1
|
Buttigieg MM, Vlasschaert C, Bick AG, Vanner RJ, Rauh MJ. Inflammatory reprogramming of the solid tumor microenvironment by infiltrating clonal hematopoiesis is associated with adverse outcomes. Cell Rep Med 2025; 6:101989. [PMID: 40037357 PMCID: PMC11970403 DOI: 10.1016/j.xcrm.2025.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/04/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Clonal hematopoiesis (CH)-the expansion of somatically mutated hematopoietic cells-is common in solid cancers. CH is associated with systemic inflammation, but its impact on tumor biology is underexplored. Here, we report the effects of CH on the tumor microenvironment (TME) using 1,550 treatment-naive patient samples from the Clinical Proteomics Tumor Analysis Consortium (CPTAC) cohort. CH is present in 18.3% of patients, with one-third of CH mutations also detectable in tumor-derived DNA from the same individual (CH-Tum), reflecting CH-mutant leukocyte infiltration. Across cancers, the presence of CH-Tum is associated with worse survival outcomes. Molecular analyses reveal an association between CH-Tum and an immune-rich, inflammatory TME that is notably distinct from age-related gene expression changes. These effects are most prominent in glioblastoma, where CH correlates with pronounced macrophage infiltration, inflammation, and an aggressive, mesenchymal phenotype. Our findings demonstrate that CH shapes the TME, with potential applications as a biomarker in precision oncology.
Collapse
Affiliation(s)
- Marco M Buttigieg
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | - Alexander G Bick
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA; Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J Vanner
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Michael J Rauh
- Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, Canada; Department of Medicine, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
2
|
Wang S, Sun Y, Shao D, Pan Y, Gao X, Zhao P, Liu Q, Shang G, Shang W, Fu Z, Sun Y. High expression of serine protease inhibitor kazal type 1 predicts poor prognosis and promotes the progression and invasion of oral tongue squamous cell carcinoma. Arch Oral Biol 2024; 164:106003. [PMID: 38781741 DOI: 10.1016/j.archoralbio.2024.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/08/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE This study aimed to investigate the expression of serine protease inhibitor kazal type 1 (SPINK1) and its carcinogenic effect in oral tongue squamous cell carcinoma (OTSCC). DESIGN Initially, bioinformatics analysis was conducted using data from The Cancer Genome Atlas and Gene Expression Omnibus to compare SPINK1 mRNA expression between malignant and adjacent tissues. Subsequently, the impact of differential expression on survival and other clinical variables was examined. Additionally, histology microarray analysis was performed to assess SPINK1 protein expression in 35 cases of malignant and adjacent tissues. Finally, alterations in SPINK1 expression were evaluated to determine its biological phenotypes in OTSCC, including proliferation, apoptosis, invasion, and metastasis. RESULTS OTSCC tissues exhibit higher levels of SPINK1 compared to surrounding cancerous tissues. Notably, increased SPINK1 expression correlates with the pathological N stage and independently predicts overall survival among patients with OTSCC. CONCLUSION Suppression of SPINK1 inhibited OTSCC cell proliferation, invasion, and motility while promoting apoptosis. These findings suggest that SPINK1 may serve as a prognostic biomarker as well as a potential therapeutic target for managing OTSCC.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China; Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Yaping Sun
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Dan Shao
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Yunjie Pan
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Xiaoyan Gao
- Traditional Chinese Medical Hospital of Huangdao District, Qingdao 266499,China
| | - Peng Zhao
- Department of Stomatology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Qiaoling Liu
- Department of Oncology, Huangdao District Central Hospital, Qingdao 266555, China
| | - Gaishuang Shang
- Department of Scientific Research, Qingdao East Sea Pharmaceutical Co., Ltd., Qingdao 266431, China
| | - Wei Shang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Zhiguang Fu
- Department of Tumor Radiotherapy, Air Force Medical Center, PLA, Beijing 100142, China.
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
3
|
Li K, Wu X, Li Y, Hu TT, Wang W, Gonzalez FJ, Liu W. AKAP12 promotes cancer stem cell-like phenotypes and activates STAT3 in colorectal cancer. Clin Transl Oncol 2023; 25:3263-3276. [PMID: 37326825 DOI: 10.1007/s12094-023-03230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) have unique biological characteristics, including tumorigenicity, immortality, and chemoresistance. Colorectal CSCs have been identified and isolated from colorectal cancers by various methods. AKAP12, a scaffolding protein, is considered to act as a potential suppressor in colorectal cancer, but its role in CSCs remains unknown. In this study, we investigated the function of AKAP12 in Colorectal CSCs. METHODS Herein, Colorectal CSCs were enriched by cell culture with a serum-free medium. CSC-associated characteristics were evaluated by Flow cytometry assay and qPCR. AKAP12 gene expression was regulated by lentiviral transfection assay. The tumorigenicity of AKAP12 in vivo by constructing a tumor xenograft model. The related pathways were explored by qPCR and Western blot. RESULTS The depletion of AKAP12 reduced colony formation, sphere formation, and expression of stem cell markers in colorectal cancer cells, while its knockdown decreased the volume and weight of tumor xenografts in vivo. AKAP12 expression levels also affected the expression of stemness markers associated with STAT3, potentially via regulating the expression of protein kinase C. CONCLUSION This study suggests Colorectal CSCs overexpress AKAP12 and maintain stem cell characteristics through the AKAP12/PKC/STAT3 pathway. AKAP12 may be an important therapeutic target for blocking the development of colorectal cancer in the field of cancer stem cells.
Collapse
Affiliation(s)
- Ke Li
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Xuan Wu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200070, People's Republic of China
| | - Yuan Li
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200070, People's Republic of China
| | - Ting-Ting Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China
| | - Weifeng Wang
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weiwei Liu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China.
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Zafari N, Khosravi F, Rezaee Z, Esfandyari S, Bahiraei M, Bahramy A, Ferns GA, Avan A. The role of the tumor microenvironment in colorectal cancer and the potential therapeutic approaches. J Clin Lab Anal 2022; 36:e24585. [PMID: 35808903 PMCID: PMC9396196 DOI: 10.1002/jcla.24585] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) with a high prevalence is recognized as the fourth most common cause of cancer-related death globally. Over the past decade, there has been growing interest in the network of tumor cells, stromal cells, immune cells, blood vessel cells, and fibroblasts that comprise the tumor microenvironment (TME) to identify new therapeutic interventions. METHODS Databases, such as Google Scholar, PubMed, and Scopus, were searched to provide an overview of the recent research progress related to targeting the TME as a novel therapeutic approach. RESULTS Tumor microenvironment as a result of the cross talk between these cells may result in either advantages or disadvantages in tumor development and metastasis, affecting the signals and responses from the surrounding cells. Whilst chemotherapy has led to an improvement in CRC patients' survival, the metastatic aspect of the disease remains difficult to avoid. CONCLUSIONS The present review emphasizes the structure and function of the TME, alterations in the TME, its role in the incidence and progression of CRC, the effects on tumor development and metastasis, and also the potential of its alterations as therapeutic targets. It should be noted that providing novel studies in this field of research might help us to achieve practical therapeutic strategies based on their interaction.
Collapse
Affiliation(s)
- Narges Zafari
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Fatemeh Khosravi
- Molecular Medicine Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Zahra Rezaee
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sahar Esfandyari
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| | - Mohamad Bahiraei
- Department of Radiology, Besat HospitalHamedan University of Medical SciencesHamedanIran
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Gordon A. Ferns
- Brighton & Sussex Medical SchoolDivision of Medical EducationSussexUK
| | - Amir Avan
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Basic Medical Sciences InstituteMashhad University of Medical SciencesMashhadIran
- Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
5
|
Nigam S, Ranjan R, Sinha N, Ateeq B. Nuclear magnetic resonance spectroscopy reveals dysregulation of monounsaturated fatty acid metabolism upon SPINK1 attenuation in colorectal cancer. NMR IN BIOMEDICINE 2022; 35:e4705. [PMID: 35102613 DOI: 10.1002/nbm.4705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Metabolic reprogramming, a key hallmark of cancer, plays a pivotal role in fulfilling the accelerated biological demands of tumor cells. Such metabolic changes trigger the production of several proinflammatory factors, thereby inciting cancer development and its progression. Serine protease inhibitor Kazal Type 1 (SPINK1), well known for its oncogenic role and its upregulation via acute-phase reactions, is highly expressed in multiple cancers including colorectal cancer (CRC). Here, we show accumulation of lipid droplets in CRC cells stained with Oil Red O upon SPINK1 silencing. Furthermore, NMR spectroscopy analysis revealed an accretion of monounsaturated fatty acids (MUFAs) and phosphatidylcholine in these CRC cells, while the levels of polyunsaturated fatty acids remained unaltered. This alteration indicates the presence of MUFAs with the triglycerides in the lipid droplets as observed in SPINK1-silenced CRC cells. Considering the role of MUFAs in the anti-inflammatory response, our data hint that suppression of SPINK1 in CRC leads to activation of an anti-inflammatory signaling milieu. Conclusively, our study uncovers a connection between lipid metabolism and SPINK1-mediated CRC progression, hence paving the way for further exploration and better prognosis of SPINK1-positive CRC patients.
Collapse
Affiliation(s)
- Shivansh Nigam
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Renuka Ranjan
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Lucknow, India
| | - Neeraj Sinha
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research, Lucknow, India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
- The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
6
|
Liao C, Wang Q, An J, Zhang M, Chen J, Li X, Xiao L, Wang J, Long Q, Liu J, Guan X. SPINKs in Tumors: Potential Therapeutic Targets. Front Oncol 2022; 12:833741. [PMID: 35223512 PMCID: PMC8873584 DOI: 10.3389/fonc.2022.833741] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
The serine protease inhibitor Kazal type (SPINK) family includes SPINK1-14 and is the largest branch in the serine protease inhibitor family. SPINKs play an important role in pancreatic physiology and disease, sperm maturation and capacitation, Nager syndrome, inflammation and the skin barrier. Evidence shows that the unregulated expression of SPINK1, 2, 4, 5, 6, 7, and 13 is closely related to human tumors. Different SPINKs exhibit various regulatory modes in different tumors and can be used as tumor prognostic markers. This article reviews the role of SPINK1, 2, 4, 5, 6, 7, and 13 in different human cancer processes and helps to identify new cancer treatment targets.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, China
| | - Jie Chen
- Department of Urology, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaolan Li
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
| | - Jiajia Wang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, China
- *Correspondence: Qian Long, ; Xiaoyan Guan, ; Jianguo Liu,
| |
Collapse
|
7
|
Lin TC. Functional Roles of SPINK1 in Cancers. Int J Mol Sci 2021; 22:ijms22083814. [PMID: 33916984 PMCID: PMC8067593 DOI: 10.3390/ijms22083814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Serine Peptidase Inhibitor Kazal Type 1 (SPINK1) is a secreted protein known as a protease inhibitor of trypsin in the pancreas. However, emerging evidence shows its function in promoting cancer progression in various types of cancer. SPINK1 modulated tumor malignancies and induced the activation of the downstream signaling of epidermal growth factor receptor (EGFR) in cancer cells, due to the structural similarity with epidermal growth factor (EGF). The discoverable SPINK1 somatic mutations, expressional signatures, and prognostic significances in various types of cancer have attracted attention as a cancer biomarker in clinical applications. Emerging findings further clarify the direct and indirect biological effects of SPINK1 in regulating cancer proliferation, metastasis, drug resistance, transdifferentiation, and cancer stemness, warranting the exploration of the SPINK1-mediated molecular mechanism to identify a therapeutic strategy. In this review article, we first integrate the transcriptomic data of different types of cancer with clinical information and recent findings of SPINK1-mediated malignant phenotypes. In addition, a comprehensive summary of SPINK1 expression in a pan-cancer panel and individual cell types of specific organs at the single-cell level is presented to indicate the potential sites of tumorigenesis, which has not yet been reported. This review aims to shed light on the roles of SPINK1 in cancer and provide guidance and potential directions for scientists in this field.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou 333, Taoyuan City, Taiwan
| |
Collapse
|
8
|
Circular RNA circ_0000372 contributes to the proliferation, migration and invasion of colorectal cancer by elevating IL6 expression via sponging miR-495. Anticancer Drugs 2021; 32:296-305. [PMID: 33534412 DOI: 10.1097/cad.0000000000001002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Circular RNAs are thought to play a vital function in the progression of various cancers, including colorectal cancer (CRC). However, the biological function and mechanism of circ_0000372 in CRC are still not clear. The expression of circ_0000372 and microRNA (miR)-495 was examined by quantitative real-time PCR. Cell proliferation was evaluated using cell counting kit 8 and colony formation assays. Further, cell migration and invasion were assessed using transwell assay. Additionally, western blot analysis was used to detect the expression of proteins associated with proliferation, metastasis, Janus kinase 2 (JAK2)/signal transducers and activators of transcription (STAT3) signaling pathway and interleukin 6 (IL6). Dual-luciferase reporter assay and RNA immunoprecipitation assay were employed to verify the interaction between miR-495 and circ_0000372 or IL6. Furthermore, the effect of circ_0000372 on CRC tumor growth in vivo was explored using the mice xenograft models. Circ_0000372 was markedly upregulated in CRC, and its high expression was associated with the poor prognosis of CRC patients. Silenced circ_0000372 was able to suppress CRC cell proliferation, migration and invasion in vitro and CRC tumor growth in vivo. Bioinformatics prediction and experimental verification proposed that circ_0000372 could sponge miR-495, and miR-495 could target IL6. Besides, the JAK2/STAT3 signaling pathway activation could be regulated by circ_0000372, miR-495 and IL6. Rescue assay results confirmed that the inhibition effect of circ_0000372 knockdown on the proliferation and metastasis of CRC could be reversed by miR-495 inhibitor or IL6 overexpression. In short, we concluded that circ_0000372 promoted CRC progression by regulating the miR-495/IL6 axis, suggesting that circ_0000372 could be used as a new prognostic biomarker and therapeutic target for CRC.
Collapse
|
9
|
Targeting an autocrine IL-6-SPINK1 signaling axis to suppress metastatic spread in ovarian clear cell carcinoma. Oncogene 2020; 39:6606-6618. [PMID: 32929152 PMCID: PMC7572712 DOI: 10.1038/s41388-020-01451-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 01/09/2023]
Abstract
A major clinical challenge of ovarian cancer is the development of
malignant ascites accompanied by widespread peritoneal metastasis. In ovarian
clear cell carcinoma (OCCC), a challenging subtype of ovarian cancer, this
problem is compounded by near-universal primary chemoresistance; patients with
advanced stage OCCC thus lack effective therapies and face extremely poor
survival rates. Here we show that tumor cell expressed serine protease inhibitor
Kazal type 1 (SPINK1) is a key driver of OCCC progression and metastasis. Using
cell culture models of human OCCC, we find that shRNA silencing of SPINK1
sensitizes tumor cells to anoikis and inhibits proliferation. Knockdown of
SPINK1 in OCCC cells also profoundly suppresses peritoneal metastasis in mouse
implantation models of human OCCC. We next identify a novel autocrine signaling
axis in OCCC cells whereby tumor cell-produced interleukin-6 (IL-6) regulates
SPINK1 expression to stimulate a common protumorigenic gene expression pattern
leading to anoikis resistance and proliferation of OCCC cells. We further
demonstrate that this signaling pathway can be successfully interrupted with the
IL-6Rα inhibitor tocilizumab, sensitizing cells to anoikis in
vitro and reducing metastasis in vivo. These
results suggest that clinical trials of IL-6 pathway inhibitors in OCCC may be
warranted, and that SPINK1 might offer a candidate predictive biomarker in this
population.
Collapse
|
10
|
Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Cell Invasion through Integrin β6 Upregulation in Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8032187. [PMID: 32855767 PMCID: PMC7443035 DOI: 10.1155/2020/8032187] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/05/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
The metastatic potential of colorectal cancer (CRC) is intensively promoted by the tumor microenvironment (TME) in a paracrine manner. As a pleiotropic inflammatory cytokine, Interleukin-6 (IL-6) is produced and involved in CRC, the same scenario where integrin αvβ6 also becomes upregulated. However, the relationship between IL-6 and integrin αvβ6 as well as their involvement in the crosstalk between CRC and TME remains largely unclear. In the present study, we demonstrated a positive correlation between the expression of IL-6 and integrin β6 in CRC samples. The mutually promotive interaction between CRC and TME was further determined by an indirect coculture system. CRC cells could augment the secretion of IL-6 from fibroblasts, which in return induced invasion and integrin β6 expression of CRC cells. Through the classic IL-6 receptor/STAT-3 signaling pathway, IL-6 mediated the upregulation of integrin β6, which was involved in the invasion and epithelial-mesenchymal transition of CRC cells induced by IL-6. Taken together, our results reveal a paracrine crosstalk between IL-6 signals originating from the TME and increased the integrin β6 level of CRC. IL-6 induces CRC invasion via upregulation of integrin β6 through the IL-6 receptor/STAT-3 signaling pathway. Combined inhibition of IL-6 along with integrin β6-targeted strategy may indicate new directions for antitumor strategies for CRC.
Collapse
|
11
|
Screening and Identification of Differentially Expressed Genes Expressed among Left and Right Colon Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8465068. [PMID: 32420374 PMCID: PMC7201700 DOI: 10.1155/2020/8465068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 01/05/2023]
Abstract
Purpose Colon adenocarcinoma (COAD) is the third most common malignancy globally and is further categorized as left colon adenocarcinoma (LCOAD) or right colon adenocarcinoma (RCOAD) depending on the location of the primary tumor. The therapeutic outcome and long-term prognosis for patients with COAD are less than satisfactory, and this may be associated with tumor location. Therefore, it is important to investigate the genetic differences in COAD at different sites. Patients and Methods. Public data associated with COAD were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using R software (version 3.5.3), and functional annotation of DEGs was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein-protein interaction network was constructed, hub genes were identified and analyzed, and data mining using Gene Expression Profiling Interactive Analysis (GEPIA) was conducted. Results A total of 286 DEGs were identified between LCOAD and RCOAD. Additionally, 10 hub genes associated with COAD at different locations were screened, namely, CDKN2A, IGF1R, MDM2, SMAD3, SLC2A1, GRM5, PLCB4, FGFR1, UBE2V2, and TNFRSF10B. The expression of cyclin-dependent kinase inhibitor 2A (CDKN2A) and solute carrier family 2 member 1 (SLC2A1) was significantly associated with pathological stage (P < 0.05). COAD patients with high expression levels of CDKN2A exhibited poorer overall survival (OS) times than those with low expression levels (P < 0.05). Conclusion CDKN2A expression was significantly different between LCOAD and RCOAD and was closely related to the prognosis of COAD. It is of great value for further understanding of the pathogenesis of LCOAD and RCOAD.
Collapse
|
12
|
Räsänen K, Dang KX, Mustonen H, Ho TH, Lintula S, Koistinen H, Stenman UH, Haglund C, Stenman J. MAPK inhibitors induce serine peptidase inhibitor Kazal type 1 (SPINK1) secretion in BRAF V600E-mutant colorectal adenocarcinoma. Mol Oncol 2017; 12:224-238. [PMID: 29193645 PMCID: PMC5792734 DOI: 10.1002/1878-0261.12160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/15/2017] [Accepted: 10/26/2017] [Indexed: 11/10/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway plays a central role in colorectal cancers (CRC). In particular, BRAF V600E-mutant tumors, which represent around 10% of CRCs, are refractory to current therapies. Overexpression and secretion of serine peptidase inhibitor Kazal type 1 (SPINK1) are observed in around 50% of CRCs, and its serum level can be used as a biomarker for poor prognosis. Utilizing a recently developed extendable blocking probe assay, we analyzed the BRAF mutation status in a CRC patient cohort (N = 571) using tissue-derived RNA as the starting material. From the same RNA samples, we measured the relative SPINK1 expression levels using a quantitative real-time PCR method. Expression of mutant BRAF V600E correlated with poor prognosis, as did low expression of SPINK1 mRNA. Further, BRAF V600E correlated negatively with SPINK1 levels. In order to investigate the effect of MAPK pathway-targeted therapies on SPINK1 secretion, we conducted in vitro studies using both wild-type and V600E CRC cell lines. BRAF inhibitor vemurafenib, and subsequent MAPK pathway inhibitors trametinib and SCH772984, significantly increased SPINK1 secretion in V600E CRC cell lines Colo205 and HT-29 with a concomitant decrease in trypsin-1 and -2 secretion. Notably, no SPINK1 increase or trypsin-1 decrease was observed in BRAF wild-type CRC cell line Caco-2 in response to MAPK pathway inhibitors. In further mechanistic studies, we observed that only trametinib was able to diminish completely both MEK and ERK phosphorylation in the V600E CRC cells. Furthermore, the key regulator of integrated stress response, activating transcription factor 4 (ATF-4), was downregulated both at mRNA and at protein level in response to trametinib treatment. In conclusion, these data suggest that sustained inhibition of not only MAPK pathway activation, but also ATF-4 and trypsin, might be beneficial in the therapy of BRAF V600E-mutant CRC and that SPINK1 levels may serve as an indicator of therapy response.
Collapse
Affiliation(s)
- Kati Räsänen
- Department of Clinical Chemistry, Medicum, Helsinki University Hospital, University of Helsinki, Finland
| | - Kien X Dang
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, Helsinki University Hospital, University of Helsinki, Finland
| | - Tho H Ho
- Department of Genomics, BPARC, Vietnam Military Medical University, Hanoi, Vietnam
| | - Susanna Lintula
- Department of Clinical Chemistry, Medicum, Helsinki University Hospital, University of Helsinki, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry, Medicum, Helsinki University Hospital, University of Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, Medicum, Helsinki University Hospital, University of Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Helsinki University Hospital, University of Helsinki, Finland.,Research Program Unit, Translational Cancer Biology, University of Helsinki, Finland.,Department of Pathology, Helsinki University Hospital, University of Helsinki, Finland
| | - Jakob Stenman
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Han C, Sun B, Zhao X, Zhang Y, Gu Q, Liu F, Zhao N, Wu L. Phosphorylation of STAT3 Promotes Vasculogenic Mimicry by Inducing Epithelial-to-Mesenchymal Transition in Colorectal Cancer. Technol Cancer Res Treat 2017; 16:1209-1219. [PMID: 29333928 PMCID: PMC5762092 DOI: 10.1177/1533034617742312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vasculogenic mimicry refers to the process by which highly invasive cancer cells mimic endothelial cells by forming blood channels. Vasculogenic mimicry is important for the invasion and metastasis of tumor cells in colorectal cancer. STAT3 was initially identified as a mediator of the inflammation-associated acute phase response. The phosphorylation of Signal Transducers and Activators of Transcription 3 (p-STAT3) is closely related to tumor invasion and migration. We analyzed the relationship between p-STAT3 and vasculogenic mimicry formation in 65 human colorectal cancer samples, and the results showed that the expression of p-STAT3 is significantly correlated with vasculogenic mimicry, tumor metastasis, Tumor, Lymph Node and Metastasis Stage (TNM Stage), and poor prognosis. It is known that interleukin 6 can induce the phosphorylation of STAT3. We found that using interleukin 6 to induce p-STAT3 activation in colorectal cancer cell lines can result in vasculogenic mimicry and using AG490 to suppress p-STAT3 activation restrained vasculogenic mimicry. Furthermore, the state of p-STAT3 activation can affect epithelial-to-mesenchymal transition. By immunofluorescence double staining, we discovered that p-STAT3 expression is more directly correlated with the epithelial-to-mesenchymal transition marker vimentin than with the vasculogenic mimicry-related protein VE-cadherin. These data show that activated p-STAT3 upregulates epithelial-to-mesenchymal transition–related proteins and promotes vasculogenic mimicry.
Collapse
Affiliation(s)
- Cong Han
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Baocun Sun
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China.,2 Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China.,3 Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiulan Zhao
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China.,2 Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yanhui Zhang
- 3 Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Qiang Gu
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China.,2 Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Fang Liu
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Nan Zhao
- 1 Department of Pathology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Lili Wu
- 2 Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|