1
|
Xue Y, Xie Y, Cao X, Zhang L. The marine environmental microbiome mediates physiological outcomes in host nematodes. BMC Biol 2024; 22:224. [PMID: 39379910 PMCID: PMC11463140 DOI: 10.1186/s12915-024-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Nematodes are the most abundant metazoans in marine sediments, many of which are bacterivores; however, how habitat bacteria affect physiological outcomes in marine nematodes remains largely unknown. RESULTS: Here, we used a Litoditis marina inbred line to assess how native bacteria modulate host nematode physiology. We characterized seasonal dynamic bacterial compositions in L. marina habitats and examined the impacts of 448 habitat bacteria isolates on L. marina development, then focused on HQbiome with 73 native bacteria, of which we generated 72 whole genomes sequences. Unexpectedly, we found that the effects of marine native bacteria on the development of L. marina and its terrestrial relative Caenorhabditis elegans were significantly positively correlated. Next, we reconstructed bacterial metabolic networks and identified several bacterial metabolic pathways positively correlated with L. marina development (e.g., ubiquinol and heme b biosynthesis), while pyridoxal 5'-phosphate biosynthesis pathway was negatively associated. Through single metabolite supplementation, we verified CoQ10, heme b, acetyl-CoA, and acetaldehyde promoted L. marina development, while vitamin B6 attenuated growth. Notably, we found that only four development correlated metabolic pathways were shared between L. marina and C. elegans. Furthermore, we identified two bacterial metabolic pathways correlated with L. marina lifespan, while a distinct one in C. elegans. Strikingly, we found that glycerol supplementation significantly extended L. marina but not C. elegans longevity. Moreover, we comparatively demonstrated the distinct gut microbiota characteristics and their effects on L. marina and C. elegans physiology. CONCLUSIONS Given that both bacteria and marine nematodes are dominant taxa in sedimentary ecosystems, the resource presented here will provide novel insights to identify mechanisms underpinning how habitat bacteria affect nematode biology in a more natural context. Our integrative approach will provide a microbe-nematodes framework for microbiome mediated effects on host animal fitness.
Collapse
Affiliation(s)
- Yiming Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yusu Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Xuwen Cao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.
| |
Collapse
|
2
|
Jung P, Briegel-Williams L, Werner L, Jost E, Schultz M, Nürnberg DJ, Grube M, Lakatos M. A direct PCR approach with low-biomass insert opens new horizons for molecular sciences on cryptogam communities. Appl Environ Microbiol 2024; 90:e0002424. [PMID: 38349146 PMCID: PMC10952543 DOI: 10.1128/aem.00024-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 03/21/2024] Open
Abstract
Molecular sequence data have transformed research on cryptogams (e.g., lichens, microalgae, fungi, and symbionts thereof) but methods are still strongly hampered by the small size and intermingled growth of the target organisms, poor cultivability and detrimental effects of their secondary metabolites. Here, we aim to showcase examples on which a modified direct PCR approach for diverse aspects of molecular work on environmental samples concerning biocrusts, biofilms, and cryptogams gives new options for the research community. Unlike traditional approaches, this methodology only requires biomass equivalent to colonies and fragments of 0.2 mm in diameter, which can be picked directly from the environmental sample, and includes a quick DNA lysis followed by a standardized PCR cycle that allows co-cycling of various organisms/target regions in the same run. We demonstrate that this modified method can (i) amplify the most widely used taxonomic gene regions and those used for applied and environmental sciences from single colonies and filaments of free-living cyanobacteria, bryophytes, fungi, and lichens, including their mycobionts, chlorobionts, and cyanobionts from both isolates and in situ material during co-cycling; (ii) act as a tool to confirm that the dominant lichen photobiont was isolated from the original sample; and (iii) optionally remove inhibitory secondary lichen substances. Our results represent examples which highlight the method's potential for future applications covering mycology, phycology, biocrusts, and lichenology, in particular.IMPORTANCECyanobacteria, green algae, lichens, and other cryptogams play crucial roles in complex microbial systems such as biological soil crusts of arid biomes or biofilms in caves. Molecular investigations on environmental samples or isolates of these microorganisms are often hampered by their dense aggregation, small size, or metabolism products which complicate DNA extraction and subsequent PCRs. Our work presents various examples of how a direct DNA extraction and PCR method relying on low biomass inserts can overcome these common problems and discusses additional applications of the workflow including adaptations.
Collapse
Affiliation(s)
- Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Laura Briegel-Williams
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Lina Werner
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Emily Jost
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Matthias Schultz
- Institute for Plant Science and Microbiology, Herbarium Hamburgense, University of Hamburg, Hamburg, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre for Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Martin Grube
- Institute of Biology, University of Graz, Graz, Austria
| | - Michael Lakatos
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| |
Collapse
|
3
|
Varliero G, Lebre PH, Adams B, Chown SL, Convey P, Dennis PG, Fan D, Ferrari B, Frey B, Hogg ID, Hopkins DW, Kong W, Makhalanyane T, Matcher G, Newsham KK, Stevens MI, Weigh KV, Cowan DA. Biogeographic survey of soil bacterial communities across Antarctica. MICROBIOME 2024; 12:9. [PMID: 38212738 PMCID: PMC10785390 DOI: 10.1186/s40168-023-01719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/11/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Antarctica and its unique biodiversity are increasingly at risk from the effects of global climate change and other human influences. A significant recent element underpinning strategies for Antarctic conservation has been the development of a system of Antarctic Conservation Biogeographic Regions (ACBRs). The datasets supporting this classification are, however, dominated by eukaryotic taxa, with contributions from the bacterial domain restricted to Actinomycetota and Cyanobacteriota. Nevertheless, the ice-free areas of the Antarctic continent and the sub-Antarctic islands are dominated in terms of diversity by bacteria. Our study aims to generate a comprehensive phylogenetic dataset of Antarctic bacteria with wide geographical coverage on the continent and sub-Antarctic islands, to investigate whether bacterial diversity and distribution is reflected in the current ACBRs. RESULTS Soil bacterial diversity and community composition did not fully conform with the ACBR classification. Although 19% of the variability was explained by this classification, the largest differences in bacterial community composition were between the broader continental and maritime Antarctic regions, where a degree of structural overlapping within continental and maritime bacterial communities was apparent, not fully reflecting the division into separate ACBRs. Strong divergence in soil bacterial community composition was also apparent between the Antarctic/sub-Antarctic islands and the Antarctic mainland. Bacterial communities were partially shaped by bioclimatic conditions, with 28% of dominant genera showing habitat preferences connected to at least one of the bioclimatic variables included in our analyses. These genera were also reported as indicator taxa for the ACBRs. CONCLUSIONS Overall, our data indicate that the current ACBR subdivision of the Antarctic continent does not fully reflect bacterial distribution and diversity in Antarctica. We observed considerable overlap in the structure of soil bacterial communities within the maritime Antarctic region and within the continental Antarctic region. Our results also suggest that bacterial communities might be impacted by regional climatic and other environmental changes. The dataset developed in this study provides a comprehensive baseline that will provide a valuable tool for biodiversity conservation efforts on the continent. Further studies are clearly required, and we emphasize the need for more extensive campaigns to systematically sample and characterize Antarctic and sub-Antarctic soil microbial communities. Video Abstract.
Collapse
Affiliation(s)
- Gilda Varliero
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Pedro H Lebre
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
| | - Byron Adams
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
- Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT, 84602, USA
| | - Steven L Chown
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton, VA, 3800, Australia
| | - Peter Convey
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, South Africa
- Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
| | - Paul G Dennis
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dandan Fan
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Belinda Ferrari
- School of Biotechnology and Biomolecular Sciences, University of NSW, Sydney, NSW, 2052, Australia
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Research Institute WSL, 8903, Birmensdorf, Switzerland
| | - Ian D Hogg
- School of Science, University of Waikato, Hamilton, New Zealand
- Canadian High Arctic Research Station, Polar Knowledge Canada, Cambridge Bay, NU, Canada
| | - David W Hopkins
- SRUC - Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, Scotland, UK
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Thulani Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Gwynneth Matcher
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Kevin K Newsham
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Mark I Stevens
- Securing Antarctica's Environmental Future, Earth and Biological Sciences, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Katherine V Weigh
- School of the Environment, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Don A Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
4
|
Solon AJ, Mastrangelo C, Vimercati L, Sommers P, Darcy JL, Gendron EMS, Porazinska DL, Schmidt SK. Gullies and Moraines Are Islands of Biodiversity in an Arid, Mountain Landscape, Asgard Range, Antarctica. Front Microbiol 2021; 12:654135. [PMID: 34177836 PMCID: PMC8222675 DOI: 10.3389/fmicb.2021.654135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Cold, dry, and nutrient-poor, the McMurdo Dry Valleys of Antarctica are among the most extreme terrestrial environments on Earth. Numerous studies have described microbial communities of low elevation soils and streams below glaciers, while less is known about microbial communities in higher elevation soils above glaciers. We characterized microbial life in four landscape features (habitats) of a mountain in Taylor Valley. These habitats varied significantly in soil moisture and include moist soils of a (1) lateral glacial moraine, (2) gully that terminates at the moraine, and very dry soils on (3) a southeastern slope and (4) dry sites near the gully. Using rRNA gene PCR amplicon sequencing of Bacteria and Archaea (16S SSU) and eukaryotes (18S SSU), we found that all habitat types harbored significantly different bacterial and eukaryotic communities and that these differences were most apparent when comparing habitats that had macroscopically visible soil crusts (gully and moraine) to habitats with no visible crusts (near gully and slope). These differences were driven by a relative predominance of Actinobacteria and a Colpodella sp. in non-crust habitats, and by phototrophic bacteria and eukaryotes (e.g., a moss) and predators (e.g., tardigrades) in habitats with biological soil crusts (gully and moraine). The gully and moraine also had significantly higher 16S and 18S ESV richness than the other two habitat types. We further found that many of the phototrophic bacteria and eukaryotes of the gully and moraine share high sequence identity with phototrophs from moist and wet areas elsewhere in the Dry Valleys and other cold desert ecosystems. These include a Moss (Bryum sp.), several algae (e.g., a Chlorococcum sp.) and cyanobacteria (e.g., Nostoc and Phormidium spp.). Overall, the results reported here broaden the diversity of habitat types that have been studied in the Dry Valleys of Antarctica and suggest future avenues of research to more definitively understand the biogeography and factors controlling microbial diversity in this unique ecosystem.
Collapse
Affiliation(s)
- Adam J Solon
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| | - Claire Mastrangelo
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| | - Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| | - John L Darcy
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado-Anschutz Medical Campus, Denver, CO, United States
| | - Eli M S Gendron
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - Dorota L Porazinska
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States
| | - S K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Boulder, CO, United States
| |
Collapse
|
5
|
Mehda S, Muñoz-Martín MÁ, Oustani M, Hamdi-Aïssa B, Perona E, Mateo P. Microenvironmental Conditions Drive the Differential Cyanobacterial Community Composition of Biocrusts from the Sahara Desert. Microorganisms 2021; 9:microorganisms9030487. [PMID: 33669110 PMCID: PMC7996595 DOI: 10.3390/microorganisms9030487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
The Sahara Desert is characterized by extreme environmental conditions, which are a unique challenge for life. Cyanobacteria are key players in the colonization of bare soils and form assemblages with other microorganisms in the top millimetres, establishing biological soil crusts (biocrusts) that cover most soil surfaces in deserts, which have important roles in the functioning of drylands. However, knowledge of biocrusts from these extreme environments is limited. Therefore, to study cyanobacterial community composition in biocrusts from the Sahara Desert, we utilized a combination of methodologies in which taxonomic assignation, for next-generation sequencing of soil samples, was based on phylogenetic analysis (16S rRNA gene) in parallel with morphological identification of cyanobacteria in natural samples and isolates from certain locations. Two close locations that differed in microenvironmental conditions were analysed. One was a dry salt lake (a “chott”), and the other was an extension of sandy, slightly saline soil. Differences in cyanobacterial composition between the sites were found, with a clear dominance of Microcoleus spp. in the less saline site, while the chott presented a high abundance of heterocystous cyanobacteria as well as the filamentous non-heterocystous Pseudophormidium sp. and the unicellular cf. Acaryochloris. The cyanobacteria found in our study area, such as Microcoleus steenstrupii, Microcoleus vaginatus, Scytonema hyalinum, Tolypothrix distorta, and Calothrix sp., are also widely distributed in other geographic locations around the world, where the conditions are less severe. Our results, therefore, indicated that some cyanobacteria can cope with polyextreme conditions, as confirmed by bioassays, and can be considered extremotolerant, being able to live in a wide range of conditions.
Collapse
Affiliation(s)
- Smail Mehda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.M.); (M.Á.M.-M.); (E.P.)
- Laboratory of Biogeochemistry of Desert Areas, University of Ouargla, 30000 Ouargla, Algeria;
- Department of Agronomy, Faculty of Life and Natural Sciences, University of El Oued, 39000 El Oued, Algeria
| | - Maria Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.M.); (M.Á.M.-M.); (E.P.)
| | - Mabrouka Oustani
- Laboratory of Saharan Bio-Resources: Preservation and Development, University of Ouargla, 30000 Ouargla, Algeria;
| | - Baelhadj Hamdi-Aïssa
- Laboratory of Biogeochemistry of Desert Areas, University of Ouargla, 30000 Ouargla, Algeria;
| | - Elvira Perona
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.M.); (M.Á.M.-M.); (E.P.)
| | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.M.); (M.Á.M.-M.); (E.P.)
- Correspondence: ; Tel.: +34-914978184
| |
Collapse
|
6
|
Gutt J, Isla E, Xavier JC, Adams BJ, Ahn IY, Cheng CHC, Colesie C, Cummings VJ, di Prisco G, Griffiths H, Hawes I, Hogg I, McIntyre T, Meiners KM, Pearce DA, Peck L, Piepenburg D, Reisinger RR, Saba GK, Schloss IR, Signori CN, Smith CR, Vacchi M, Verde C, Wall DH. Antarctic ecosystems in transition - life between stresses and opportunities. Biol Rev Camb Philos Soc 2020; 96:798-821. [PMID: 33354897 DOI: 10.1111/brv.12679] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Julian Gutt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Enrique Isla
- Institute of Marine Sciences-CSIC, Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Coimbra, Portugal.,British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Byron J Adams
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, U.S.A
| | - In-Young Ahn
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - C-H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, IL, U.S.A
| | - Claudia Colesie
- School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF, U.K
| | - Vonda J Cummings
- National Institute of Water and Atmosphere Research Ltd (NIWA), 301 Evans Bay Parade, Greta Point, Wellington, New Zealand
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Huw Griffiths
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, 3100, New Zealand
| | - Ian Hogg
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.,Canadian High Antarctic Research Station, Polar Knowledge Canada, PO Box 2150, Cambridge Bay, NU, X0B 0C0, Canada
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Klaus M Meiners
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, and Australian Antarctic Program Partnership, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia
| | - David A Pearce
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle upon Tyne, NE1 8ST, U.K
| | - Lloyd Peck
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Dieter Piepenburg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Ryan R Reisinger
- Centre d'Etudes Biologique de Chizé, UMR 7372 du Centre National de la Recherche Scientifique - La Rochelle Université, Villiers-en-Bois, 79360, France
| | - Grace K Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, U.S.A
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas, Bernardo Houssay 200, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina.,Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina
| | - Camila N Signori
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-900, Brazil
| | - Craig R Smith
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, U.S.A
| | - Marino Vacchi
- Institute for the Study of the Anthropic Impacts and the Sustainability of the Marine Environment (IAS), National Research Council of Italy (CNR), Via de Marini 6, Genoa, 16149, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Diana H Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, U.S.A
| |
Collapse
|
7
|
Sommer V, Mikhailyuk T, Glaser K, Karsten U. Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach. Microorganisms 2020; 8:E1667. [PMID: 33121104 PMCID: PMC7692164 DOI: 10.3390/microorganisms8111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023] Open
Abstract
Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community "biocrust" comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. The majority of taxa found were common in saline habitats, whereas some were more likely to occur in nonsaline environments. Consequently, biocrusts in saline environments of potash tailing piles contain unique microalgae and cyanobacteria that will possibly reveal several new taxa in more detailed future studies and, hence, provide new data on the biodiversity, as well as new candidates for applied research.
Collapse
Affiliation(s)
- Veronika Sommer
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
- upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany
| | - Tatiana Mikhailyuk
- National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine;
| | - Karin Glaser
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| | - Ulf Karsten
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| |
Collapse
|
8
|
Jung P, Mikhailyuk T, Emrich D, Baumann K, Dultz S, Büdel B. Shifting Boundaries: Ecological and Geographical Range extension Based on Three New Species in the Cyanobacterial Genera Cyanocohniella, Oculatella, and, Aliterella. JOURNAL OF PHYCOLOGY 2020; 56:1216-1231. [PMID: 32422688 DOI: 10.1111/jpy.13025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
The polyphasic approach has been widely applied in cyanobacterial taxonomy, which frequently led to additions to the species inventory. Increasing our knowledge about species and the habitats they were isolated from enables new insights into the ecology of newly established genera and species allowing speculations about the ecological niche of taxa. Here, we are describing three new species belonging to three genera that broadens the ecological amplitude and the geographical range of each of the three genera. Cyanocohniella crotaloides sp. nov. is described from sandy beach mats of the temperate island Schiermonnikoog, Netherlands, Oculatella crustae-formantes sp. nov. was isolated from biological soil crusts of the Arctic Spitsbergen, Norway, and Aliterella chasmolithica originated from granitic stones of the arid Atacama Desert, Chile. All three species could be separated from related species using molecular sequencing of the 16S rRNA gene and 16S-23S ITS gene region, the resulting secondary structures as well as p-distance analyses of the 16S-23S ITS and various microscopic techniques. The novel taxa described in this study contribute to a better understanding of the diversity of the genera Cyanocohniella, Oculatella, and Aliterella in different habitats.
Collapse
Affiliation(s)
- Patrick Jung
- University of Applied Sciences Kaiserslautern, Carl-Schurz-Str. 10-16, 66953, Pirmasens, Germany
| | - Tatiana Mikhailyuk
- G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Tereschenkivska Str. 2, Kyiv, 01004, Ukraine
| | - Dina Emrich
- Faculty of Environment and Natural Resources, Chair of Applied Vegetation Ecology, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, Germany
| | - Karen Baumann
- Faculty of Agricultural and Environmental Science, University of Rostock, Soil Science, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| | - Stefan Dultz
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| |
Collapse
|
9
|
The Marine Sponge Petrosia ficiformis Harbors Different Cyanobacteria Strains with Potential Biotechnological Application. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8090638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Marine cyanobacteria are a source of bioactive natural compounds, with a wide range of biotechnological applications. However, information on sponge-associated cyanobacteria are relatively scarce to date. In this paper, we carried out the morphological and molecular characterization of eight cyanobacterial strains, previously isolated from the Mediterranean sponge Petrosia ficiformis, and evaluated their biological activities on epithelial- and neuron-like cultured cells of human and murine origin. The new analysis allowed maintaining the assignment of three strains (Cyanobium sp., Leptolyngbya ectocarpi, and Synechococcus sp.), while two strains previously identified as Synechococcus sp. and Leptolyngbya sp. were assigned to Pseudanabaena spp. One strain, i.e., ITAC104, and the ITAC101 strain corresponding to Halomicronema metazoicum, shared extremely high sequence identity, practically representing two clones of the same species. Finally, for only one strain, i.e., ITAC105, assignment to a specific genus was not possible. Concerning bioactivity analyses, incubation of cyanobacterial aqueous cell supernatants induced variable responses in cultured cells, depending on cell type, with some of them showing toxic activity on human epithelial-like cells and no toxic effects on human and rat neuron-like cells. Future investigations will allow to better define the bioactive properties of these cyanobacteria strains and to understand if they can be useful for (a) therapeutic purpose(s).
Collapse
|
10
|
Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. WATER 2020. [DOI: 10.3390/w12010260] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this overview (introductory article to a special issue including 14 papers), we consider all main types of natural and artificial inland freshwater habitas (fwh). For each type, we identify the main biodiversity patterns and ecological features, human impacts on the system and environmental issues, and discuss ways to use this information to improve stewardship. Examples of selected key biodiversity/ecological features (habitat type): narrow endemics, sensitive (groundwater and GDEs); crenobionts, LIHRes (springs); unidirectional flow, nutrient spiraling (streams); naturally turbid, floodplains, large-bodied species (large rivers); depth-variation in benthic communities (lakes); endemism and diversity (ancient lakes); threatened, sensitive species (oxbow lakes, SWE); diverse, reduced littoral (reservoirs); cold-adapted species (Boreal and Arctic fwh); endemism, depauperate (Antarctic fwh); flood pulse, intermittent wetlands, biggest river basins (tropical fwh); variable hydrologic regime—periods of drying, flash floods (arid-climate fwh). Selected impacts: eutrophication and other pollution, hydrologic modifications, overexploitation, habitat destruction, invasive species, salinization. Climate change is a threat multiplier, and it is important to quantify resistance, resilience, and recovery to assess the strategic role of the different types of freshwater ecosystems and their value for biodiversity conservation. Effective conservation solutions are dependent on an understanding of connectivity between different freshwater ecosystems (including related terrestrial, coastal and marine systems).
Collapse
|
11
|
Szyja M, Menezes AGDS, Oliveira FDA, Leal I, Tabarelli M, Büdel B, Wirth R. Neglected but Potent Dry Forest Players: Ecological Role and Ecosystem Service Provision of Biological Soil Crusts in the Human-Modified Caatinga. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Jung P, Schermer M, Briegel-Williams L, Baumann K, Leinweber P, Karsten U, Lehnert L, Achilles S, Bendix J, Büdel B. Water availability shapes edaphic and lithic cyanobacterial communities in the Atacama Desert. JOURNAL OF PHYCOLOGY 2019; 55:1306-1318. [PMID: 31378942 DOI: 10.1111/jpy.12908] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
In the Atacama Desert, cyanobacteria grow on various substrates such as soils (edaphic) and quartz or granitoid stones (lithic). Both edaphic and lithic cyanobacterial communities have been described but no comparison between both communities of the same locality has yet been undertaken. In the present study, we compared both cyanobacterial communities along a precipitation gradient ranging from the arid National Park Pan de Azúcar (PA), which resembles a large fog oasis in the Atacama Desert extending to the semiarid Santa Gracia Natural Reserve (SG) further south, as well as along a precipitation gradient within PA. Various microscopic techniques, as well as culturing and partial 16S rRNA sequencing, were applied to identify 21 cyanobacterial species; the diversity was found to decline as precipitation levels decreased. Additionally, under increasing xeric stress, lithic community species composition showed higher divergence from the surrounding edaphic community, resulting in indigenous hypolithic and chasmoendolithic cyanobacterial communities. We conclude that rain and fog water, respectively, cause contrasting trends regarding cyanobacterial species richness in the edaphic and lithic microhabitats.
Collapse
Affiliation(s)
- Patrick Jung
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663, Kaiserslautern, Germany
| | - Michael Schermer
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663, Kaiserslautern, Germany
| | - Laura Briegel-Williams
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663, Kaiserslautern, Germany
| | - Karen Baumann
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| | - Peter Leinweber
- Faculty of Agricultural and Environmental Science, Soil Science, University of Rostock, Justus-von-Liebig-Weg 6, 18051, Rostock, Germany
| | - Ulf Karsten
- Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - Lukas Lehnert
- Faculty of Geography, Philipps-University of Marburg, Deutschhausstraße 10, 35037, Marburg, Germany
| | - Sebastian Achilles
- Faculty of Geography, Philipps-University of Marburg, Deutschhausstraße 10, 35037, Marburg, Germany
| | - Jörg Bendix
- Faculty of Geography, Philipps-University of Marburg, Deutschhausstraße 10, 35037, Marburg, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, University of Kaiserslautern, Erwin-Schrödinger-Straße 13, 67663, Kaiserslautern, Germany
| |
Collapse
|
13
|
Becerra-Absalón I, Muñoz-Martín MÁ, Montejano G, Mateo P. Differences in the Cyanobacterial Community Composition of Biocrusts From the Drylands of Central Mexico. Are There Endemic Species? Front Microbiol 2019; 10:937. [PMID: 31130933 PMCID: PMC6510263 DOI: 10.3389/fmicb.2019.00937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
In drylands worldwide, biocrusts, topsoil microbial communities, are prevalent, contributing to the biostabilization of soils and allowing the subsequent establishment and growth of vascular plants. In early successional biocrusts, cyanobacteria are the first dominant colonizers of bare ground, largely determining their functioning. However, there are large gaps in our knowledge of the cyanobacterial diversity in biocrusts, particularly in understudied geographic regions, such as the tropical latitudes. We analyzed the diversity of the cyanobacteria inhabiting the biocrusts of semideserts from Central Mexico in two localities belonging to the same desert system (Chihuahuan Desert) that are separated by a cordillera that crosses the center of Mexico. Morphological identification of the cyanobacteria was carried out after cultivation in parallel with the direct observation of the environmental samples and was supported by genetic characterization through analysis of the 16S rRNA gene of the isolated strains and by next-generation sequencing of the soil samples. Taxonomic assignment revealed a clear dominance of heterocystous cyanobacteria at one of the studied locations (Actopan, Hidalgo state). Although heterocystous forms were abundant at the other location (Atexcac, Puebla state), almost a third of the cyanobacterial phylotypes were represented by unicellular/colonial cyanobacteria, mostly Chroococcidiopsis spp. Only 28.4% of the phylotypes were found to be common to both soils. Most of the other taxa, however, were biocrust-type specific, and approximately 35% of the phylotypes were found to be unique to the soil they were collected in. In addition, differences in the abundances of the shared cyanobacteria between the locations were also found. These differences in the cyanobacterial distribution were supported by the distinct responses of the isolated strains representative of the sites to extreme heat and desiccation in bioassays. Some cyanobacteria with high abundance or only present at the hottest Actopan site, such as Scytonema hyalinum, Scytonema crispum, Nostoc commune, Nostoc sp., and Calothrix parietina, survived extreme heat and desiccation. However, Tolypothrix distorta and Chroococcidiopsis spp. were clearly sensitive to these extreme conditions in relation to their lower abundances at Actopan as opposed to Atexcac. Since novel biocrust-associated phylotypes were also found, the emergence of endemic cyanobacterial taxa is discussed.
Collapse
Affiliation(s)
- Itzel Becerra-Absalón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M. Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Gustavo Montejano
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Roncero-Ramos B, Muñoz-Martín MÁ, Chamizo S, Fernández-Valbuena L, Mendoza D, Perona E, Cantón Y, Mateo P. Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe. PeerJ 2019; 7:e6169. [PMID: 30627491 PMCID: PMC6321753 DOI: 10.7717/peerj.6169] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/27/2018] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are key microbes in topsoil communities that have important roles in preventing soil erosion, carbon and nitrogen fixation, and influencing soil hydrology. However, little is known regarding the identity and distribution of the microbial components in the photosynthetic assemblages that form a cohesive biological soil crust (biocrust) in drylands of Europe. In this study, we investigated the cyanobacterial species colonizing biocrusts in three representative dryland ecosystems from the most arid region in Europe (SE Spain) that are characterized by different soil conditions. Isolated cyanobacterial cultures were identified by a polyphasic approach, including 16S rRNA gene sequencing, phylogenetic relationship determination, and morphological and ecological habitat assessments. Three well-differentiated groups were identified: heterocystous-cyanobacteria (Nostoc commune, Nostoc calcicola, Tolypothrix distorta and Scytonema hyalinum), which play an important role in N and C cycling in soil; nonheterocystous bundle-forming cyanobacteria (Microcoleus steenstrupii, Trichocoleus desertorum, and Schizothrix cf. calcicola); and narrow filamentous cyanobacteria (Leptolyngbya frigida and Oculatella kazantipica), all of which are essential genera for initial biocrust formation. The results of this study contribute to our understanding of cyanobacterial species composition in biocrusts from important and understudied European habitats, such as the Mediterranean Basin, a hotspot of biodiversity, where these species are keystone pioneer organisms.
Collapse
Affiliation(s)
| | | | - Sonia Chamizo
- Department of Agrifood Production and Environmental Sciences, University of Florence, Florence, Italy
| | | | - Diego Mendoza
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elvira Perona
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Yolanda Cantón
- Departamento de Agronomía, Universidad de Almería, Almería, Spain.,Centro de Investigación de Colecciones Científicas de la Universidad de Almería, Universidad de Almería, Almería, Spain
| | - Pilar Mateo
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Jung P, Briegel-Williams L, Schermer M, Büdel B. Strong in combination: Polyphasic approach enhances arguments for cold-assigned cyanobacterial endemism. Microbiologyopen 2018; 8:e00729. [PMID: 30239166 PMCID: PMC6528576 DOI: 10.1002/mbo3.729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/24/2022] Open
Abstract
Cyanobacteria of biological soil crusts (BSCs) represent an important part of circumpolar and Alpine ecosystems, serve as indicators for ecological condition and climate change, and function as ecosystem engineers by soil stabilization or carbon and nitrogen input. The characterization of cyanobacteria from both polar regions remains extremely important to understand geographic distribution patterns and community compositions. This study is the first of its kind revealing the efficiency of combining denaturing gradient gel electrophoresis (DGGE), light microscopy and culture‐based 16S rRNA gene sequencing, applied to polar and Alpine cyanobacteria dominated BSCs. This study aimed to show the living proportion of cyanobacteria as an extension to previously published meta‐transcriptome data of the same study sites. Molecular fingerprints showed a distinct clustering of cyanobacterial communities with a close relationship between Arctic and Alpine populations, which differed from those found in Antarctica. Species richness and diversity supported these results, which were also confirmed by microscopic investigations of living cyanobacteria from the BSCs. Isolate‐based sequencing corroborated these trends as cold biome clades were assigned, which included a potentially new Arctic clade of Oculatella. Thus, our results contribute to the debate regarding biogeography of cyanobacteria of cold biomes.
Collapse
Affiliation(s)
- Patrick Jung
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Laura Briegel-Williams
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schermer
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| | - Burkhard Büdel
- Plant Ecology and Systematics, Biology Institute, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|