1
|
Xu W, Ma W, Wang D, Zhou X, Wang K, Mu K. Integrated multi-omics profiling reveals a clinically relevant molecular feature and potential therapeutic target on phyllodes tumors of breast. Transl Oncol 2024; 46:101998. [PMID: 38761630 PMCID: PMC11112002 DOI: 10.1016/j.tranon.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Phyllodes tumors (PTs) has an increased risk of local relapse and distant metastases. Molecular features correlating to histologic grade and aggressive behavior of PTs are poorly characterized. Here, whole exome sequencing (WES) was performed to explore genetic mutations in 61 samples of fibroepithelial breast tumors, including 16 fibroadenomas (FAs), 18 benign PTs, 19 borderline PTs, and 8 malignant PTs. Our work clearly shows that FA, benign PT, borderline PT, and malignant PT are independent entities at the genomic level. They may exist as hidden sub-clones carrying specific genetic alterations. Malignant PT-specific mutations present a multi-gene co-mutational pattern suggesting a synergistic effect of co-mutated genes in processes associated with malignant behavior. Moreover, we made a combined genomic and transcriptomic analysis, which presented a mutated gene-based interaction with expression profiles. We found that EGFR mutations (c.710C > T, c.758A > G, c.1295A > G, and c.2156G > C) serve as a hub of interaction network in borderline PTs, which suggests EGFR tyrosine kinase inhibitors (EGFRi) might be effective for borderline PTs. We found TP53 mutations (c.730G > T, c.844C > T, and c.1019delA) serves as a hub event of molecular changes of malignant PTs. Thus, our study based on the omics platforms of genome and transcriptome provides a better understanding of relapse process and the potential targeted therapy in PTs, which is pivotal in improving molecular-guided patient selection and designing clinically relevant combination strategies.
Collapse
Affiliation(s)
- Wei Xu
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Ma
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Depeng Wang
- Department of Pathology, First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Xingchen Zhou
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Kangyu Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Kun Mu
- Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China; Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Yang M, Xiang H, Luo G. Targeting focal adhesion kinase (FAK) for cancer therapy: FAK inhibitors, FAK-based dual-target inhibitors and PROTAC degraders. Biochem Pharmacol 2024; 224:116246. [PMID: 38685282 DOI: 10.1016/j.bcp.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, plays an essential role in regulating cell proliferation, migration and invasion through both kinase-dependent enzymatic function and kinase-independent scaffolding function. The overexpression and activation of FAK is commonly observed in various cancers and some drug-resistant settings. Therefore, targeted disruption of FAK has been identified as an attractive strategy for cancer treatment. To date, numerous structurally diverse inhibitors targeting distinct domains of FAK have been developed, encompassing kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors, with several FAK inhibitors advanced to clinical trials. Moreover, given the critical role of FAK scaffolding function in signal transduction, FAK-targeted PROTACs have also been developed. Although no current FAK-targeted therapeutics have been approved for the market, the combination of FAK inhibitors with other anticancer drugs has shown considerable promise in the clinic. This review provides an overview of current drug discovery strategies targeting FAK, including the development of FAK inhibitors, FAK-based dual-target inhibitors and proteolysis-targeting chimeras (PROTACs) in both literature and patent applications. Accordingly, their design and optimization process, mechanisms of action and biological activities are discussed to offer insights into future directions of FAK-targeting drug discovery in cancer therapy.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
3
|
Letsoalo K, Nortje E, Patrick S, Nyakudya T, Hlophe Y. Decoding the synergistic potential of MAZ-51 and zingerone as therapy for melanoma treatment in alignment with sustainable development goals. Cell Biochem Funct 2024; 42:e3950. [PMID: 38348768 DOI: 10.1002/cbf.3950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Melanoma, an invasive class of skin cancer, originates from mutations in melanocytes, the pigment-producing cells. Globally, approximately 132,000 new cases are reported each year, and in South Africa, the incidence stands at 2.7 per 100,000 people, signifying a worrisome surge in melanoma rates. Therefore, there is a need to explore treatment modalities that will target melanoma's signalling pathways. Melanoma metastasis is aided by ligand activity of transforming growth factor-beta 1 (TGF-β1), vascular endothelial growth factor-C (VEGF-C) and C-X-C chemokine ligand 12 (CXCL12) which bind to their receptors and promote tumour cell survival, lymphangiogenesis and chemotaxis. (3-(4-dimethylaminonaphthelen-1-ylmethylene)-1,3-dihydroindol-2-one) MAZ-51 is an indolinone-based molecule that inhibits VEGF-C induced phosphorylation of vascular endothelial growth factor receptor 3 (VEGFR-3). Despite the successful use of conventional cancer therapies, patients endure adverse side effects and cancer drug resistance. Moreover, conventional therapies are toxic to the environment and caregivers. The use of medicinal plants and their phytochemical constituents in cancer treatment strategies has become more widespread because of the rise in drug resistance and the development of unfavourable side effects. Zingerone, a phytochemical derived from ginger exhibits various pharmacological properties positioning it as a promising candidate for cancer treatment. This review provides an overview of melanoma biology and the intracellular signalling pathways promoting cell survival, proliferation and adhesion. There is a need to align health and environmental objectives within sustainable development goals 3 (good health and well-being), 13 (climate action) and 15 (life on land) to promote early detection of skin cancer, enhance sun-safe practices, mitigation of environmental factors and advancing the preservation of biodiversity, including medicinal plants. Thus, this review discusses the impact of cytostatic cancer drugs on patients and the environment and examines the potential use of phytochemicals as adjuvant therapy.
Collapse
Affiliation(s)
- Kganya Letsoalo
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Evangeline Nortje
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Sean Patrick
- Environmental Chemical Pollution and Health Research Unit, University of Pretoria, Pretoria, South Africa
| | - Trevor Nyakudya
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Yvette Hlophe
- Department of Physiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Pifer PM, Yang L, Kumar M, Xie T, Frederick M, Hefner A, Beadle B, Molkentine D, Molkentine J, Dhawan A, Abdelhakiem M, Osman AA, Leibowitz BJ, Myers JN, Pickering CR, Sandulache VC, Heymach J, Skinner HD. FAK Drives Resistance to Therapy in HPV-Negative Head and Neck Cancer in a p53-Dependent Manner. Clin Cancer Res 2024; 30:187-197. [PMID: 37819945 PMCID: PMC10767302 DOI: 10.1158/1078-0432.ccr-23-0964] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/21/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Radiation and platinum-based chemotherapy form the backbone of therapy in human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC). We have correlated focal adhesion kinase (FAK/PTK2) expression with radioresistance and worse outcomes in these patients. However, the importance of FAK in driving radioresistance and its effects on chemoresistance in these patients remains unclear. EXPERIMENTAL DESIGN We performed an in vivo shRNA screen using targetable libraries to identify novel therapeutic sensitizers for radiation and chemotherapy. RESULTS We identified FAK as an excellent target for both radio- and chemosensitization. Because TP53 is mutated in over 80% of HPV-negative HNSCC, we hypothesized that mutant TP53 may facilitate FAK-mediated therapy resistance. FAK inhibitor increased sensitivity to radiation, increased DNA damage, and repressed homologous recombination and nonhomologous end joining repair in mutant, but not wild-type, TP53 HPV-negative HNSCC cell lines. The mutant TP53 cisplatin-resistant cell line had increased FAK phosphorylation compared with wild-type, and FAK inhibition partially reversed cisplatin resistance. To validate these findings, we utilized an HNSCC cohort to show that FAK copy number and gene expression were associated with worse disease-free survival in mutant TP53, but not wild-type TP53, HPV-negative HNSCC tumors. CONCLUSIONS FAK may represent a targetable therapeutic sensitizer linked to a known genomic marker of resistance.
Collapse
Affiliation(s)
- Phillip M. Pifer
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Liangpeng Yang
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bilaspur, Himachal Pradesh, India
| | - Tongxin Xie
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Mitchell Frederick
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Andrew Hefner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Beth Beadle
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - David Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jessica Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Annika Dhawan
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Mohamed Abdelhakiem
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Abdullah A. Osman
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Brian J. Leibowitz
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Curtis R. Pickering
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Vlad C. Sandulache
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - John Heymach
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Heath D. Skinner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Design, synthesis and evaluation of nitric oxide releasing derivatives of 2,4-diaminopyrimidine as novel FAK inhibitors for intervention of metastatic triple-negative breast cancer. Eur J Med Chem 2023; 250:115192. [PMID: 36801517 DOI: 10.1016/j.ejmech.2023.115192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
To search for novel medicines for intervention of triple-negative breast cancer (TNBC), a series of phenylsulfonyl furoxan-based 2,4-diaminopyrimidine derivatives (8a-t) were designed and synthesized based on blocking FAK-mediated signaling pathways through both kinase-dependent and -independent manners. The most active compound 8f not only significantly inhibited FAK kinase activity (IC50 = 27.44 nM), displayed potent inhibitory effects on the proliferation (IC50 = 0.126 μM), invasion and migration of MDA-MB-231 cells, superior to the most widely studied FAK inhibitor, TAE226, bearing 2,4-diaminopyrimidine, but also released high levels of NO, contributing to blockage of FAK mediated-signaling pathways by upregulating of p53 as well as suppressing the Y397 phosphorylation and its downstream effectors, including p-Akt, MMP-2, and MMP-9 via kinase-independent manner, leading to apoptosis induction and decrease of FAs and SFs in TNBC cells. Importantly, 8f inhibited the lung metastasis of TNBC in vivo. Together, 8f may serve as a promising candidate for the treatment of metastatic TNBC.
Collapse
|
6
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
7
|
Quispe PA, Lavecchia MJ, León IE. Focal adhesion kinase inhibitors in the treatment of solid tumors: Preclinical and clinical evidence. Drug Discov Today 2021; 27:664-674. [PMID: 34856395 DOI: 10.1016/j.drudis.2021.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/21/2021] [Accepted: 11/23/2021] [Indexed: 01/25/2023]
Abstract
Focal Adhesion Kinase (FAK) is a 125-kDa cytoplasmic protein kinase that is implicated in several cellular functions. This protein is an attractive molecular target for cancer therapy because a wide variety of studies have demonstrated associations between the activation or elevated expression of FAK and tumor progression, invasion, and drug resistance in malignant tumors. Here, we review the strategies used to inhibit FAK activity in solid tumors. We also include an overview of the preclinical (in vitro and in vivo) and clinical studies on FAK inhibitors.
Collapse
Affiliation(s)
- Patricia A Quispe
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Martin J Lavecchia
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica (CEQUINOR, CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| |
Collapse
|
8
|
Brullo C, Tasso B. New Insights on Fak and Fak Inhibitors. Curr Med Chem 2021; 28:3318-3338. [PMID: 33143618 DOI: 10.2174/0929867327666201103162239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Focal adhesion kinase (Fak) is a cytoplasmic protein tyrosine kinase overexpressed and activated in different solid cancers; it has shown an important role in metastasis formation, cell migration, invasion and angiogenesis and consequently it has been proposed as a potential target in cancer therapy, particularly in a metastatic phase. In recent years, different investigations have highlighted the importance of new Fak inhibitors as potential anti-cancer drugs, but other studies evidenced its role in different pathologies related to the cardiac function or viral infection. METHODS An extensive bibliographic research (104 references) has been done concerning the structure of Fak, its importance in tumor development, but also in other pathologies currently under study. The compounds currently subjected to clinical studies were therefore treated using the appropriate databases. Finally, the main chemical scaffolds currently under preclinical investigation were analyzed, focusing on their molecular structures and on the activity structure relationships (SAR). RESULTS At the moment, only a few reversible ATP-competitive inhibitors are under investigation in pre-clinical studies and clinical trials. Other compounds, with different chemical scaffolds, are investigated to obtain more active and selective Fak inhibitors. This mini-review is a summary of different Fak functions in cancer and other pathologies; the compounds today in clinical trials and the recent chemical scaffolds (also included in patents) giving the most interesting results are investigated. In addition, PROTAC molecules are reported. CONCLUSION All reported results evidenced that additional studies are necessary to design and synthesize new selective and more active compounds, although promising information has been obtained from associations between Fak inhibitors and other different anti- cancer drugs. In addition, the other important roles evidenced, both at the nuclear level and in non-cancerous cells, make this protein an increasingly important target in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Chiara Brullo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| | - Bruno Tasso
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| |
Collapse
|
9
|
Zhong B, Shingyoji M, Hanazono M, Nguyễn TT, Morinaga T, Tada Y, Shimada H, Hiroshima K, Tagawa M. Combination of a p53-activating CP-31398 and an MDM2 or a FAK inhibitor produces growth suppressive effects in mesothelioma with wild-type p53 genotype. Apoptosis 2021; 25:535-547. [PMID: 32468177 DOI: 10.1007/s10495-020-01612-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A majority of mesothelioma had the wild-type p53 genotype but was defective of p53 functions primarily due to a genetic defect in INK4A/ARF region. We examined a growth suppressive activity of CP-31398 which was developed to restore the p53 functions irrespective of the genotype in mesothelioma with wild-type or mutated p53. CP-31398 up-regulated p53 levels in cells with wild-type p53 genotype but induced cell growth suppression in a p53-independent manner. In contrasts, nutlin-3a, an MDM2 inhibitor, increased p53 and p21 levels in mesothelioma with the wild-type p53 genotype and produced growth suppressive effects. We investigated a combinatory effect of CP-31398 and nutlin-2a and found the combination produced synergistic growth inhibition in mesothelioma with the wild-type p53 but not with mutated p53. Western blot analysis showed that the combination increased p53 and the phosphorylation levels greater than treatments with the single agent, augmented cleavages of PARP and caspase-3, and decreased phosphorylated FAK levels. Combination of CP-31398 and defactinib, a FAK inhibitor, also achieved synergistic inhibitory effects and increased p53 with FAK dephosphorylation levels greater than the single treatment. These data indicated that a p53-activating CP-31398 achieved growth inhibitory effects in combination with a MDM2 or a FAK inhibitor and suggested a possible reciprocal pathway between p53 elevation and FAK inactivation.
Collapse
Affiliation(s)
- Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan
| | - Masato Shingyoji
- Division of Respirology, Chiba Cancer Center, 666-2 Nitona, Chuo-ku, 260-8717, Chiba, Japan
| | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Thi Thanh Nguyễn
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Yuji Tada
- Department of Pulmonary Medicine, International University of Health and Welfare, 852 Hatakeda, 286-8520, Narita, Japan
| | - Hideaki Shimada
- Department of Surgery, Graduate School of Medicine, Toho University, 6-11-1 Oomori-nishi, Oota-ku, 143-8541, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, 477-96, Ohwadashinden, Yachiyo, Chiba, 276-8524, Japan.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8717, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8670, Chiba, Japan. .,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8717, Japan. .,Funabashi Orthopaedic Hospital, 1-833 Hazama, Funabashi, 274-0822, Japan.
| |
Collapse
|
10
|
Vashum Y, Premsingh R, Kottaiswamy A, Soma M, Padmanaban A, Kalaiselvan P, Samuel S. Inhibitory effect of cathepsin K inhibitor (ODN-MK-0822) on invasion, migration and adhesion of human breast cancer cells in vitro. Mol Biol Rep 2020; 48:105-116. [PMID: 33294960 DOI: 10.1007/s11033-020-05951-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022]
Abstract
Approximately 90% of patients with advanced breast cancer develop bone metastases; an event that results in severe decrease of quality of life and a drastic deterioration in prognosis. Therefore, to increase the survival of breast cancer patients, the development of new therapeutic strategies to impair metastatic process and skeletal complications is critical. Previous studies on the role of cathepsin K (CTSK) in metastatic spreading led to several strategies for inhibition of this molecule such as MIV-711 (Medivir), balicatib and odanacatib (ODN) which were on trial in the past. The present study intended to assess the anti-metastatic efficacy of ODN in breast cancer cells. Human breast cancer cell lines MDA-MB-231 were treated with different concentrations of ODN and performed invasion, adhesion and migration assays and, RT-PCR and western blot to evaluate the effect of ODN on the metastatic potential of breast cancer cells. ODN markedly decreased wound healing cell migration, invasion and adhesion at a dose dependent manner. ODN inhibits cell invasion by decreasing the matrix metalloproteinase (MMP-9) with the upregulation of TIMP-1 expression. ODN effectively inhibited the phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal Kinase (JNK), and blocked the expression of β-integrins and FAK proteins. ODN also significantly inhibited PI3K downstream targets Rac1, Cdc42, paxillin and Src which are critical for cell adhesion, migration and cytoskeletal reorganization. ODN exerts anti-metastatic action through inhibition of signaling pathway for MMP-9, PI3K and MAPK. This indicates potential therapeutic effects of ODN in the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Yaongamphi Vashum
- Department of Biochemistry, Armed Forces Medical College, Pune, India
| | - Riya Premsingh
- Department of Biochemistry and Chemical Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | - Amuthavalli Kottaiswamy
- Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai, India
| | - Mathangi Soma
- Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai, India
| | - Abirami Padmanaban
- Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai, India
| | - Parkavi Kalaiselvan
- Department of Medicine and Surgery, Chettinad Hospital and Research Institute, Chennai, India
| | - Shila Samuel
- Department of Biochemistry, VRR Institute of Biomedical Science (Affiliated to University of Madras), Chennai, India.
| |
Collapse
|
11
|
Lu Y, Sun H. Progress in the Development of Small Molecular Inhibitors of Focal Adhesion Kinase (FAK). J Med Chem 2020; 63:14382-14403. [PMID: 33058670 DOI: 10.1021/acs.jmedchem.0c01248] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor intracellular tyrosine kinase that plays an essential role in cancer cell adhesion, survival, proliferation, and migration through both its enzymatic activities and scaffolding functions. Overexpression of FAK has been found in many human cancer cells from different origins, which promotes tumor progression and influences clinical outcomes in different classes of human tumors. Therefore, FAK has been considered as a promising target for small molecule anticancer drug development. Many FAK inhibitors targeting different domains of FAK with various mechanisms of functions have been reported, including kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors. In addition, FAK-targeting PROTACs, which can induce the degradation of FAK, have also been developed. In this Perspective, we summarized the progress in the development of small molecular FAK inhibitors and proposed the perspectives for the future development of agents targeting FAK.
Collapse
Affiliation(s)
- Yang Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
12
|
Mohanty A, Pharaon RR, Nam A, Salgia S, Kulkarni P, Massarelli E. FAK-targeted and combination therapies for the treatment of cancer: an overview of phase I and II clinical trials. Expert Opin Investig Drugs 2020; 29:399-409. [DOI: 10.1080/13543784.2020.1740680] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Atish Mohanty
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Rebecca R Pharaon
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Arin Nam
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Sabrina Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Erminia Massarelli
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
13
|
The molecular mechanisms associated with PIN7, a protein-protein interaction network of seven pleiotropic proteins. J Theor Biol 2020; 487:110124. [DOI: 10.1016/j.jtbi.2019.110124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
|
14
|
Lin YT, Liang SM, Wu YJ, Wu YJ, Lu YJ, Jan YJ, Ko BS, Chuang YJ, Shyue SK, Kuo CC, Liou JY. Cordycepin Suppresses Endothelial Cell Proliferation, Migration, Angiogenesis, and Tumor Growth by Regulating Focal Adhesion Kinase and p53. Cancers (Basel) 2019; 11:cancers11020168. [PMID: 30717276 PMCID: PMC6406613 DOI: 10.3390/cancers11020168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 01/08/2023] Open
Abstract
Focal adhesion kinase (FAK) plays an important role in vascular development, including the regulation of endothelial cell (EC) adhesion, migration, proliferation, and survival. 3'-deoxyadenosine (cordycepin) is known to suppress FAK expression, cell migration, and the epithelial⁻mesenchymal transition in hepatocellular carcinoma (HCC). However, whether cordycepin affects FAK expression and cellular functions in ECs and the specific molecular mechanism remain unclear. In this study, we found that cordycepin suppressed FAK expression and the phosphorylation of FAK (p-FAK) at Tyr397 in ECs. Cordycepin inhibited the proliferation, wound healing, transwell migration, and tube formation of ECs. Confocal microscopy revealed that cordycepin significantly reduced FAK expression and decreased focal adhesion number of ECs. The suppressed expression of FAK was accompanied by induced p53 and p21 expression in ECs. Finally, we demonstrated that cordycepin suppressed angiogenesis in an in vivo angiogenesis assay and reduced HCC tumor growth in a xenograft nude mice model. Our study indicated that cordycepin could attenuate cell proliferation and migration and may result in the impairment of the angiogenesis process and tumor growth via downregulation of FAK and induction of p53 and p21 in ECs. Therefore, cordycepin may be used as a potential adjuvant for cancer therapy.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
- Institute of Bioinformatics and Structure Biology, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Shu-Man Liang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Ya-Ju Wu
- Department of Pathology, Taichung Veterans General Hospital, Chiayi Branch, Chiayi City 600, Taiwan.
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Yi-Ju Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Yi-Jhu Lu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Yee-Jee Jan
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan.
| | - Yung-Jen Chuang
- Institute of Bioinformatics and Structure Biology, National Tsing Hua University, Hsinchu 300, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. .
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
| | - Jun-Yang Liou
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 350, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
15
|
Valdebenito-Maturana B, Reyes-Suarez JA, Henriquez J, Holmes DS, Quatrini R, Pohl E, Arenas-Salinas M. Mutantelec: An In Silico mutation simulation platform for comparative electrostatic potential profiling of proteins. J Comput Chem 2018; 38:467-474. [PMID: 28114729 DOI: 10.1002/jcc.24712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/07/2022]
Abstract
The electrostatic potential plays a key role in many biological processes like determining the affinity of a ligand to a given protein target, and they are responsible for the catalytic activity of many enzymes. Understanding the effect that amino acid mutations will have on the electrostatic potential of a protein, will allow a thorough understanding of which residues are the most important in a protein. MutantElec, is a friendly web application for in silico generation of site-directed mutagenesis of proteins and the comparison of electrostatic potential between the wild type protein and the mutant(s), based on the three-dimensional structure of the protein. The effect of the mutation is evaluated using different approach to the traditional surface map. MutantElec provides a graphical display of the results that allows the visualization of changes occurring at close distance from the mutation and thus uncovers the local and global impact of a specific change. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Braulio Valdebenito-Maturana
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, 346 5548, Chile
| | - Jose Antonio Reyes-Suarez
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, 346 5548, Chile
| | - Jaime Henriquez
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, 346 5548, Chile
| | - David S Holmes
- Fundación Ciencia & Vida, Santiago, 778 0272, Chile.,Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | - Ehmke Pohl
- Department of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom.,Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom.,Biophysical Sciences Institute, Durham University, Durham, DH1 3LE, United Kingdom
| | - Mauricio Arenas-Salinas
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, 346 5548, Chile
| |
Collapse
|
16
|
Gu MM, Gao D, Yao PA, Yu L, Yang XD, Xing CG, Zhou J, Shang ZF, Li M. p53-inducible gene 3 promotes cell migration and invasion by activating the FAK/Src pathway in lung adenocarcinoma. Cancer Sci 2018; 109:3783-3793. [PMID: 30281878 PMCID: PMC6272089 DOI: 10.1111/cas.13818] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
The p53-inducible gene 3 (PIG3) is one of the p53-induced genes at the onset of apoptosis, which plays an important role in cell apoptosis and DNA damage response. Our previous study reported an oncogenic role of PIG3 associated with tumor progression and metastasis in non-small cell lung cancer (NSCLC). In this study, we further analyzed PIG3 mRNA expression in 504 lung adenocarcinoma (LUAD) and 501 lung squamous cell carcinoma (LUSC) tissues from The Cancer Genome Atlas database and we found that PIG3 expression was significantly higher in LUAD with lymph node metastasis than those without, while no difference was observed between samples with and without lymph node metastasis in LUSC. Gain and loss of function experiments were performed to confirm the metastatic role of PIG3 in vitro and to explore the mechanism involved in its oncogenic role in NSCLC metastasis. The results showed that PIG3 knockdown significantly inhibited the migration and invasion ability of NSCLC cells, and decreased paxillin, phospho-focal adhesion kinase (FAK) and phospho-Src kinase expression, while its overexpression resulted in the opposite effects. Blocking FAK with its inhibitor reverses PIG3 overexpression-induced cell motility in NSCLC cells, indicating that PIG3 increased cell metastasis through the FAK/Src/paxillin pathway. Furthermore, PIG3 silencing sensitized NSCLC cells to FAK inhibitor. In conclusion, our data revealed a role for PIG3 in inducing LUAD metastasis, and its role as a new FAK regulator, suggesting that it could be considered as a novel prognostic biomarker or therapeutic target in the treatment of LUAD metastasis.
Collapse
Affiliation(s)
- Meng-Meng Gu
- Suzhou Digestive Diseases and Nutrition Research Center, Nanjing Medical University Affiliated Suzhou Hospital, North District of Suzhou Municipal Hospital, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Dexuan Gao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ping-An Yao
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lan Yu
- Suzhou Digestive Diseases and Nutrition Research Center, Nanjing Medical University Affiliated Suzhou Hospital, North District of Suzhou Municipal Hospital, Suzhou, China
| | - Xiao-Dong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chun-Gen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jundong Zhou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Zeng-Fu Shang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
17
|
The chemopreventive isothiocyanate sulforaphane reduces anoikis resistance and anchorage-independent growth in non-small cell human lung cancer cells. Toxicol Appl Pharmacol 2018; 362:116-124. [PMID: 30365975 DOI: 10.1016/j.taap.2018.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/09/2018] [Accepted: 10/22/2018] [Indexed: 01/05/2023]
Abstract
The capacity of cancer cells to resist detachment-induced apoptosis, i.e. anoikis, as well as anchorage-independent growth are crucial prerequisites for tumor metastasis. Therefore, agents interfering these properties may provide novel anti-metastatic strategies. Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, is known as a potent chemopreventive agent, but its effect on anoikis resistance has not been investigated. In this study, two non-small cell lung cancer (NSCLC) cell lines, A549 and CL1-5 cells, were treated with SFN under either suspension or adhesion conditions. SFN exhibited more potent cytotoxicity against suspending rather than adherent cancer cells. The selective cytotoxicity was due to the induction of anoikis, as evident by chromatin condensation, Annexin V binding, and activation of the mitochondrial apoptotic pathway. SFN also inhibited NSCLC cell to form spherical colonies, suggesting that anchorage-independent growth was prevented by SFN. Consistently, SFN treatment led to inactivation of FAK and Akt, down-regulation of β-catenin, and up-regulation of the cyclin-dependent kinase inhibitor p21. Because A549 cells with wild-type p53 are more sensitive to SFN than p53-mutant CL1-5 cells, p53 dependency of SFN responses were determined in p53-knockdown A549 cells. Knockdown of p53 attenuated the ability of SNF to inhibit anoikis resistance and sphere formation in A549 cancer cells, suggesting that the presence of p53 in NSCLC cancer cells is involved in the sensitivity to SFN. These results provide new insight into mechanisms underlying the chemopreventive ability of SFN and suggest a potential benefit of SFN to interfere with tumor metastasis.
Collapse
|
18
|
Klobučar M, Grbčić P, Pavelić SK, Jonjić N, Visentin S, Sedić M. Acid ceramidase inhibition sensitizes human colon cancer cells to oxaliplatin through downregulation of transglutaminase 2 and β1 integrin/FAK-mediated signalling. Biochem Biophys Res Commun 2018; 503:843-848. [PMID: 29920241 DOI: 10.1016/j.bbrc.2018.06.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/16/2018] [Indexed: 01/14/2023]
Abstract
Acid ceramidase (ASAH1) has been implicated in the progression and chemoresistance in different cancers. Its role in colon cancer biology and response to standard chemotherapy has been poorly addressed so far. Here, we have investigated ASAH1 expression at the protein level in human colon cancer cell lines and tissues from colon cancer patients, and have examined in vitro the possible link between ASAH1 expression and functional activity of p53 protein whose inactivation is associated with the progression from adenoma to malignant tumour in colon cancer. Finally, we have explored the role of ASAH1 in response and resistance mechanisms to oxaliplatin (OXA) in HCT 116 colon cancer cells. We have demonstrated that human colon cancer cells and colorectal adenocarcinoma tissues constitutively express ASAH1, and that its expression is higher in tumour tissues than in normal colonic mucosa. Furthermore, we found an inverse correlation between ASAH1 expression and p53 functional activity. Obtained data revealed that ASAH1 was involved in HCT 116 cell response to OXA and that anti-proliferative, pro-apoptotic, anti-migratory and anti-clonogenic effects of OXA could be significantly increased by combination treatment with ASAH1 inhibitor carmofur. Increased OXA sensitivity was associated with downregulation of signalling involved in acquired resistance to OXA in colon cancer, in particular transglutaminase 2 and β1 integrin/FAK, which resulted in the suppression of NF-κB and Akt. Thus, combination of OXA with ASAH1 inhibitors could be a promising strategy to counter chemoresistance and improve treatment outcome in advanced colon cancer.
Collapse
Affiliation(s)
- Marko Klobučar
- University of Rijeka Department of Biotechnology, Centre for High-Throughput Technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Petra Grbčić
- University of Rijeka Department of Biotechnology, Centre for High-Throughput Technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- University of Rijeka Department of Biotechnology, Centre for High-Throughput Technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Nives Jonjić
- University of Rijeka Faculty of Medicine, Department for General Pathology and Pathologic Anatomy, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Sarah Visentin
- University of Rijeka Department of Biotechnology, Centre for High-Throughput Technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Mirela Sedić
- University of Rijeka Department of Biotechnology, Centre for High-Throughput Technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia.
| |
Collapse
|
19
|
Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 2018; 10:E196. [PMID: 29891810 PMCID: PMC6025627 DOI: 10.3390/cancers10060196] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 have been found to have promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled via modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved in this control are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and with particular focus on how these mechanisms could inspire or improve anticancer therapies.
Collapse
Affiliation(s)
- Rayan Naser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Aldehaiman
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Escarlet Díaz-Galicia
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
20
|
Boudreau HE, Ma WF, Korzeniowska A, Park JJ, Bhagwat MA, Leto TL. Histone modifications affect differential regulation of TGFβ- induced NADPH oxidase 4 (NOX4) by wild-type and mutant p53. Oncotarget 2018; 8:44379-44397. [PMID: 28574838 PMCID: PMC5546487 DOI: 10.18632/oncotarget.17892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
Previously, we showed wild-type (WT) and mutant (mut) p53 differentially regulate reactive oxygen species (ROS) generation by NADPH oxidase-4 (NOX4): p53-WT suppresses TGFβ-induced NOX4, ROS and cell migration, whereas tumor-associated mut-p53 proteins enhance NOX4 expression and cell migration. Here, we extended our findings on the effects of p53 on NOX4 in several tumors and examined the basis of NOX4 transcriptional regulation by p53 and SMAD3. Statistical analysis of expression data from primary tumors available from The Cancer Genome Atlas (TCGA) detected correlations between mut-p53 and increased NOX4 expression. Furthermore, by altering p53 levels in cell culture models we showed several common tumor-associated mutant forms support TGFβ/SMAD3-dependent NOX4 expression. Deletion analysis revealed two critical SMAD3 binding elements (SBE) required for mut-p53-dependent NOX4 induction, whereas p53-WT caused dose-dependent suppression of NOX4 transcription. ChIP analysis revealed SMAD3 and p53-WT or mut-p53 associate with SBEs and p53 response elements in a TGFβ-dependent manner. Interestingly, the repressive effects of p53-WT on NOX4 were relieved by mutation of its transactivation domain or histone deacetylase (HDAC) inhibitor treatment. Overexpression of p300, a transcriptional co-regulator and histone acetyltransferase (HAT), enhanced p53-mediated NOX4 induction, whereas HAT-inactive p300 reduced NOX4 expression. Mut-p53 augmented TGFβ-stimulated histone acetylation within the NOX4 promoter. Finally, wound assays demonstrated NOX4 and p300 promote TGFβ/mut-p53-mediated cell migration. Our studies provide new insight into TGFβ/SMAD3 and mut-p53-mediated NOX4 induction involving epigenetic control of NOX4 in tumor cell migration, suggesting NOX4 is a potential therapeutic target to combat tumor progression and metastasis.
Collapse
Affiliation(s)
- Howard E Boudreau
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Feng Ma
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Agnieszka Korzeniowska
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan J Park
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Medha A Bhagwat
- Bioinformatics Support Program, National Institutes of Health Library, National Institutes of Health, Maryland, USA
| | - Thomas L Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Zhuo B, Li Y, Gu F, Li Z, Sun Q, Shi Y, Shen Y, Zhang F, Wang R, Wang X. Overexpression of CD155 relates to metastasis and invasion in osteosarcoma. Oncol Lett 2018; 15:7312-7318. [PMID: 29725446 DOI: 10.3892/ol.2018.8228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
The rapid development of metastatic lesions remains the leading cause of mortality for patients with osteosarcoma. CD155 serves a key role in cancer cell migration, invasion and metastasis. However, the function and mechanism of CD155 has not been explored in osteosarcoma metastasis. In the present study, we found that CD155 was significantly upregulated in lung metastatic tissue and the highly metastatic cell line K7M2-WT (K7M2) of osteosarcoma. Overexpression of CD155 in K7M2 cells enhanced lung metastasis, while inhibition of CD155 by an anti-CD155 monoclonal antibody reduced metastasis. Blocking of CD155 also decreased migration and invasion of K7M2 cells in vitro. A western blot analysis revealed that blocking of CD155 inhibits metastasis by downregulating focal adhesion kinase (FAK) and phosphorylated FAK (pFAK) in osteosarcoma. The results revealed that CD155 serves a crucial role in the metastasis of osteosarcoma by regulating FAK and may provide a novel molecular target for therapeutic intervention in metastatic osteosarcoma.
Collapse
Affiliation(s)
- Baobiao Zhuo
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China.,Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yuan Li
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Feng Gu
- Department of Laboratory Medicine, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221000, P.R. China
| | - Zhengwei Li
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Qingzeng Sun
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yingchun Shi
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Yang Shen
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Fengfei Zhang
- Department of Surgery, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, P.R. China
| | - Rong Wang
- Department of Ultrasound, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaodong Wang
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, Jiangsu 215025, P.R. China
| |
Collapse
|
22
|
Alaee M, Padda A, Mehrabani V, Churchill L, Pasdar M. The physical interaction of p53 and plakoglobin is necessary for their synergistic inhibition of migration and invasion. Oncotarget 2018; 7:26898-915. [PMID: 27058623 PMCID: PMC5042024 DOI: 10.18632/oncotarget.8616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/14/2016] [Indexed: 01/15/2023] Open
Abstract
Plakoglobin (PG) is a paralog of β-catenin with similar adhesive, but contrasting signalling functions. Although β-catenin has well-known oncogenic function, PG generally acts as a tumor/metastasis suppressor by mechanisms that are just beginning to be deciphered. Previously, we showed that PG interacted with wild type (WT) and a number of mutant p53s, and that its tumor/metastasis suppressor activity may be mediated, at least partially, by this interaction. Here, carcinoma cell lines deficient in both p53 and PG (H1299), or expressing mutant p53 in the absence of PG (SCC9), were transfected with expression constructs encoding WT and different fragments and deletions of p53 and PG, individually or in pairs. Transfectants were characterized for their in vitro growth, migratory and invasive properties and for mapping the interacting domain of p53 and PG. We showed that when coexpressed, p53-WT and PG-WT cooperated to decrease growth, and acted synergistically to significantly reduce cell migration and invasion. The DNA-binding domain of p53 and C-terminal domain of PG mediated p53/PG interaction, and furthermore, the C-terminus of PG played a central role in the inhibition of invasion in association with p53.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Amarjot Padda
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Vahedah Mehrabani
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Lucas Churchill
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| |
Collapse
|
23
|
Li C, Wang H, Yao H, Fang JY, Xu J. Scaffold Proteins in Gastrointestinal Tumors as a Shortcut to Oncoprotein Activation. Gastrointest Tumors 2017; 4:1-10. [PMID: 29071259 DOI: 10.1159/000477904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/25/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The development of cancer involves uncontrolled cell proliferation, and multiple signaling pathways that regulate cell proliferation have been found to be dysregulated in cancers. Extracellular signal-regulated protein kinase (ERK) is one of three major subtypes in the mitogen-activated protein kinase (MAPK) families. The MAPK/ERK pathway (RAS/RAF1/MEK/ERK) plays an important part in promoting cell proliferation in response to growth factors, thereby serving as a driving signal in gastrointestinal (GI) tumors. In contrast, the p53 tumor suppressor functions as a "guardian of the genome" and stops cell proliferation when oncogenic signaling is activated. SUMMARY Both pathways constrain each other in healthy GI epithelium, facilitating controlled proliferation that is essential for tissue repair and regeneration. However, in GI tumors, the MAPK/ERK and p53 pathways are commonly dysregulated, in part due to abnormal posttranslational modifications. Hyperphosphorylation of the ERK protein causes sustained activation of cell proliferation, whereas hypoacetylation of the p53 protein impairs its transcriptional function and blocks cell apoptosis. Multiple scaffold proteins have been found to regulate the posttranslational modifications of ERK and p53 proteins in GI tumors. KEY MESSAGE Abnormal expression of scaffold proteins may contribute to the dysregulation of the MAPK and p53 signaling pathways and thereby contribute to the development of GI tumors. PRACTICAL IMPLICATIONS Scaffold proteins are potential biomarkers and therapeutic targets in GI tumors.
Collapse
Affiliation(s)
- Chushu Li
- Division of Gastroenterology and Hepatology, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huanbin Wang
- Division of Gastroenterology and Hepatology, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Han Yao
- Division of Gastroenterology and Hepatology, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Xu
- Division of Gastroenterology and Hepatology, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Walker S, Foster F, Wood A, Owens T, Brennan K, Streuli CH, Gilmore AP. Oncogenic activation of FAK drives apoptosis suppression in a 3D-culture model of breast cancer initiation. Oncotarget 2016; 7:70336-70352. [PMID: 27611942 PMCID: PMC5342556 DOI: 10.18632/oncotarget.11856] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 08/08/2016] [Indexed: 02/01/2023] Open
Abstract
A key hallmark of cancer cells is the loss of positional control over growth and survival. Focal adhesion kinase (FAK) is a tyrosine kinase localised at sites of integrin-mediated cell adhesion to the extracellular matrix. FAK controls a number of adhesion-dependent cellular functions, including migration, proliferation and survival. Although FAK is overexpressed and activated in metastatic tumours, where it promotes invasion, it can also be elevated in cancers that have yet to become invasive. The contribution of FAK to the early stages of tumourigenesis is not known. We have examined the effect of activating FAK in non-transformed mammary epithelial cells (MECs) to understand its role in tumour initiation. In agreement with previous studies, we find FAK activation in 2D-culture promotes proliferation, migration, and epithelial-to-mesenchymal transition. However in 3D-cultures that better resemble normal tissue morphology, mammary cells largely respond to FAK activation via suppression of apoptosis, promoting aberrant acinar morphogenesis. This is an acquired function of FAK, because endogenous FAK signalling is not required for normal morphogenesis in 3D-culture or in vivo. Thus, FAK activation may facilitate tumour initiation by causing resistance to apoptosis. We suggest that aberrant FAK activation in breast epithelia is dependent upon the tissue context in which it occurs.
Collapse
Affiliation(s)
- Scott Walker
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fiona Foster
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Amber Wood
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Thomas Owens
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Keith Brennan
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles H. Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew P. Gilmore
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
25
|
p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene 2016; 36:2355-2365. [PMID: 27775073 DOI: 10.1038/onc.2016.396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 12/16/2022]
Abstract
Triple-negative breast cancer is a heterogeneous disease characterized by the expression of basal cell markers, no estrogen or progesterone receptor expression and a lack of HER2 overexpression. Triple-negative tumors often display activated Wnt/β-catenin signaling and most have impaired p53 function. We studied the interplay between p53 loss and Wnt/β-catenin signaling in stem cell function and tumorigenesis, by deleting p53 from the mammary epithelium of K5ΔNβcat mice displaying a constitutive activation of Wnt/β-catenin signaling in basal cells. K5ΔNβcat transgenic mice present amplification of the basal stem cell pool and develop triple-negative mammary carcinomas. The loss of p53 in K5ΔNβcat mice led to an early expansion of mammary stem/progenitor cells and accelerated the formation of triple-negative tumors. In particular, p53-deficient tumors expressed high levels of integrins and extracellular matrix components and were enriched in cancer stem cells. They also overexpressed the tyrosine kinase receptor Met, a feature characteristic of human triple-negative breast tumors. The inhibition of Met kinase activity impaired tumorsphere formation, demonstrating the requirement of Met signaling for cancer stem cell growth in this model. Human basal-like breast cancers with predicted mutated p53 status had higher levels of MET expression than tumors with wild-type p53. These results connect p53 loss and β-catenin activation to stem cell regulation and tumorigenesis in triple-negative cancer and highlight the role of Met signaling in maintaining cancer stem cell properties, revealing new cues for targeted therapies.
Collapse
|
26
|
Menietti E, Xu X, Ostano P, Joseph JM, Lefort K, Dotto GP. Negative control of CSL gene transcription by stress/DNA damage response and p53. Cell Cycle 2016; 15:1767-78. [PMID: 27163456 DOI: 10.1080/15384101.2016.1186317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
CSL is a key transcriptional repressor and mediator of Notch signaling. Despite wide interest in CSL, mechanisms responsible for its own regulation are little studied. CSL down-modulation in human dermal fibroblasts (HDFs) leads to conversion into cancer associated fibroblasts (CAF), promoting keratinocyte tumors. We show here that CSL transcript levels differ among HDF strains from different individuals, with negative correlation with genes involved in DNA damage/repair. CSL expression is negatively regulated by stress/DNA damage caused by UVA, Reactive Oxygen Species (ROS), smoke extract, and doxorubicin treatment. P53, a key effector of the DNA damage response, negatively controls CSL gene transcription, through suppression of CSL promoter activity and, indirectly, by increased p21 expression. CSL was previously shown to bind p53 suppressing its activity. The present findings indicate that p53, in turn, decreases CSL expression, which can serve to enhance p53 activity in acute DNA damage response of cells.
Collapse
Affiliation(s)
- Elena Menietti
- a Department of Biochemistry , University of Lausanne , Epalinges , Switzerland
| | - Xiaoying Xu
- a Department of Biochemistry , University of Lausanne , Epalinges , Switzerland
| | - Paola Ostano
- b Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation , Biella , Italy
| | - Jean-Marc Joseph
- c Pediatric surgery Department , University Hospital CHUV , Lausanne , Switzerland
| | - Karine Lefort
- a Department of Biochemistry , University of Lausanne , Epalinges , Switzerland.,d Department of Dermatology , University Hospital CHUV , Lausanne , Switzerland
| | - G Paolo Dotto
- a Department of Biochemistry , University of Lausanne , Epalinges , Switzerland.,e Cutaneous Biology Research Center, Massachusetts General Hospital , Charlestown , MA , USA
| |
Collapse
|
27
|
Skinner HD, Giri U, Yang L, Woo SH, Story MD, Pickering CR, Byers LA, Williams MD, El-Naggar A, Wang J, Diao L, Shen L, Fan YH, Molkentine DP, Beadle BM, Meyn RE, Myers JN, Heymach JV. Proteomic Profiling Identifies PTK2/FAK as a Driver of Radioresistance in HPV-negative Head and Neck Cancer. Clin Cancer Res 2016; 22:4643-50. [PMID: 27036135 DOI: 10.1158/1078-0432.ccr-15-2785] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/24/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is commonly treated with radiotherapy, and local failure after treatment remains the major cause of disease-related mortality. To date, human papillomavirus (HPV) is the only known clinically validated, targetable biomarkers of response to radiation in HNSCC. EXPERIMENTAL DESIGN We performed proteomic and transcriptomic analysis of targetable biomarkers of radioresistance in HPV-negative HNSCC cell lines in vitro, and tested whether pharmacologic blockade of candidate biomarkers sensitized cells to radiotherapy. Candidate biomarkers were then investigated in several independent cohorts of patients with HNSCC. RESULTS Increased expression of several targets was associated with radioresistance, including FGFR, ERK1, EGFR, and focal adhesion kinase (FAK), also known as PTK2. Chemical inhibition of PTK2/FAK, but not FGFR, led to significant radiosensitization with increased G2-M arrest and potentiated DNA damage. PTK2/FAK overexpression was associated with gene amplification in HPV-negative HNSCC cell lines and clinical tumors. In two independent cohorts of patients with locally advanced HPV-negative HNSCC, PTK2/FAK amplification was highly associated with poorer disease-free survival (DFS; P = 0.012 and 0.034). PTK2/FAK mRNA expression was also associated with worse DFS (P = 0.03). Moreover, both PTK2/FAK mRNA (P = 0.021) and copy number (P = 0.063) were associated with DFS in the Head and Neck Cancer subgroup of The Cancer Genome Atlas. CONCLUSIONS Proteomic analysis identified PTK2/FAK overexpression is a biomarker of radioresistance in locally advanced HNSCC, and PTK2/FAK inhibition radiosensitized HNSCC cells. Combinations of PTK2/FAK inhibition with radiotherapy merit further evaluation as a therapeutic strategy for improving local control in HPV-negative HNSCC. Clin Cancer Res; 22(18); 4643-50. ©2016 AACR.
Collapse
Affiliation(s)
- Heath D Skinner
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Uma Giri
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liang Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sang Hyeok Woo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael D Story
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center and Simmons Comprehensive Cancer Center, Dallas, Texas
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adel El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - You Hong Fan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David P Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Beth M Beadle
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond E Meyn
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
28
|
Blandin AF, Renner G, Lehmann M, Lelong-Rebel I, Martin S, Dontenwill M. β1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer. Front Pharmacol 2015; 6:279. [PMID: 26635609 PMCID: PMC4656837 DOI: 10.3389/fphar.2015.00279] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/05/2015] [Indexed: 01/11/2023] Open
Abstract
Integrins belong to a large family of αβ heterodimeric transmembrane proteins first recognized as adhesion molecules that bind to dedicated elements of the extracellular matrix and also to other surrounding cells. As important sensors of the cell microenvironment, they regulate numerous signaling pathways in response to structural variations of the extracellular matrix. Biochemical and biomechanical cues provided by this matrix and transmitted to cells via integrins are critically modified in tumoral settings. Integrins repertoire are subjected to expression level modifications, in tumor cells, and in surrounding cancer-associated cells, implicated in tumor initiation and progression as well. As critical players in numerous cancer hallmarks, defined by Hanahan and Weinberg (2011), integrins represent pertinent therapeutic targets. We will briefly summarize here our current knowledge about integrin implications in those different hallmarks focusing primarily on β1 integrins.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Guillaume Renner
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Maxime Lehmann
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Isabelle Lelong-Rebel
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Sophie Martin
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Monique Dontenwill
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| |
Collapse
|
29
|
Gillory LA, Stewart JE, Megison ML, Waters AM, Beierle EA. Focal adhesion kinase and p53 synergistically decrease neuroblastoma cell survival. J Surg Res 2015; 196:339-49. [PMID: 25862488 PMCID: PMC4442704 DOI: 10.1016/j.jss.2015.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/10/2015] [Accepted: 03/11/2015] [Indexed: 01/21/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of neuroblastoma tumor development and progression. The p53 oncogene, although wild type in most neuroblastomas, lacks significant function as a tumor suppressor in these tumors. Recent reports have found that FAK and p53 interact in some tumor types. We have hypothesized FAK and p53 coordinately control each other's expression and also interact in neuroblastoma. In the present study, we showed that not only do FAK and p53 interact but each one controls the expression of the other. In addition, we also examined the effects of FAK inhibition combined with p53 activation in neuroblastoma and showed that these two, in combination, had a synergistic effect on neuroblastoma cell survival. The findings from this present study help to further our understanding of the regulation of neuroblastoma tumorigenesis and may provide novel therapeutic strategies and targets for neuroblastoma and other pediatric solid tumors.
Collapse
Affiliation(s)
- Lauren A Gillory
- Department of Surgery, University of Alabama, Birmingham, Alabama
| | - Jerry E Stewart
- Department of Surgery, University of Alabama, Birmingham, Alabama
| | | | - Alicia M Waters
- Department of Surgery, University of Alabama, Birmingham, Alabama
| | | |
Collapse
|
30
|
Emerging roles of focal adhesion kinase in cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:690690. [PMID: 25918719 PMCID: PMC4396139 DOI: 10.1155/2015/690690] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic nonreceptor tyrosine kinase that enables activation by growth factor receptors or integrins in various types of human cancers. The kinase-dependent and kinase-independent scaffolding functions of FAK modulate the authentic signaling and fundamental functions not only in cancer cells but also in tumor microenvironment to facilitate cancer progression and metastasis. The overexpression and activation of FAK are usually investigated in primary or metastatic cancers and correlated with the poor clinical outcome, highlighting FAK as a potential prognostic marker and anticancer target. Small molecule inhibitors targeting FAK kinase activity or FAK-scaffolding functions impair cancer development in preclinical or clinical trials. In this review, we give an overview for FAK signaling in cancer cells as well as tumor microenvironment that provides new strategies for the invention of cancer development and malignancy.
Collapse
|
31
|
Bosch A, Panoutsopoulou K, Corominas JM, Gimeno R, Moreno-Bueno G, Martín-Caballero J, Morales S, Lobato T, Martínez-Romero C, Farias EF, Mayol X, Cano A, Hernández-Muñoz I. The Polycomb group protein RING1B is overexpressed in ductal breast carcinoma and is required to sustain FAK steady state levels in breast cancer epithelial cells. Oncotarget 2015; 5:2065-76. [PMID: 24742605 PMCID: PMC4039145 DOI: 10.18632/oncotarget.1779] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In early stages of metastasis malignant cells must acquire phenotypic changes to enhance their migratory behavior and their ability to breach the matrix surrounding tumors and blood vessel walls. Epigenetic regulation of gene expression allows the acquisition of these features that, once tumoral cells have escape from the primary tumor, can be reverted. Here we report that the expression of the Polycomb epigenetic repressor Ring1B is enhanced in tumoral cells that invade the stroma in human ductal breast carcinoma and its expression is coincident with that of Fak in these tumors. Ring1B knockdown in breast cancer cell lines revealed that Ring1B is required to sustain Fak expression in basal conditions as well as in Tgfβ-treated cells. Functionally, endogenous Ring1B is required for cell migration and invasion in vitro and for in vivo invasion of the mammary fat pad by tumoral cells. Finally we identify p63 as a target of Ring1B to regulate Fak expression: Ring1B depletion results in enhanced p63 expression, which in turns represses Fak expression. Importantly, Fak downregulation upon Ring1B depletion is dependent on p63 expression. Our findings provide new insights in the biology of the breast carcinoma and open new avenues for breast cancer prognosis and therapy.
Collapse
Affiliation(s)
- Almudena Bosch
- Cancer Research Program. IMIM (Institut Hospital del Mar d'Investigacions Mèdiques). Barcelona. Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 2014; 146:132-49. [PMID: 25316657 DOI: 10.1016/j.pharmthera.2014.10.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
Focal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities. Such an integral role in governing malignant characteristics indicates that FAK represents a potential target for cancer therapeutics. While pharmacologic targeting of FAK scaffold function is still at an early stage of development, a number of small molecule-based FAK tyrosine kinase inhibitors are currently undergoing pre-clinical and clinical testing. In particular, PF-00562271, VS-4718 and VS-6063 show promising clinical activities in patients with selected solid cancers. Clinical testing of rationally designed FAK-targeting agents with implementation of predictive response biomarkers, such as merlin deficiency for VS-4718 in mesothelioma, may help improve clinical outcome for cancer patients. In this article, we have reviewed the current knowledge regarding FAK signaling in human cancer, and recent developments in the generation and clinical application of FAK-targeting pharmacologic agents.
Collapse
|
33
|
Dy GK, Ylagan L, Pokharel S, Miller A, Brese E, Bshara W, Morrison C, Cance WG, Golubovskaya VM. The prognostic significance of focal adhesion kinase expression in stage I non-small-cell lung cancer. J Thorac Oncol 2014; 9:1278-84. [PMID: 25122425 PMCID: PMC4133746 DOI: 10.1097/jto.0000000000000248] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Focal adhesion kinase (FAK) plays a significant role in cancer cell survival signaling and is overexpressed in various malignancies, including lung cancer. Previous studies suggest that FAK overexpression is an independent factor predicting poor prognosis in non-small-cell lung cancer (NSCLC). The aim of this study is to confirm these findings specifically in stage I NSCLC. METHODS A retrospective tissue microarray (TMA) analysis of FAK protein expression by immunohistochemistry was performed in 157 surgically resected stage I NSCLC specimen and in the corresponding matched normal lung tissue. The FAK 4.47 monoclonal antibody was used for FAK immunostaining. The scoring system of triplicate tumor cores included intensity of staining plus extent of staining for a composite score that ranged from 0 to 6. The association between FAK score and survival was evaluated. RESULTS There were 103 stage IA and 54 stage IB patients, with mean follow-up of 5.5 years. Normal lung alveoli and interstitial tissue had mean FAK score of 0 (median score 0, range 0 to 2). Tumor samples had mean FAK score 3.1 (median score 3.5, range 0-6), with 57% of the samples having FAK score ≥ 3. Continuous FAK score was not associated with demographic data, tumor histology, or grade, nor survival in this cohort of stage I NSCLC patients. CONCLUSIONS FAK is expressed in more than 50% of stage I NSCLC lung cancer but not in normal lung alveoli and interstitial tissue. FAK expression is not associated with survival outcome in this North American cohort.
Collapse
Affiliation(s)
- Grace K. Dy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, 14263 USA
| | - Lourdes Ylagan
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, 14263 USA
| | - Saraswati Pokharel
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, 14263 USA
| | - Austin Miller
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY, 14263USA
| | - Elizabeth Brese
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, 14263 USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, 14263 USA
| | - Carl Morrison
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, 14263 USA
| | - William G. Cance
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263 USA
| | - Vita M. Golubovskaya
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263 USA
| |
Collapse
|
34
|
Shanthi E, Krishna MH, Arunesh GM, Venkateswara Reddy K, Sooriya Kumar J, Viswanadhan VN. Focal adhesion kinase inhibitors in the treatment of metastatic cancer: a patent review. Expert Opin Ther Pat 2014; 24:1077-100. [PMID: 25113248 DOI: 10.1517/13543776.2014.948845] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Focal adhesion kinase (FAK) plays a prominent role in integrin signaling. FAK activation increases phosphorylation of Tyr397 and other sites of the protein. FAK-dependent activation of signaling pathways implicated in controlling essential cellular functions including growth, proliferation, survival and migration. FERM (F for the 4.1 protein, ezrin, radixin and moesin) domain-enhanced p53 degradation plays a critical role in proliferation and survival. FAK, overexpressed in metastatic tumors, has emerged as an important therapeutic target for the development of selective inhibitors. FAK inhibitors achieved tumor growth inhibition and induced apoptosis. Strategies targeting FAK inhibition using novel compounds have created an exciting opportunity for anticancer therapy. AREAS COVERED This review summarizes the current research with available data from early phase clinical trials and discusses the available small-molecule inhibitors of FAK from patents. The importance of inhibiting FAK activity in cancer patients is discussed. EXPERT OPINION Emerging data from clinical trials with orally available small-molecule inhibitors of FAK are promising. Although this approach is appropriate as a targeted therapeutic approach against several metastatic cancer types, several compounds in research are yet to prove their preclinical efficacy. This report lays special emphasis on the available patent data of FAK inhibitors for such targeted molecular therapies. This review summarizes current knowledge about FAK inhibition in cancer therapy.
Collapse
Affiliation(s)
- Ekambaram Shanthi
- Jubilant Biosys Ltd , 96, Industrial Suburb, 2nd Stage, Yeshwanthpur, Bangalore 560 022, Karnataka , India
| | | | | | | | | | | |
Collapse
|
35
|
Boudreau HE, Casterline BW, Burke DJ, Leto TL. Wild-type and mutant p53 differentially regulate NADPH oxidase 4 in TGF-β-mediated migration of human lung and breast epithelial cells. Br J Cancer 2014; 110:2569-82. [PMID: 24714748 PMCID: PMC4021516 DOI: 10.1038/bjc.2014.165] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/04/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Transforming growth factor-beta (TGF-β) induces the epithelial-to-mesenchymal transition (EMT) leading to increased cell plasticity at the onset of cancer cell invasion and metastasis. Mechanisms involved in TGF-β-mediated EMT and cell motility are unclear. Recent studies showed that p53 affects TGF-β/SMAD3-mediated signalling, cell migration, and tumorigenesis. We previously demonstrated that Nox4, a Nox family NADPH oxidase, is a TGF-β/SMAD3-inducible source of reactive oxygen species (ROS) affecting cell migration and fibronectin expression, an EMT marker, in normal and metastatic breast epithelial cells. Our present study investigates the involvement of p53 in TGF-β-regulated Nox4 expression and cell migration. METHODS We investigated the effect of wild-type p53 (WT-p53) and mutant p53 proteins on TGF-β-regulated Nox4 expression and cell migration. Nox4 mRNA and protein, ROS production, cell migration, and focal adhesion kinase (FAK) activation were examined in three different cell models based on their p53 mutational status. H1299, a p53-null lung epithelial cell line, was used for heterologous expression of WT-p53 or mutant p53. In contrast, functional studies using siRNA-mediated knockdown of endogenous p53 were conducted in MDA-MB-231 metastatic breast epithelial cells that express p53-R280K and MCF-10A normal breast cells that have WT-p53. RESULTS We found that WT-p53 is a potent suppressor of TGF-β-induced Nox4, ROS production, and cell migration in p53-null lung epithelial (H1299) cells. In contrast, tumour-associated mutant p53 proteins (R175H or R280K) caused enhanced Nox4 expression and cell migration in both TGF-β-dependent and TGF-β-independent pathways. Moreover, knockdown of endogenous mutant p53 (R280K) in TGF-β-treated MDA-MB-231 metastatic breast epithelial cells resulted in decreased Nox4 protein and reduced phosphorylation of FAK, a key regulator of cell motility. Expression of WT-p53 or dominant-negative Nox4 decreased TGF-β-mediated FAK phosphorylation, whereas mutant p53 (R280K) increased phospho-FAK. Furthermore, knockdown of WT-p53 in MCF-10A normal breast epithelial cells increased basal Nox4 expression, whereas p53-R280K could override endogenous WT-p53 repression of Nox4. Remarkably, immunofluorescence analysis revealed MCF-10A cells expressing p53-R280K mutant showed an upregulation of Nox4 in both confluent and migrating cells. CONCLUSIONS Collectively, our findings define novel opposing functions for WT-p53 and mutant p53 proteins in regulating Nox4-dependent signalling in TGF-β-mediated cell motility.
Collapse
MESH Headings
- Breast/cytology
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Movement
- Enzyme Induction
- Epithelial Cells/physiology
- Epithelial-Mesenchymal Transition
- Female
- Focal Adhesion Protein-Tyrosine Kinases/physiology
- Gene Expression Regulation, Neoplastic
- Genes, p53
- Humans
- Lung/cytology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mutation, Missense
- NADPH Oxidase 4
- NADPH Oxidases/biosynthesis
- NADPH Oxidases/genetics
- Neoplasm Metastasis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- RNA Interference
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Small Interfering/pharmacology
- Reactive Oxygen Species/metabolism
- Transfection
- Transforming Growth Factor beta/physiology
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- H E Boudreau
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA
| | - B W Casterline
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA
| | - D J Burke
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA
| | - T L Leto
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD 20852, USA
| |
Collapse
|
36
|
Mammary gland-specific ablation of focal adhesion kinase reduces the incidence of p53-mediated mammary tumour formation. Br J Cancer 2014; 110:2747-55. [PMID: 24809783 PMCID: PMC4037829 DOI: 10.1038/bjc.2014.219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 12/27/2022] Open
Abstract
Background: Elevated expression of focal adhesion kinase (FAK) occurs in numerous human cancers including colon-, cervix- and breast cancer. Although several studies have implicated FAK in mammary tumour formation induced by ectopic oncogene expression, evidence supporting a role for FAK in spontaneous mammary tumour development caused by loss of tumour suppressor genes such as p53 is lacking. Alterations in the tumour suppressor gene p53 have been implicated in over 50% of human breast cancers. Given that elevated FAK expression highly correlates with p53 mutation status in human breast cancer, we set out to investigate the importance of FAK in p53-mediated spontaneous mammary tumour development. Methods: To directly assess the role of FAK, we generated mice with conditional inactivation of FAK and p53. We generated female p53lox/lox/FAK+/+/WapCre, p53lox/lox/FAKflox/+/WapCre and p53lox/lox/FAKflox/−/WapCre mice, and mice with WapCre-mediated conditional expression of p53R270H, the mouse equivalent of human p53R273H hot spot mutation, together with conditional deletion of FAK, P53R270H/+/FAKlox/+/WapCre and p53R270H/+/FAKflox/−/WapCre mice. All mice were subjected to one pregnancy to induce WapCre-mediated deletion of p53 or expression of p53 R270H, and Fak genes flanked by two loxP sites, and subsequently followed the development of mammary tumours. Results: Using this approach, we show that FAK is important for p53-induced mammary tumour development. In addition, mice with the mammary gland-specific conditional expression of p53 point mutation R270H, the mouse equivalent to human R273H, in combination with conditional deletion of Fak showed reduced incidence of p53R270H-induced mammary tumours. In both models these effects of FAK were related to reduced proliferation in preneoplastic lesions in the mammary gland ductal structures. Conclusions: Mammary gland-specific ablation of FAK hampers p53-regulated spontaneous mammary tumour formation. Focal adhesion kinase deletion reduced proliferative capacity of p53 null and p53R270H mammary epithelial cells but did not lead to increased apoptosis in vivo. Our data identify FAK as an important regulator in mammary epithelial cell proliferation in p53-mediated and p53R270H-induced mammary tumour development.
Collapse
|
37
|
Abstract
UNLABELLED The tumor suppressor p53 is lost or mutated in about half of all human cancers, and in those tumors in which it is wild-type, mechanisms exist to prevent its activation. p53 loss not only prevents incipient tumor cells from undergoing oncogene-induced senescence and apoptosis, but also perturbs cell-cycle checkpoints. This enables p53-deficient tumor cells with DNA damage to continue cycling, creating a permissive environment for the acquisition of additional mutations. Theoretically, this could contribute to the evolution of a cancer genome that is conducive to metastasis. Importantly, p53 loss also results in the disruption of pathways that inhibit metastasis, and transcriptionally defective TP53 mutants are known to gain additional functions that promote metastasis. Here, we review the evidence supporting a role for p53 loss or mutation in tumor metastasis, with an emphasis on breast cancer. SIGNIFICANCE The metastatic potential of tumor cells can be positively infl uenced by loss of p53 or expression of p53 gain-of-function mutants. Understanding the mechanisms by which p53 loss and mutation promote tumor metastasis is crucial to understanding the biology of tumor progression and how to appropriately apply targeted therapies.
Collapse
Affiliation(s)
- Emily Powell
- Departments of 1Cancer Biology and 2Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | |
Collapse
|
38
|
Golubovskaya VM. FAK and Nanog cross talk with p53 in cancer stem cells. Anticancer Agents Med Chem 2014; 13:576-80. [PMID: 22934707 DOI: 10.2174/1871520611313040006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 05/21/2012] [Accepted: 08/01/2012] [Indexed: 12/31/2022]
Abstract
This review is focused on the role of Focal Adhesion Kinase (FAK) signaling in cancer stem cells. The recent data demonstrate the important role of FAK in cancer stem cell proliferation, differentiation, motility, and invasion. We showed recently that the transcription factor Nanog binds the FAK promoter and up-regulates FAK expression, and that FAK binds Nanog and phosphorylates it. This review discusses the interaction of FAK, Nanog, Oct-3/4, and Sox-2 signaling pathways that are critical for the regulation of cancer stem cells. The cross-linked signaling of FAK with p53 and Nanog signaling in cancer stem cell and function and targeted therapeutics approaches are discussed.
Collapse
Affiliation(s)
- Vita M Golubovskaya
- Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
39
|
Golubovskaya VM. Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci (Landmark Ed) 2014; 19:687-706. [PMID: 24389213 DOI: 10.2741/4236] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is twenty years since Focal Adhesion Kinase (FAK) was found to be overexpressed in many types of human cancer. FAK plays an important role in adhesion, spreading, motility, invasion, metastasis, survival, angiogenesis, and recently has been found to play an important role as well in epithelial to mesenchymal transition (EMT), cancer stem cells and tumor microenvironment. FAK has kinase-dependent and kinase independent scaffolding, cytoplasmic and nuclear functions. Several years ago FAK was proposed as a potential therapeutic target; the first clinical trials were just reported, and they supported further studies of FAK as a promising therapeutic target. This review discusses the main functions of FAK in cancer, and specifically focuses on recent novel findings on the role of FAK in cancer stem cells, microenvironment, epithelial-to-mesenchymal transition, invasion, metastasis, and also highlight new approaches of targeting FAK and critically discuss challenges that lie ahead for its targeted therapeutics. The review provides a summary of translational approaches of FAK-targeted and combination therapies and outline perspectives and future directions of FAK research.
Collapse
|
40
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|
41
|
Mierke CT. The role of focal adhesion kinase in the regulation of cellular mechanical properties. Phys Biol 2013; 10:065005. [PMID: 24304934 DOI: 10.1088/1478-3975/10/6/065005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, D-04103 Leipzig, Germany
| |
Collapse
|
42
|
Skirnisdottir I, Bjersand K, Åkerud H, Seidal T. Napsin A as a marker of clear cell ovarian carcinoma. BMC Cancer 2013; 13:524. [PMID: 24191930 PMCID: PMC4228360 DOI: 10.1186/1471-2407-13-524] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/30/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Clear cell carcinomas are aggressive tumors with a distinct biologic behaviour. In a genome-wide screening for genes involved in chemo-resistance, NAPA was over-expressed in cisplatin-resistant cells. The NAPA (protein) Napsin A was described to promote resistance to cisplatin by degradation of the tumor suppressor p53. METHODS Totally 131 patients were included in this study all in FIGO-stages I-II; 16 were clear cell tumors which were compared with 40 Type I tumors and 75 type II tumors according to the markers Napsin A, p21, p53 and p27 and some clinical features. For detection of the markers tissue microarrays and immunohistochemistry were used. RESULTS Positivity for Napsin A was detected in 12 (80%) out of the 15 clear cell tumors available for analysis compared with 3 (4%) out of the Type I and II tumors in one group (p<0.001). Differences in p21 status, p53 status, and p21+p53- status were striking when clear cell tumors were compared with Type I, Type II, and Type I and II tumors in one group, respectively. The p21+p53-status was associated to positive staining of Napsin A (p=0.0015) and clear cell morphology (p=0.0003). In two separate multivariate logistic regression analyses with Napsin A as endpoint both clear cell carcinoma with OR=153 (95% C.I. 21-1107); (p<001) and p21+p53- status with OR=5.36 (95% C.I. 1.6-17.5); (p=0.005) were independent predictive factors. ROC curves showed that AUC for Napsin A alone was 0.882, for p21+p53- it was 0.720 and for p21+p53-Napsin A+AUC was 0.795. Patients with clear cell tumors had lower (p=0.013) BMI than Type I patients and were younger (p=0.046) at diagnosis than Type II patients. Clear cell tumors had a higher frequency (p=0.039) of capsule rupture at surgery than Type I and II tumors. CONCLUSIONS Positivity of Napsin A in an epithelial ovarian tumor might strengthen the morphological diagnosis of clear cell ovarian carcinoma in the process of differential diagnosis between clear cell ovarian tumors and other histological subtypes.
Collapse
Affiliation(s)
| | - Kathrine Bjersand
- Department of Women’s and Children’s Health, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Helena Åkerud
- Department of Women’s and Children’s Health, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Tomas Seidal
- Department of Pathology, Halmstad Medical Center Hospital, Halmstad, Sweden
| |
Collapse
|
43
|
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to originate from undifferentiated neural crest cells. Amplification of the MYC family member, MYCN, is found in ∼25% of cases and correlates with high-risk disease and poor prognosis. Currently, amplification of MYCN remains the best-characterized genetic marker of risk in neuroblastoma. This article reviews roles for MYCN in neuroblastoma and highlights recent identification of other driver mutations. Strategies to target MYCN at the level of protein stability and transcription are also reviewed.
Collapse
Affiliation(s)
- Miller Huang
- Departments of Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, California 94158-9001
| | | |
Collapse
|
44
|
Loss of P53 facilitates invasion and metastasis of prostate cancer cells. Mol Cell Biochem 2013; 384:121-7. [PMID: 23982184 DOI: 10.1007/s11010-013-1789-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/16/2013] [Indexed: 12/30/2022]
Abstract
Prostate cancer is a lethal cancer for the invasion and metastasis in its earlier period. P53 is a tumor suppressor gene which plays a critical role on safeguarding the integrity of genome. However, loss of P53 facilitates or inhibits the invasion and metastasis of tumor is still suspended. In this study, we are going to explain whether loss of P53 affect the invasion and metastasis of prostate cancer cells. To explore whether loss of P53 influences the invasion and metastasis ability of prostate cancer cells, we first compared the invasion ability of si-P53 treated cells and control cells by wound healing, transwell assay, and adhesion assay. We next tested the activity of MMP-2, MMP-9, and MMP-14 by western blot and gelatin zymography. Moreover, we employed WB and IF to identify the EMT containing E-cad, N-cad, vimentin, etc. We also examined the expression of cortactin, cytoskeleton, and paxillin by immunofluorescence, and tested the expression of ERK and JNK by WB. Finally, we applied WB to detect the expression of FAK, Src, and the phosphorylation of them to elucidate the mechanism of si-P53 influencing invasion and metastasis. According to the inhibition rate of si-P53, we choose the optimized volume of si-P53. With the volume, we compare the invasion and metastasis ability of Du145 and si-P53 treated cells. We find si-P53 promotes the invasion and metastasis in prostate cancer cells, increases the expression and activity of MMP-2/9 and MMP-14. Also, si-P53 promotes EMT and cytoskeleton rearrangement. Further analyses explain that this effect is associated with FAK-Src signaling pathway. Loss of P53 promotes the invasion and metastasis ability of prostate cancer cells and the mechanism is correlated with FAK-Src signaling pathway. P53 is involved in the context of invasion and metastasis.
Collapse
|
45
|
Megison ML, Gillory LA, Beierle EA. Cell survival signaling in neuroblastoma. Anticancer Agents Med Chem 2013; 13:563-75. [PMID: 22934706 PMCID: PMC3710698 DOI: 10.2174/1871520611313040005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 01/09/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Neuroblastoma tumorigenesis and malignant transformation is driven by overexpression and dominance of cell survival pathways and a lack of normal cellular senescence or apoptosis. Therefore, manipulation of cell survival pathways may decrease the malignant potential of these tumors and provide avenues for the development of novel therapeutics. This review focuses on several facets of cell survival pathways including protein kinases (PI3K, AKT, ALK, and FAK), transcription factors (NF-κB, MYCN and p53), and growth factors (IGF, EGF, PDGF, and VEGF). Modulation of each of these factors decreases the growth or otherwise hinders the malignant potential of neuroblastoma, and many therapeutics targeting these pathways are already in the clinical trial phase of development. Continued research and discovery of effective modulators of these pathways will revolutionize the treatment of neuroblastoma.
Collapse
|
46
|
Golubovskaya V, Palma NL, Zheng M, Ho B, Magis A, Ostrov D, Cance WG. A small-molecule inhibitor, 5'-O-tritylthymidine, targets FAK and Mdm-2 interaction, and blocks breast and colon tumorigenesis in vivo. Anticancer Agents Med Chem 2013; 13:532-45. [PMID: 22292771 PMCID: PMC3625481 DOI: 10.2174/1871520611313040002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/06/2012] [Accepted: 01/08/2012] [Indexed: 12/18/2022]
Abstract
Focal Adhesion Kinase (FAK) is overexpressed in many types of tumors and plays an important role in survival. We developed a novel approach, targeting FAK-protein interactions by computer modeling and screening of NCI small molecule drug database. In this report we targeted FAK and Mdm-2 protein interaction to decrease tumor growth. By macromolecular modeling we found a model of FAK and Mdm-2 interaction and performed screening of > 200,000 small molecule compounds from NCI database with drug-like characteristics, targeting the FAK-Mdm-2 interaction. We identified 5';-O-Tritylthymidine, called M13 compound that significantly decreased viability in different cancer cells. M13 was docked into the pocket of FAK and Mdm-2 interaction and was directly bound to the FAK-N terminal domain by ForteBio Octet assay. In addition, M13 compound affected FAK and Mdm-2 levels and decreased complex of FAK and Mdm-2 proteins in breast and colon cancer cells. M13 re-activated p53 activity inhibited by FAK with Mdm-2 promoter. M13 decreased viability, clonogenicity, increased detachment and apoptosis in a dose-dependent manner in BT474 breast and in HCT116 colon cancer cells in vitro. M13 decreased FAK, activated p53 and caspase-8 in both cell lines. In addition, M13 decreased breast and colon tumor growth in vivo. M13 activated p53 and decreased FAK in tumor samples consistent with decreased tumor growth. The data demonstrate a novel approach for targeting FAK and Mdm-2 protein interaction, provide a model of FAK and Mdm-2 interaction, identify M13 compound targeting this interaction and decreasing tumor growth that is critical for future targeted therapeutics.
Collapse
Affiliation(s)
- Vita Golubovskaya
- Department of Surgical Oncology, Roswell Park Cancer Research Institute, Buffalo, NY 14263, USA
| | | | - Min Zheng
- UF Shands Cancer Center, Gainesville, FL, USA
| | - Baotran Ho
- Department of Surgical Oncology, Roswell Park Cancer Research Institute, Buffalo, NY 14263, USA
| | - Andrew Magis
- Department of Pathology, UF Shands Cancer center, Gainesville, FL, USA
| | - David Ostrov
- Department of Pathology, UF Shands Cancer center, Gainesville, FL, USA
| | - William G. Cance
- Department of Surgical Oncology, Roswell Park Cancer Research Institute, Buffalo, NY 14263, USA
| |
Collapse
|
47
|
Despeaux M, Chicanne G, Rouer E, De Toni-Costes F, Bertrand J, Mansat-De Mas V, Vergnolle N, Eaves C, Payrastre B, Girault JA, Racaud-Sultan C. Focal adhesion kinase splice variants maintain primitive acute myeloid leukemia cells through altered Wnt signaling. Stem Cells 2013; 30:1597-610. [PMID: 22714993 DOI: 10.1002/stem.1157] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) activity contributes to many advanced cancer phenotypes, but little is known about its role in human acute myeloid leukemia (AML). Here, we show that FAK splice variants are abnormally expressed in the primitive leukemic cells of poor prognosis AML patients. In the CD34(+) 38(-) 123(+) long-term culture-initiating cell-enriched leukemic cells of these patients, FAK upregulates expression of Frizzled-4 and phosphorylates Pyk2 to enable the required association of Pyk2 with the Wnt5a/Frizzled-4/LRP5 endocytosis complex and downstream activation of β-catenin, thereby replacing the Wnt3a-controlled canonical pathway used by normal hematopoietic stem cells. Transduction of primitive normal human hematopoietic cells with FAK splice variants induces a marked increase in their clonogenic activity and signaling via the Wnt5a-controlled canonical pathway. Targeting FAK or β-catenin efficiently eradicates primitive leukemic cells in vitro suggesting that FAK could be a useful therapeutic target for improved treatment of poor prognosis AML cases.
Collapse
Affiliation(s)
- Mathieu Despeaux
- Inserm U1043, CNRS U5282, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Golubovskaya VM, Cance WG. FAK and p53 protein interactions. Anticancer Agents Med Chem 2012; 11:617-9. [PMID: 21355845 DOI: 10.2174/187152011796817619] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 02/01/2011] [Accepted: 02/07/2011] [Indexed: 11/22/2022]
Abstract
Focal Adhesion Kinase plays a major role in cell adhesion, motility, survival, proliferation, metastasis, angiogenesis and lymphangiogenesis. In 2004, we have cloned the promoter sequence of FAK and found that p53 inhibits its activity (BBA, v. 1678, 2004). In 2005, we were the first group to show that FAK and p53 proteins directly interact in the cells (JBC, v. 280, 2005). We have shown that FAK and p53 proteins interact in the cytoplasm and in the nucleus by immunoprecipitation, pull-down and confocal microscopy assays. We have shown that FAK inhibited activity of p53 with the transcriptional targets: p21, Bax and Mdm-2 through protein-protein interactions. We identified the 7 amino-acid site in p53 that is involved in interaction with FAK protein. The present review will discuss the interaction of FAK and p53 proteins and discuss the mechanism of FAK-p53 loop regulation: inhibition of FAK promoter activity by p53 protein and also inhibition of p53 transcriptional activity by FAK protein.
Collapse
Affiliation(s)
- Vita M Golubovskaya
- Department of Surgical Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | |
Collapse
|
49
|
Sasaki Y, Koyama R, Maruyama R, Hirano T, Tamura M, Sugisaka J, Suzuki H, Idogawa M, Shinomura Y, Tokino T. CLCA2, a target of the p53 family, negatively regulates cancer cell migration and invasion. Cancer Biol Ther 2012; 13:1512-21. [PMID: 22990203 DOI: 10.4161/cbt.22280] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The tumor suppressor p53 transcriptionally regulates a number of genes that are involved in cell-cycle inhibition, apoptosis and the maintenance of genetic stability. Recent studies suggest that p53 also contributes to the regulation of cell migration and invasion. Here, we show that human chloride channel accessory-2 (CLCA2) is a target gene of the p53 family (p53, p73 and p63). CLCA2 is induced by DNA damage in a p53-dependent manner. The p53 family proteins activate the CLCA2 promoter by binding directly to the conserved consensus p53-binding site present in the CLCA2 promoter. In terms of function, ectopic expression of CLCA2 inhibited cancer cell migration. In contrast, silencing CLCA2 with siRNA stimulated cancer cell migration and invasion. We also found that inactivation of CLCA2 enhanced the expression of focal adhesion kinase (FAK), as well as its promoter activation. A small-molecule FAK inhibitor reduced the effect of CLCA2 siRNA on cell migration and invasion, suggesting that CLCA2 inhibits cancer cell migration and invasion through suppression of the FAK signaling pathway. Furthermore, there was an inverse correlation between CLCA2 and FAK expression in 251 human breast cancer tissues. These results strongly suggest that CLCA2 is involved in the p53 tumor suppressor network and has a significant effect on cell migration and invasion.
Collapse
Affiliation(s)
- Yasushi Sasaki
- Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Allen WL, Turkington RC, Stevenson L, Carson G, Coyle VM, Hector S, Dunne P, Van Schaeybroeck S, Longley DB, Johnston PG. Pharmacogenomic profiling and pathway analyses identify MAPK-dependent migration as an acute response to SN38 in p53 null and p53-mutant colorectal cancer cells. Mol Cancer Ther 2012; 11:1724-34. [PMID: 22665525 PMCID: PMC3428848 DOI: 10.1158/1535-7163.mct-12-0207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The topoisomerase I inhibitor irinotecan is used to treat advanced colorectal cancer and has been shown to have p53-independent anticancer activity. The aim of this study was to identify the p53-independent signaling mechanisms activated by irinotecan. Transcriptional profiling of isogenic HCT116 p53 wild-type and p53 null cells was carried out following treatment with the active metabolite of irinotecan, SN38. Unsupervised analysis methods showed that p53 status had a highly significant impact on gene expression changes in response to SN38. Pathway analysis indicated that pathways involved in cell motility [adherens junction, focal adhesion, mitogen-activated protein kinase (MAPK), and regulation of the actin cytoskeleton] were significantly activated in p53 null cells, but not p53 wild-type cells, following SN38 treatment. In functional assays, SN38 treatment increased the migratory potential of p53 null and p53-mutant colorectal cancer cell lines, but not p53 wild-type lines. Moreover, p53 null SN38-resistant cells were found to migrate at a faster rate than parental drug-sensitive p53 null cells, whereas p53 wild-type SN38-resistant cells failed to migrate. Notably, cotreatment with inhibitors of the MAPK pathway inhibited the increased migration observed following SN38 treatment in p53 null and p53-mutant cells. Thus, in the absence of wild-type p53, SN38 promotes migration of colorectal cancer cells, and inhibiting MAPK blocks this potentially prometastatic adaptive response to this anticancer drug.
Collapse
Affiliation(s)
| | | | - Leanne Stevenson
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, N. Ireland
| | - Gail Carson
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, N. Ireland
| | - Vicky M. Coyle
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, N. Ireland
| | - Suzanne Hector
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, N. Ireland
| | - Philip Dunne
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, N. Ireland
| | - Sandra Van Schaeybroeck
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, N. Ireland
| | | | - Patrick G. Johnston
- Corresponding Author: Patrick Johnston, Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland. Tel: 44-2890-972764. Fax: 44-2890-263744.
| |
Collapse
|