1
|
Gargano A, Greco I, Lupia C, Alcaro S, Ambrosio FA. Rosmarinus officinalis L. as Fascinating Source of Potential Anticancer Agents Targeting Aromatase and COX-2: An Overview. Molecules 2025; 30:1733. [PMID: 40333668 PMCID: PMC12029578 DOI: 10.3390/molecules30081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer is the second leading cause of death in the world, with scientific evidence indicating that the enzymes aromatase and cyclooxygenase 2 are upregulated in several types of cancer. Over the past 30 years, natural compounds have played a crucial role in cancer chemotherapy, and to date, many phytocompounds have been reported to interact with these enzymes, inhibiting their activity. Notably, several phytocompounds found in Rosmarinus officinalis L., a medicinal plant native to the Mediterranean region and cultivated around the world, have shown the ability to interact with these enzymes. This review examines the role of the main compounds contained in Rosmarinus officinalis L. as potential anticancer agents acting on aromatase and cyclooxygenase-2.
Collapse
Affiliation(s)
- Adriana Gargano
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Ilario Greco
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, Italy;
- National Etnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
- Net4Science Academic Spin-Off, Università “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
| |
Collapse
|
2
|
Sandhu SS, Rouz SK, Kumar S, Swamy N, Deshmukh L, Hussain A, Haque S, Tuli HS. Ursolic acid: a pentacyclic triterpenoid that exhibits anticancer therapeutic potential by modulating multiple oncogenic targets. Biotechnol Genet Eng Rev 2023:1-31. [PMID: 36600517 DOI: 10.1080/02648725.2022.2162257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
The world is currently facing a global challenge against neoplastic diseases. Chemotherapy, hormonal therapy, surgery, and radiation therapy are some approaches used to treat cancer. However, these treatments are frequently causing side effects in patients, such as multidrug resistance, fever, weakness, and allergy, among others side effects. As a result, current research has focused on phytochemical compounds isolated from plants to treat deadly cancers. Plants are excellent resources of bioactive molecules, and many natural molecules have exceptional anticancer properties. They produce diverse anticancer derivatives such as alkaloids, terpenoids, flavonoids, pigments, and tannins, which have powerful anticancer activities against various cancer cell lines and animal models. Because of their safety, eco-friendly, and cost-effective nature, research communities have recently focused on various phytochemical bioactive molecules. Ursolic acid (UA) and its derivative compounds have anti-inflammatory, anticancer, apoptosis induction, anti-carcinogenic, and anti-breast cancer proliferation properties. Ursolic acid (UA) can improve the clinical management of human cancer because it inhibits cancer cell viability and proliferation, preventing tumour angiogenesis and metastatic activity. Therefore, the present article focuses on numerous bioactivities of Ursolic acid (UA), which can inhibit cancer cell production, mechanism of action, and modulation of anticancer properties via regulating various cellular processes.
Collapse
Affiliation(s)
| | - Sharareh Khorami Rouz
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Suneel Kumar
- Bio-Design Innovation Centre, Rani Durgavati University, Jabalpur, India
| | - Nitin Swamy
- Fungal Biotechnology and Invertebrate Pathology Laboratory Department of Biological Sciences, Rani Durgavati University, Jabalpur, India
| | - Loknath Deshmukh
- School of Life and Allied Science, ITM University, Raipur, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Arabia and Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| |
Collapse
|
3
|
Faridzadeh A, Salimi Y, Ghasemirad H, Kargar M, Rashtchian A, Mahmoudvand G, Karimi MA, Zerangian N, Jahani N, Masoudi A, Sadeghian Dastjerdi B, Salavatizadeh M, Sadeghsalehi H, Deravi N. Neuroprotective Potential of Aromatic Herbs: Rosemary, Sage, and Lavender. Front Neurosci 2022; 16:909833. [PMID: 35873824 PMCID: PMC9297920 DOI: 10.3389/fnins.2022.909833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Hundreds of millions of people around the world suffer from neurological disorders or have experienced them intermittently, which has significantly reduced their quality of life. The common treatments for neurological disorders are relatively expensive and may lead to a wide variety of side effects including sleep attacks, gastrointestinal side effects, blood pressure changes, etc. On the other hand, several herbal medications have attracted colossal popularity worldwide in the recent years due to their availability, affordable prices, and few side effects. Aromatic plants, sage (Salvia officinalis), lavender (Lavandula angustifolia), and rosemary (Salvia Rosmarinus) have already shown anxiolytics, anti-inflammatory, antioxidant, and neuroprotective effects. They have also shown potential in treating common neurological disorders, including Alzheimer's disease, Parkinson's disease, migraine, and cognitive disorders. This review summarizes the data on the neuroprotective potential of aromatic herbs, sage, lavender, and rosemary.
Collapse
Affiliation(s)
- Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasaman Salimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamidreza Ghasemirad
- Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Meraj Kargar
- Student Research Committee, Afzalipour Faculty of Medicine Kerman University of Medical Sciences, Kerman, Iran
| | - Ava Rashtchian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Amin Karimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasibeh Zerangian
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Jahani
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anahita Masoudi
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Bahare Sadeghian Dastjerdi
- Student Research Committee, Department of Midwifery, Faculty of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marieh Salavatizadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Niloofar Deravi
| |
Collapse
|
4
|
Rufino-Palomares EE, Pérez-Jiménez A, García-Salguero L, Mokhtari K, Reyes-Zurita FJ, Peragón-Sánchez J, Lupiáñez JA. Nutraceutical Role of Polyphenols and Triterpenes Present in the Extracts of Fruits and Leaves of Olea europaea as Antioxidants, Anti-Infectives and Anticancer Agents on Healthy Growth. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072341. [PMID: 35408740 PMCID: PMC9000726 DOI: 10.3390/molecules27072341] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.
Collapse
Affiliation(s)
- Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Khalida Mokhtari
- Department of Biology, Faculty of Sciences, Mohammed I University, Oujda BP 717 60000, Morocco;
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Juan Peragón-Sánchez
- Department of Experimental Biology, Biochemistry and Molecular Biology Section, Faculty of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| | - José A. Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
- Correspondence: ; Tel.: +34-958-243-089; Fax: +34-958-249-945
| |
Collapse
|
5
|
Natural Products for Cancer Therapy: A Review of Their Mechanism of Actions and Toxicity in the Past Decade. J Trop Med 2022; 2022:5794350. [PMID: 35309872 PMCID: PMC8933079 DOI: 10.1155/2022/5794350] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/13/2021] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
The ethnopharmacological information gathered over many centuries and the presence of diverse metabolites have made the medicinal plants as the prime source of drugs. Despite the positive attributes of natural products, there are many questions pertaining to their mechanism of actions and molecular targets that impede their development as therapeutic agents. One of the major challenges in cancer research is the toxicity exerted by investigational agents towards the host. An understanding of their molecular targets, underlying mechanisms can reveal their anticancer efficacy, help in optimal therapeutic dose selection, to mitigate their side effects and toxicity towards the host. The purpose of this review is to collate details on natural products that are recently been investigated extensively in the past decade for their anticancer potential. Besides, critical analysis of their molecular targets and underlying mechanisms on multiple cancer cell lines, an in-depth probe of their toxicological screening on rodent models is outlined as well to observe the prevalence of their toxicity towards host. This review can provide valuable insights for researchers in developing methods, strategies during preclinical and clinical evaluation of anticancer candidates.
Collapse
|
6
|
Li S, Wu R, Wang L, Dina Kuo HC, Sargsyan D, Zheng X, Wang Y, Su X, Kong AN. Triterpenoid ursolic acid drives metabolic rewiring and epigenetic reprogramming in treatment/prevention of human prostate cancer. Mol Carcinog 2022; 61:111-121. [PMID: 34727410 PMCID: PMC8665082 DOI: 10.1002/mc.23365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/11/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023]
Abstract
Ursolic acid (UA) is a triterpenoid phytochemical with a strong anticancer effect. The metabolic rewiring, epigenetic reprogramming, and chemopreventive effect of UA in prostate cancer (PCa) remain unknown. Herein, we investigated the efficacy of UA in PCa xenograft, and its biological effects on cellular metabolism, DNA methylation, and transcriptomic using multi-omics approaches. The metabolomics was quantified by liquid-chromatography-mass spectrometry (LC-MS) while epigenomic CpG methylation in parallel with transcriptomic gene expression was studied by next-generation sequencing technologies. UA administration attenuated the growth of transplanted human VCaP-Luc cells in immunodeficient mice. UA regulated several cellular metabolites and metabolism-related signaling pathways including S-adenosylmethionine (SAM), methionine, glucose 6-phosphate, CDP-choline, phosphatidylcholine biosynthesis, glycolysis, and nucleotide sugars metabolism. RNA-seq analyses revealed UA regulated several signaling pathways, including CXCR4 signaling, cancer metastasis signaling, and NRF2-mediated oxidative stress response. Epigenetic reprogramming study with DNA Methyl-seq uncovered a list of differentially methylated regions (DMRs) associated with UA treatment. Transcriptome-DNA methylome correlative analysis uncovered a list of genes, of which changes in gene expression correlated with the promoter CpG methylation status. Altogether, our results suggest that UA regulates metabolic rewiring of metabolism including SAM potentially driving epigenetic CpG methylation reprogramming, and transcriptomic signaling resulting in the overall anticancer chemopreventive effect.
Collapse
Affiliation(s)
- Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- International Center for Aging and Cancer, Hainan Medical University, Haikou, Hainan, China
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
- Graduate Program in Pharmaceutical Science, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yujue Wang
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Xiaoyang Su
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
7
|
Tsuji Y, Nonoguchi N, Okuzaki D, Wada Y, Motooka D, Hirota Y, Toho T, Yoshikawa N, Furuse M, Kawabata S, Miyatake SI, Nakamura H, Yamamoto R, Nakamura S, Kuroiwa T, Wanibuchi M. Chronic pathophysiological changes in the normal brain parenchyma caused by radiotherapy accelerate glioma progression. Sci Rep 2021; 11:22110. [PMID: 34764346 PMCID: PMC8585920 DOI: 10.1038/s41598-021-01475-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy is one of standard treatment for malignant glioma after surgery. The microenvironment after irradiation is considered not to be suitable for the survival of tumor cells (tumor bed effect). This study investigated whether the effect of changes in the microenvironment of parenchymal brain tissue caused by radiotherapy affect the recurrence and progression of glioma. 65-Gy irradiation had been applied to the right hemisphere of Fisher rats. After 3 months from irradiation, we extracted RNA and protein from the irradiated rat brain. To study effects of proteins extracted from the brains, we performed WST-8 assay and tube formation assay in vitro. Cytokine production were investigated for qPCR. Additionally, we transplanted glioma cell into the irradiated and sham animals and the median survival time of F98 transplanted rats was also examined in vivo. Immunohistochemical analyses and invasiveness of implanted tumor were evaluated. X-ray irradiation promoted the secretion of cytokines such as CXCL12, VEGF-A, TGF-β1 and TNFα from the irradiated brain. Proteins extracted from the irradiated brain promoted the proliferation and angiogenic activity of F98 glioma cells. Glioma cells implanted in the irradiated brains showed significantly high proliferation, angiogenesis and invasive ability, and the post-irradiation F98 tumor-implanted rats showed a shorter median survival time compared to the Sham-irradiation group. The current study suggests that the microenvironment around the brain tissue in the chronic phase after exposure to X-ray radiation becomes suitable for glioma cell growth and invasion.
Collapse
Affiliation(s)
- Yuichiro Tsuji
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Daisuke Okuzaki
- grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yusuke Wada
- grid.261455.10000 0001 0676 0594Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Daisuke Motooka
- grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Yuki Hirota
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 Japan
| | - Taichiro Toho
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 Japan
| | - Nobuhiko Yoshikawa
- Department of Radiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Motomasa Furuse
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 Japan
| | - Shin-Ichi Miyatake
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 Japan ,Division for Advanced Medical Development, Cancer Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 Japan
| | - Hiroyuki Nakamura
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 Japan
| | - Ryohei Yamamoto
- grid.261455.10000 0001 0676 0594Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai-Kita, Izumisano, Osaka 598-8531 Japan
| | - Shota Nakamura
- grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Toshihiko Kuroiwa
- Department of Neurosurgery, Tesseikai Neurosurgical Hospital, 28-1, Nakanohommachi, Shijyonawate, Osaka 575-8511 Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 Japan
| |
Collapse
|
8
|
Alam M, Ali S, Ahmed S, Elasbali AM, Adnan M, Islam A, Hassan MI, Yadav DK. Therapeutic Potential of Ursolic Acid in Cancer and Diabetic Neuropathy Diseases. Int J Mol Sci 2021; 22:12162. [PMID: 34830043 PMCID: PMC8621142 DOI: 10.3390/ijms222212162] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid frequently found in medicinal herbs and plants, having numerous pharmacological effects. UA and its analogs treat multiple diseases, including cancer, diabetic neuropathy, and inflammatory diseases. UA inhibits cancer proliferation, metastasis, angiogenesis, and induced cell death, scavenging free radicals and triggering numerous anti- and pro-apoptotic proteins. The biochemistry of UA has been examined broadly based on the literature, with alterations frequently having been prepared on positions C-3 (hydroxyl), C12-C13 (double bonds), and C-28 (carboxylic acid), leading to several UA derivatives with increased potency, bioavailability and water solubility. UA could be used as a protective agent to counter neural dysfunction via anti-oxidant and anti-inflammatory effects. It is a potential therapeutic drug implicated in the treatment of cancer and diabetic complications diseases provide novel machinery to the anti-inflammatory properties of UA. The pharmacological efficiency of UA is exhibited by the therapeutic theory of one-drug → several targets → one/multiple diseases. Hence, UA shows promising therapeutic potential for cancer and diabetic neuropathy diseases. This review aims to discuss mechanistic insights into promising beneficial effects of UA. We further explained the pharmacological aspects, clinical trials, and potential limitations of UA for the management of cancer and diabetic neuropathy diseases.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Sarfraz Ahmed
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Abdelbaset Mohamed Elasbali
- Clinical Laboratory Science, College of Applied Medical Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (A.I.); (M.I.H.)
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
| |
Collapse
|
9
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
10
|
Ursolic Acid and Related Analogues: Triterpenoids with Broad Health Benefits. Antioxidants (Basel) 2021; 10:antiox10081161. [PMID: 34439409 PMCID: PMC8388988 DOI: 10.3390/antiox10081161] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ursolic acid (UA) is a well-studied natural pentacyclic triterpenoid found in herbs, fruit and a number of traditional Chinese medicinal plants. UA has a broad range of biological activities and numerous potential health benefits. In this review, we summarize the current data on the bioavailability and pharmacokinetics of UA and review the literature on the biological activities of UA and its closest analogues in the context of inflammation, metabolic diseases, including liver and kidney diseases, obesity and diabetes, cardiovascular diseases, cancer, and neurological disorders. We end with a brief overview of UA’s main analogues with a special focus on a newly discovered naturally occurring analogue with intriguing biological properties and potential health benefits, 23-hydroxy ursolic acid.
Collapse
|
11
|
Gudoityte E, Arandarcikaite O, Mazeikiene I, Bendokas V, Liobikas J. Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential. Int J Mol Sci 2021; 22:4599. [PMID: 33925641 PMCID: PMC8124962 DOI: 10.3390/ijms22094599] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ursolic and oleanolic acids are secondary plant metabolites that are known to be involved in the plant defence system against water loss and pathogens. Nowadays these triterpenoids are also regarded as potential pharmaceutical compounds and there is mounting experimental data that either purified compounds or triterpenoid-enriched plant extracts exert various beneficial effects, including anti-oxidative, anti-inflammatory and anticancer, on model systems of both human or animal origin. Some of those effects have been linked to the ability of ursolic and oleanolic acids to modulate intracellular antioxidant systems and also inflammation and cell death-related pathways. Therefore, our aim was to review current studies on the distribution of ursolic and oleanolic acids in plants, bioavailability and pharmacokinetic properties of these triterpenoids and their derivatives, and to discuss their neuroprotective effects in vitro and in vivo.
Collapse
Affiliation(s)
- Evelina Gudoityte
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
- Celignis Limited, Unit 11 Holland Road, Plassey Technology Park Castletroy, County Limerick, Ireland
| | - Odeta Arandarcikaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
| | - Ingrida Mazeikiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Akademija, LT-58344 Kedainiai Distr., Lithuania;
| | - Vidmantas Bendokas
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Akademija, LT-58344 Kedainiai Distr., Lithuania;
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
12
|
Ursolic Acid Inhibits Collective Cell Migration and Promotes JNK-Dependent Lysosomal Associated Cell Death in Glioblastoma Multiforme Cells. Pharmaceuticals (Basel) 2021; 14:ph14020091. [PMID: 33530486 PMCID: PMC7911358 DOI: 10.3390/ph14020091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Ursolic acid (UA) is a bioactive compound which has demonstrated therapeutic efficacy in a variety of cancer cell lines. UA activates various signalling pathways in Glioblastoma multiforme (GBM) and offers a promising starting point in drug discovery; however, understanding the relationship between cell death and migration has yet to be elucidated. UA induces a dose dependent cytotoxic response demonstrated by flow cytometry and biochemical cytotoxicity assays. Inhibitor and fluorescent probe studies demonstrate that UA induces a caspase independent, JNK dependent, mechanism of cell death. Migration studies established that UA inhibits GBM collective cell migration in a time dependent manner that is independent of the JNK signalling pathway. Cytotoxicity induced by UA results in the formation of acidic vesicle organelles (AVOs), speculating the activation of autophagy. However, inhibitor and spectrophotometric analysis demonstrated that autophagy was not responsible for the formation of the AVOs. Confocal microscopy and isosurface visualisation determined co-localisation of lysosomes with the previously identified AVOs, thus providing evidence that lysosomes are likely to be playing a role in UA induced cell death. Collectively, our data identify that UA rapidly induces a lysosomal associated mechanism of cell death in addition to UA acting as an inhibitor of GBM collective cell migration.
Collapse
|
13
|
Yang J, Sun G, Hu Y, Yang J, Shi Y, Liu H, Li C, Wang Y, Lv Z, Niu J, Liu H, Shi X, Wang H, Li P, Jiao B. Extracellular Vesicle lncRNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 Released From Glioma Stem Cells Modulates the Inflammatory Response of Microglia After Lipopolysaccharide Stimulation Through Regulating miR-129-5p/High Mobility Group Box-1 Protein Axis. Front Immunol 2020; 10:3161. [PMID: 32117213 PMCID: PMC7020807 DOI: 10.3389/fimmu.2019.03161] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Glioma stem cell (GSC)–derived extracellular vesicles (EVs) can mediate the communication between GSCs and microglia. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression in GSCs, EVs, and supernatant was detected by real-time PCR. The direct targeting between MALAT1 and miR-129-5p, miR-129-5p, and HMGB1 were tested with luciferase reporter analysis. The expression and secretion of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α were determined in lipopolysaccharide-stimulated microglia or miR-129-5p inhibitor transferred to microglia exposed to GSC EVs or EVs derived from siMALAT1 pre-transferred GSCs. MALAT1 was enriched in GSC EVs compared with GSCs, and up-regulated MALAT1 was also observed in microglia upon GSC EVs incubation. The relative expression and secretion of IL-6, IL-8, and TNF-α in lipopolysaccharide-stimulated microglia were up-regulated in the GSC supernatant group, which could be reversed by dimethyl amiloride (DMA) (EV secretion inhibitor) co-administration or si-MALAT1 pre-transfection of GSCs. Luciferase reporter assay testified the direct binding of MALAT1 and miR-129-5p, miR-129-5p, and HMGB1, and si-MALAT1 could up-regulate miR-129-5p expression and down-regulate HMGB1 expression in microglia cells. The concentration of IL-6, IL-8, and TNF-α in lipopolysaccharide-stimulated microglia exposed to EVs from siMALAT1 transfected GSCs could be up-regulated by miR-129-5p inhibition. EVs lncRNA MALAT1 released from GSCs could modulate the inflammatory response of microglia after lipopolysaccharide stimulation through regulating the miR-129-5p/HMGB1 axis.
Collapse
Affiliation(s)
- Jiankai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuhua Hu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jipeng Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yijun Shi
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongjiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyu Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongqiang Lv
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianxing Niu
- Department of Neurosurgery, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Honglei Liu
- Department of Neurosurgery, Shijiazhuang Third Hospital, Shijiazhuang, Hebei, China
| | - Xuefang Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiping Wang
- International Department, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Pan Li
- International Department, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Baohua Jiao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Ursonic acid exerts inhibitory effects on matrix metalloproteinases via ERK signaling pathway. Chem Biol Interact 2019; 315:108910. [PMID: 31790661 DOI: 10.1016/j.cbi.2019.108910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/23/2019] [Accepted: 11/27/2019] [Indexed: 01/01/2023]
Abstract
Ursonic acid is a pentacyclic triterpenoid compound that can be extracted from Ziziphus jujuba Mill., a traditional medicine. Matrix metalloproteinases (MMPs) are involved in cancer metastasis and skin aging. Regulation of various MMPs is closely associated with mitogen-activated protein kinases (MAPKs), including ERK, p38, and JNK MAPKs. In this study, we investigated the possibility of ursonic acid as an anti-cancer/anti-skin aging agent targeting MMPs. Cytotoxic effects of ursonic acid were analyzed by cell counting kit-8 (CCK-8) assay. Invasive abilities of ursonic acid-treated A549 and H1299 non-small cell lung cancer (NSCLC) cells were tested with Boyden chamber assay. Effects of ursonic acid on MMPs were analyzed by zymography assays and quantitative real time polymerase chain reaction (qRT-PCR). We also conducted flow cytometry and western blot analysis to elucidate the mechanisms of MMP regulation by ursonic acid. Our results revealed that ursonic acid inhibited transcriptional expression of gelatinases (MMP-2 and MMP-9) via inhibition of ERK and CREB signaling pathways in NSCLC cells. Moreover, ursonic acid reduced mRNA levels of collagenase (MMP-1) via suppression of ERK and c-Fos signaling pathways in HaCaT keratinocytes. These results suggest that ursonic acid could be a potential candidate for development of an effective novel anti-cancer and anti-wrinkle agent.
Collapse
|
15
|
Feng XM, Su XL. Anticancer effect of ursolic acid via mitochondria-dependent pathways. Oncol Lett 2019; 17:4761-4767. [PMID: 31186681 PMCID: PMC6507317 DOI: 10.3892/ol.2019.10171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/01/2019] [Indexed: 01/03/2023] Open
Abstract
Ursolic acid is a plant-derived pentacyclic triterpenoid found in various medicinal herbs and fruits. It has generated clinical interest due to its anti-inflammatory, antioxidative, antiapoptotic and anticarcinogenic effects. An increasing amount of evidence supports the anticancer effect of ursolic acid in various cancer cells. One of the hallmarks of malignant transformation is metabolic reprogramming that sustains macromolecule synthesis, bioenergetic demand and tumor cell survival. Mitochondria are important regulators of tumorigenes is as well as a major site of the metabolic reactions that facilitate this reprogramming and adaption to cellular and environmental changes. The current review explored the close association between the anticancer effect of ursolic acid and the activation of mitochondrial-dependent signaling pathways.
Collapse
Affiliation(s)
- Xue-Min Feng
- Clinical Medical Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiu-Lan Su
- Clinical Medical Research Center of The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
16
|
Habtemariam S. Antioxidant and Anti-inflammatory Mechanisms of Neuroprotection by Ursolic Acid: Addressing Brain Injury, Cerebral Ischemia, Cognition Deficit, Anxiety, and Depression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8512048. [PMID: 31223427 PMCID: PMC6541953 DOI: 10.1155/2019/8512048] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/27/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene which is found in common herbs and medicinal plants that are reputed for a variety of pharmacological effects. Both as an active principle of these plants and as a nutraceutical ingredient, the pharmacology of UA in the CNS and other organs and systems has been extensively reported in recent years. In this communication, the antioxidant and anti-inflammatory axis of UA's pharmacology is appraised for its therapeutic potential in some common CNS disorders. Classic examples include the traumatic brain injury (TBI), cerebral ischemia, cognition deficit, anxiety, and depression. The pharmacological efficacy for UA is demonstrated through the therapeutic principle of one drug → multitargets → one/many disease(s). Both specific enzymes and receptor targets along with diverse pharmacological effects associated with oxidative stress and inflammatory signalling are scrutinised.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
17
|
Abstract
Growing modernization and lifestyle changes with limited physical activity have impacted diet and health, leading to an increased cancer mortality rate worldwide. As a result, there is a greater need than before to develop safe and novel anticancer drugs. Current treatment options such as chemotherapy, radiotherapy and surgery, induce unintended side effects, compromising patient's quality of life, and physical well-being. Therefore, there has been an increased global interest in the use of dietary supplements and traditional herbal medicines for treatment of cancer. Recently, nutraceuticals or "natural" substances isolated from food have attracted considerable attention in the cancer field. Emerging research suggests that nutraceuticals may indeed prevent and protect against cancer. The intent of this article is to review some of the current spice-derived nutraceuticals in the treatment of melanoma and skin cancer.
Collapse
Affiliation(s)
- Annapoorna Sreedhar
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, LA 71130, USA
| | - Jun Li
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, LA 71130, USA
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, LA 71130, USA
| |
Collapse
|
18
|
Nikitin PV, Potapov AA, Ryzhova MV, Shurkhay VA, Kulikov EE, Zhvanskiy ES, Popov IA, Nikolaev EN. [The role of lipid metabolism disorders, atypical isoforms of protein kinase C, and mutational status of cytosolic and mitochondrial forms of isocitrate dehydrogenase in carcinogenesis of glial tumors]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2018; 82:112-120. [PMID: 29927433 DOI: 10.17116/neiro2018823112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The relationship between molecular genetic and metabolic disorders is one of the challenges of modern oncology. In this review, we consider lipid metabolism and its changes as one of the factors of oncogenesis of glial tumors. Also, we demonstrate that the genome and the metabolome are interconnected by a large number of links, and the metabolic pathways, during their reorganization, are able to drastically affect the genetic structure of the cell and, in particular, cause its tumor transformation. Our own observations and analysis of the literature data allow us to conclude that mass spectrometry is a highly accurate current method for assessing metabolic disorders at the cellular level. The use of mass spectrometry during surgery allows the neurosurgeon to obtain real-time data on the level of specific molecular markers in the resected tissue, thereby bringing intraoperative navigation techniques to the molecular level. The generation of molecular fingerprints for each tumor significantly complements the available neuroimaging, molecular genetic, and immunohistochemical data.
Collapse
Affiliation(s)
- P V Nikitin
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - A A Potapov
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - M V Ryzhova
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - V A Shurkhay
- Burdenko Neurosurgery Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047; Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701
| | - E E Kulikov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701; Federal Research Center 'Fundamentals of Biotechnology', Leninskiy Prospect, 33/2, Moscow, Russia, 119071
| | - E S Zhvanskiy
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701
| | - I A Popov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701
| | - E N Nikolaev
- Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Region, Russia, 141701; Skolkovo Institute of Science and Technology, Nobelya Str., 3, Moscow, Russia, 143026; Institute of Energy Problems of Chemical Physics, Leninskiy Prospect, 38/2, Moscow, Russia, 119334
| |
Collapse
|
19
|
Yen GC, Tsai CM, Lu CC, Weng CJ. Recent progress in natural dietary non-phenolic bioactives on cancers metastasis. J Food Drug Anal 2018; 26:940-964. [PMID: 29976413 PMCID: PMC9303016 DOI: 10.1016/j.jfda.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
From several decades ago to now, cancer continues to be the leading cause of death worldwide, and metastasis is the major cause of cancer-related deaths. For health benefits, there is a great desire to use non-chemical therapy such as nutraceutical supplementation to prevent pathology development. Over 10,000 different natural bioactives or phytochemicals have been known that possessing potential preventive or supplementary effects for various diseases including cancer. Previously, the in vitro and in vivo anti-invasive and anti-metastatic activities of phenolic acids, monophenol, polyphenol and their derivatives and flavonoids and their derivatives have been reviewed. However, a vast number of natural dietary compounds other than phenolics have been demonstrated to potentially possess the ability to inhibit the invasion and metastasis of various cancers. In this review, we summarize the studies in recent decade on in vitro and in vivo effects and molecular mechanisms of natural bioactives, excluding the phenolics in food, in cancer invasion and metastasis. By combining this review of non-phenolics with the previous phenolics reviews, the puzzle for the contribution of natural dietary bioactives on cancer invasive or/and metastatic progress will be almost complete and more clear.
Collapse
Affiliation(s)
- Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan; Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Chiung-Man Tsai
- Tainan Hospital, Ministry of Health and Welfare, Tainan City, Taiwan
| | - Chi-Cheng Lu
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Chia-Jui Weng
- Department of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan.
| |
Collapse
|
20
|
Seo DY, Lee SR, Heo JW, No MH, Rhee BD, Ko KS, Kwak HB, Han J. Ursolic acid in health and disease. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:235-248. [PMID: 29719446 PMCID: PMC5928337 DOI: 10.4196/kjpp.2018.22.3.235] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/22/2022]
Abstract
Ursolic acid (UA) is a natural triterpene compound found in various fruits and vegetables. There is a growing interest in UA because of its beneficial effects, which include anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-carcinogenic effects. It exerts these effects in various tissues and organs: by suppressing nuclear factor-kappa B signaling in cancer cells, improving insulin signaling in adipose tissues, reducing the expression of markers of cardiac damage in the heart, decreasing inflammation and increasing the level of anti-oxidants in the brain, reducing apoptotic signaling and the level of oxidants in the liver, and reducing atrophy and increasing the expression levels of adenosine monophosphate-activated protein kinase and irisin in skeletal muscles. Moreover, UA can be used as an alternative medicine for the treatment and prevention of cancer, obesity/diabetes, cardiovascular disease, brain disease, liver disease, and muscle wasting (sarcopenia). In this review, we have summarized recent data on the beneficial effects and possible uses of UA in health and disease managements.
Collapse
Affiliation(s)
- Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.,Department of Convergence Biomedical Science, Inje University, Busan 47392, Korea
| | - Jun-Won Heo
- Department of Kinesiology, Inha University, Incheon 22212, Korea
| | - Mi-Hyun No
- Department of Kinesiology, Inha University, Incheon 22212, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon 22212, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, BK21 Plus Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan 47392, Korea.,Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea
| |
Collapse
|
21
|
Preciado LM, Rey-Suárez P, Henao IC, Pereañez JA. Betulinic, oleanolic and ursolic acids inhibit the enzymatic and biological effects induced by a P-I snake venom metalloproteinase. Chem Biol Interact 2018; 279:219-226. [PMID: 29203373 DOI: 10.1016/j.cbi.2017.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/17/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022]
Abstract
Betulinic acid (BA), Oleanolic acid (OA) and Ursolic acid (UA), are pentacyclic triterpenoids with widespread occurrence throughout the plant kingdom, these compounds are widely recognized by their pharmacological and biological properties, such as, anti-tumoral, anti-inflammatory, anti-microbial and hepatoprotective activity. In this work we determined the inhibitory ability of these compounds on the enzymatic, hemorrhagic, myotoxic and edema-inducing activities of Batx-I, a P-I metalloproteinase isolated from Bothrops atrox venom. BA, UA and OA inhibited the proteolytic activity of Batx-I on gelatin with IC50 values of 115.3, 223.0 and 357.3 μM, respectively. Additionally, these compounds showed inhibition of the hemorrhagic activity of Batx-I in skin with IC50 345.7, 643.5 and 1077.0 μM for BA, UA and OA in preincubation experiments. In studies with independent-injection, in which Batx-I was injected and then, at the same site, a concentration of 600 μM of each compound were administered at either 0, 5 or 10 min, BA showed a significant reduction of hemorrhage at 0 and 5 min. In addition, these compounds inhibited myotoxicity and edema-forming activity of Batx-I at 600 μM concentration. Molecular docking studies suggested that these compounds could occupy part of the substrate binding cleft of the enzyme affecting its catalytic cycle. In this manner, triterpenic acids are candidates for the development of inhibitors for the prevention of local tissue damage in snakebite envenomation.
Collapse
Affiliation(s)
- Lina María Preciado
- Programa de Ofidismo/Escorpionismo, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Paola Rey-Suárez
- Programa de Ofidismo/Escorpionismo, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Isabel Cristina Henao
- Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Jaime Andrés Pereañez
- Programa de Ofidismo/Escorpionismo, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
22
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|
23
|
Lemay R, Lepage M, Tremblay L, Therriault H, Charest G, Paquette B. Tumor Cell Invasion Induced by Radiation in Balb/C Mouse is Prevented by the Cox-2 Inhibitor NS-398. Radiat Res 2017; 188:605-614. [PMID: 28956695 DOI: 10.1667/rr14716.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation stimulates the expression of inflammatory mediators known to increase cancer cell invasion. Therefore, it is important to determine whether anti-inflammatory drugs can prevent this adverse effect of radiation. Since cyclooxygenase-2 (COX-2) is a central player in the inflammatory response, we performed studies to determine whether the COX-2 inhibitor NS-398 can reduce the radiation enhancement of cancer cell invasion. Thighs of Balb/c mice treated with NS-398 were irradiated with either daily fractions of 7.5 Gy for five consecutive days or a single 30 Gy dose prior to subcutaneous injection of nonirradiated MC7-L1 mammary cancer cells. Five weeks later, tumor invasion, blood vessel permeability and interstitial volumes were assessed using magnetic resonance imaging (MRI). Matrix metalloproteinase-2 (MMP-2) was measured in tissues by zymography at 21 days postirradiation. Cancer cell invasion in the mouse thighs was increased by 12-fold after fractionated irradiations (5 × 7.5 Gy) and by 17-fold after a single 30 Gy dose of radiation. This stimulation of cancer cell invasion was accompanied by a significant increase in the interstitial volume and a higher level of the protease MMP-2. NS-398 treatment largely prevented the stimulation of cancer cell invasion, which was associated with a reduction in interstitial volume in the irradiated thighs and a complete suppression of MMP-2 stimulation. In conclusion, this animal model using MC7-L1 cells demonstrates that radiation-induced cancer cell invasion can be largely prevented with the COX-2 inhibitor NS-398.
Collapse
Affiliation(s)
| | - Martin Lepage
- b Centre d'imagerie moléculaire de Sherbrooke, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | - Luc Tremblay
- b Centre d'imagerie moléculaire de Sherbrooke, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | | | |
Collapse
|
24
|
Bergamin LS, Figueiró F, Dietrich F, Manica FDM, Filippi-Chiela EC, Mendes FB, Jandrey EHF, Lopes DV, Oliveira FH, Nascimento IC, Ulrich H, Battastini AMO. Interference of ursolic acid treatment with glioma growth: An in vitro and in vivo study. Eur J Pharmacol 2017; 811:268-275. [PMID: 28663034 DOI: 10.1016/j.ejphar.2017.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme is the most devastating tumor in the brain. Ursolic acid (UA) is found in a variety of plants, and exhibits several pharmacological activities. In this study, we investigated the effects of UA in vitro, clarifying the mechanisms that mediate its toxicity and the long-lasting actions of UA in C6 glioma cells. We also evaluated the antitumor activity of UA in an in vivo orthotopic glioma model. Cell numbers were assessed using the Trypan blue exclusion test, and the cell cycle was characterized by flow cytometry using propidium iodide staining. Apoptosis was analyzed using an Annexin V kit and by examining caspase-3. Akt immunocontent was verified by Western blot and the long-lasting actions of UA were measured by cumulative population doubling (CPD). In vivo experiments were performed in rats to measure the effects on tumor size, malignant features and toxicological parameters. In vitro results showed that UA decreased glioma cell numbers, increased the sub-G1 fraction and induced apoptotic death, accompanied by increased active caspase-3 protein levels. Akt phosphorylation/activation in cells was also diminished by UA. With regard to CPD, cell proliferation was almost completely restored upon single UA treatments, but when the UA was added again, the majority of cells died, demonstrating the importance of re-treatment cycles with chemotherapeutic agents for abolishing tumor growth. In vivo, ursolic acid slightly reduced glioma tumor size but did not decrease malignant features. Ursolic acid may be a potential candidate as an adjuvant for glioblastoma therapy.
Collapse
Affiliation(s)
- Letícia Scussel Bergamin
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fabrícia Dietrich
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fabiana de Mattos Manica
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Eduardo C Filippi-Chiela
- Programa de Pós-Graduação em Gastroenterologia e Hepatologia, Faculdade de Medicina, UFRGS, Porto Alegre, RS, Brazil
| | - Franciane Brackman Mendes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Francine H Oliveira
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, UFRGS, Porto Alegre, RS, Brazil
| | - Isis C Nascimento
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Hussain H, Green IR, Ali I, Khan IA, Ali Z, Al-Sadi AM, Ahmed I. Ursolic acid derivatives for pharmaceutical use: a patent review (2012-2016). Expert Opin Ther Pat 2017; 27:1061-1072. [PMID: 28637397 DOI: 10.1080/13543776.2017.1344219] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ursolic acid (UA), belongs to a group of pentacyclic triterpenoids and is known to possess some very interesting biological properties. Protocols have been developed in order to synthesize bioactive UA analogs which have resulted in numerous ursolic acid analogs being synthesized during the period 2012-2016. Ursolic acid and its analogues can be employed to treat various cancers, inflammatory diseases, diabetes, Parkinson's disease, Alzheimer's disease, hepatitis B, hepatitis C and AIDS to mention but a few. Areas covered: This review covers patents on therapeutic activities of ursolic acid (UA) and its synthetic derivatives published during the four year period 2012-2016. A discussion about structure-activity relationships (SAR) of these analogs is also included. Expert opinion: Ursolic acid and its synthetic derivatives demonstrated excellent anticancer, antidiabetic, antiarrhythmic, anti-hyperlipidemic, antimicrobial, anti-hypercholesterolemic, and anti-cardiovascular properties. Additionally, various ursolic acid analogues have been synthesized through modification at positions C2-OH, C3-OH and C17-CO2H. It is noteworthy that the C-17 amide and amino analogs of UA possessed better anticancer activity compared to the parent compound (UA). Most importantly, UA has the potential to conjugate with other anticancer drugs or be transformed into its halo derivatives since this will greatly facilitate scientists to get lead compounds in cancer drug discovery.
Collapse
Affiliation(s)
- Hidayat Hussain
- a UoN Chair of Oman's Medicinal Plants and Marine Natural Products , University of Nizwa , Nizwa , Sultanate of Oman
- b Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography , University of California , San Diego , CA , USA
| | - Ivan R Green
- c Department of Chemistry and Polymer Science , University of Stellenbosch , Stellenbosch , South Africa
| | - Iftikhar Ali
- d Department of Chemistry , Karakoram International University , Gilgit-Baltistan , Pakistan
| | - Ikhlas A Khan
- e National Center for Natural Products Research , University of Mississippi , Oxford , MS , USA
| | - Zulfiqar Ali
- e National Center for Natural Products Research , University of Mississippi , Oxford , MS , USA
| | - Abdullah M Al-Sadi
- f Department of Crop Sciences, College of Agricultural and Marine Sciences , Sultan Qaboos University , Al Khod , Oman
| | - Ishtiaq Ahmed
- g DFG Centre for Functional Nanostructures , Karlsruhe Institute of Technology (KIT) , Karlsruhe , Germany
| |
Collapse
|
26
|
Jiang K, Chi T, Li T, Zheng G, Fan L, Liu Y, Chen X, Chen S, Jia L, Shao J. A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways. NANOSCALE 2017; 9:9428-9439. [PMID: 28660943 DOI: 10.1039/c7nr01677h] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ursolic acid (UA) has been recently used as a promising anti-tumor and cancer metastatic chemo-preventive agent due to its low toxicity and liver-protecting property. However, the low bioavailability and nonspecific tumor targeting restrict its further clinical application. To address the problem, a silica-based mesoporous nanosphere (MSN) controlled-release drug delivery system (denoted UA@M-CS-FA) was designed and successfully synthesized, and was functionalized with folic acid (FA) and pH-sensitive chitosan (CS) for the targeted delivery of UA to folate receptor (FR) positive tumor cells. UA@M-CS-FA were spherical with mean diameter below 150 nm, and showed about -20 mV potential. Meanwhile, UA@M-CS-FA exhibited a pH-sensitive release manner and high cellular uptake in FR over-expressing HeLa cancer cells. Also, in vitro cellular assays suggested that UA@M-CS-FA inhibited cancer cell growth, invasion and migration. Mechanistically, UA@M-CS-FA induced cancer cell apoptosis and inhibited migration via cell cycle arrest in the G0/G1 stage, regulating the PARP/Bcl-2/MMP-9/CD44/PTEN/P53. Importantly, in vivo experiments further confirmed that UA@M-CS-FA significantly suppressed the tumor progression and lung metastasis in tumor-bearing nude mice. Immunohistochemical analysis revealed that UA@M-CS-FA treatment regulated CD44, a biomarker of cancer metastasis. Overall, our data demonstrated that a CS and FA modified MSN controlled-release drug delivery system could help broaden the usage of UA and reflect the great application potential of the UA as an anticancer or cancer metastatic chemopreventive agent.
Collapse
Affiliation(s)
- Kai Jiang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350002, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Qi XT, Zhan JS, Xiao LM, Li L, Xu HX, Fu ZB, Zhang YH, Zhang J, Jia XH, Ge G, Chai RC, Gao K, Yu ACH. The Unwanted Cell Migration in the Brain: Glioma Metastasis. Neurochem Res 2017; 42:1847-1863. [PMID: 28478595 DOI: 10.1007/s11064-017-2272-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/19/2022]
Abstract
Cell migration is identified as a highly orchestrated process. It is a fundamental and essential phenomenon underlying tissue morphogenesis, wound healing, and immune response. Under dysregulation, it contributes to cancer metastasis. Brain is considered to be the most complex organ in human body containing many types of neural cells with astrocytes playing crucial roles in monitoring both physiological and pathological functions. Astrocytoma originates from astrocytes and its most malignant type is glioblastoma multiforme (WHO Grade IV astrocytoma), which is capable to infiltrate widely into the neighboring brain tissues making a complete resection of tumors impossible. Very recently, we have reviewed the mechanisms for astrocytes in migration. Given the fact that astrocytoma shares many histological features with astrocytes, we therefore attempt to review the mechanisms for glioma cells in migration and compare them to normal astrocytes, hoping to obtain a better insight into the dysregulation of migratory mechanisms contributing to their metastasis in the brain.
Collapse
Affiliation(s)
- Xue Tao Qi
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jiang Shan Zhan
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Li Ming Xiao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Li
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
| | - Han Xiao Xu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Zi Bing Fu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Yan Hao Zhang
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Department of Pathology, Peking University Health Science Center and Peking University Third Hospital, Beijing, 100191, China
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98104, USA
| | - Xi Hua Jia
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Guo Ge
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Human Anatomy, Guizhou Medical University, Guian New Area, Guiyang, Guizhou, 550025, China
| | - Rui Chao Chai
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Kai Gao
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Albert Cheung Hoi Yu
- Laboratory for Functional Study of Astrocytes, Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China.
- National Health and Family Planning Commission, Peking University Health Science Center, Beijing, 100191, China.
- Hai Kang Life (Beijing) Corporation Ltd., Sino-I Campus No.1, Beijing Economic-Technological Development Area, Beijing, 100176, China.
- Hai Kang Life Corporation Ltd., Hong Kong Science Park, Shatin, New Territories, Hong Kong, China.
- Laboratory of Translational Medicine, Institute of Systems Biomedicine, Peking University, Beijing, 100191, China.
| |
Collapse
|
28
|
Mendes VIS, Bartholomeusz GA, Ayres M, Gandhi V, Salvador JAR. Synthesis and cytotoxic activity of novel A-ring cleaved ursolic acid derivatives in human non-small cell lung cancer cells. Eur J Med Chem 2016; 123:317-331. [PMID: 27484517 PMCID: PMC5652311 DOI: 10.1016/j.ejmech.2016.07.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/19/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpenoid with recognized anticancer properties. We prepared a series of new A-ring cleaved UA derivatives and evaluated their antiproliferative activity in non-small cell lung cancer (NSCLC) cell lines using 2D and 3D culture models. Compound 17, bearing a cleaved A-ring with a secondary amide at C3, was found to be the most active compound, with potency in 2D systems. Importantly, even in 3D systems, the effect was maintained albeit a slight increase in the IC50. The molecular mechanism underlying the anticancer activity was further investigated. Compound 17 induced apoptosis via activation of caspase-8 and caspase-7 and via decrease of Bcl-2. Moreover, induction of autophagy was also detected with increased levels of Beclin-1 and LC3A/B-II and decreased levels of mTOR and p62. DNA synthetic capacity and cell cycle profiles were not affected by the drug, but total RNA synthesis was modestly but significantly decreased. Given its activity and mechanism of action, compound 17 might represent a potential candidate for further cancer research.
Collapse
Affiliation(s)
- Vanessa I. S. Mendes
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal. ; Fax: + 351 239 488 503; Tel: + 351 239 488 400
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Geoffrey A. Bartholomeusz
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. ; Fax: + 1 713-794-4316; Tel: + 1 713-792-2989
| | - Mary Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. ; Fax: + 1 713-794-4316; Tel: + 1 713-792-2989
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. ; Fax: + 1 713-794-4316; Tel: + 1 713-792-2989
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal. ; Fax: + 351 239 488 503; Tel: + 351 239 488 400
- Center for Neuroscience and Cell Biology, Coimbra, Portugal
| |
Collapse
|
29
|
İnce B, Bilgen F, Gündeşlioğlu AÖ, Dadacı M, Kozacıoğlu S. Use of Systemic Rosmarinus Officinalis to Enhance the Survival of Random-Pattern Skin Flaps. Balkan Med J 2016; 33:645-651. [PMID: 27994918 DOI: 10.5152/balkanmedj.2016.150981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/14/2015] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Skin flaps are commonly used in soft-tissue reconstruction; however, necrosis can be a frequent complication. Several systemic and local agents have been used in attempts to improve skin flap survival, but none that can prevent flap necrosis have been identified. AIMS This study aims to determine whether the use of systemic Rosmarinus officinalis (R. officinalis) extract can prevent flap necrosis and improve skin flap recovery. STUDY DESIGN Animal experimentation. METHODS Thirty-five Wistar albino rats were divided in five groups. A rectangular random-pattern flaps measuring 8×2 cm was elevated from the back of each rat. Group I was the control group. In Group II, 0.2 ml of R. officinalis oil was given orally 2h before surgery. R. officinalis oil was then applied orally twice a day for a week. In Group III, R. officinalis oil was given orally twice a day for one week before surgery. At the end of the week, 0.2 mL of R. officinalis oil was given orally 2 h before surgery. In Group IV, 0.2 mL of R. officinalis oil was injected subcutaneously 2 h before surgery. After the surgery, 0.2 mL R. officinalis oil was injected subcutaneously twice a day for one week. In Group V, 0.2 mL R. officinalis oil was injected subcutaneously twice a day for one week prior to surgery. At the end of the week, one last 0.2 mL R. officinalis oil injection was administered subcutaneously 2 h before surgery. After the surgery, 0.2 mL R. officinalis oil was injected subcutaneously twice a day for one week. RESULTS The mean percentage of viable surface area was significantly greater (p<0.05) in Groups II, III, IV, and V as compared to Group I. Mean vessel diameter was significantly greater (p<0.05) in Groups II, III, IV, and V as compared to Group I. CONCLUSION We have determined that, in addition to its anti-inflammatory and anti-oxidant effects, R. officinalis has vasodilatory effects that contribute to increased skin flap survival.
Collapse
Affiliation(s)
- Bilsev İnce
- Department of Plastic, Reconstructive and Aesthetic Surgery, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Fatma Bilgen
- Plastic, Reconstructive and Aesthetic Surgery Clinic, Elbistan State Hospital, Kahramanmaraş, Turkey
| | - Ayşe Özlem Gündeşlioğlu
- Department of Plastic, Reconstructive and Aesthetic Surgery, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Mehmet Dadacı
- Department of Plastic, Reconstructive and Aesthetic Surgery, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| | - Sümeyye Kozacıoğlu
- Department of Pathology, Necmettin Erbakan University Meram School of Medicine, Konya, Turkey
| |
Collapse
|
30
|
Hurmath FK, Mittal M, Ramaswamy P, Umamaheswara Rao GS, Dalavaikodihalli Nanjaiah N. Sevoflurane and thiopental preconditioning attenuates the migration and activity of MMP-2 in U87MG glioma cells. Neurochem Int 2016; 94:32-8. [PMID: 26875426 DOI: 10.1016/j.neuint.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/23/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Tumor cell migration and diffuse infiltration into brain parenchyma are known causes of recurrence after treatment in glioblastoma (GBM), mediated in part by the interaction of glioma cells with the extracellular matrix, followed by degradation of matrix by tumor cell derived proteases, particularly the matrix metalloproteinases (MMP). Sevoflurane and thiopental are anesthetics commonly used in cancer surgery. However, their effect on the progression of glioma cells remains unclear. The aim of this study was to explore the role of these anesthetics on the migration and activity of MMP-2 in glioma cells. METHODOLOGY Cultured U87MG cells were pretreated with sevoflurane or thiopental and in vitro wound healing scratch assay was carried out to analyze their effect on migration of these cells. Gelatin zymography was carried out to examine the effect of these anesthetics on tumor cell MMP-2 activity using the conditioned media 24 h after pretreatment. Cell viability was analyzed using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. RESULTS U87MG cells exposed to 2.5% sevoflurane or different concentrations of thiopental significantly decreased migration and activity of MMP-2 compared to control. No effect was seen on the viability of these cells after pretreatment with sevoflurane or thiopental. CONCLUSION/SIGNIFICANCE These results suggest that both sevoflurane and thiopental have inhibitory effect on the migration and MMP-2 activity in glioma cells. Thus, it is important that the choice of anesthetics to be used during glioma surgery takes into account their inhibitory properties against the tumor cells.
Collapse
Affiliation(s)
- Fathima Kamaluddin Hurmath
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Mohit Mittal
- Department of Neuroanaesthesia, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - Palaniswamy Ramaswamy
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | - G S Umamaheswara Rao
- Department of Neuroanaesthesia, National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560029, India
| | | |
Collapse
|
31
|
Kashyap D, Tuli HS, Sharma AK. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci 2016; 146:201-13. [PMID: 26775565 DOI: 10.1016/j.lfs.2016.01.017] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
Plants are known to produce a variety of bioactive metabolites which are being used to cure various life threatening and chronic diseases. The molecular mechanism of action of such bioactive molecules, may open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle dreadful diseases such as cancer and cardiovascular and neurodegenerative disorders. Ursolic acid (UA) is one among the categories of such plant-based therapeutic metabolites having multiple intracellular and extracellular targets that play role in apoptosis, metastasis, angiogenesis and inflammatory processes. Moreover, the synthetic derivatives of UA have also been seen to be involved in a range of pharmacological applications, which are associated with prevention of diseases. Evidences suggest that UA could be used as a potential candidate to develop a comprehensive competent strategy towards the treatment and prevention of health disorders. The review article herein describes the possible therapeutic effects of UA along with putative mechanism of action.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India.
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana 133207, India
| |
Collapse
|
32
|
An integrated global chemomics and system biology approach to analyze the mechanisms of the traditional Chinese medicinal preparation Eriobotrya japonica - Fritillaria usuriensis dropping pills for pulmonary diseases. Altern Ther Health Med 2016; 16:4. [PMID: 26742634 PMCID: PMC4705596 DOI: 10.1186/s12906-015-0983-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/23/2015] [Indexed: 11/30/2022]
Abstract
Background Traditional Chinese medicine (TCM) herbal formulae provide valuable therapeutic strategies. However, the active ingredients and mechanisms of action remain unclear for most of these formulae. Therefore, the identification of complex mechanisms is a major challenge in TCM research. Methods This study used a network pharmacology approach to clarify the anti-inflammatory and cough suppressing mechanisms of the Chinese medicinal preparation Eriobotrya japonica – Fritillaria usuriensis dropping pills (ChuanbeiPipa dropping pills, CBPP). The chemical constituents of CBPP were identified by high-quality ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS), and anti-inflammatory ingredients were selected and analyzed using the PharmMapper and Kyoto Encyclopedia of Genes and Genomes (KEGG) bioinformatics websites to predict the target proteins and related pathways, respectively. Then, an RNA-sequencing (RNA-Seq) analysis was carried out to investigate the different expression of genes in the lung tissue of rats with chronic bronchitis. Results Six main constituents affected 19 predicted pathways, including ursolic acid and oleanolic acid from Eriobotrya japonica (Thunb.) Lindl. (Eri), peiminine from Fritillaria usuriensis Maxim. (Fri), platycodigenin and polygalacic acid from Platycodon grandiflorum (Jacq.) A. DC. (Pla) and guanosine from Pinellia ternata (Thunb.) Makino. (Pin). Expression of 34 genes was significantly decreased after CBPP treatment, affecting four therapeutic functions: immunoregulation, anti-inflammation, collagen formation and muscle contraction. Conclusion The active components acted on the mitogen activated protein kinase (MAPK) pathway, transforming growth factor (TGF)-beta pathway, focal adhesion, tight junctions and the action cytoskeleton to exert anti-inflammatory effects, resolve phlegm, and relieve cough. This novel approach of global chemomics-integrated systems biology represents an effective and accurate strategy for the study of TCM with multiple components and multiple target mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12906-015-0983-y) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Woźniak Ł, Skąpska S, Marszałek K. Ursolic Acid--A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules 2015; 20:20614-41. [PMID: 26610440 PMCID: PMC6332387 DOI: 10.3390/molecules201119721] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid (UA) is a natural terpene compound exhibiting many pharmaceutical properties. In this review the current state of knowledge about the health-promoting properties of this widespread, biologically active compound, as well as information about its occurrence and biosynthesis are presented. Particular attention has been paid to the application of ursolic acid as an anti-cancer agent; it is worth noticing that clinical tests suggesting the possibility of practical use of UA have already been conducted. Amongst other pharmacological properties of UA one can mention protective effect on lungs, kidneys, liver and brain, anti-inflammatory properties, anabolic effects on skeletal muscles and the ability to suppress bone density loss leading to osteoporosis. Ursolic acid also exhibits anti-microbial features against numerous strains of bacteria, HIV and HCV viruses and Plasmodium protozoa causing malaria.
Collapse
Affiliation(s)
- Łukasz Woźniak
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Sylwia Skąpska
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| |
Collapse
|
34
|
Zhang J, Wang W, Qian L, Zhang Q, Lai D, Qi C. Ursolic acid inhibits the proliferation of human ovarian cancer stem-like cells through epithelial-mesenchymal transition. Oncol Rep 2015; 34:2375-84. [PMID: 26323892 DOI: 10.3892/or.2015.4213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is the most frequent cause of cancer-related death among all gynecological cancers. Increasing evidence suggests that human ovarian cancer stem-like cells could be enriched under serum-free culture conditions. In the present study, SKOV3 ovarian epithelial cancer cells were cultured for sphere cells. Ursolic acid (UA) with triterpenoid compounds exist widely in food, medicinal herbs and other plants. Evidence shows that UA has anticancer activities in human ovarian cancer cells, but he role of UA in ovarian cancer stem cells (CSCs) remains unknown. The aim of the present study was to investigate the anticancer effects of UA in combination with cisplatin in ovarian CSCs (in vitro and in vivo), along with the molecular mechanism of action. Treatment with UA at various concentrations was examined in combination with cisplatin in human ovarian CSCs. MTT assay and flow cytometry were used for cell viability and apoptosis analysis, and qRT-PCR for stem cell markers and epithelial-mesenchymal transition (EMT) markers for mRNA expression. Transwell assay was employed to observe the migration and invasion of SKOV3 cells and SKOV3 sphere cells after treatment. Moreover, athymic BALB/c-nu nude mice were injected with SKOV3 sphere cells to obtain a xenograft model for in vivo studies. The results showed that CSCs possessed mesenchymal characteristics and EMT ability, and the growth of SKOV3 and sphere cells was significantly inhibited by UA. Transplanted tumors were significantly reduced after injection of UA and UA plus cisplatin. Furthermore, we found that UA could play a role in enhancing the sensitivity of CSCs to cisplatin resistance. Our findings suggested that UA is involved in EMT mechanism to affect the proliferation and apoptosis of human ovarian cancer stem-like cells and it is a potent anti-ovarian cancer agent.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Wenjing Wang
- Department of Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Lin Qian
- Department of Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai 200032, P.R. China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai 200032, P.R. China
| | - Cong Qi
- Department of Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
35
|
Xi G, Shen X, Wai C, Vilas CK, Clemmons DR. Hyperglycemia stimulates p62/PKCζ interaction, which mediates NF-κB activation, increased Nox4 expression, and inflammatory cytokine activation in vascular smooth muscle. FASEB J 2015; 29:4772-82. [PMID: 26231202 DOI: 10.1096/fj.15-275453] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/20/2015] [Indexed: 12/20/2022]
Abstract
Hyperglycemia leads to vascular smooth muscle cell (VSMC) dedifferentiation and enhances responses to IGF-I. Prior studies showed that hyperglycemia stimulated NADPH oxidase 4 (Nox4) synthesis, and IGF-I facilitated its recruitment to a signaling complex where it oxidized src, leading to AKT and MAPK activation. To determine the mechanism that led to these changes, we analyzed the roles of p62 (sequestrosome1) and PKCζ. Hyperglycemia induced a 4.9 ± 1.0-fold increase in p62/PKCζ association, and disruption of PKCζ/p62 using a peptide inhibitor or p62 knockdown reduced PKCζ activation (78 ± 6%). 3-Phosphoinoside-dependent protein kinase 1 was also recruited to the p62 complex and directly phosphorylated PKCζ, leading to its activation (3.1 ± 0.4-fold). Subsequently, activated PKCζ phosphorylated p65 rel, which led to increased Nox4 synthesis. Studies in diabetic mice confirmed these findings (6.0 ± 0.4-fold increase in p62/PKCζ) and their disruption of attenuated Nox4 synthesis (76 ± 9% reduction). PKCζ/p62 activation stimulated inflammatory cytokine production and enhanced IGF-I-stimulated VSMC proliferation. These results define the molecular mechanism by which PKCζ is activated in response to hyperglycemia and suggest that this could be a mechanism by which other stimuli such as cytokines or metabolic stress function to stimulate NF-κB activation, thereby altering VSMC sensitivity to IGF-I.
Collapse
Affiliation(s)
- Gang Xi
- *Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA; and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Xinchun Shen
- *Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA; and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Christine Wai
- *Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA; and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Caroline K Vilas
- *Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA; and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - David R Clemmons
- *Department of Medicine, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA; and College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
36
|
Unacylated ghrelin restores insulin and autophagic signaling in skeletal muscle of diabetic mice. Pflugers Arch 2015; 467:2555-69. [PMID: 26228926 DOI: 10.1007/s00424-015-1721-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/21/2015] [Accepted: 07/13/2015] [Indexed: 01/04/2023]
Abstract
Impairment of insulin signaling in skeletal muscle detrimentally affects insulin-stimulated disposal of glucose. Restoration of insulin signaling in skeletal muscle is important as muscle is one of the major sites for disposal of blood glucose. Recently, unacylated ghrelin (UnAG) has received attention in diabetic research due to its favorable actions on improving glucose tolerance, glycemic control, and insulin sensitivity. The investigation of UnAG has entered phase Ib clinical trial in type 2 diabetes and phase II clinical trial in hyperphagia in Prader-Willi syndrome. Nonetheless, the precise mechanisms responsible for the anti-diabetic actions of UnAG remain incompletely understood. In this study, we examined the effects of UnAG on restoring the impaired insulin signaling in skeletal muscle of db/db diabetic mice. Our results demonstrated that UnAG effectively restored the impaired insulin signaling in diabetic muscle. UnAG decreased insulin receptor substrate (IRS) phosphorylation, increased protein kinase B (Akt) phosphorylation, and, hence, suppressed mTOR signaling. Consequently, UnAG enhanced Glut4 localization and increased PDH activity in the diabetic skeletal muscle. Intriguingly, our data indicated that UnAG normalized the suppressed autophagic signaling in diabetic muscle. In conclusion, our findings illustrated that UnAG restored the impaired insulin and autophagic signaling in skeletal muscle of diabetic mice, which are valuable to understand the underlying mechanisms of the anti-diabetic action of UnAG at peripheral skeletal muscle level.
Collapse
|
37
|
Lin K, Gao Z, Shang B, Sui S, Fu Q. Osthole suppresses the proliferation and accelerates the apoptosis of human glioma cells via the upregulation of microRNA-16 and downregulation of MMP-9. Mol Med Rep 2015; 12:4592-4597. [PMID: 26082082 DOI: 10.3892/mmr.2015.3929] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 05/13/2015] [Indexed: 11/06/2022] Open
Abstract
Osthole (7-methoxy-8-isoamyl alkenyl coumarin) has been reported to exhibit marked anticancer effects on several types of cancer. The expression levels of matrix metalloproteinase-9 (MMP-9) are closely associated with the pathogenesis of glioma. Furthermore, it is reported that the upregulation of microRNA‑16 (miR‑16) by the MMP‑9 signaling pathway can restrain the proliferation of cancer cells. To examine whether osthole increases the anticancer effect on human glioma cells in the present study, the common glioma cell line, U87, was treated with osthole at concentrations of 0, 50, 100 and 200 µΜ. The effects of osthole on cell viability were determined using a 3‑(4,5‑dimethylthiazol‑2‑thiazolyl)‑2,5‑diphenyl‑tetrazolium bromide assay. The rate of cellular apoptosis was analyzed by measuring the activity of caspase‑3 and using flow cytometry. The expression of MMP‑9 was determined using gelatin zymography assays and the expression of miR‑16 was determined using reverse transcription‑quantitative polymerase chain reaction. The results demonstrated that osthole significantly suppressed the proliferation and accelerated the apoptosis of the U87 cells. Furthermore, increased expression levels of miR‑16 and reduced protein expression levels of MMP‑9 were found in the U87 cells. In addition, miR‑16 was found to regulate the expression of MMP‑9 in the U87 cells through transfection of miR‑16 precursor and anti‑miR‑16 into the U87 cells. In conclusion, these observations indicated that osthole suppressed the proliferation and accelerated the apoptosis of human glioma cells through upregulation of the expression of miR‑16 and downregulation of the expression of MMP-9.
Collapse
Affiliation(s)
- Kai Lin
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Zhiyu Gao
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Bin Shang
- Department of Neurosurgery, Central Hospital of Nanchong, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shaohua Sui
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Qiang Fu
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
38
|
Desmarais G, Charest G, Fortin D, Bujold R, Mathieu D, Paquette B. Cyclooxygenase-2 inhibitor prevents radiation-enhanced infiltration of F98 glioma cells in brain of Fischer rat. Int J Radiat Biol 2015; 91:624-33. [PMID: 25912457 DOI: 10.3109/09553002.2015.1043756] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Radiation induces a neuro-inflammation that is characterized by the expression of genes known to increase the invasion of cancer cells. In Fischer rats, brain irradiation increases the infiltration of cancer cells and reduced the median survival of the animals. In this study, we have determined whether these adverse effects of radiation can be prevented with the cyclooxygenase-2 (COX-2) inhibitor meloxicam. MATERIALS AND METHODS Brain of Fischer rats treated or not with meloxicam were irradiated (15 Gy) and then implanted with the F98 glioma cells. The median survival of the animals, the infiltration of F98 cells, and the expression of inflammatory cytokines and pro-migration molecules were measured. RESULTS Meloxicam reduced by 75% the production of prostaglandin E2 (bioproduct of COX-2) in irradiated brains validating its anti-inflammatory effect. Median survival was increased to control levels by the treatment of meloxicam following brain irradiation. This protective effect was associated with a reduction of the infiltration of F98 cells in the brain, a complete inhibition of radiation-enhancement of matrix metalloproteinase-2, and a significant reduction of tumor necrosis factor α (TNF-α) and tumor growth factor β1 (TGF-β1) expression. Using invasion chambers, interleukin-1β (IL-1β) stimulated by 5-fold the invasiveness of F98 cells, but this stimulation was completely inhibited by meloxicam. This suggests that a cooperation between IL-1β and COX-2 are involved in radiation-enhancement of F98 cell invasion. CONCLUSIONS Our results indicate the importance of reducing the inflammatory response of normal brain tissue following irradiation in an effort to extend median survival in F98 tumor-bearing rats.
Collapse
Affiliation(s)
- Guillaume Desmarais
- a Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology , Faculty of Medicine and Health Sciences, Université de Sherbrooke , Québec , Canada
| | - Gabriel Charest
- a Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology , Faculty of Medicine and Health Sciences, Université de Sherbrooke , Québec , Canada
| | - David Fortin
- b Department of Surgery , Division of Neurosurgery/Neuro-oncology , Québec , Canada
| | - Rachel Bujold
- a Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology , Faculty of Medicine and Health Sciences, Université de Sherbrooke , Québec , Canada.,c Division of Radiation Oncology, Centre Hospitalier Universitaire de Sherbrooke , Sherbrooke, Québec , Canada
| | - David Mathieu
- b Department of Surgery , Division of Neurosurgery/Neuro-oncology , Québec , Canada
| | - Benoit Paquette
- a Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology , Faculty of Medicine and Health Sciences, Université de Sherbrooke , Québec , Canada
| |
Collapse
|
39
|
A New Megastigmane Alkaloid from Pachysandra terminalis with Antitumor Metastasis Effect. Chem Nat Compd 2015. [DOI: 10.1007/s10600-015-1267-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
41
|
Ince B, Yildirim AM, Okur MI, Dadaci M, Yoruk E. Effects of Rosmarinus officinalis on the survivability of random-patterned skin flaps: an experimental study. J Plast Surg Hand Surg 2014; 49:83-7. [PMID: 24702647 DOI: 10.3109/2000656x.2014.907172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Improving survival of skin flaps used in soft-tissue reconstruction is clinically an important goal, and several systemic and local agents have been used for this purpose. However, a substance that prevents the flap necrosis has not yet been defined. This study aimed to investigate whether a Rosmarinus officinalis extract could improve the skin flap survival. In this study, 21 Wistar albino rats were divided into three groups. Rectangular 8 × 2 cm random-pattern flaps were elevated from the back of the rats. Group I was considered the control group. In Group II, a 0.5-cc of Rosmarinus officinalis oil was applied with an ear bud to the flap area 30 minutes before the flap elevation. After suturing the flaps to their location, the oil was administered twice a day for a week. In Group III, 0.5 cc of the oil was applied twice a day to the area that was elevated for a week until surgery. At the end of the week, the flaps were sutured to their location, and wiped postoperatively twice a day for a week with the oil. Mean percentage of these areas was found to be 29.81%, 58.99%, and 67.68% in Group I, Group II, and Group III, respectively. The mean percentage of the flap survival areas and vessel diameters were significantly greater in the Groups II and III than in the control group (p < 0.05). The results revealed that the topical use of the Rosmarinus officinalis extract can increase the flap survivability.
Collapse
Affiliation(s)
- Bilsev Ince
- Necmettin Erbakan University, Faculty of Meram Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery , Konya , Turkey
| | | | | | | | | |
Collapse
|
42
|
Parker PJ, Justilien V, Riou P, Linch M, Fields AP. Atypical protein kinase Cι as a human oncogene and therapeutic target. Biochem Pharmacol 2014; 88:1-11. [PMID: 24231509 PMCID: PMC3944347 DOI: 10.1016/j.bcp.2013.10.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/30/2013] [Indexed: 11/16/2022]
Abstract
Protein kinase inhibitors represent a major class of targeted therapeutics that has made a positive impact on treatment of cancer and other disease indications. Among the promising kinase targets for further therapeutic development are members of the Protein Kinase C (PKC) family. The PKCs are central components of many signaling pathways that regulate diverse cellular functions including proliferation, cell cycle, differentiation, survival, cell migration, and polarity. Genetic manipulation of individual PKC isozymes has demonstrated that they often fulfill distinct, nonredundant cellular functions. Participation of PKC members in different intracellular signaling pathways reflects responses to varying extracellular stimuli, intracellular localization, tissue distribution, phosphorylation status, and intermolecular interactions. PKC activity, localization, phosphorylation, and/or expression are often altered in human tumors, and PKC isozymes have been implicated in various aspects of transformation, including uncontrolled proliferation, migration, invasion, metastasis, angiogenesis, and resistance to apoptosis. Despite the strong relationship between PKC isozymes and cancer, to date only atypical PKCiota has been shown to function as a bona fide oncogene, and as such is a particularly attractive therapeutic target for cancer treatment. In this review, we discuss the role of PKCiota in transformation and describe mechanism-based approaches to therapeutically target oncogenic PKCiota signaling in cancer.
Collapse
Affiliation(s)
- Peter J Parker
- London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK; King's College London, Guy's Campus, London, UK
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, 45400 San Pablo Road, Jacksonville, FL 32224, USA
| | - Philippe Riou
- London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Mark Linch
- London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK; Royal Marsden Hospital, Fulham Road, London, UK
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, 45400 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
43
|
Mitsuda S, Yokomichi T, Yokoigawa J, Kataoka T. Ursolic acid, a natural pentacyclic triterpenoid, inhibits intracellular trafficking of proteins and induces accumulation of intercellular adhesion molecule-1 linked to high-mannose-type glycans in the endoplasmic reticulum. FEBS Open Bio 2014; 4:229-39. [PMID: 24649404 PMCID: PMC3958921 DOI: 10.1016/j.fob.2014.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 12/22/2022] Open
Abstract
Ursolic acid inhibits cell-surface expression of ICAM-1. Ursolic acid induces accumulation of high-mannose-type ICAM-1 in ER. Ursolic acid induces morphological changes of Golgi apparatus. Ursolic acid inhibits intracellular trafficking of proteins.
Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid that is present in many plants, including medicinal herbs, and foods. Ursolic acid was initially identified as an inhibitor of the expression of intercellular adhesion molecule-1 (ICAM-1) in response to interleukin-1α (IL-1α). We report here a novel biological activity: ursolic acid inhibits intracellular trafficking of proteins. Ursolic acid markedly inhibited the IL-1α-induced cell-surface ICAM-1 expression in human cancer cell lines and human umbilical vein endothelial cells. By contrast, ursolic acid exerted weak inhibitory effects on the IL-1α-induced ICAM-1 expression at the protein level. Surprisingly, we found that ursolic acid decreased the apparent molecular weight of ICAM-1 and altered the structures of N-linked oligosaccharides bound to ICAM-1. Ursolic acid induced the accumulation of ICAM-1 in the endoplasmic reticulum, which was linked mainly to high-mannose-type glycans. Moreover, in ursolic-acid-treated cells, the Golgi apparatus was fragmented into pieces and distributed over the cells. Thus, our results reveal that ursolic acid inhibits intracellular trafficking of proteins and induces the accumulation of ICAM-1 linked to high-mannose-type glycans in the endoplasmic reticulum.
Collapse
Key Words
- BSA, bovine serum albumin
- ER, endoplasmic reticulum
- Endo H, endoglycosidase H
- Glycosylation
- Golgi apparatus
- HRP, horseradish peroxidase
- HUVEC, human umbilical vein endothelial cells
- ICAM-1, intercellular adhesion molecule-1
- IL-1, interleukin-1
- Intercellular adhesion molecule-1
- Intracellular trafficking
- IκB, inhibitor of nuclear factor κB
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NF-κB, nuclear factor κB
- PBS, phosphate-buffered saline
- PNGase F, peptide: N-glycosidase F
- Ursolic acid
Collapse
Affiliation(s)
- Satoshi Mitsuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tomonobu Yokomichi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Junpei Yokoigawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
44
|
Zang LL, Wu BN, Lin Y, Wang J, Fu L, Tang ZY. Research progress of ursolic acid's anti-tumor actions. Chin J Integr Med 2014; 20:72-9. [PMID: 24374755 DOI: 10.1007/s11655-013-1541-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Indexed: 01/01/2023]
Abstract
Ursolic acid (UA) is a sort of pentacyclic triterpenoid carboxylic acid purified from natural plant. UA has a series of biological effects such as sedative, anti-inflammatory, anti-bacterial, anti-diabetic, antiulcer, etc. It is discovered that UA has a broad-spectrum anti-tumor effect in recent years, which has attracted more and more scholars' attention. This review explained anti-tumor actions of UA, including (1) the protection of cells' DNA from different damages; (2) the anti-tumor cell proliferation by the inhibition of epidermal growth factor receptor/mitogen-activated protein kinase signal or of FoxM1 transcription factors, respectively; (3) antiangiogenesis, (4) the immunological surveillance to tumors; (5) the inhibition of tumor cell migration and invasion; (6) the effect of UA on caspase, cytochromes C, nuclear factor kappa B, cyclooxygenase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or mammalian target of rapamycin signal to induce tumor cell apoptosis respectively, and etc. Moreover, UA has selective toxicity to tumor cells, basically no effect on normal cells. With further studies, UA would be one of the potential anti-tumor agents.
Collapse
Affiliation(s)
- Li-li Zang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | | | | | | | | | | |
Collapse
|
45
|
Xiao H, Liu M. Atypical protein kinase C in cell motility. Cell Mol Life Sci 2013; 70:3057-66. [PMID: 23096778 PMCID: PMC11113714 DOI: 10.1007/s00018-012-1192-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 09/03/2012] [Accepted: 10/08/2012] [Indexed: 01/01/2023]
Abstract
Cell motility is defined as cell movement in the three-dimensional space leading to repositioning of the cell. Atypical protein kinase C (aPKC, including ζ and λ/ι) are a subfamily of PKC. Different from classic PKC and novel PKC, the activation of atypical PKC is not dependent on diacylglycerol or calcium. PKCζ can be activated by lipid components, such as phosphatidylinositols, phosphatidic acid, arachidonic acid, and ceramide. Both phosphatidylinositol (3,4,5)-trisphosphate and PDK1 are necessary for the complete and stable activation of PKCζ. Atypical PKC is involved in the regulation of cell polarization, directional sensing, formation of filopodia, and cell motility. It is essential for migration and invasion of multiple cancer cell types. Particularly, atypical PKC has been found in the regulation of the motility of hematopoietic cells. It also participates in the regulation of proteolytic activity of podosomes and invadopodia. It has been found that atypical PKC can work coordinately with other PKC subfamily members and other signaling pathways. Research on the roles of atypical PKC in cell motility may lead to new therapeutic strategies for cancer and other diseases.
Collapse
Affiliation(s)
- Helan Xiao
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.
| | | |
Collapse
|
46
|
Supercritical rosemary extracts, their antioxidant activity and effect on hepatic tumor progression. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2012.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Liu K, Guo L, Miao L, Bao W, Yang J, Li X, Xi T, Zhao W. Ursolic acid inhibits epithelial-mesenchymal transition by suppressing the expression of astrocyte-elevated gene-1 in human nonsmall cell lung cancer A549 cells. Anticancer Drugs 2013; 24:494-503. [PMID: 23511428 DOI: 10.1097/cad.0b013e328360093b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lung cancer is one of the most death-related cancers worldwide. Ursolic acid (UA), a pentacyclic triterpene acid, has a wide range of anticancer functions such as proapoptosis, antiangiogenesis, and antimetastasis. This study was carried out to explore the inhibition mechanism of UA on metastasis of lung cancer A549 cells. First, we found that UA inhibited the metastasis of lung cancer cells in a concentration-dependent manner through an adhesion assay, a cell wound healing assay, and a transwell migration assay in vitro. In addition, after treatment with UA, the A549 cells showed decreased expression of astrocyte-elevated gene-1 (AEG-1) accompanied by upregulation of E-cadherin and downregulation of N-cadherin and vimentin, which have been reported to characterize the epithelial-mesenchymal transition (EMT). Further results also confirmed that the expression of vimentin was decreased by the siRNA technique to directly knock down AEG-1 expression, indicating that AEG-1 was involved in UA-mediated EMT inhibition. Furthermore, our results showed that UA suppressed the expression level of AEG-1 by repressing nuclear factor-κB signaling. Altogether, UA inhibited the EMT by suppressing the expression of AEG-1, correlating with inhibition of nuclear factor-κB in A549 cells. These findings suggested that UA was a potent anti-lung cancer agent, and it may be able to prevent invasion and metastasis of lung cancer cells.
Collapse
Affiliation(s)
- Kunmei Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009 People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
O'Brien ER, Howarth C, Sibson NR. The role of astrocytes in CNS tumors: pre-clinical models and novel imaging approaches. Front Cell Neurosci 2013; 7:40. [PMID: 23596394 PMCID: PMC3627137 DOI: 10.3389/fncel.2013.00040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/26/2013] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis is a significant clinical problem, yet the mechanisms governing tumor cell extravasation across the blood-brain barrier (BBB) and CNS colonization are unclear. Astrocytes are increasingly implicated in the pathogenesis of brain metastasis but in vitro work suggests both tumoricidal and tumor-promoting roles for astrocyte-derived molecules. Also, the involvement of astrogliosis in primary brain tumor progression is under much investigation. However, translation of in vitro findings into in vivo and clinical settings has not been realized. Increasingly sophisticated resources, such as transgenic models and imaging technologies aimed at astrocyte-specific markers, will enable better characterization of astrocyte function in CNS tumors. Techniques such as bioluminescence and in vivo fluorescent cell labeling have potential for understanding the real-time responses of astrocytes to tumor burden. Transgenic models targeting signaling pathways involved in the astrocytic response also hold great promise, allowing translation of in vitro mechanistic findings into pre-clinical models. The challenging nature of in vivo CNS work has slowed progress in this area. Nonetheless, there has been a surge of interest in generating pre-clinical models, yielding insights into cell extravasation across the BBB, as well as immune cell recruitment to the parenchyma. While the function of astrocytes in the tumor microenvironment is still unknown, the relationship between astrogliosis and tumor growth is evident. Here, we review the role of astrogliosis in both primary and secondary brain tumors and outline the potential for the use of novel imaging modalities in research and clinical settings. These imaging approaches have the potential to enhance our understanding of the local host response to tumor progression in the brain, as well as providing new, more sensitive diagnostic imaging methods.
Collapse
Affiliation(s)
- Emma R. O'Brien
- Department of Oncology, CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Churchill Hospital, University of OxfordOxford, UK
| | | | | |
Collapse
|
49
|
González-Vallinas M, Molina S, Vicente G, de la Cueva A, Vargas T, Santoyo S, García-Risco MR, Fornari T, Reglero G, Ramírez de Molina A. Antitumor effect of 5-fluorouracil is enhanced by rosemary extract in both drug sensitive and resistant colon cancer cells. Pharmacol Res 2013; 72:61-8. [PMID: 23557932 DOI: 10.1016/j.phrs.2013.03.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 01/06/2023]
Abstract
5-Fluorouracil (5-FU) is the most used chemotherapeutic agent in colorectal cancer. However, resistance to this drug is relatively frequent, and new strategies to overcome it are urgently needed. The aim of this work was to determine the antitumor properties of a supercritical fluid rosemary extract (SFRE), alone and in combination with 5-FU, as a potential adjuvant therapy useful for colon cancer patients. This extract has been recognized as a healthy component by the European Food Safety Authority (EFSA). The effects of SFRE both alone and in combination with 5-FU were evaluated in different human colon cancer cells in terms of cell viability, cytotoxicity, and cell transformation. Additionally, colon cancer cells resistant to 5-FU were used to assay the effects of SFRE on drug resistance. Finally, qRT-PCR was performed to ascertain the mechanism by which SFRE potentiates the effect of 5-FU. Our results show that SFRE displays dose-dependent antitumor activities and exerts a synergistic effect in combination with 5-FU on colon cancer cells. Furthermore, SFRE sensitizes 5-FU-resistant cells to the therapeutic activity of this drug, constituting a beneficial agent against both 5-FU sensitive and resistant tumor cells. Gene expression analysis indicates that the enhancement of the effect of 5-FU by SFRE might be explained by the downregulation of TYMS and TK1, enzymes related to 5-FU resistance.
Collapse
|
50
|
Fu SB, Yang JS, Cui JL, Sun DA. Biotransformation of ursolic acid by Syncephalastrum racemosum CGMCC 3.2500 and anti-HCV activity. Fitoterapia 2013; 86:123-8. [PMID: 23425601 DOI: 10.1016/j.fitote.2013.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/29/2013] [Accepted: 02/10/2013] [Indexed: 01/11/2023]
Abstract
Microbial transformation of ursolic acid (UA, 3β-hydroxy-urs-12-en-28-oic acid, 1) by filamentous fungus Syncephalastrum racemosum CGMCC 3.2500 was conducted. Five metabolites 3β, 7β, 21β-trihydroxy-urs-12-en-28-oic acid (2); 3β, 21β-dihydroxy-urs-11-en-28-oic acid-13-lactone (3); 1β, 3β, 21β-trihydroxy-urs-12-en-28-oic acid (4); 3β, 7β, 21β-trihydroxy-urs-1-en-28-oic acid-13-lactone (5); and 21-oxo-1β, 3β-dihydroxy-urs-12-en-28-oic acid (6) were afforded. Elucidation of the structures of these metabolites was primarily based on 1D and 2D NMR and HR-MS data. Metabolite 2 was a new compound. In addition, the anti-HCV activity of compounds 1-6 was evaluated.
Collapse
Affiliation(s)
- Shao-Bin Fu
- Institute of Medical Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | | | | | | |
Collapse
|