tiffany L. Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA,CONTACT Tiffany L. Weir 210 Gifford Building, 1571 Campus Delivery, Colorado State University, Fort Collins, CO 80521-1571, USA
| |
Collapse
|
39
|
Negrel J, Javelle F, Morandi D, Lucchi G. Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrhizal tomato roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:308-318. [PMID: 27783981 DOI: 10.1016/j.plaphy.2016.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 06/06/2023]
Abstract
A Gram-negative bacterium able to grow using chlorogenic acid (5-caffeoylquinic acid) as sole carbon source has been isolated from the roots of tomato plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. An intracellular esterase exhibiting very high affinity (Km = 2 μM) for chlorogenic acid has been extracted and purified by FPLC from the chlorogenate-grown cultures of this bacterium. The molecular mass of the purified esterase determined by SDS-PAGE was 61 kDa and its isoelectric point determined by chromatofocusing was 7.75. The esterase hydrolysed chlorogenic acid analogues (caffeoylshikimate, and the 4- and 3-caffeoylquinic acid isomers), feruloyl esterases substrates (methyl caffeate and methyl ferulate), and even caffeoyl-CoA in vitro but all of them were less active than chlorogenic acid, demonstrating that the esterase is a genuine chlorogenic acid esterase. It was also induced when the bacterial strain was cultured in the presence of hydroxycinnamic acids (caffeic, p-coumaric or ferulic acid) as sole carbon source, but not in the presence of simple phenolics such as catechol or protocatechuic acid, nor in the presence of organic acids such as succinic or quinic acids. The purified esterase was remarkably stable in the presence of methanol, rapid formation of methyl caffeate occurring when its activity was measured in aqueous solutions containing 10-60% methanol. Our results therefore show that this bacterial chlorogenase can catalyse the transesterification reaction previously detected during the methanolic extraction of chlorogenic acid from arbuscular mycorrhizal tomato roots. Data are presented suggesting that colonisation by Rhizophagus irregularis could increase chlorogenic acid exudation from tomato roots, especially in nutrient-deprived plants, and thus favour the growth of chlorogenate-metabolizing bacteria on the root surface or in the mycorhizosphere.
Collapse
Affiliation(s)
- Jonathan Negrel
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France.
| | - Francine Javelle
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Dominique Morandi
- Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Géraldine Lucchi
- Clinical Innovation Proteomic Platform, Univ. Bourgogne Franche-Comté, F-21070, Dijon, France
| |
Collapse
|
40
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016. [PMID: 27507964 DOI: 10.3389/fmicb.2016.01144]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy; Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
41
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016. [PMID: 27507964 DOI: 10.3389/fmicb.2016.01144] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy; Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
42
|
Borowska S, Brzóska MM. Chokeberries (Aronia melanocarpa
) and Their Products as a Possible Means for the Prevention and Treatment of Noncommunicable Diseases and Unfavorable Health Effects Due to Exposure to Xenobiotics. Compr Rev Food Sci Food Saf 2016; 15:982-1017. [DOI: 10.1111/1541-4337.12221] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Sylwia Borowska
- Borowska and Brzóska are with Dept. of Toxicology; Medical Univ. of Bialystok; Bialystok Poland
| | - Malgorzata M. Brzóska
- Borowska and Brzóska are with Dept. of Toxicology; Medical Univ. of Bialystok; Bialystok Poland
| |
Collapse
|
43
|
Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates. Food Microbiol 2016; 57:178-86. [DOI: 10.1016/j.fm.2016.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/16/2016] [Accepted: 03/03/2016] [Indexed: 11/19/2022]
|
44
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016; 7:1144. [PMID: 27507964 PMCID: PMC4960240 DOI: 10.3389/fmicb.2016.01144] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
45
|
Microbial Degradation of Chlorogenic Acid by a Sphingomonas sp. Strain. Appl Biochem Biotechnol 2016; 179:1381-92. [PMID: 27068831 DOI: 10.1007/s12010-016-2071-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
Abstract
In order to elucidate the metabolism of chlorogenic acid by environmental microbes, a strain of Sphingomonas sp. isolated from tobacco leaves was cultured under various conditions, and chlorogenic acid degradation and its metabolites were investigated. The strain converting chlorogenic acid was newly isolated and identified as a Sphingomonas sp. strain by 16S rRNA sequencing. The optimal conditions for growth and chlorogenic acid degradation were 37 °C and pH 7.0 with supplementation of 1.5 g/l (NH4)2SO4 as the nitrogen source and 2 g/l chlorogenic acid as the sole carbon source. The maximum chlorogenic acid tolerating capability for the strain was 5 g/l. The main metabolites were identified as caffeic acid, shikimic acid, and 3,4-dihydroxybenzoic acid based on gas chromatography-mass spectrometry analysis. The analysis reveals the biotransformation mechanism of chlorogenic acid in microbial cells isolated from the environment.
Collapse
|
46
|
Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients 2015; 7:2788-800. [PMID: 25875120 PMCID: PMC4425173 DOI: 10.3390/nu7042788] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 01/05/2023] Open
Abstract
Flavonols and flavanones are polyphenols exerting many healthy biological activities. They are often glycosylated by rutinose, which hampers absorption in the small intestine. Therefore they require the gut microbiota to release the aglycone and enable colonic absorption. The role of the gut microbiota and bifidobacteria in the release of the aglycones from two major rutinosides, hesperidin and rutin, was investigated. In bioconversion experiments, the microbiota removed rutinose from both rutin and hesperidin, even though complete hydrolysis was not obtained. To investigate whether bifidobacteria can participate to the hydrolysis of rutinosides, 33 strains were screened. Rutin was resistant to hydrolysis by all the strains. Among six tested species, mostly Bifidobacterium catenulatum and Bifidobacterium pseudocatenultum were able to hydrolyze hesperidin, by means of a cell-associated activity. This result is in agreement with the presence of a putative α-l-rhamnosidase in the genome of B. pseudocatenulatum, while most of the available genome sequences of bifidobacteria aside from this species do not bear this sequence. Even though B. pseudocatenulatum may contribute to the release of the aglycone from certain rutinose-conjugated polyphenols, such as hesperidin, it remains to be clarified whether this species may exert a role in affecting the bioavailability of the rutinoside in vivo.
Collapse
|