1
|
Aguilar P, Piyapong C, Chamroensaksri N, Jintasaeranee P, Sommaruga R. Tidal levels significantly change bacterial community composition in a tropical estuary during the dry season. MARINE LIFE SCIENCE & TECHNOLOGY 2025; 7:144-156. [PMID: 40027330 PMCID: PMC11871172 DOI: 10.1007/s42995-024-00254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 08/22/2024] [Indexed: 03/05/2025]
Abstract
Estuaries are usually characterized by strong spatial and temporal variability in water physicochemical conditions and are often largely affected by human activities. One important source of variability is caused by tides that can swiftly alter not only physicochemical conditions but also the abundance and composition of the biota. The effect of the diurnal tidal cycle on microbial community composition during different seasons remains uncertain, although this knowledge underlies having effective monitoring programs for water quality and potential identification of health risk conditions. In this study, we assessed the bacterioplankton community composition and diversity across four tidal water levels in a tropical estuary characterized by a mixed semidiurnal tide regime (i.e., two high and two low tides of varying amplitudes) during both dry and wet seasons. The bacterial community composition varied significantly among the four tidal levels, but only during the dry season, when the influence of the seawater intrusion was largest. Bacterial indicators' taxa identified using the Indicator Value Index were found within Cyanobacteria, Actinobacteriota, Bacteroidota, and Proteobacteria. The indicator taxon Cyanobium sp. had a prominent presence across multiple tidal levels. The main predicted phenotypes of the bacterial communities were associated with potential pathogenicity, gram-negative, and biofilm formation traits. While there were no marked predicted phenotypic differences between seasons, pathogenic and gram-negative traits were more prevalent in the dry season, while biofilm formation traits dominated in the wet season. Overall, our findings underscore the intricate relationship between river hydrodynamics and bacterial composition variability and hint a significant human impact on the water quality of the Bangpakong River. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00254-w.
Collapse
Affiliation(s)
- Pablo Aguilar
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
- Microbial Complexity Laboratory, Instituto Antofagasta and Centre for Bioengineering and Biotechnology (CeBiB), University of Antofagasta, Antofagasta, Chile
- Department of Biotechnology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta, Chile
- Millennium Nucleus of Austral Invasive Salmonids-INVASAL, Concepción, Chile
| | - Chantima Piyapong
- Department of Biology, Faculty of Science, Burapha University, Chonburi, 20131 Thailand
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, 10400 Thailand
| | - Nitcha Chamroensaksri
- National Biobank of Thailand (NBT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120 Thailand
| | - Pachoenchoke Jintasaeranee
- Center of Excellence On Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, 10400 Thailand
- Department of Aquatic Science, Faculty of Science, Burapha University, Chonburi, 20131 Thailand
| | - Ruben Sommaruga
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Levipan HA, Opazo LF, Arenas-Uribe S, Wicki H, Marchant F, Florez-Leiva L, Avendaño-Herrera R. Estimating taxonomic and functional structure along a tropical estuary: linking metabolic traits and aspects of ecosystem functioning. Microbiol Spectr 2024; 12:e0388623. [PMID: 39162549 PMCID: PMC11448197 DOI: 10.1128/spectrum.03886-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Microbial life forms are among the most ubiquitous on Earth, yet many remain understudied in Caribbean estuaries. We report on the prokaryote community composition of the Urabá Estuary in the Colombian Caribbean using 16S rRNA gene-transcript sequencing. We also assessed potential functional diversity through 38 metabolic traits inferred from 16S rRNA gene data. Water samples were collected from six sampling stations at two depths with contrasting light-penetration conditions along an approximately 100 km transect in the Gulf of Urabá in December 2019. Non-metric multidimensional scaling analysis grouped the samples into two distinct clusters along the transect and between depths. The primary variables influencing the prokaryote community composition were the sampling station, depth, salinity, and dissolved oxygen levels. Twenty percent of genera (i.e., 58 out 285) account for 95% of the differences between groups along the transect and among depths. All of the 38 metabolic traits studied showed some significant relationship with the tested environmental variables, especially salinity and except with temperature. Another non-metric multidimensional scaling analysis, based on community-weighted mean of traits, also grouped the samples in two clusters along the transect and over depth. Biodiversity facets, such as richness, evenness, and redundancy, indicated that environmental variations-stemming from river discharges-introduce an imbalance in functional diversity between surface prokaryote communities closer to the estuary's head and bottom communities closer to the ocean. Our research broadens the use of 16S rRNA gene transcripts beyond mere taxonomic assignments, furthering the field of trait-based prokaryote community ecology in transitional aquatic ecosystems.IMPORTANCEThe resilience of a dynamic ecosystem is directly tied to the ability of its microbes to navigate environmental gradients. This study delves into the changes in prokaryote community composition and functional diversity within the Urabá Estuary (Colombian Caribbean) for the first time. We integrate data from 16S rRNA gene transcripts (taxonomic and functional) with environmental variability to gain an understanding of this under-researched ecosystem using a multi-faceted macroecological framework. We found that significant shifts in prokaryote composition and in primary changes in functional diversity were influenced by physical-chemical fluctuations across the estuary's environmental gradient. Furthermore, we identified a potential disparity in functional diversity. Near-surface communities closer to the estuary's head exhibited differences compared to deeper communities situated farther away. Our research serves as a roadmap for posing new inquiries about the potential functional diversity of prokaryote communities in highly dynamic ecosystems, pushing forward the domain of multi-trait-based prokaryote community ecology.
Collapse
Affiliation(s)
- Héctor A Levipan
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Laboratorio de Ecopatología y Nanobiomateriales, Universidad de Playa Ancha, Valparaíso, Chile
- Ocean, Climate and Environment Research Group (OCE), Environmental Academic Corporation, University of Antioquia, Medellín, Colombia
| | - L Felipe Opazo
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sara Arenas-Uribe
- Ocean, Climate and Environment Research Group (OCE), Environmental Academic Corporation, University of Antioquia, Medellín, Colombia
- Programa de Magíster en Ecología Marina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Hernán Wicki
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Laboratorio de Ecopatología y Nanobiomateriales, Universidad de Playa Ancha, Valparaíso, Chile
| | - Francisca Marchant
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Laboratorio de Ecopatología y Nanobiomateriales, Universidad de Playa Ancha, Valparaíso, Chile
| | - Lennin Florez-Leiva
- Ocean, Climate and Environment Research Group (OCE), Environmental Academic Corporation, University of Antioquia, Medellín, Colombia
| | - Ruben Avendaño-Herrera
- Facultad de Ciencias de la Vida, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
3
|
Vijayan J, Ezhuthanikkunnel AP, Punnorkodu SAK, Poikayil SS, Mohan M, Ammanamveetil MHA. Sediment microbial diversity, functional potentials, and antibiotic resistance pattern: a case study of Cochin Estuary core sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52132-52146. [PMID: 39143383 DOI: 10.1007/s11356-024-34665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Marine sediments are an important part of the marine environment and the world's greatest organic carbon source. Sediment microorganisms are important regulators of major geochemical and eco-environmental processes in marine environments, especially nutrient dynamics and biogeochemical cycles. Despite their importance, core marine microorganisms are virtually unknown due to a lack of consensus on how to identify them. Most core microbiotas have been characterized thus far based on species abundance and occurrence. The combined effects of habitat and depth on benthic bacterial communities and ecological functions were studied using "Next-Generation sequencing (NGS) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predictive functional profiling" at the surface (0.2 cm) and bottom depth (250 cm) in a sediment core sample from Cochin Estuary, Kerala, India. The results showed that bacterial diversity and richness were significantly higher in the surface sediment sample with the most abundant phyla being Proteobacteria, Acidobacteria, Chloroflexi, and Bacteroidetes. The major metabolic functions were metabolism, followed by environmental information processing and genetic information processing. Antibiotic resistance genes between the surface and bottom samples help to understand the resistance pattern among multidrug resistance is the most prominent one. Among viruses, Siphoviridae is the dominant family, followed by Myoviridae. In the case of Archea, Crenarchaeota is dominant, whereas among eukaryotes phyla Streptophyta and Chordata were dominant in the surface and the bottom samples respectively.
Collapse
Affiliation(s)
- Jasna Vijayan
- Department of Marine Biology, Microbiology and Biochemistry; School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India.
| | - Akhil Prakash Ezhuthanikkunnel
- Department of Marine Biology, Microbiology and Biochemistry; School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India
| | - Sabira Abdul Kareem Punnorkodu
- Department of Marine Biology, Microbiology and Biochemistry; School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India
| | - Sunil Sukumaran Poikayil
- Department of Marine Geology and Geophysics; School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarshini Hills P.O, Kottayam, 686560, Kerala, India
| | - Mohamed Hatha Abdulla Ammanamveetil
- Department of Marine Biology, Microbiology and Biochemistry; School of Marine Sciences, Cochin University of Science and Technology, Cochin, 682016, Kerala, India
| |
Collapse
|
4
|
Zvi-Kedem T, Lalzar M, Sun J, Li J, Tchernov D, Meron D. Exploring the Microbial Mosaic: Insights into Composition, Diversity, and Environmental Drivers in the Pearl River Estuary Sediments. Microorganisms 2024; 12:1273. [PMID: 39065043 PMCID: PMC11279356 DOI: 10.3390/microorganisms12071273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
River estuaries are dynamic and complex ecosystems influenced by various natural processes, including climatic fluctuations and anthropogenic activities. The Pearl River Estuary (PRE), one of the largest in China, receives significant land-based pollutants due to its proximity to densely populated areas and urban development. This study aimed to characterize the composition, diversity, and distribution patterns of sediment microbial communities (bacteria, archaea, and eukaryotes) and investigated the connection with environmental parameters within the PRE and adjacent shelf. Physicochemical conditions, such as oxygen levels, nitrogen compounds, and carbon content, were analyzed. The study found that the microbial community structure was mainly influenced by site location and core depth, which explained approximately 67% of the variation in each kingdom. Sites and core depths varied in sediment properties such as organic matter content and redox conditions, leading to distinct microbial groups associated with specific chemical properties of the sediment, notably C/N ratio and NH4+ concentration. Despite these differences, certain dominant taxonomic groups were consistently present across all sites: Gammaproteobacteria in bacteria; Bathyarchaeia, Nitrososphaeria, and Thermoplasmata in archaea; and SAR in Eukaryota. The community diversity index was the highest in the bacteria kingdom, while the lowest values were observed at site P03 across the three kingdoms and were significantly different from all other sites. Overall, this study highlights the effect of depth, core depth, and chemical properties on sediment microbiota composition. The sensitivity and dynamism of the microbiota, along with the possibility of identifying specific markers for changes in environmental conditions, is valuable for managing and preserving the health of estuaries and coastal ecosystems.
Collapse
Affiliation(s)
- Tal Zvi-Kedem
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| | - Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa 3498838, Israel;
| | - Jing Sun
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; (J.S.); (J.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Zhuhai 519080, China
| | - Jiying Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; (J.S.); (J.L.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Zhuhai 519080, China
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| | - Dalit Meron
- Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel; (T.Z.-K.); (D.T.)
| |
Collapse
|
5
|
Mandal A, Ghosh A, Saha R, Bhadury P. Seasonal variability of modern benthic foraminifera assemblages in a mangrove ecosystem from northeast coastal Bay of Bengal. MARINE POLLUTION BULLETIN 2023; 188:114679. [PMID: 36860022 DOI: 10.1016/j.marpolbul.2023.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Benthic foraminifera assemblages, nutrient dynamics of surface and porewater from 10 intertidal sites spanning over two years (2019-2020) covering two major estuaries in Sundarbans mangrove were evaluated to understand role of seasonal precipitation and primary production (driven by eddy nutrients) with a focus on standing crop. Benthic foraminifera abundance ranged between 280 individuals/10 cc in pre-monsoon (2019), 415 individuals/10 cc in post-monsoon 2019 and 630 individuals/10 cc in post-monsoon (2020). Standing crop was highest in post-monsoon coinciding with eddy nutrients driven stoichiometry and increase in abundance of large diatom cells. Calcareous and agglutinated foraminifer taxa Ammonia sp.1, Quinqueloculina seminulum, Entzia macrescens and Textularia sp. respectively were frequent. Entzia macrescens was found in dense mangrove vegetation sites; exhibited strong relationship with sediment texture and pore water total organic carbon. One of the major findings is mangroves with pneumatophores improves oxygen availability in sediment and leads to an increase in standing crop.
Collapse
Affiliation(s)
- Arkaprava Mandal
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Anwesha Ghosh
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Ratul Saha
- WWF-India Sundarbans Landscape, Wildlife and Habitats Division, 22 Biplabi Ambika Chakraborty Sarani, Kolkata 700029, West Bengal, India
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India.
| |
Collapse
|
6
|
Chen W, Sang S, Shao L, Li Y, Li T, Gan L, Liu L, Wang D, Zhou L. Biogeographic Patterns and Community Assembly Processes of Bacterioplankton and Potential Pathogens in Subtropical Estuaries in China. Microbiol Spectr 2023; 11:e0368322. [PMID: 36507672 PMCID: PMC9927264 DOI: 10.1128/spectrum.03683-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Microbial communities in coastal waters are diverse and dynamic and play important roles in ecosystem functions and services. Despite the ecological impact of bacterioplankton or pathogens, little is known about whether bacterioplankton and pathogen communities exhibit similar patterns. Here, using 16S RNA gene amplicon sequencing, the geographic patterns and assembly processes of bacterioplankton and pathogen communities in 30 subtropical estuaries were studied. Results showed that the estuarine bacterioplankton communities mainly consisted of Proteobacteria (49.06%), Actinobacteria (17.62%), and Bacteroidetes (16.33%), among which 31 pathogen genera (186 amplicon sequence variants [ASVs]) were identified. Under the influence of salinity, bacterioplankton and pathogens showed similar biogeographic patterns. Redundancy and correlation analyses indicated that the bacterioplankton communities were strongly correlated with estuarine environmental factors, but potential pathogens were less influenced. Co-occurrence network analysis revealed a close relationship between bacterioplankton and potential pathogens, with two pathogens identified as connectors (i.e., ASV340 [Clostridium perfringens] and ASV1624 [Brevundimonas diminuta]), implying potential impacts of pathogens on structure, function, and stability of estuarine bacterioplankton communities. Null-model analysis revealed that deterministic processes (heterogeneous selection) dominated bacterioplankton community assembly, while stochastic processes (undominated effect) shaped the potential pathogen community. Our findings illustrate the biogeographic patterns and community assembly mechanisms of bacterioplankton and pathogens in estuaries, which should provide guidance and a reference for the control of potential pathogenic bacteria. IMPORTANCE Bacterioplankton play an important role in estuarine ecosystem functions and services; however, potentially pathogenic bacteria may exhibit infectivity and pose a serious threat to environmental and human health. In this study, geographic patterns and assembly processes of bacterioplankton communities in 30 subtropical estuaries were explored, and potential pathogenic bacteria in the estuaries were detected and profiled. Our results demonstrate here that bacterioplankton and pathogens show similar biogeographic patterns under the influence of salinity. Interestingly, heterogeneous selection dominated bacterioplankton assembly, while stochasticity dominated pathogen assembly. This study provides important information for future risk assessment of potential pathogenic bacteria as well as management in estuarine ecosystems.
Collapse
Affiliation(s)
- Wenjian Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shilei Sang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Liyi Shao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yusen Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, China
| | - Tongzhou Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lihong Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Dapeng Wang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, China
| | - Lei Zhou
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Wu J, Zhu Z, Waniek JJ, Niu M, Wang Y, Zhang Z, Zhou M, Zhang R. The biogeography and co-occurrence network patterns of bacteria and microeukaryotes in the estuarine and coastal waters. MARINE ENVIRONMENTAL RESEARCH 2023; 184:105873. [PMID: 36628821 DOI: 10.1016/j.marenvres.2023.105873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Community and diversity shifts of bacteria and microeukaryotes with strong environmental and spatial variations have been unveiled in the Pearl River Estuary (PRE) and northern coastal part of South China Sea (SCS). However, it is not clear what the determining factors shape the microbial community and how the biotic interactions respond to the estuarine and oceanic environment. Here, we established the multiple regression models (MRM) and co-occurrence networks on microbial communities in PRE and SCS habitats. The results showed that there were significant differences of the abiotic factors affecting the bacterial and microeukaryotic communities between PRE and SCS habitats. Salinity explained the largest variations to the microbial community dissimilarities in PRE. Whereas spatial and environmental factors determined the microbial community dissimilarities in SCS. Positive relations between parasitic lineages (e.g. Perkinsea and Cercozoa) and algal taxa (Dinophyceae, Cryptophyta, Chlorophyta and Ochrophyta) dominated in the PRE network. While parasites Syndiniales positively correlated with other Syndiniales and protists in SCS. Strong positive associations among autotrophic and heterotrophic groups were revealed in both niches. Therefore, the biotic interactions are also important and may be responsible for the unexplained variations of the abiotic factors from MRM models. Microbial network in the PRE estuarine water had weakened resistance to environmental disturbances, while the SCS network had greater capacity to maintain network stability. This study shed light on the different mechanisms of abiotic and biotic factors in shaping the compositions of bacteria and microeukaryotes between PRE and SCS niches, and highlights the weakening effect of environmental disturbances on the microbial network stability.
Collapse
Affiliation(s)
- Jinnan Wu
- School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zhu Zhu
- School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Joanna J Waniek
- Leibniz Institute for Baltic Sea Research Warnemünde, Seestrasse 15, 18119, Rostock, Germany
| | - Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 310000, Hangzhou, Zhejiang, China
| | - Zhaoru Zhang
- School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Meng Zhou
- School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Ruifeng Zhang
- School of Oceanography, Shanghai Jiao Tong University, 200030, Shanghai, China.
| |
Collapse
|
8
|
Kopprio GA, Martínez A, Fricke A, Hupfer M, Lara RJ, Graeve M, Gärdes A. Towards the outwelling hypothesis in a Patagonian estuary: First support from lipid markers and bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158670. [PMID: 36099952 DOI: 10.1016/j.scitotenv.2022.158670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Biogeochemical markers in combination with bacterial community composition were studied at two contrasting stations at the Río Negro (RN) estuary to assess the outwelling hypothesis in the Argentinian Patagonia. Inorganic nutrients and dissolved organic matter were exported clearly during the last hours of the ebb at the station Wetland. Moreover, a considerable outwelling of polyunsaturated fatty acids (PUFA), particulates and microalgae was inferred by this combined approach. The exported 22:6(n-3) and 20:5(n-3) contributed very likely to sustain higher trophic levels in the coasts of the Southwest Atlantic. The stable isotopes did not evidence clearly the outwelling; nevertheless, the combination of δ13C with fatty acid bacterial markers indicated organic matter degradation in the sediments. The dominance of Desulfobacterales and Desulfuromonadales suggested sulphate reduction in the sediments, a key mechanism for nutrient outwelling in salt marshes. Marivivens and other Rhodobacterales (Alphaproteobacteria) in the suspended particulate matter were clear indicators of the nutrient outwelling. The colonization of particles according to the island biogeography theory was a good hypothesis to explain the lower bacterial biodiversity at the wetland. The copiotrophic conditions of the RN estuary and particularly at the wetland were deduced also by the dynamic of some Actinobacteria, Bacteroidia and Gammaproteobacteria. This high-resolution snapshot combining isotopic, lipid and bacterial markers offers key pioneer insights into biogeochemical and ecological processes of the RN estuary.
Collapse
Affiliation(s)
- Germán A Kopprio
- Robert Koch Institute, Berlin, Germany; Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany; Instituto Argentino de Oceanografía - Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina.
| | - Ana Martínez
- Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Anna Fricke
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
| | - Michael Hupfer
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Rubén J Lara
- Instituto Argentino de Oceanografía - Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | - Martin Graeve
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Astrid Gärdes
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; University of Applied Sciences, Bremerhaven, Germany
| |
Collapse
|
9
|
Ma Y, Li P, Zhong H, He M, Wang B, Mou X, Wu L. The Ecological Differentiation of Particle-Attached and Free-Living Bacterial Communities in a Seasonal Flooding Lake-the Poyang Lake. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02134-1. [PMID: 36323973 DOI: 10.1007/s00248-022-02134-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Particle-attached (PA) and free-living (FL) bacterial communities play essential roles in the biogeochemical cycling of essential nutrients in aquatic environments. However, little is known about the factors that drive the differentiation of bacterial lifestyles, especially in flooding lake systems. Here we assessed the compositional and functional similarities between the FL and PA bacterial fractions in a typical flooding lake-the Poyang Lake (PYL) of China. The results revealed that PA communities had significantly different compositions and functions from FL communities in every hydrological period, and the diversity of both PA and FL communities was affected mainly by the water regime rather than bacterial lifestyles. PA communities were more diverse and enriched with Proteobacteria and Bacteroidetes, while FL communities had more Actinobacteria. There was a higher abundance of photosynthetic and nitrogen-cycling bacterial groups in PA communities, but a higher abundance of members involved in hydrocarbon degradation, aromatic hydrocarbon degradation, and methylotrophy in FL communities. Water properties (e.g., temperature, pH, total phosphorus) significantly regulated the lifestyle variations of PA and FL bacteria in PYL. Collectively, our results have demonstrated a clear ecological differentiation of PA and FL bacterial communities in flooding lakes, suggesting that the connectivity between FL and PA bacterial fractions is water property-related rather than water regime-related.
Collapse
Affiliation(s)
- Yantian Ma
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Pan Li
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Hui Zhong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Mengjie He
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Binhua Wang
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China
| | - Xiaozhen Mou
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, 330022, China.
| |
Collapse
|
10
|
Bullington JA, Golder AR, Steward GF, McManus MA, Neuheimer AB, Glazer BT, Nigro OD, Nelson CE. Refining real-time predictions of Vibrio vulnificus concentrations in a tropical urban estuary by incorporating dissolved organic matter dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154075. [PMID: 35218838 DOI: 10.1016/j.scitotenv.2022.154075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/14/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The south shore of O'ahu, Hawai'i is one of the most visited coastal tourism areas in the United States with some of the highest instances of recreational waterborne disease. A population of the pathogenic bacterium Vibrio vulnificus lives in the estuarine Ala Wai Canal in Honolulu which surrounds the heavily populated tourism center of Waikīkī. We developed a statistical model to predict V. vulnificus dynamics in this system using environmental measurements from moored oceanographic and atmospheric sensors in real time. During a year-long investigation, we analyzed water from 9 sampling events at 3 depths and 8 sites along the canal (n = 213) for 36 biogeochemical variables and V. vulnificus concentration using quantitative polymerase chain reaction (qPCR) of the hemolysin A gene (vvhA). The best multiple linear regression model of V. vulnificus concentration, explaining 80% of variation, included only six predictors: 5-day average rainfall preceding water sampling, daily maximum air temperature, water temperature, nitrate plus nitrite, and two metrics of humic dissolved organic matter (DOM). We show how real-time predictions of V. vulnificus concentration can be made using these models applied to the time series of water quality measurements from the Pacific Islands Ocean Observing System (PacIOOS) as well as the PacIOOS plume model based on the Waikīkī Regional Ocean Modeling System (ROMS) products. These applications highlight the importance of including DOM variables in predictive modeling of V. vulnificus and the influence of rain events in elevating nearshore concentrations of V. vulnificus. Long-term climate model projections of locally downscaled monthly rainfall and air temperature were used to predict an overall increase in V. vulnificus concentration of approximately 2- to 3-fold by 2100. Improving these predictive models of microbial populations is critical for management of waterborne pathogen risk exposure, particularly in the wake of a changing global climate.
Collapse
Affiliation(s)
- Jessica A Bullington
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States; Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), Honolulu, HI, United States; Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, United States.
| | - Abigail R Golder
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), Honolulu, HI, United States; Department of Biological Sciences, Virginia Institute of Marine Science, Gloucester Point, VA, United States
| | - Grieg F Steward
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States; Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), Honolulu, HI, United States
| | - Margaret A McManus
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Anna B Neuheimer
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States; Department of Biology, Aarhus University, Aarhus, Denmark
| | - Brian T Glazer
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Olivia D Nigro
- Department of Natural Science, Hawai'i Pacific University, Honolulu, HI, United States
| | - Craig E Nelson
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI, United States; Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), Honolulu, HI, United States; Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
11
|
Zhou L, Huang S, Gong J, Xu P, Huang X. 500 metagenome-assembled microbial genomes from 30 subtropical estuaries in South China. Sci Data 2022; 9:310. [PMID: 35710651 PMCID: PMC9203525 DOI: 10.1038/s41597-022-01433-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 05/23/2022] [Indexed: 12/31/2022] Open
Abstract
As a unique geographical transition zone, the estuary is considered as a model environment to decipher the diversity, functions and ecological processes of microbial communities, which play important roles in the global biogeochemical cycle. Here we used surface water metagenomic sequencing datasets to construct metagenome-assembled genomes (MAGs) from 30 subtropical estuaries at a large scale along South China. In total, 500 dereplicated MAGs with completeness ≥ 50% and contamination ≤ 10% were obtained, among which more than one-thirds (n = 207 MAGs) have a completeness ≥ 70%. These MAGs are dominated by taxa assigned to the phylum Proteobacteria (n = 182 MAGs), Bacteroidota (n = 110) and Actinobacteriota (n = 104). These draft genomes can be used to study the diversity, phylogenetic history and metabolic potential of microbiota in the estuary, which should help improve our understanding of the structure and function of these microorganisms and how they evolved and adapted to extreme conditions in the estuarine ecosystem.
Collapse
Affiliation(s)
- Lei Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shihui Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiayi Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Peng Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, China.
| | - Xiande Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
12
|
Ghosh A, Saha R, Bhadury P. Metagenomic insights into surface water microbial communities of a South Asian mangrove ecosystem. PeerJ 2022; 10:e13169. [PMID: 35573175 PMCID: PMC9097664 DOI: 10.7717/peerj.13169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/04/2022] [Indexed: 01/12/2023] Open
Abstract
Estuaries are one of the most productive ecosystems and their productivity is maintained by resident microbial communities. Recent alterations driven by climate change have further escalated these stressors leading to the propagation of traits such as antibiotic resistance and heavy metal resistance in microbial communities. Surface water samples from eleven stations along the Thakuran and Matla estuaries of the Sundarbans Biosphere Reserve (SBR) of Sundarbans mangrove located in South Asia were sampled in monsoon (June) 2019 to elucidate resident microbial communities based on Nanopore sequencing. Metagenomic analyses revealed the widespread dominance of Proteobacteria across all the stations along with a high abundance of Firmicutes. Other phyla, including Euryarchaeota, Thaumarchaeota, Actinobacteria, Bacteroidetes and Cyanobacteria showed site-specific trends in abundance. Further taxonomic affiliations showed Gammaproteobacteria and Alphaproteobacteria to be dominant classes with high abundances of Bacilli in SBR_Stn58 and SBR_Stn113. Among the eukaryotic communities, the most abundant classes included Prasinophyceae, Saccharyomycetes and Sardariomycetes. Functional annotation showed metabolic activities such as carbohydrate, amino acid, nitrogen and phosphorus metabolisms to be uniformly distributed across all the studied stations. Pathways such as stress response, sulphur metabolism and motility-associated genes appeared in low abundances in SBR. Functional traits such as antibiotic resistance showed overwhelming dominance of genes involved in multidrug resistance along with widespread resistance towards commonly used antibiotics including Tetracycline, glycopeptide and aminoglycoside. Metal resistance genes including arsenic, nickel and copper were found in comparable abundances across the studied stations. The prevalence of ARG and MRG might indicate presence of pollutants and hint toward deteriorating ecosystem health status of Sundarbans mangrove.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India
| | - Ratul Saha
- Wildlife and Habitats Division, WWF-India Sundarbans Landscape, Kolkata, West Bengal, India
| | - Punyasloke Bhadury
- Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India,Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
13
|
Palit K, Rath S, Chatterjee S, Das S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32467-32512. [PMID: 35182344 DOI: 10.1007/s11356-022-19048-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mangroves are among the world's most productive ecosystems and a part of the "blue carbon" sink. They act as a connection between the terrestrial and marine ecosystems, providing habitat to countless organisms. Among these, microorganisms (e.g., bacteria, archaea, fungi, phytoplankton, and protozoa) play a crucial role in this ecosystem. Microbial cycling of major nutrients (carbon, nitrogen, phosphorus, and sulfur) helps maintain the high productivity of this ecosystem. However, mangrove ecosystems are being disturbed by the increasing concentration of greenhouse gases within the atmosphere. Both the anthropogenic and natural factors contribute to the upsurge of greenhouse gas concentration, resulting in global warming. Changing climate due to global warming and the increasing rate of human interferences such as pollution and deforestation are significant concerns for the mangrove ecosystem. Mangroves are susceptible to such environmental perturbations. Global warming, human interventions, and its consequences are destroying the ecosystem, and the dreadful impacts are experienced worldwide. Therefore, the conservation of mangrove ecosystems is necessary for protecting them from the changing environment-a step toward preserving the globe for better living. This review highlights the importance of mangroves and their microbial components on a global scale and the degree of vulnerability of the ecosystems toward anthropic and climate change factors. The future scenario of the mangrove ecosystem and the resilience of plants and microbes have also been discussed.
Collapse
Affiliation(s)
- Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
14
|
Lew S, Glińska-Lewczuk K, Burandt P, Kulesza K, Kobus S, Obolewski K. Salinity as a Determinant Structuring Microbial Communities in Coastal Lakes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084592. [PMID: 35457457 PMCID: PMC9028135 DOI: 10.3390/ijerph19084592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 02/06/2023]
Abstract
The response of bacterioplankton structure to salinity level in coastal lakes (n = 9) along the southern Baltic Sea coastline was studied. In terms of mean salinity levels (0.2−5.2 PSU), the lakes represented freshwater, transitional, and brackish types. Results showed that salinity determines the spatial and seasonal distribution patterns of microorganisms in costal lakes. Increased salinity contributed to a significant decline in total bacterial numbers (TBN). The TBN was lowest in brackish lakes in autumn (4 × 106 cells/mL) and highest in freshwater lakes in summer (7.11 × 106 cells/mL). The groups of Proteobacteria are appropriate bioindicators in any classifications of coastal ecosystems, particularly at low-haline stress. Alpha- and Gamma- subclasses of Proteobacteria are identifiers for brackish habitats, while Betaproteobacteria, due to their intolerance to haline stress, prefer freshwater habitats. Counts of euryhaline Actinobacteria, the dominant group of bacterioplankton (31.8%), decreased significantly with increased salinity. Actinobacteria and Deltaproteobacteria were identifiers of transitional lakes. Cytophaga-Flavobacteria showed affinity with freshwater ecosystems, but this relation was not statistically significant (p > 0.05). The bacteria groups correlated with other physico-chemical parameters of water, such as oxygenation (Actinobacteria) or organic carbon (Betaproteobacteria, Deltaproteobacteria). The impact of hydrological connectivity and salt-water interference on the microbiota structure and biogeochemistry of coastal waters should be considered in the assessment of the ecological status of coastal lakes.
Collapse
Affiliation(s)
- Sylwia Lew
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 1a, 10-719 Olsztyn, Poland;
- Correspondence:
| | - Katarzyna Glińska-Lewczuk
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Łódzki Sq. 2, 10-719 Olsztyn, Poland; (K.G.-L.); (P.B.); (S.K.)
| | - Paweł Burandt
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Łódzki Sq. 2, 10-719 Olsztyn, Poland; (K.G.-L.); (P.B.); (S.K.)
| | - Klaudia Kulesza
- Department of Microbiology and Mycology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 1a, 10-719 Olsztyn, Poland;
| | - Szymon Kobus
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Łódzki Sq. 2, 10-719 Olsztyn, Poland; (K.G.-L.); (P.B.); (S.K.)
| | - Krystian Obolewski
- Department of Hydrobiology, Kazimierz Wielki University in Bydgoszcz, Powstańców Wielkopolskich Str. 10, 85-090 Bydgoszcz, Poland;
| |
Collapse
|
15
|
Mai Y, Peng S, Lai Z, Wang X. Seasonal and inter-annual variability of bacterioplankton communities in the subtropical Pearl River Estuary, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21981-21997. [PMID: 34775557 DOI: 10.1007/s11356-021-17449-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
It is widely recognized that environmental factors substantially influence on the seasonal and inter-annual variability of bacterioplankton communities, yet little is known about the seasonality of bacterioplankton communities in subtropical estuaries at longer-term time scales. Here, the bacterioplankton communities from the eight major outlets of the subtropical Pearl River Estuary were investigated across 3 years (2017-2019) using full-length 16S rRNA gene sequencing. Significant seasonal and inter-annual variation was observed in bacterioplankton community compositions across the 3 years (p < 0.05). In addition, the inferred functional composition of the communities varied with seasons, although not significantly, suggesting that functional redundancy existed among communities and across seasons that could help to cope with environmental changes. Five evaluated environmental parameters (temperature, salinity, pH, total dissolved solids (TDS), total phosphorus (TP)) were significantly correlated with community composition variation, while only three environmental parameters (temperature, pH, and TDS) were correlated with variation in inferred functional composition. Moreover, community composition tracked the seasonal temperature gradients, indicating that temperature was a key environmental factor that affected bacterioplankton community's variation along with seasonal succession patterns. Gammaproteobacteria and Alphaproteobacteria were the most dominant classes in the surface waters of Pearl River Estuary, and their members exhibited divergent responses to temperature changes, while several taxa within these group could be indicators of low and high temperatures that are associated with seasonal changes. These results strengthen our understanding of bacterioplankton community variation in association with temperature-dependent seasonal changes in subtropical estuarine ecosystems.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou, 510070, China.
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 100 Xianlie Middle Road, 510070, China.
| |
Collapse
|
16
|
Ghosh A, Bhadury P. Exploring changes in bacterioplankton community structure in response to tannic acid, a major component of mangrove litterfall of Sundarbans mangrove ecosystem: a laboratory mesocosm approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2107-2121. [PMID: 34363579 DOI: 10.1007/s11356-021-15550-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Tannic acid is a secondary compound produced by vascular plants and is a major component of mangrove litterfall. Tannic acid is water soluble, leaches out from mangrove litterfall and contributes to DOC and DON pools in adjacent estuaries. About 50% of the litterfall may be degraded and channelized into the marine microbial loop. The influence of tannic acid on bacterioplankton community structure was tested by setting up laboratory-based barrel experiments. Estuarine water from Stn3 of Sundarbans Biological Observatory Time Series (SBOTS) was enriched with tannic acid, and the change in concentration of dissolved nutrients was determined on a daily basis over a span of 15 days. Concentrations of tannic acid, gallic acid and other dissolved nutrients such as nitrate and ortho-phosphate were determined using a UV-Vis spectrophotometer. Tannic acid significantly affected the concentrations of gallic acid and dissolved nitrate in the barrels. Degradation of tannic acid was tracked by a decrease in concentration of tannic acid and generation of gallic acid. The influence of tannic acid on bacterioplankton community structure was analysed on the start (day 0), intermediate (day 3, day 5, day 7 and day 9) and end (day 15) of the experiment. Bacterioplankton community structure was elucidated by sequencing the V3-V4 region of 16S ribosomal RNA on an Illumina MiSeq platform. Proteobacteria was found to be the most dominant bacterial phylum in control and tannic acid-enriched barrels (barrels 1 and 2) on day 0. With the progression of experiment, the abundance of Proteobacteria altered significantly in the control barrel indicating the possible role of this phylum in the breakdown of tannic acid within estuarine mangroves. The abundance of Proteobacteria in the tannic acid-enriched barrels remained high, indicating that members of Proteobacteria may be capable of using tannic acid as a source of carbon and nitrogen. Tannic acid appeared to inhibit most of the other bacterioplankton phyla including Actinobacteria, Acidobacteria and Verrucomicrobia that existed in large abundance in the control barrel on day 15 but were almost absent in the tannic acid-enriched barrels. At class level, Bacteroides was found to be present in highest abundance in the tannic acid-enriched barrels. Tannic acid appeared to strongly influence the abundant bacterioplankton phyla and families as indicated by Pearson's correlation coefficient and non-metric multidimensional scaling ordination plots. Gallic acid is one of the final products of tannic acid degradation. Breakdown of tannic acid could influence the marine nitrogen and carbon cycling by releasing DON and DOC, respectively, into the adjacent estuaries. Information of breakdown and remineralization of components of litterfall such as tannic acid would also be important for calculation of carbon and nitrogen budgets of coastal ecosystems including in mangroves.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
17
|
Parvathi A, Catena M, Jasna V, Phadke N, Gogate N. Influence of hydrological factors on bacterial community structure in a tropical monsoonal estuary in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:50579-50592. [PMID: 33963997 DOI: 10.1007/s11356-021-14263-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
In the present study, we analyzed variations in bacterial community structure along a salinity gradient in a tropical monsoonal estuary (Cochin estuary [CE]), on the southwest coast of India, using Illumina next-generation sequencing (NGS). Water samples were collected from eight different locations thrice a year to assess the variability in the bacterial community structure and to determine the physico-chemical factors influencing the bacterial diversity. Proteobacteria was the most dominant phyla in the estuary followed by Bacteroidetes, Cyanobacteria, Actinobacteria, and Firmicutes. Statistical analysis indicated significant variations in bacterial communities between freshwater and mesohaline and euryhaline regions, as well as between the monsoon (wet) and nonmonsoon (dry) periods. The abundance of Betaproteobacteria was higher in the freshwater regions, while Alphaproteobacteria and Epsilonproteobactera were more abundant in mesohaline and euryhaline regions of the estuary. Gammaproteobacteria was more abundant in regions with high nutrient concentrations. Various bacterial genera indicating the presence of fecal contamination and eutrophication were detected. Corrplot based on Pearson correlation analysis demonstrated the important physico-chemical variables (temperature, salinity, dissolved oxygen, and inorganic nutrients) that influence the distribution of dominant phyla, class, and genera. The observed spatio-temporal variations in bacterial community structure in the CE were governed by regional variations in anthropogenic inputs and seasonal variations in monsoonal rainfall and tidal influx.
Collapse
Affiliation(s)
- Ammini Parvathi
- CSIR-National Institute of Oceanography, Regional Centre , Dr. Salim Ali Road, Post Box No. 1913, Kochi, 682 018, India.
| | - Michela Catena
- CSIR-National Institute of Oceanography, Regional Centre , Dr. Salim Ali Road, Post Box No. 1913, Kochi, 682 018, India
| | - Vijayan Jasna
- CSIR-National Institute of Oceanography, Regional Centre , Dr. Salim Ali Road, Post Box No. 1913, Kochi, 682 018, India
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Nikhil Phadke
- GenePath Dx, Shivajinagar, Pune, Maharashtra, 411004, India
| | - Nikhita Gogate
- GenePath Dx, Shivajinagar, Pune, Maharashtra, 411004, India
| |
Collapse
|
18
|
Insights on aquatic microbiome of the Indian Sundarbans mangrove areas. PLoS One 2020; 15:e0221543. [PMID: 32097429 PMCID: PMC7041844 DOI: 10.1371/journal.pone.0221543] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anthropogenic perturbations have strong impact on water quality and ecological health of mangrove areas of Indian Sundarbans. Diversity in microbial community composition is important causes for maintaining the health of the mangrove ecosystem. However, microbial communities of estuarine water in Indian Sundarbans mangrove areas and environmental determinants that contribute to those communities were seldom studied. METHODS Nevertheless, this study attempted first to report bacterial and archaeal communities simultaneously in the water from Matla River and Thakuran River of Maipith coastal areas more accurately using 16S rRNA gene-based amplicon approaches. Attempt also been made to assess the capability of the environmental parameters for explaining the variation in microbial community composition. RESULTS Our investigation indicates the dominancy of halophilic marine bacteria from families Flavobacteriaceae and OM1 clade in the water with lower nutrient load collected from costal regions of a small Island of Sundarban Mangroves (ISM). At higher eutrophic conditions, changes in bacterial communities in Open Marine Water (OMW) were detected, where some of the marine hydrocarbons degrading bacteria under families Oceanospirillaceae and Spongiibacteraceae were dominated. While most abundant bacterial family Rhodobacteracea almost equally (18% of the total community) dominated in both sites. Minor variation in the composition of archaeal community was also observed between OMW and ISM. Redundancy analysis indicates a combination of total nitrogen and dissolved inorganic nutrients for OMW and for ISM, salinity and total nitrogen was responsible for explaining the changes in their respective microbial community composition. CONCLUSIONS Our study contributes the first conclusive overview on how do multiple environmental/anthropogenic stressors (salinity, pollution, eutrophication, land-use) affect the Sundarban estuary water and consequently the microbial communities in concert. However, systematic approaches with more samples for evaluating the effect of environmental pollutions on mangrove microbial communities are recommended.
Collapse
|
19
|
Song Y, Mao G, Gao G, Bartlam M, Wang Y. Structural and Functional Changes of Groundwater Bacterial Community During Temperature and pH Disturbances. MICROBIAL ECOLOGY 2019; 78:428-445. [PMID: 30706112 DOI: 10.1007/s00248-019-01333-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
In this study, we report the characteristics of a microbial community in sampled groundwater and elucidate the effects of temperature and pH disturbances on bacterial structure and nitrogen-cycling functions. The predominant phyla of candidate OD1, candidate OP3, and Proteobacteria represented more than half of the total bacteria, which clearly manifested as a "low nucleic acid content (LNA) bacteria majority" type via flow cytometric fingerprint. The results showed that LNA bacteria were more tolerant to rapid changes in temperature and pH, compared to high nucleic acid content (HNA) bacteria. A continuous temperature increase test demonstrated that the LNA bacterial group was less competitive than the HNA bacterial group in terms of maintaining their cell intactness and growth potential. In contrast, the percentage of intact LNA bacteria was maintained at nearly 70% with pH decrease, despite a 50% decrease in total intact cells. Next-generation sequencing results revealed strong resistance and growth potential of phylum Proteobacteria when the temperature increased or the pH decreased in groundwater, especially for subclasses α-, β-, and γ-Proteobacteria. In addition, relative abundance of nitrogen-related functional genes by qPCR showed no difference in nitrifiers or denitrifiers within 0.45 μm-captured and 0.45 μm-filterable bacteria due to phylogenetic diversity. One exception was the monophyletic anammox bacteria that belong to the phylum Planctomycetes, which were mostly captured on a 0.45-μm filter. Furthermore, we showed that both temperature increase and pH decrease could enhance the denitrification potential, whereas the nitrification and anammox potentials were weakened.
Collapse
Affiliation(s)
- Yuhao Song
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Guannan Mao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Guanghai Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mark Bartlam
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
20
|
Ghosh A, Bhadury P. Exploring biogeographic patterns of bacterioplankton communities across global estuaries. Microbiologyopen 2018; 8:e00741. [PMID: 30303297 PMCID: PMC6528645 DOI: 10.1002/mbo3.741] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
Estuaries provide an ideal niche to study structure and function of bacterioplankton communities owing to the presence of a multitude of environmental stressors. Bacterioplankton community structures from nine global estuaries were compared to understand their broad‐scale biogeographic patterns. Bacterioplankton community structure from four estuaries of Sundarbans, namely Mooriganga, Thakuran, Matla, and Harinbhanga, was elucidated using Illumina sequencing. Bacterioplankton communities from these estuaries were compared against available bacterioplankton sequence data from Columbia, Delaware, Jiulong, Pearl, and Hangzhou estuaries. All nine estuaries were dominated by Proteobacteria. Other abundant phyla included Bacteroidetes, Firmicutes, Acidobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, and Verrucomicrobia. The abundant bacterial phyla showed a ubiquitous presence across the estuaries. At class level, the overwhelming abundance of Gammaproteobacteria in the estuaries of Sundarbans and Columbia estuary clearly stood out amidst high abundance of Alphaproteobacteria observed in the other estuaries. Abundant bacterial families including Rhodobacteriaceae, Shingomonadaceae, Acidobacteriaceae, Vibrionaceae, and Xanthomondaceae also showed ubiquitous presence in the studied estuaries. However, rare taxa including Chloroflexi, Tenericutes, Nitrospirae, and Deinococcus‐Thermus showed clear site‐specific distribution patterns. Such distribution patterns were also reinstated by nMDS ordination plots. Such clustering patterns could hint toward the potential role of environmental parameters and substrate specificity which could result in distinct bacterioplankton communities at specific sites. The ubiquitous presence of abundant bacterioplankton groups along with their strong correlation with surface water temperature and dissolved nutrient concentrations indicates the role of such environmental parameters in shaping bacterioplankton community structure in estuaries. Overall, studies on biogeographic patters of bacterioplankton communities can provide interesting insights into ecosystem functioning and health of global estuaries.
Collapse
Affiliation(s)
- Anwesha Ghosh
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Punyasloke Bhadury
- Integrative Taxonomy and Microbial Ecology Research Group, Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|