1
|
Yang H, Xiong X, Tai Y, Xiao LJ, He D, Wu L, Zhou L, Ren L, Wu QL, Han BP. Sediment bacterial biogeography across reservoirs in the Hanjiang river basin, southern China: the predominant influence of eutrophication-induced carbon enrichment. Front Microbiol 2025; 16:1554914. [PMID: 40226101 PMCID: PMC11991844 DOI: 10.3389/fmicb.2025.1554914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
A fundamental goal of reservoir ecosystem management is to understand bacterial biogeographic patterns and the mechanisms shaping them at a regional scale. However, little is known about how eutrophication, a major water quality challenge in reservoirs, influences sediment bacterial biogeographic patterns in subtropical regions. In this study, sediment bacterial communities were sampled from 21 subtropical reservoirs in the Hanjiang river basin, southern China, and spanning trophic states from oligotrophic to eutrophic. Our findings demonstrated that eutrophication-driven changes in total carbon (TC) significantly shaped the regional biogeographic patterns of sediment bacterial communities, weakening the "distance-decay" relationships that typically link bacterial community similarity to geographical distance. TC content exceeding a threshold of 13.2 g·kg-1 resulted in substantial shifts in bacterial community structure. Specifically, high TC levels promoted the dominance of copiotrophic bacteria such as Syntrophales (Deltaproteobacteria), Clostridiaceae (Firmicutes), and VadinHA17 (Bacteroidetes), while oligotrophic taxa like Anaerolineaceae (Chloroflexi) and Nitrospirota were prevalent in low TC sediments. Additionally, higher TC content was associated with increased regional heterogeneity in bacterial community composition. Reservoirs with elevated TC levels exhibited more complex bacterial interaction networks, characterized by stronger niche segregation and higher competition compared to low TC networks. Overall, these findings underscore the pivotal role of sediment TC in shaping bacterial biogeography at a regional scale. They provide valuable insights for predicting ecosystem responses to eutrophication and offer guidance for mitigating the impacts of anthropogenic activities on freshwater ecosystems.
Collapse
Affiliation(s)
- Haokun Yang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Xueling Xiong
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Yiping Tai
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Li-Juan Xiao
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Dan He
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Liqin Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, China
| | - Lijun Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Lijuan Ren
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| | - Qinglong L. Wu
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Bo-Ping Han
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Yang Q, Yan Y, Huang J, Wang Z, Feng M, Cheng H, Zhang P, Zhang H, Xu J, Zhang M. The Impact of Warming on Assembly Processes and Diversity Patterns of Bacterial Communities in Mesocosms. Microorganisms 2023; 11:2807. [PMID: 38004818 PMCID: PMC10672829 DOI: 10.3390/microorganisms11112807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Bacteria in lake water bodies and sediments play crucial roles in various biogeochemical processes. In this study, we conducted a comprehensive analysis of bacterioplankton and sedimentary bacteria community composition and assembly processes across multiple seasons in 18 outdoor mesocosms exposed to three temperature scenarios. Our findings reveal that warming and seasonal changes play a vital role in shaping microbial diversity, species interactions, and community assembly disparities in water and sediment ecosystems. We observed that the bacterioplankton networks were more fragile, potentially making them susceptible to disturbances, whereas sedimentary bacteria exhibited increased stability. Constant warming and heatwaves had contrasting effects: heatwaves increased stability in both planktonic and sedimentary bacteria communities, but planktonic bacterial networks became more fragile under constant warming. Regarding bacterial assembly, stochastic processes primarily influenced the composition of planktonic and sedimentary bacteria. Constant warming intensified the stochasticity of bacterioplankton year-round, while heatwaves caused a slight shift from stochastic to deterministic in spring and autumn. In contrast, sedimentary bacteria assembly is mainly dominated by drift and remained unaffected by warming. Our study enhances our understanding of how bacterioplankton and sedimentary bacteria communities respond to global warming across multiple seasons, shedding light on the complex dynamics of microbial ecosystems in lakes.
Collapse
Affiliation(s)
- Qian Yang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Yifeng Yan
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Jinhe Huang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Zhaolei Wang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Mingjun Feng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Haowu Cheng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| | - Peiyu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.Z.); (H.Z.); (J.X.)
| | - Huan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.Z.); (H.Z.); (J.X.)
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.Z.); (H.Z.); (J.X.)
| | - Min Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (Q.Y.); (Y.Y.); (J.H.); (Z.W.); (M.F.); (H.C.)
| |
Collapse
|
3
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
4
|
Liu Q, Chang F, Xie P, Zhang Y, Duan L, Li H, Zhang X, Zhang Y, Li D, Zhang H. Microbiota assembly patterns and diversity of nine plateau lakes in Yunnan, southwestern China. CHEMOSPHERE 2023; 314:137700. [PMID: 36587916 DOI: 10.1016/j.chemosphere.2022.137700] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microbes serve as important components of ecosystem services and biogeochemical processes in plateau lakes. However, the features of microbiota assembly, abundance and diversity in plateau lakes remain unclear. The microbial communities in surface water from nine plateau lakes in Yunnan Plateau, southwestern China, in the dry and rainy seasons were explored using 16S rRNA gene and 18S rRNA gene sequencing. The results showed that the bacterial community compositions were homogeneous while those of micro-eukaryotes were heterogeneous in plateau lakes. In both seasons, the bacterial phyla of Proteobacteria and Actinobacteriota predominated in oligotrophic lakes. The mesotrophic lakes were dominated by Proteobacteria, Actinobacteriota, Bacteroidota and Cyanobacteria. The eutrophic lakes were mainly dominated by Proteobacteria, Actinobacteriota and Cyanobacteria. The phylum SAR_k_norank had the major micro-eukaryotes in these plateau lakes. The alpha-diversity of bacteria declined in the rainy season, while that of micro-eukaryotes varied from lake to lake. The drivers of microbiotic community assembly in the dry season were identified as nutrient level-related factors. In the rainy season, however, the microbiota in oligotrophic lakes were related to nutrient levels. Microbial communities were driven by precipitation in mesotrophic and eutrophic lakes with large water volumes, while those in lakes with small water volumes were regulated by nutrient level-related factors. Our findings pose first and unique insights into the microbiota of the nine plateau lakes in Yunnan Plateau, providing important ecological knowledge for these lakes with different characteristics.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, Wuhan, 430072, China
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Haoyu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Yun Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
5
|
Premke K, Wurzbacher C, Felsmann K, Fabian J, Taube R, Bodmer P, Attermeyer K, Nitzsche KN, Schroer S, Koschorreck M, Hübner E, Mahmoudinejad TH, Kyba CCM, Monaghan MT, Hölker F. Large-scale sampling of the freshwater microbiome suggests pollution-driven ecosystem changes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119627. [PMID: 35714791 DOI: 10.1016/j.envpol.2022.119627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Freshwater microbes play a crucial role in the global carbon cycle. Anthropogenic stressors that lead to changes in these microbial communities are likely to have profound consequences for freshwater ecosystems. Using field data from the coordinated sampling of 617 lakes, ponds, rivers, and streams by citizen scientists, we observed linkages between microbial community composition, light and chemical pollution, and greenhouse gas concentration. All sampled water bodies were net emitters of CO2, with higher concentrations in running waters, and increasing concentrations at higher latitudes. Light pollution occurred at 75% of sites, was higher in urban areas and along rivers, and had a measurable effect on the microbial alpha diversity. Genetic elements suggestive of chemical stress and antimicrobial resistances (IntI1, blaOX58) were found in 85% of sites, and were also more prevalent in urban streams and rivers. Light pollution and CO2 were significantly related to microbial community composition, with CO2 inversely related to microbial phototrophy. Results of synchronous nationwide sampling indicate that pollution-driven alterations to the freshwater microbiome lead to changes in CO2 production in natural waters and highlight the vulnerability of running waters to anthropogenic stressors.
Collapse
Affiliation(s)
- Katrin Premke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | - Katja Felsmann
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Jenny Fabian
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Robert Taube
- City University of Applied Science, Bremen, Germany
| | | | - Katrin Attermeyer
- WasserCluster Lunz - Biologische Station, Lunz am See, Austria; Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Kai Nils Nitzsche
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Sibylle Schroer
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | | | - Eric Hübner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | | | - Christopher C M Kyba
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; GFZ German Research Centre for Geosciences, Helmholtz Centre, Potsdam, Germany
| | - Michael T Monaghan
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Institute für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Institute für Biologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Bai Y, Ruan X, Li R, Zhang Y, Wang Z. Metagenomics-based antibiotic resistance genes diversity and prevalence risk revealed by pathogenic bacterial host in Taihu Lake, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2531-2543. [PMID: 34292452 DOI: 10.1007/s10653-021-01021-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, antibiotics and antibiotic resistance genes (ARGs) have been regarded as emerging pollutants. In Taihu Lake, as a typical representative of freshwater system in China, the ARGs occurrence and abundance was of great importance for ecological risk control and public health protection. In this research, high-throughput sequencing and metagenomics technique were used to investigate the seasonal ARGs profile in overlying water and sediment at typical area of Taihu Lake. Besides, taxonomy pattern of ARGs host bacteria and potential pathogens were identified. The results showed that 33 ARG subtypes and 11 ARG types were detected in research area, among which bacitracin, multidrug and sulfonamides resistance gene were with the highest abundance. The relative abundance of ARGs in overlying water and sediment ranged from 1.68 to 661.05 ppm and from 1.93 to 49.47 ppm, respectively. ARG host (18 bacteria genus) were identified and annotated, among which Clostridium botulinum, Pseudomonas aeruginosa and Klebsiella pneumonia were pathogenic bacteria. The pathogens were mostly detected at Xukou Bay in spring and fall, which might be caused by the inlet water from aquaculture area of Yangcheng Lake. Pseudomonas was the most abundant ARGs host (ant2ib, baca, bl2d_oxa2,mexb, mexf, mexw and oprn), which may facilitate the propagation of ARGs in freshwater system.
Collapse
Affiliation(s)
- Ying Bai
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, 223# Guangzhou Road, Nanjing, 210029, China
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Xiaohong Ruan
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Rongfu Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Yaping Zhang
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Zongzhi Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, 223# Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
7
|
Pierangeli GMF, Domingues MR, Choueri RB, Hanisch WS, Gregoracci GB, Benassi RF. Spatial Variation and Environmental Parameters Affecting the Abundant and Rare Communities of Bacteria and Archaea in the Sediments of Tropical Urban Reservoirs. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02047-z. [PMID: 35610383 DOI: 10.1007/s00248-022-02047-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Microbial communities in freshwater sediments play an important role in organic matter remineralization, contributing to biogeochemical cycles, nutrient release, and greenhouse gases emissions. Bacterial and archaeal communities might show spatial or seasonal patterns and were shown to be influenced by distinct environmental parameters and anthropogenic activities, including pollution and damming. Here, we determined the spatial variation and the environmental variables influencing the abundant and rare bacterial and archaeal communities in the sediments of eutrophic-hypereutrophic reservoirs from a tropical urban area in Brazil. The most abundant microbes included mainly Anaerolineae and Deltaproteobacteria genera from the Bacteria domain, and Methanomicrobia genera from the Archaea domain. Microbial communities differed spatially in each reservoir, reflecting the establishment of specific environmental conditions. Locations with better or worst water quality, or close to a dam, showed more distinct microbial communities. Besides the water column depth, microbial communities were affected by some pollution indicators, including total phosphorus, orthophosphate, electrical conductivity, and biochemical oxygen demand. Distinct proportions of variation were explained by spatial and environmental parameters for each microbial community. Furthermore, spatial variations in environmental parameters affecting these communities, especially the most distinct ones, contributed to microbial variations mediated by spatial and environmental properties together. Finally, our study showed that different pressures in each reservoir affected the sediment microbiota, promoting different responses and possible adaptations of abundant and rare bacterial and archaeal communities.
Collapse
Affiliation(s)
- Gabrielle Maria Fonseca Pierangeli
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil
| | - Mercia Regina Domingues
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Rodrigo Brasil Choueri
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil
| | | | - Gustavo Bueno Gregoracci
- Marine Biotechnology Lab (Room 505), Institute of Marine Sciences, Federal University of São Paulo, Campus Baixada Santista, Rua Dr. Carvalho de Mendonça, 144 - Vila Belmiro, Santos, SP, 11070-100, Brazil.
| | - Roseli Frederigi Benassi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, Brazil
| |
Collapse
|
8
|
Zhang H, Yang L, Li Y, Wang C, Zhang W, Wang L, Niu L. Pollution gradients shape the co-occurrence networks and interactions of sedimentary bacterial communities in Taihu Lake, a shallow eutrophic lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114380. [PMID: 34995945 DOI: 10.1016/j.jenvman.2021.114380] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The co-occurrence networks and interactions of bacterial communities in sediments are highly variable with environmental factors, which are vital to the nutrient biogeochemical cycle, pollutants biodegradation, and microbial community stability in lake ecosystems. Although pollution gradients reflect environmental variation comprehensively, few studies have characterized the changes in co-occurrence networks and interactions of bacterial communities along sediment pollution gradients. In order to investigate the impact of pollution gradients on compositions, co-occurrence networks, and interactions of sedimentary microbial communities, we studied the bacterial communities in the sediments of a typical shallow eutrophic lake, Taihu Lake, along pollution gradients using 16S rRNA gene high-throughput sequencing technology. All the sediment sampling sites were classified into mild, moderate, and severe pollution groups according to the sediments' physicochemical properties. Our results showed that the taxon richness was lowest in the severe pollution group, and the diversity of species decreased with the level of pollution. The complexity of the co-occurrence network decreased as the level of pollution increased, and the severe pollution group was characterized by a small-world network. The relative abundance of Proteobacteria, Bacteroidetes, and Chlorobi increased significantly as the level of pollution increased (P < 0.05). Strong inter-phyla co-occurrence or co-exclusion patterns demonstrated that the strength of interactions was enhanced in the severe pollution group, indicating stronger cooperative or competitive relationships. Chloroflexales and Chlorobiales were unique keystone taxa in the severe pollution group. The results of this study indicate that severe pollution reduces microbial diversity and network complexity, which may lead to community instability. The competition for nutrients of some copiotrophic bacteria may be enhanced as the level of pollution increased. The unique keystone taxa may contribute to photosynthesis and pollutant degradation in the severe pollution group. These findings expand our understanding of variation in bacterial co-occurrence networks and interactions along sediment pollution gradients.
Collapse
Affiliation(s)
- Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Liu Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
9
|
Li S, Liao Y, Pang Y, Dong X, Strous M, Ji G. Denitrification and dissimilatory nitrate reduction to ammonia in long-term lake sediment microcosms with iron(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150835. [PMID: 34627917 DOI: 10.1016/j.scitotenv.2021.150835] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Nitrate is an abundant pollutant in aquatic environments. Competition between the nitrate reduction processes, denitrification, which converts nitrate into nitrogen gas, and dissimilatory nitrate reduction to ammonia (DNRA), which converts nitrate into ammonia, decides whether an ecosystem removes or retains nitrogen. The presence of iron was previously reported to stimulate DNRA while sometimes inhibiting denitrification in in-situ studies, but long-term effect of iron(II) inputs on the competition is unknown. Here we inoculated long-term microcosms with sediments from two freshwater lakes. During 540 days of incubations, the microcosms with nitrate and Fe(II) additions of both lakes were able to sustain high nitrate reduction rates. Lepidocrocite was produced as a product of iron oxidation. We found both denitrification and DNRA were stimulated by nitrate and iron in the absence of external organic carbon addition. Phylogenetic analysis of denitrification genes, nirK and nirS, and DNRA genes, nirB and nrfA, was performed with metagenomic sequencing results. Enrichment was shown for reported Fe(II)-dependent nitrate reducers associated with nirS and nirB. Most of these bacteria are affiliated with Betaproteobacteria. From 16S rRNA gene analysis, Betaproteobacteria was enriched as well. In parallel, heterotrophic denitrifiers and methanotrophic DNRA archaea increased in abundance. Our results suggested heterotrophic and Fe(II)-dependent nitrate reducers both contributed to denitrification and DNRA in long-term microcosm incubations provided with iron.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China; Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yinhao Liao
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, China
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Li S, Pang Y, Ji G. Increase of N 2O production during nitrate reduction after long-term sulfide addition in lake sediment microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118231. [PMID: 34571071 DOI: 10.1016/j.envpol.2021.118231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Microbial denitrification is a main source of nitrous oxide (N2O) emissions which have strong greenhouse effect and destroy stratospheric ozone. Though the importance of sulfide driven chemoautotrophic denitrification has been recognized, its contribution to N2O emissions in nature remains elusive. We built up long-term sulfide-added microcosms with sediments from two freshwater lakes. Chemistry analysis confirmed sulfide could drive nitrate respiration in long term. N2O accumulated to over 1.5% of nitrate load in both microcosms after long-term sulfide addition, which was up to 12.9 times higher than N2O accumulation without sulfide addition. Metagenomes were extracted and sequenced during microcosm incubations. 16 S rRNA genes of Thiobacillus and Defluviimonas were gradually enriched. The nitric oxide reductase with c-type cytochromes as electron donors (cNorB) increased in abundance, while the nitric oxide reductase receiving electrons from quinols (qNorB) decreased in abundance. cnorB genes similar to Thiobacillus were enriched in both microcosms. In parallel, enrichment was observed for enzymes involved in sulfur oxidation, which supplied electrons to nitrate respiration, and enzymes involved in Calvin Cycle, which sustained autotrophic cell growth, implying the coupling relationship between carbon, nitrogen and sulfur cycling processes. Our results suggested sulfur pollution considerably increased N2O emissions in natural environments.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Yunmeng Pang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China; Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Sagova-Mareckova M, Boenigk J, Bouchez A, Cermakova K, Chonova T, Cordier T, Eisendle U, Elersek T, Fazi S, Fleituch T, Frühe L, Gajdosova M, Graupner N, Haegerbaeumer A, Kelly AM, Kopecky J, Leese F, Nõges P, Orlic S, Panksep K, Pawlowski J, Petrusek A, Piggott JJ, Rusch JC, Salis R, Schenk J, Simek K, Stovicek A, Strand DA, Vasquez MI, Vrålstad T, Zlatkovic S, Zupancic M, Stoeck T. Expanding ecological assessment by integrating microorganisms into routine freshwater biomonitoring. WATER RESEARCH 2021; 191:116767. [PMID: 33418487 DOI: 10.1016/j.watres.2020.116767] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Bioindication has become an indispensable part of water quality monitoring in most countries of the world, with the presence and abundance of bioindicator taxa, mostly multicellular eukaryotes, used for biotic indices. In contrast, microbes (bacteria, archaea and protists) are seldom used as bioindicators in routine assessments, although they have been recognized for their importance in environmental processes. Recently, the use of molecular methods has revealed unexpected diversity within known functional groups and novel metabolic pathways that are particularly important in energy and nutrient cycling. In various habitats, microbial communities respond to eutrophication, metals, and natural or anthropogenic organic pollutants through changes in diversity and function. In this review, we evaluated the common trends in these changes, documenting that they have value as bioindicators and can be used not only for monitoring but also for improving our understanding of the major processes in lotic and lentic environments. Current knowledge provides a solid foundation for exploiting microbial taxa, community structures and diversity, as well as functional genes, in novel monitoring programs. These microbial community measures can also be combined into biotic indices, improving the resolution of individual bioindicators. Here, we assess particular molecular approaches complemented by advanced bioinformatic analysis, as these are the most promising with respect to detailed bioindication value. We conclude that microbial community dynamics are a missing link important for our understanding of rapid changes in the structure and function of aquatic ecosystems, and should be addressed in the future environmental monitoring of freshwater ecosystems.
Collapse
Affiliation(s)
- M Sagova-Mareckova
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia.
| | - J Boenigk
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Bouchez
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - K Cermakova
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland
| | - T Chonova
- UMR CARRTEL, INRAE, UMR Carrtel, 75 av. de Corzent, FR-74203 Thonon les Bains cedex, France; University Savoie Mont-Blanc, UMR CARRTEL, FR-73370 Le Bourget du Lac, France
| | - T Cordier
- Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland
| | - U Eisendle
- University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria
| | - T Elersek
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - S Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria km 29,300 - C.P. 10, 00015 Monterotondo St., Rome, Italy
| | - T Fleituch
- Institute of Nature Conservation, Polish Academy of Sciences, ul. Adama Mickiewicza 33, 31-120 Krakow, Poland
| | - L Frühe
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - M Gajdosova
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - N Graupner
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany
| | - A Haegerbaeumer
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - A-M Kelly
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J Kopecky
- Epidemiology and Ecology of Microoganisms, Crop Research Institute, Drnovská 507, 16106 Prague 6, Czechia
| | - F Leese
- Biodiversity, University of Duisburg-Essen, Universitaetsstraße 5, 45141 Essen, Germany; Aquatic Ecosystem Resarch, University of Duisburg-Essen, Universitaetsstrasse 5 D-45141 Essen, Germany
| | - P Nõges
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - S Orlic
- Institute Ruđer Bošković, Bijenička 54, 10000 Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean, Bijenička 54,10 000 Zagreb, Croatia
| | - K Panksep
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51006, Estonia
| | - J Pawlowski
- ID-Gene Ecodiagnostics, Campus Biotech Innovation Park, 15, av. Sécheron, 1202 Geneva, Switzerland; Department of Genetics and Evolution, University of Geneva, Science III, 4 Boulevard d'Yvoy, 1205 Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - A Petrusek
- Dept. of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - J J Piggott
- School of Natural Sciences, Trinity College Dublin, University of Dublin, College Green, Dublin 2, D02 PN40, Ireland
| | - J C Rusch
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway; Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - R Salis
- Department of Biology, Faculty of Science, Lund University, Sölvegatan 37, 223 62 Lund, Sweden
| | - J Schenk
- Dept. of Animal Ecology, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - K Simek
- Institute of Hydrobiology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czechia
| | - A Stovicek
- Dept. of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences, Kamýcká 129, Prague 6, 16500, Czechia
| | - D A Strand
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - M I Vasquez
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., 3036 Limassol, Cyprus
| | - T Vrålstad
- Norwegian Veterinary Institute, P.O. Box 750, Sentrum, NO-0106 Oslo, Norway
| | - S Zlatkovic
- Ministry of Environmental Protection, Omladinskih brigada 1, 11070 Belgrade, Serbia; Agency "Akvatorija", 11. krajiške divizije 49, 11090 Belgrade, Serbia
| | - M Zupancic
- National Institute of Biology, Vecna pot 111, SI-1000 Ljubljana, Slovenia
| | - T Stoeck
- Ecology Group, Technische Universität Kaiserslautern, D-67663 Kaiserslautern, Germany
| |
Collapse
|
12
|
Sun S, Li F, Xu X, Liu Y, Kong X, Chen J, Liu T, Chen L. Study on the community structure and function of symbiotic bacteria from different growth and developmental stages of Hypsizygus marmoreus. BMC Microbiol 2020; 20:311. [PMID: 33054730 PMCID: PMC7557082 DOI: 10.1186/s12866-020-01998-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The symbiotic bacteria associated with edible fungi are valuable microbial resources worthy of in-depth exploration. It is important to analyze the community structure and succession of symbiotic bacteria in mushrooms. This can assist in the isolation of growth-promoting strains that have an essential relationship with the cultivation cycle as well as the agronomic traits and yields of fruiting bodies. RESULTS In all of the samples from cultivation bags of Hypsizygus marmoreus, 34 bacterial phyla were detected. Firmicutes was the most abundant bacterial phylum (78.85%). The genus Serratia showed an exponential increase in abundance in samples collected from the cultivation bags in the mature period, reaching a peak abundance of 55.74% and the dominant symbiotic flora. The most predominant strain was Serratia odorifera HZSO-1, and its abundance increased with the amount of hyphae of H. marmoreus. Serratia odorifera HZSO-1 could reside in the hyphae of H. marmoreus, promote growth and development, shorten the fruiting cycle by 3-4 days, and further increase the fruiting body yield by 12%. CONCLUSIONS This study is a pioneering demonstration of the community structure of the symbiotic microbiota and bacteria-mushroom interaction in the growth and development of edible fungi. This work lays a theoretical foundation to improve the industrial production of mushrooms with symbiotic bacteria as assisting agents.
Collapse
Affiliation(s)
- Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Fan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xin Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yunchao Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xuqiang Kong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Jianqiu Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Ting Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
13
|
Paruch L, Paruch AM, Eiken HG, Skogen M, Sørheim R. Seasonal dynamics of lotic bacterial communities assessed by 16S rRNA gene amplicon deep sequencing. Sci Rep 2020; 10:16399. [PMID: 33009479 PMCID: PMC7532223 DOI: 10.1038/s41598-020-73293-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/15/2020] [Indexed: 12/04/2022] Open
Abstract
Aquatic microbial diversity, composition, and dynamics play vital roles in sustaining water ecosystem functionality. Yet, there is still limited knowledge on bacterial seasonal dynamics in lotic environments. This study explores a temporal pattern of bacterial community structures in lotic freshwater over a 2-year period. The aquatic bacterial communities were assessed using Illumina MiSeq sequencing of 16S rRNA genes. Overall, the communities were dominated by α-, β-, and γ-Proteobacteria, Bacteroidetes, Flavobacteriia, and Sphingobacteriia. The bacterial compositions varied substantially in response to seasonal changes (cold vs. warm), but they were rather stable within the same season. Furthermore, higher diversity was observed in cold seasons compared to warm periods. The combined seasonal-environmental impact of different physico-chemical parameters was assessed statistically, and temperature, suspended solids, and nitrogen were determined to be the primary abiotic factors shaping the temporal bacterial assemblages. This study enriches particular knowledge on the seasonal succession of the lotic freshwater bacteria.
Collapse
Affiliation(s)
- Lisa Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research - NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway
| | - Adam M Paruch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research - NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway.
| | - Hans Geir Eiken
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research - NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway
| | - Monica Skogen
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research - NIBIO, Høgskoleveien 7, 1433, Ås, Norway
| | - Roald Sørheim
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research - NIBIO, Oluf Thesens vei 43, 1433, Ås, Norway
| |
Collapse
|
14
|
Wan W, Zhang Y, Cheng G, Li X, Qin Y, He D. Dredging mitigates cyanobacterial bloom in eutrophic Lake Nanhu: Shifts in associations between the bacterioplankton community and sediment biogeochemistry. ENVIRONMENTAL RESEARCH 2020; 188:109799. [PMID: 32798942 DOI: 10.1016/j.envres.2020.109799] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacterial blooms are a worldwide environmental problem, which is partly attributed to their access to excessive nitrogen (N) and phosphorus (P). Preventing the blooms by reducing N and P from internal inputs is viewed as a challenge. To evaluate the effects of dredging on cyanobacterial abundances and bacterioplankton communities, water and sediment samples were collected from eutrophic Lake Nanhu (Wuhan, China) before dredging (2017) and after dredging (2018). After dredging, significant decreases were observed for sediment nutrients (e.g., C, N, and P sources); C-, N-, P-, and S-cycling-related enzyme activity; N- and P-cycling-related gene abundance; microbial abundance; and dramatic changes were observed in the composition of the sediment microbial community. The release rates of nutrient including nitrogen, phosphorus, and organic matter decreased after dredging, and sediment biogeochemistry was closely correlated to nutrient release rates. Additionally, our observations and analyses indicated that the abundance and diversity of the bacterioplankton community decreased significantly, the composition and interaction of the bacterioplankton community dramatically changed, and the bacterioplankton community function (e.g., N, P-cycling-related enzymes and proteins) down regulated after dredging. Water and sediment physicochemical factors explained 72.28% variation in bacterioplankton community composition, and these physicochemical factors were significantly correlated with diversity, composition, and function of bacterioplankton community. Our findings emphasized that cyanobacterial blooms in freshwater ecosystems were closely correlated with noncyanobacterial bacterioplankton that were largely conserved at the phylum level, with Proteobacteria, Actinobacteria, and Bacteroidetes as the main taxa. To our knowledge, this is the first report clarifying the mechanism of cyanobacterial blooms mitigation by dredging, via changing the association between the bacterioplankton community and sediment biogeochemistry. Our findings are of significance and indicate that dredging is effective for mitigating cyanobacterial blooms.
Collapse
Affiliation(s)
- Wenjie Wan
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yunan Zhang
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China
| | - Guojun Cheng
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China
| | - Xiaohua Li
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China
| | - Yin Qin
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China
| | - Donglan He
- College of Life Science, South-Central University for Nationalities, Wuhan, 430070, PR China.
| |
Collapse
|
15
|
Zhang W, Tan X, Gu Y, Liu S, Liu Y, Hu X, Li J, Zhou Y, Liu S, He Y. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. CHEMOSPHERE 2020; 250:126268. [PMID: 32234619 DOI: 10.1016/j.chemosphere.2020.126268] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
The effectiveness of rice waste biochars on heavy metal and metalloid abatement and detoxification was investigated using comprehensive studies based on As and Cd immobilization, bioaccumulation in tubifex, and microbial community changes in contaminated sediment. The remediation effects of biochars produced at different pyrolytic temperatures (400-700 °C) were evaluated. Bioaccumulation of heavy metal and metalloid in the tubifex tissue and change of indigenous microbial community under treatment of different biochars were assessed. Biochars produced at 700 °C exhibited greater effect on decreasing the concentrations of As and Cd in aqueous phase, and TCLP extractable and bioavailable metal(loid) in solid phase of sediment. The concentration of As and Cd in water phase decreased by 26%-89% and 22%-71% under the treatment of straw biochar, and decreased by 13%-92% and 5%-64% under the treatment of rice husk biochar, respectively. As and Cd contents in the tubifex tissue were positively correlated with their concentrations in aqueous phase. High-temperature biochars significantly reduced metal(loid) bioaccumulation in tubifex. The richness and biodiversity of microbial community were both greater in all biochars remediated sediment compared to non-treated sediment. These results indicated that rice waste biochars could effectively inhibit the bio-availability and toxicity of heavy metal and metalloid in sediment, and the higher-temperature biochar exhibited better performance.
Collapse
Affiliation(s)
- Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanling Gu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Shaobo Liu
- College of Architecture and Art, Central South University, Changsha, 410083, PR China.
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, PR China
| | - Jiang Li
- College of Architecture and Art, Central South University, Changsha, 410083, PR China
| | - Yahui Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Sijia Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yuan He
- Center of Changsha Public Engineering Construction, Changsha, 410013, China
| |
Collapse
|
16
|
Liu TT, Yang H. Comparative analysis of the total and active bacterial communities in the surface sediment of Lake Taihu. FEMS Microbiol Ecol 2020; 96:5815072. [PMID: 32239216 DOI: 10.1093/femsec/fiaa059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/29/2020] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities play crucial roles in the biogeochemical cycle of the surface sediments of freshwater lakes, but previous studies on bacterial community changes in this habitat have mostly been based on the total bacterial community (DNA level), while an exploration of the active microbiota at the RNA level has been lacking. Herein, we analysed the bacterial communities in the surface sediments of Lake Taihu at the DNA and RNA levels. Using MiSeq sequencing and real-time quantification, we found that the sequencing and quantitative results obtained at the RNA level compared with the DNA level were more accurate in responding to the spatiotemporal dynamic changes of the bacterial community. Although both sequencing methods indicated that Proteobacteria, Chloroflexi, Acidobacteria, Nitrospirae, Bacteroidetes and Actinobacteria were the dominant phyla, the co-occurrence network at the RNA level could better reflect the close relationship between microorganisms in the surface sediment. Additionally, further analysis showed that Prochlorococcus and Microcystis were the most relevant and dominant genera of Cyanobacteria in the total and active bacterial communities, respectively; our results also demonstrated that the analysis of Cyanobacteria-related groups at the RNA level was more 'informative'.
Collapse
Affiliation(s)
- Tong-Tong Liu
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Hong Yang
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
17
|
Liu Q, Zhang Y, Wu H, Liu F, Peng W, Zhang X, Chang F, Xie P, Zhang H. A Review and Perspective of eDNA Application to Eutrophication and HAB Control in Freshwater and Marine Ecosystems. Microorganisms 2020; 8:E417. [PMID: 32188048 PMCID: PMC7143994 DOI: 10.3390/microorganisms8030417] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/03/2020] [Accepted: 03/14/2020] [Indexed: 11/16/2022] Open
Abstract
Changing ecological communities in response to anthropogenic activities and climate change has become a worldwide problem. The eutrophication of waterbodies in freshwater and seawater caused by the effects of human activities and nutrient inputs could result in harmful algae blooms (HABs), decreases water quality, reductions in biodiversity and threats to human health. Rapid and accurate monitoring and assessment of aquatic ecosystems are imperative. Environmental DNA (eDNA) analysis using high-throughput sequencing has been demonstrated to be an effective and sensitive assay for detecting and monitoring single or multiple species in different samples. In this study, we review the potential applications of eDNA approaches in controlling and mitigating eutrophication and HABs in freshwater and marine ecosystems. We use recent studies to highlight how eDNA methods have been shown to be a useful tool for providing comprehensive data in studies of eutrophic freshwater and marine environments. We also provide perspectives on using eDNA techniques to reveal molecular mechanisms in biological processes and mitigate eutrophication and HABs in aquatic ecosystems. Finally, we discuss the feasible applications of eDNA for monitoring biodiversity, surveying species communities and providing instructions for the conservation and management of the environment by integration with traditional methods and other advanced techniques.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Yun Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Han Wu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Wei Peng
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, Wuhan 430072, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| |
Collapse
|
18
|
Aquatic Macrophytes and Local Factors Drive Bacterial Community Distribution and Interactions in a Riparian Zone of Lake Taihu. WATER 2020. [DOI: 10.3390/w12020432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aquatic macrophytes rhizosphere are biogeochemical cycling hotspots in freshwater ecosystems. However, little is known regarding the effect of aquatic macrophytes on bacterial community and interactions in the riparian zones. We investigated the bacterial community composition and network structures along a gradient of the riparian zone as follows: The supralittoral and eulittoral zones with Phragmites australis, the eulittoral and infralittoral zones without P. australi. The bacterial communities in the four zones differed significantly based on taxonomic dissimilarity, but the two zones with P. australis exhibited phylogenetic closeness of the bacterial communities. The characteristics of the bacterial networks, such as connectivity, modularity, and topological roles of OTUs, were totally different between the P. australis and non-P. australis zones. Some bacterial phyla enriched in the P. australis zones were found to be putative keystone taxa in the networks, which might be involved in the regulation of bacterial interactions and plant growth. Moreover, the hydrological regime and particle size were shown to be determinants of the bacterial community and network structures in the riparian zones. In summary, our results show that the role of P. australis and local factors are crucial for constructing bacterial community and interactions in the riparian zones of lakes.
Collapse
|
19
|
Shen M, Li Q, Ren M, Lin Y, Wang J, Chen L, Li T, Zhao J. Trophic Status Is Associated With Community Structure and Metabolic Potential of Planktonic Microbiota in Plateau Lakes. Front Microbiol 2019; 10:2560. [PMID: 31787952 PMCID: PMC6853845 DOI: 10.3389/fmicb.2019.02560] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Microbes in various aquatic ecosystems play a key role in global energy fluxes and biogeochemical processes. However, the detailed patterns on the functional structure and the metabolic potential of microbial communities in freshwater lakes with different trophic status remain to be understood. We employed a metagenomics workflow to analyze the correlations between trophic status and planktonic microbiota in freshwater lakes on Yun-Gui Plateau, China. Our results revealed that microbial communities in the eutrophic and mesotrophic-oligotrophic lake ecosystems harbor distinct community structure and metabolic potential. Cyanobacteria were dominant in the eutrophic ecosystems, mainly driving the processes of aerobic respiration, fermentation, nitrogen assimilation, nitrogen mineralization, assimilatory sulfate reduction and sulfur mineralization in this ecosystem group. Actinobacteria, Proteobacteria (Alpha-, Beta-, and Gammaproteobacteria), Verrucomicrobia and Planctomycetes, occurred more often in the mesotrophic-oligotrophic ecosystems than those in the eutrophic ecosystems, and these taxa potentially mediate the above metabolic processes. In these two groups of ecosystems, a difference in the abundance of functional genes involved in carbohydrate metabolism, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins significantly contribute to the distinct functional structure of microbiota from surface water. Furthermore, the microbe-mediated metabolic potentials for carbon, nitrogen and sulfur transformation showed differences in the two ecosystem groups. Compared with the mesotrophic-oligotrophic ecosystems, planktonic microbial communities in the eutrophic ecosystems showed higher potential for aerobic carbon fixation, fermentation, methanogenesis, anammox, denitrification, and sulfur mineralization, but they showed lower potential for aerobic respiration, CO oxidation, nitrogen fixation, and assimilatory sulfate reduction. This study offers insights into the relationships of trophic status to planktonic microbial community structure and its metabolic potential, and identifies the main taxa responsible for the biogeochemical cycles of carbon, nitrogen and sulfur in freshwater lake environments.
Collapse
Affiliation(s)
- Mengyuan Shen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Minglei Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Yan Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Juanping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Li Chen
- Yunnan Key Laboratory of Plateau Geographical Processes and Environment Change, School of Tourism and Geography, Yunnan Normal University, Kunming, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jindong Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
20
|
Changes in the Substrate Source Reveal Novel Interactions in the Sediment-Derived Methanogenic Microbial Community. Int J Mol Sci 2019; 20:ijms20184415. [PMID: 31500341 PMCID: PMC6770359 DOI: 10.3390/ijms20184415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
Methanogenesis occurs in many natural environments and is used in biotechnology for biogas production. The efficiency of methane production depends on the microbiome structure that determines interspecies electron transfer. In this research, the microbial community retrieved from mining subsidence reservoir sediment was used to establish enrichment cultures on media containing different carbon sources (tryptone, yeast extract, acetate, CO2/H2). The microbiome composition and methane production rate of the cultures were screened as a function of the substrate and transition stage. The relationships between the microorganisms involved in methane formation were the major focus of this study. Methanogenic consortia were identified by next generation sequencing (NGS) and functional genes connected with organic matter transformation were predicted using the PICRUSt approach and annotated in the KEGG. The methane production rate (exceeding 12.8 mg CH4 L−1 d−1) was highest in the culture grown with tryptone, yeast extract, and CO2/H2. The analysis of communities that developed on various carbon sources casts new light on the ecophysiology of the recently described bacterial phylum Caldiserica and methanogenic Archaea representing the genera Methanomassiliicoccus and Methanothrix. Furthermore, it is hypothesized that representatives of Caldiserica may support hydrogenotrophic methanogenesis.
Collapse
|
21
|
Kiersztyn B, Chróst R, Kaliński T, Siuda W, Bukowska A, Kowalczyk G, Grabowska K. Structural and functional microbial diversity along a eutrophication gradient of interconnected lakes undergoing anthropopressure. Sci Rep 2019; 9:11144. [PMID: 31366993 PMCID: PMC6668414 DOI: 10.1038/s41598-019-47577-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
We present the results of an analysis of the 16S rRNA-based taxonomical structure of bacteria together with an analysis of carbon source utilization ability using EcoPlate (Biolog, USA) metabolic fingerprinting assessment against the backdrop of physicochemical parameters in fifteen interconnected lakes. The lakes exhibit a wide spectrum of trophic gradients and undergo different intensities of anthropopressure. Sequences of V3–V4 16S rRNA genes binned by taxonomic assignment to family indicated that bacterial communities in the highly eutrophicated lakes were distinctly different from the bacterial communities in the meso-eutrophic lakes (ANOSIM r = 0.99, p = 0.0002) and were characterized by higher richness and more diverse taxonomical structure. Representatives of the Actinobacteria, Proteobacteria, Cyanobacteria, Planctomycetes, Verrucomicrobia, Bacteroides phyla predominated. In most cases their relative abundance was significantly correlated with lake trophic state. We found no similar clear relationship of community-level physiological profiling with lake trophic state. However, we found some significant links between the taxonomic and metabolic structure of the microbes in the studied lakes (Mantel’s correlation r = 0.22, p = 0.006). The carbon source utilization ability of the studied microorganisms was affected not only by the taxonomic groups present in the lakes but also by various characteristics like a high PO43− concentration inhibiting the utilization of phosphorylated carbon.
Collapse
Affiliation(s)
- Bartosz Kiersztyn
- Microbial Ecology and Environmental Biotechnology Department, Institute of Botany, Faculty of Biology, University of Warsaw; Biological and Chemical Research Centre, Warszawa, Poland.
| | - Ryszard Chróst
- Microbial Ecology and Environmental Biotechnology Department, Institute of Botany, Faculty of Biology, University of Warsaw; Biological and Chemical Research Centre, Warszawa, Poland
| | - Tomasz Kaliński
- Microbial Ecology and Environmental Biotechnology Department, Institute of Botany, Faculty of Biology, University of Warsaw; Biological and Chemical Research Centre, Warszawa, Poland
| | - Waldemar Siuda
- Microbial Ecology and Environmental Biotechnology Department, Institute of Botany, Faculty of Biology, University of Warsaw; Biological and Chemical Research Centre, Warszawa, Poland
| | - Aleksandra Bukowska
- Microbial Ecology and Environmental Biotechnology Department, Institute of Botany, Faculty of Biology, University of Warsaw; Biological and Chemical Research Centre, Warszawa, Poland
| | - Grzegorz Kowalczyk
- Microbial Ecology and Environmental Biotechnology Department, Institute of Botany, Faculty of Biology, University of Warsaw; Biological and Chemical Research Centre, Warszawa, Poland
| | - Karolina Grabowska
- Microbial Ecology and Environmental Biotechnology Department, Institute of Botany, Faculty of Biology, University of Warsaw; Biological and Chemical Research Centre, Warszawa, Poland
| |
Collapse
|
22
|
Spatial and Seasonal Variations in the Abundance of Nitrogen-Transforming Genes and the Microbial Community Structure in Freshwater Lakes with Different Trophic Statuses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132298. [PMID: 31261730 PMCID: PMC6651097 DOI: 10.3390/ijerph16132298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022]
Abstract
Identifying nitrogen-transforming genes and the microbial community in the lacustrine sedimentary environment is critical for revealing nitrogen cycle processes in eutrophic lakes. In this study, we examined the diversity and abundance of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), denitrifying bacteria (DNB), and anammox bacteria (AAOB) in different trophic status regions of Lake Taihu using the amoA, Arch-amoA, nirS, and hzo genes as functional markers. Quantitative Polymerase Chain Reaction (qPCR) results indicated that the abundance of the nirS gene was the highest, while the amoA gene had the lowest abundance in all regions. Except for the primary inflow area of Lake Taihu, Arch-amoA gene abundance was higher than the hzo gene in three lake bays, and the abundance of the nirS gene increased with decreasing trophic status. The opposite pattern was observed for the amoA, Arch-amoA, and hzo genes. Phylogenetic analyses showed that the predominant AOB and AOA were Nitrosomonas and Nitrosopumilus maritimus, respectively, and the proportion of Nitrosomonas in the eutrophic region (87.9%) was higher than that in the mesotrophic region (71.1%). Brocadia and Anammoxoglobus were the two predominant AAOB in Lake Taihu. Five novel unknown phylotypes of AAOB were observed, and Cluster AAOB-B was only observed in the inflow area with a proportion of 32%. In the DNB community, Flavobacterium occurred at a higher proportion (22.6–38.2%) in all regions, the proportion of Arthrobacter in the mesotrophic region (3.6%) was significantly lower than that in the eutrophic region (15.6%), and the proportions of Cluster DNB-E in the inflow area (24.5%) was significantly higher than that in the lake bay (7.3%). The canonical correspondence analysis demonstrated that the substrate concentration in sedimentary environments, such as NOx--N in the sediment, NH4+-N in the pore water, and the total organic matter, were the key factors that determined the nitrogen-transforming microbial community. However, the temperature was also a predominant factor affecting the AOA and AAOB communities.
Collapse
|
23
|
Microbial Community Structure in the Sediments and Its Relation to Environmental Factors in Eutrophicated Sancha Lake. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16111931. [PMID: 31159184 PMCID: PMC6603867 DOI: 10.3390/ijerph16111931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 01/04/2023]
Abstract
To study the microbial community structure in sediments and its relation to eutrophication environment factors, the sediments and the overlying water of Sancha Lake were collected in the four seasons. MiSeq high-throughput sequencing was conducted for the V3–V4 hypervariable regions of the 16S rRNA gene and was used to analyze the microbial community structure in sediments. Pearson correlation and redundancy analysis (RDA) were conducted to determine the relation between microbial populations and eutrophic factors. The results demonstrated four main patterns: (1) in the 36 samples that were collected, the classification annotation suggested 64 phyla, 259 classes, 476 orders, 759 families, and 9325 OTUs; (2) The diversity indices were ordered according to their values as with summer > winter > autumn > spring; (3) The microbial populations in the four seasons belonged to two distinct characteristic groups; (4) pH, dissolved oxygen (DO), total phosphorus (TP), and total nitrogen (TN) had significant effects on the community composition and structure, which further affected the dissolved total phosphorus (DTP) significantly. The present study demonstrates that the microbial communities in Sancha Lake sediments are highly diverse, their compositions and distributions are significantly different between spring and non-spring, and Actinobacteria and Cyanobacteria may be the key populations or indicator organisms for eutrophication.
Collapse
|
24
|
Bai Y, Ruan X, Wang F, Antoine G, van der Hoek JP. Sulfonamides removal under different redox conditions and microbial response to sulfonamides stress during riverbank filtration: A laboratory column study. CHEMOSPHERE 2019; 220:668-677. [PMID: 30605809 DOI: 10.1016/j.chemosphere.2018.12.167] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/04/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Riverbank filtration (RBF) as a barrier of pathogenic microorganisms and organic micropollutants recently has been proven capable of removing sulfonamides. However, the study about the effect of redox conditions on biodegradation of common and persistent sulfonamides in RBF is limited and the response of microbial communities to sulfonamides stress during RBF is unknown. In this study, two column set-ups (with residence time 5 days and 11 days respectively), simulating different redox conditions of riverbank filtration systems, were operated for seven months to investigate 1) the long-term effect of redox conditions on ng∙L-1 level sulfonamides (sulfapyridine, sulfadiazine, sulfamethoxazole, sulfamethazine, sulfaquinoxaline) removal, and 2) the microbial community evolution represented by the phylogenetic and metabolic function shift under non-lethal selective pressures of sulfonamides. The results showed that sulfonamides were more degradable under anoxic conditions than oxic and suboxic conditions. In the sulfonamides stressed community, the phylogenetic diversity increased slightly. Relative abundance of an intrinsic sulfonamides resistant bacteria Bacillus spp. increased, suggesting that sulfonamide resistance developed in specific bacteria under sulfonamides contamination pressure in RBF systems. At the same time, an activated transport function in the stressed microbial community was noticed. The predicted relative abundance of gene folP, which encodes dihydropteroate synthase, also increased significantly, indicating a detoxification mechanism and sulfonamides resistance potential under non-lethal selective pressures of sulfonamides in RBF systems.
Collapse
Affiliation(s)
- Ying Bai
- Key Laboratory of Surfacial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, China
| | - Xiaohong Ruan
- Key Laboratory of Surfacial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, China.
| | - Feifei Wang
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - Garnier Antoine
- The National Engineering School of Rennes, Allée de Beaulieu 11, 35708 Rennes, France
| | - Jan Peter van der Hoek
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands; Strategic Centre, Waternet, Korte Ouderkerkerdijk 7, 1096 AC Amsterdam, the Netherlands
| |
Collapse
|
25
|
Tsuboi S, Kohzu A, Imai A, Iwasaki K, Yamamura S. Vertical variation of bulk and metabolically active prokaryotic community in sediment of a hypereutrophic freshwater lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9379-9389. [PMID: 30809750 DOI: 10.1007/s11356-019-04465-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
This study was conducted to acquire novel insight into differences between bulk (16S rDNA) and metabolically active (16S rRNA) prokaryotic communities in the sediment of a hypereutrophic lake (Japan). In the bulk communities, the class Deltaproteobacteria and the order Methanomicrobiales were dominant among bacteria and methanogens. In the metabolically active communities, the class Alphaproteobacteria and the order Methanomicrobiales and the family Methanosaetaceae were frequently found among bacteria and methanogens. Unlike the bulk communities of prokaryotes, the composition of the metabolically active communities varied remarkably vertically, and their diversities greatly decreased in the lower 20 cm of sediment. The metabolically active prokaryotic community in the sediment core was divided into three sections based on their similarity: 0-6 cm (section 1), 9-18 cm (section 2), and 21-42 cm (section 3). This sectional distribution was consistent with the vertical pattern of the sedimentary stable carbon and nitrogen isotope ratios and oxidation-reduction potential in the porewater. These results suggest that vertical disturbance of the sediment may influence the communities and functions of metabolically active prokaryotes in freshwater lake sediments. Overall, our results indicate that rRNA analysis may be more effective than rDNA analysis for evaluation of relationships between actual microbial processes and material cycling in lake sediments.
Collapse
Affiliation(s)
- Shun Tsuboi
- Center for Regional Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan.
| | - Ayato Kohzu
- Center for Regional Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Akio Imai
- Lake Biwa Branch Office, National Institute for Environmental Studies (NIES), Otsu, Shiga, 520-0022, Japan
| | - Kazuhiro Iwasaki
- Center for Regional Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Shigeki Yamamura
- Center for Regional Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
26
|
Zhang L, Zhao T, Shen T, Gao G. Seasonal and spatial variation in the sediment bacterial community and diversity of Lake Bosten, China. J Basic Microbiol 2018; 59:224-233. [PMID: 30417400 DOI: 10.1002/jobm.201800452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 11/08/2022]
Abstract
To explore the influence of seasonal and regional environmental factors on the bacterial community composition (BCC) and diversity in the sediments of Lake Bosten, the 16S rRNA gene of sediment bacteria in four samples from the lake center area and the macrophyte-dominated area were sequenced using 454 pyrosequencing. According to the operational taxonomic units (OTUs), diversity index, relative abundance, and redundancy analysis (RDA) of the bacteria, the results showed that (i) the bacterial diversity of the lake center area was lower than that of the macrophyte-dominated area, and it was higher in winter than that in summer as a whole; (ii) seasonal factors and geographical changes had obvious effects on the abundance of dominant bacteria, including Proteobacteria and Firmicutes; (iii) a large number of unclassified bacteria were detected in this study, and the dominant unclassified genera in both lake areas included unclassified Sva0485, unclassified Anaerolineaceae, and unclassified Nitrospiraceae; and (iv) TN and TOC were the main environmental factors influencing the sediment bacterial community in Lake Bosten, as determined by RDA analysis. The study provides a reference for the in-depth understanding the impact with the change of time and space on sediment microbes in Lake Bosten.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biology and Food Engineering, Chuzhou University, Chuzhou, China
| | - Tingting Zhao
- School of Biology and Food Engineering, Chuzhou University, Chuzhou, China
| | - Tingting Shen
- School of Biology and Food Engineering, Chuzhou University, Chuzhou, China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
27
|
Variation of Bacterial and Archaeal Community Structures in a Full-Scale Constructed Wetlands for Wastewater Treatment. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2018; 2018:9319345. [PMID: 30410420 PMCID: PMC6206559 DOI: 10.1155/2018/9319345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/22/2018] [Indexed: 11/18/2022]
Abstract
Microorganisms play important roles in the reduction of organic and inorganic pollutants in constructed wetlands used for the treatment of wastewater. However, the diversity and structure of microbial community in constructed wetland system remain poorly known. In this study, the Illumina MiSeq Sequencing of 16S rDNA was used to analyze the bacterial and archaeal microbial community structures of soil and water in a free surface flow constructed wetland, and the differences of bacterial communities and archaeal compositions between soil and water were compared. The results showed that the Proteobacteria were the dominant bacteria, making up 35.38%~48.66% relative abundance. Euryarchaeotic were the absolute dominant archaea in the influent sample with the relative abundance of 93.29%, while Thaumarchaeota showed dominance in the other three samples, making up 50.58%~75.70%. The relative abundances of different species showed great changes in bacteria and archaea, and the number of dominant species in bacteria was much higher than that in archaea. Compared to archaea, the community compositions of bacteria were more abundant and the changes were more significant. Meanwhile, bacteria and archaea had large differences in compositions between water and soil. The microbial richness in water was significantly higher than that in soil. Simultaneously, soil had a significant enrichment effect on some microbial flora.
Collapse
|
28
|
Wan Y, Ruan X, Zhang Y, Li R. Illumina sequencing-based analysis of sediment bacteria community in different trophic status freshwater lakes. Microbiologyopen 2017; 6. [PMID: 28173613 PMCID: PMC5552931 DOI: 10.1002/mbo3.450] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 12/30/2022] Open
Abstract
Sediment bacterial community is the main driving force for nutrient cycling and energy transfer in aquatic ecosystem. A thorough understanding of the community's spatiotemporal variation is critical for us to understand the mechanisms of cycling and transfer. Here, we investigated the sediment bacterial community structures and their relations with environmental factors, using Lake Taihu as a model system to explore the dependence of biodiversity upon trophic level and seasonality. To combat the limitations of conventional techniques, we employed Illumina MiSeq Sequencing and LeFSe cladogram to obtain a more comprehensive view of the bacterial taxonomy and their variations of spatiotemporal distribution. The results uncovered a 1,000-fold increase in the total amount of sequences harvested and a reverse relationship between trophic level and the bacterial diversity in most seasons of a year. A total of 65 phyla, 221 classes, 436 orders, 624 families, and 864 genera were identified in the study area. Delta-proteobacteria and gamma-proteobacteria prevailed in spring/summer and winter, respectively, regardless trophic conditions; meanwhile, the two classes dominated in the eutrophication and mesotrophication lake regions, respectively, but exclusively in the Fall. For LEfSe analysis, bacterial taxon that showed the strongest seasonal or spatial variation, majority had the highest abundance in spring/summer or medium eutrophication region, respectively. Pearson's correlation analysis indicated that 5 major phyla and 18 sub-phylogenetic groups showed significant correlation with trophic status. Canonical correspondence analysis further revealed that porewater NH4+ -N as well as sediment TOM and NOx -N are likely the dominant environmental factors affecting bacterial community compositions.
Collapse
Affiliation(s)
- Yu Wan
- Key Laboratory of Surficial Geochemistry Ministry of Education, Nanjing University, Nanjing, China.,School of Earth Science and Engineering, Nanjing University, Nanjing, China
| | - Xiaohong Ruan
- Key Laboratory of Surficial Geochemistry Ministry of Education, Nanjing University, Nanjing, China.,School of Earth Science and Engineering, Nanjing University, Nanjing, China
| | - Yaping Zhang
- Key Laboratory of Surficial Geochemistry Ministry of Education, Nanjing University, Nanjing, China.,School of Earth Science and Engineering, Nanjing University, Nanjing, China
| | - Rongfu Li
- Key Laboratory of Surficial Geochemistry Ministry of Education, Nanjing University, Nanjing, China.,School of Earth Science and Engineering, Nanjing University, Nanjing, China
| |
Collapse
|