1
|
Ma X, Lu T, Yang Y, Qin D, Tang Z, Cui Y, Wang R. DEAD-box helicase family proteins: emerging targets in digestive system cancers and advances in targeted drug development. J Transl Med 2024; 22:1120. [PMID: 39707322 DOI: 10.1186/s12967-024-05930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
Cancer has become one of the major diseases threatening human health in the twenty-first century due to its incurability. In 2022, new cases of esophageal and gastrointestinal cancers accounted for 17.1% of all newly diagnosed cancer cases worldwide. Despite significant improvements in early cancer screening, clinical diagnostics, and treatments in recent years, the overall prognosis of digestive system cancer patients remains poor. The DEAD-box helicase family, a crucial member of the RNA helicase family, participates in almost every aspect of RNA metabolism, including transcription, splicing, translation, and degradation, and plays a key role in the occurrence and progression of various cancers. This article aims to summarize and discuss the role and potential clinical applications of DEAD-box helicase family proteins in digestive system cancers. The discussion includes the latest progress in the occurrence, development, and treatment of esophageal and gastrointestinal tumors; the main functions of DEAD-box helicase family proteins; their roles in digestive system cancers, including their relationships with clinical factors; effects on cancer proliferation, migration, and invasion; and involved signaling pathways; as well as the existing inhibitory strategies targeting DDX family proteins, are discussed. Additionally, outlooks on future research directions are provided.
Collapse
Affiliation(s)
- Xiaochao Ma
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Tianyu Lu
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Yue Yang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Da Qin
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Ze Tang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Youbin Cui
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China.
| | - Rui Wang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| |
Collapse
|
2
|
Rajan AAN, Hutchins EJ. Post-transcriptional regulation as a conserved driver of neural crest and cancer-cell migration. Curr Opin Cell Biol 2024; 89:102400. [PMID: 39032482 PMCID: PMC11346372 DOI: 10.1016/j.ceb.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Cells have evolved mechanisms to migrate for diverse biological functions. A process frequently deployed during metazoan cell migration is the epithelial-mesenchymal transition (EMT). During EMT, adherent epithelial cells undergo coordinated cellular transitions to mesenchymalize and reduce their intercellular attachments. This is achieved via tightly regulated changes in gene expression, which modulates cell-cell and cell-matrix adhesion to allow movement. The acquisition of motility and invasive properties following EMT allows some mesenchymal cells to migrate through complex environments to form tissues during embryogenesis; however, these processes may also be leveraged by cancer cells, which often co-opt these endogenous programs to metastasize. Post-transcriptional regulation is now emerging as a major conserved mechanism by which cells modulate EMT and migration, which we discuss here in the context of vertebrate development and cancer.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Erica J Hutchins
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Zhou J, Zhang M, Gao A, Herman JG, Guo M. Epigenetic silencing of KCTD8 promotes hepatocellular carcinoma growth by activating PI3K/AKT signaling. Epigenomics 2024; 16:929-944. [PMID: 39023358 PMCID: PMC11370965 DOI: 10.1080/17501911.2024.2370590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: The aim of current study is to explore the epigenetic changes and function of KCTD8 in human hepatocellular carcinoma (HCC). Materials & methods: HCC cell lines and tissue samples were employed. Methylation specific PCR, flow cytometry, immunoprecipitation and xenograft mouse models were used.Results: KCTD8 was methylated in 44.83% (104/232) of HCC and its methylation may act as an independent poor prognostic marker. KCTD8 expression was regulated by DNA methylation. KCTD8 suppressed HCC cell growth both in vitro and in vivo via inhibiting PI3K/AKT pathway.Conclusion: Methylation of KCTD8 is an independent poor prognostic marker, and epigenetic silencing of KCTD8 increases the malignant tendency in HCC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Medicine, NanKai University, Tianjin, 300071, China
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Aiai Gao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA15213, USA
| | - Mingzhou Guo
- School of Medicine, NanKai University, Tianjin, 300071, China
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Kidney Diseases, Beijing, 100853, China
| |
Collapse
|
4
|
Nguyen TPX, Roytrakul S, Buranapraditkun S, Shuangshoti S, Kitkumthorn N, Keelawat S. Proteomics profile in encapsulated follicular patterned thyroid neoplasms. Sci Rep 2024; 14:16343. [PMID: 39013964 PMCID: PMC11252349 DOI: 10.1038/s41598-024-67079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Diagnosing encapsulated follicular-patterned thyroid tumors like Invasive Encapsulated Follicular Variant of Papillary Thyroid Carcinoma (IEFVPTC), Non-invasive Follicular Thyroid Neoplasm with Papillary-like Nuclear Features (NIFTP), and Well-Differentiated Tumor of Uncertain Malignant Potential (WDT-UMP) remains challenging due to their morphological and molecular similarities. This study aimed to investigate the protein distinctions among these three thyroid tumors and discover biological tumorigenesis through proteomic analysis. We employed total shotgun proteome analysis allowing to discover the quantitative expression of over 1398 proteins from 12 normal thyroid tissues, 13 IEFVPTC, 11 NIFTP, and 10 WDT-UMP. Principal component analysis revealed a distinct separation of IEFVPTC and normal tissue samples, distinguishing them from the low-risk tumor group (NIFTP and WDT-UMP). IEFVPTC exhibited the highest number of differentially expressed proteins (DEPs) compared to the other tumors. No discriminatory proteins between NIFTP and WDT-UMP were identified. Moreover, DEPs in IEFVPTC were significantly associated with thyroid tumor progression pathways. Certain hub genes linked to the response of immune checkpoint inhibitor therapy, revealing the potential predictor of prognosis. In conclusion, the proteomic profile of IEFVPTC differs from that of low-risk tumors. These findings may provide valuable insights into tumor biology and offer a basis for developing novel therapeutic strategies for follicular-patterned thyroid neoplasms.
Collapse
Affiliation(s)
- Truong Phan-Xuan Nguyen
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Supranee Buranapraditkun
- Division of Allergy and Clinical Immunology, Department of Medicine, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Thai Red Cross Society, Bangkok, 10330, Thailand
- Center of Excellence in Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI), Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Shanop Shuangshoti
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Chulalongkorn GenePRO Center, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, 10330, Thailand.
| | - Somboon Keelawat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Precision Pathology of Neoplasia Research Group, Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Yao G, Yu S, Hou F, Xiao Z, Li G, Ji X, Wang J. Rab3B enhances the stabilization of DDX6 to promote lung adenocarcinoma aggressiveness. Mol Med 2024; 30:75. [PMID: 38834947 PMCID: PMC11151598 DOI: 10.1186/s10020-024-00848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Liver kinase B1 (LKB1) is frequently mutated in lung adenocarcinoma, and its loss contributes to tumor progression. METHODS To identify LKB1 downstream genes that promote lung adenocarcinoma aggressiveness, we performed bioinformatical analysis using publicly available datasets. RESULTS Rab3B was upregulated in LKB1-depleted lung adenocarcinoma cells and suppressed by LKB1 overexpression. CREB protein was enriched at the promoter of Rab3B in lung cancer cells. Silencing of CREB abrogated the upregulation of Rab3B upon LKB1 loss. Immunohistochemistry revealed the elevated expression of Rab3B in lung adenocarcinomas relative to adjacent normal tissues. Upregulation of Rab3B was significantly associated with lymph node metastasis, advanced tumor stage, and reduced overall survival in lung adenocarcinoma patients. Knockdown of Rab3B suppressed and overexpression of Rab3B promoted the proliferation, colony formation, and migration of lung adenocarcinoma cells in vitro. In a mouse xenograft model, Rab3B depletion restrained and Rab3B overexpression augmented the growth of lung adenocarcinoma tumors. Mechanistically, Rab3B interacted with DDX6 and enhanced its protein stability. Ectopic expression of DDX6 significantly promoted the proliferation, colony formation, and migration of lung adenocarcinoma cells. DDX6 knockdown phenocopied the effects of Rab3B depletion on lung adenocarcinoma cells. Additionally, DDX6 overexpression partially rescued the aggressive phenotype of Rab3B-depleted lung adenocarcinoma cells. CONCLUSION LKB1 deficiency promotes Rab3B upregulation via a CREB-dependent manner. Rab3B interacts with and stabilizes DDX6 protein to accelerate lung adenocarcinoma progression. The Rab3B-DDX6 axis may be potential therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Guodong Yao
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feng Hou
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Zunyu Xiao
- Department of Imaging, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Guangqi Li
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Xiaobin Ji
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Jigang Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong Province, China.
| |
Collapse
|
6
|
Yadav AK, Singh N, Yadav SK, Bhatt MLB, Pandey A, Yadav DK, Yadav S. Expression of miR-145 and miR-18b in Peripheral Blood Samples of Head and Neck Cancer Patients. Indian J Clin Biochem 2023; 38:528-535. [PMID: 37746533 PMCID: PMC10516845 DOI: 10.1007/s12291-023-01119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Head and neck squamous cell carcinomas (HNSCC) is one of the most prevalent type of cancer known in Indian population. Studies are needed to identify the early biomarkers for HNSCC. MicroRNAs (miRNAs) are non-coding RNA molecules, expression of which can be used as biomarker for early diagnosis of HNSCC. For miRNA profiling total RNA, which also contained small RNAs were isolated from ten HNSCC tissue samples and adjacent control. Purity and concentration of eluted RNA was assessed using the NanoDrop1000® spectrophotometer, Reverse Transcription reaction was carried out with megaplex RT primers of pool A and pool B and the expression of selected miRNAs (miR-143/145 and miR-18a/b) was measured using TaqMan primers specific for mature miRNAs. Our study showed dramatic downregulation in expression of two miRNAs, miR-18b and miR-145 in blood samples of HNSCC patients, which are inhibitor of tumorigenesis and can be targeted as biomarker of HNSCC pathogenesis therefore developing avenues for miRNA role in prognosis and therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-023-01119-2.
Collapse
Affiliation(s)
- Arun Kumar Yadav
- Department of Radiotherapy, Sarojini Naidu Medical College, Moti Katra, Agra, Uttar Pradesh 282002 India
| | - Nishant Singh
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh India
| | - Sanjeev Kumar Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - M. L. B. Bhatt
- King Georges’ Medical University, Lucknow, Uttar Pradesh India
| | | | - Dev Kumar Yadav
- Moti Lal Nehru Medical College, Prayagraj, Uttar Pradesh India
| | - Sanjay Yadav
- All India Institute of Medical Sciences (AIIMS), Raebareli, Uttar Pradesh 229405 India
| |
Collapse
|
7
|
Meyer C, Larghero P, Almeida Lopes B, Burmeister T, Gröger D, Sutton R, Venn NC, Cazzaniga G, Corral Abascal L, Tsaur G, Fechina L, Emerenciano M, Pombo-de-Oliveira MS, Lund-Aho T, Lundán T, Montonen M, Juvonen V, Zuna J, Trka J, Ballerini P, Lapillonne H, Van der Velden VHJ, Sonneveld E, Delabesse E, de Matos RRC, Silva MLM, Bomken S, Katsibardi K, Keernik M, Grardel N, Mason J, Price R, Kim J, Eckert C, Lo Nigro L, Bueno C, Menendez P, Zur Stadt U, Gameiro P, Sedék L, Szczepański T, Bidet A, Marcu V, Shichrur K, Izraeli S, Madsen HO, Schäfer BW, Kubetzko S, Kim R, Clappier E, Trautmann H, Brüggemann M, Archer P, Hancock J, Alten J, Möricke A, Stanulla M, Lentes J, Bergmann AK, Strehl S, Köhrer S, Nebral K, Dworzak MN, Haas OA, Arfeuille C, Caye-Eude A, Cavé H, Marschalek R. The KMT2A recombinome of acute leukemias in 2023. Leukemia 2023; 37:988-1005. [PMID: 37019990 PMCID: PMC10169636 DOI: 10.1038/s41375-023-01877-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/07/2023]
Abstract
Chromosomal rearrangements of the human KMT2A/MLL gene are associated with de novo as well as therapy-induced infant, pediatric, and adult acute leukemias. Here, we present the data obtained from 3401 acute leukemia patients that have been analyzed between 2003 and 2022. Genomic breakpoints within the KMT2A gene and the involved translocation partner genes (TPGs) and KMT2A-partial tandem duplications (PTDs) were determined. Including the published data from the literature, a total of 107 in-frame KMT2A gene fusions have been identified so far. Further 16 rearrangements were out-of-frame fusions, 18 patients had no partner gene fused to 5'-KMT2A, two patients had a 5'-KMT2A deletion, and one ETV6::RUNX1 patient had an KMT2A insertion at the breakpoint. The seven most frequent TPGs and PTDs account for more than 90% of all recombinations of the KMT2A, 37 occur recurrently and 63 were identified so far only once. This study provides a comprehensive analysis of the KMT2A recombinome in acute leukemia patients. Besides the scientific gain of information, genomic breakpoint sequences of these patients were used to monitor minimal residual disease (MRD). Thus, this work may be directly translated from the bench to the bedside of patients and meet the clinical needs to improve patient survival.
Collapse
Affiliation(s)
- C Meyer
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - P Larghero
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
| | - B Almeida Lopes
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - T Burmeister
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - D Gröger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Dept. of Hematology, Oncology and Tumor Immunology, Berlin, Germany
| | - R Sutton
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - N C Venn
- Molecular Diagnostics, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia
| | - G Cazzaniga
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - L Corral Abascal
- Tettamanti Research Center, Pediatrics, University of Milano-Bicocca/Fondazione Tettamanti, Monza, Italy
| | - G Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - L Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation; Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - M Emerenciano
- Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | | | - T Lund-Aho
- Laboratory of Clinical Genetics, Fimlab Laboratories, Tampere, Finland
| | - T Lundán
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - M Montonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - V Juvonen
- Department of Clinical Chemistry and Laboratory Division, University of Turku and Turku University Hospital, Turku, Finland
| | - J Zuna
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - J Trka
- CLIP, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - P Ballerini
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - H Lapillonne
- Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
| | - V H J Van der Velden
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - E Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - E Delabesse
- Institut Universitaire du Cancer de Toulouse, Toulouse Cedex 9, France
| | - R R C de Matos
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - M L M Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - S Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - K Katsibardi
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - M Keernik
- Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - N Grardel
- Department of Hematology, CHU Lille, France
| | - J Mason
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - R Price
- Northern Institute for Cancer Research, Newcastle University and the Great North Children's West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Birmingham, United Kingdom
| | - J Kim
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany
- Department of Laboratory Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - C Eckert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Oncology/Hematology, Berlin, Germany
| | - L Lo Nigro
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - C Bueno
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); University of Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute. Barcelona, Spanish Network for Advanced Therapies (RICORS-TERAV, ISCIII); Spanish Collaborative Cancer Network (CIBERONC. ISCIII); Department of Biomedicine. University of Barcelona; and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - P Menendez
- Centro di Riferimento Regionale di Ematologia ed Oncologia Pediatrica, Azienda Policlinico "G. Rodolico", Catania, Italy
| | - U Zur Stadt
- Pediatric Hematology and Oncology and CoALL Study Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P Gameiro
- Instituto Português de Oncologia, Departament of Hematology, Lisbon, Portugal
| | - L Sedék
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - T Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - A Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - V Marcu
- Hematology Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - K Shichrur
- Molecular Oncology Laboratory, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - S Izraeli
- Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petah Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - H O Madsen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - B W Schäfer
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - S Kubetzko
- Division of Oncology and Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - R Kim
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - E Clappier
- Hematology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université Paris Cité, INSERM/CNRS U944/UMR7212, Institut de recherche Saint-Louis, Paris, France
| | - H Trautmann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Brüggemann
- Laboratory for Specialized Hematological Diagnostics, Medical Department II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - P Archer
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Hancock
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - J Alten
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - A Möricke
- Department of Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - M Stanulla
- Department of Pediatrics, MHH, Hanover, Germany
| | - J Lentes
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - A K Bergmann
- Institute of Human Genetics, Medical School Hannover, Hannover, Germany
| | - S Strehl
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - S Köhrer
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - K Nebral
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
| | - M N Dworzak
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - O A Haas
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Labdia Labordiagnostik, Vienna, Austria
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - C Arfeuille
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
| | - A Caye-Eude
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - H Cavé
- Genetics Department, AP-HP, Hopital Robert Debré, Paris, France
- Université Paris Cité, Inserm U1131, Institut de recherche Saint-Louis, Paris, France
| | - R Marschalek
- DCAL/Institute of Pharm. Biology, Goethe-University, Frankfurt/Main, Germany.
| |
Collapse
|
8
|
Shih CY, Chen YC, Lin HY, Chu CY. RNA Helicase DDX6 Regulates A-to-I Editing and Neuronal Differentiation in Human Cells. Int J Mol Sci 2023; 24:ijms24043197. [PMID: 36834609 PMCID: PMC9965400 DOI: 10.3390/ijms24043197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The DEAD-box proteins, one family of RNA-binding proteins (RBPs), participate in post-transcriptional regulation of gene expression with multiple aspects. Among them, DDX6 is an essential component of the cytoplasmic RNA processing body (P-body) and is involved in translational repression, miRNA-meditated gene silencing, and RNA decay. In addition to the cytoplasmic function, DDX6 is also present in the nucleus, but the nuclear function remains unknown. To decipher the potential role of DDX6 in the nucleus, we performed mass spectrometry analysis of immunoprecipitated DDX6 from a HeLa nuclear extract. We found that adenosine deaminases that act on RNA 1 (ADAR1) interact with DDX6 in the nucleus. Utilizing our newly developed dual-fluorescence reporter assay, we elucidated the DDX6 function as negative regulators in cellular ADAR1p110 and ADAR2. In addition, depletion of DDX6 and ADARs results in the opposite effect on facilitation of RA-induced differentiation of neuronal lineage cells. Our data suggest the impact of DDX6 in regulation of the cellular RNA editing level, thus contributing to differentiation in the neuronal cell model.
Collapse
Affiliation(s)
- Chia-Yu Shih
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Heng-Yi Lin
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-33669876
| |
Collapse
|
9
|
Arna AB, Patel H, Singh RS, Vizeacoumar FS, Kusalik A, Freywald A, Vizeacoumar FJ, Wu Y. Synthetic lethal interactions of DEAD/H-box helicases as targets for cancer therapy. Front Oncol 2023; 12:1087989. [PMID: 36761420 PMCID: PMC9905851 DOI: 10.3389/fonc.2022.1087989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.
Collapse
Affiliation(s)
- Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hardikkumar Patel
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan and Saskatchewan Cancer Agency, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| |
Collapse
|
10
|
Bader JM, Deigendesch N, Misch M, Mann M, Koch A, Meissner F. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med 2023; 4:100877. [PMID: 36584682 PMCID: PMC9873829 DOI: 10.1016/j.xcrm.2022.100877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
Collapse
Affiliation(s)
- Jakob Maximilian Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolaus Deigendesch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Martin Misch
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arend Koch
- Department of Neuropathology, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
11
|
Huang W, Yau Y, Zhu J, Wang Y, Dai Z, Gan H, Qian L, Yang Z. Effect of Electroacupuncture at Zusanli (ST36) on Intestinal Microbiota in Rats With Chronic Atrophic Gastritis. Front Genet 2022; 13:824739. [PMID: 35281809 PMCID: PMC8906781 DOI: 10.3389/fgene.2022.824739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Background: Electroacupuncture is a common treatment for chronic atrophic gastritis (CAG) in China. We aimed to determine the effects of electroacupuncture at zusanli (ST36) on intestinal microbiota in CAG rats. Methods: In total, 42 SD rats were randomly divided into normal (NC, 10 rats) and model (MG, 32 rats) groups. Rats in the MG group were established as CAG disease models. After that, the rats in the MG group were randomly divided into CAG (10 rats), electroacupuncture (EA, 10 rats), and Vitacoenzyme (Vit, 10 rats) groups. Rats in the NC and CAG groups were subjected to a 30-min/d confinement for 4 weeks. Rats in the EA group were given electroacupuncture at zusanli for 30 min/d for 4 weeks. Rats in the Vit group were given Vitacoenzyme solution 10 ml/(kg d) for 4 weeks. Histopathological changes in the gastric mucosa were observed with hematoxylin and eosin staining, and the gene expression level of p53, Bcl-2, and c-myc was determined using the qPCR method. The 16S rDNA sequencing technique was used to determine structural changes and relative abundance expression of intestinal flora. Results: Compared with the NC group, gastric mucosal pathology in the CAG group revealed significant inflammatory infiltration, and the gastric mucosal lesions in the electroacupuncture group were improved remarkably; the expression of p53 and c-myc genes in the CAG group increased (p < 0.05), while the expression of Bcl-2 genes decreased (p < 0.05) in the EA group, that of p53 and c-myc genes decreased (p < 0.05), and that of Bcl-2 genes increased (p < 0.05). The abundance of bacteria such as Lactobacillus, Desulfobacterota, and Bacteroides pectinophilus group in the CAG group increased (p < 0.05), while that of bacteria such as Gastranaerophilales, Romboutsia, and Blautia decreased (p < 0.05). The relative abundance of Desulfobacterota and Helicobacter in the EA group decreased (p < 0.05), while that of probiotic bacteria such as Oscillospirales, Romboutsia, and Christensenellaceae increased (p < 0.05). Conclusion: Electroacupuncture at zusanli can promote the repair of pathological damage to the gastric mucosa in rats with CAG, and the mechanism might relate to the reduction in the relative abundance of harmful bacteria, increase in the relative abundance of intestinal probiotics, and regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Wanyi Huang
- School of Medicine, Xiamen University, Xiamen, China.,College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuenming Yau
- School of Medicine, Xiamen University, Xiamen, China
| | - Jingru Zhu
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yingjie Wang
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhipeng Dai
- Physical Education College, Hunan City University, Yiyang, China
| | - Huijuan Gan
- College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Linchao Qian
- School of Medicine, Xiamen University, Xiamen, China
| | - Zongbao Yang
- School of Medicine, Xiamen University, Xiamen, China.,College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
12
|
Liu Y, Liu S, Shi H, Ma J, Jing M, Han Y. The TSN1 Binding Protein RH31 Is a Component of Stress Granules and Participates in Regulation of Salt-Stress Tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:804356. [PMID: 35003193 PMCID: PMC8733394 DOI: 10.3389/fpls.2021.804356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 05/29/2023]
Abstract
Tudor staphylococcal nucleases (TSNs) are evolutionarily conserved RNA binding proteins, which include redundant TSN1 and TSN2 in Arabidopsis. It has been showed TSNs are the components of stress granules (SGs) and regulate plant growth under salt stress. In this study, we find a binding protein of TSN1, RH31, which is a DEAD-box RNA helicase (RH). Subcellular localization studies show that RH31 is mainly located in the nucleus, but under salinity, it translocates to the cytoplasm where it accumulates in cytoplasmic granules. After cycloheximide (CHX) treatment which can block the formation of SGs by interfering with mRNP homeostasis, these cytoplasmic granules disappeared. More importantly, RH31 co-localizes with SGs marker protein RBP47. RH31 deletion results in salt-hypersensitive phenotype, while RH31 overexpression causes more resistant to salt stress. In summary, we demonstrate that RH31, the TSN1 binding protein, is a component of plant SGs and participates in regulation of salt-stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Yanan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang, China
| | - Shijie Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huiying Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | - Meng Jing
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuzhen Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
14
|
Wang Q, Qian L, Tao M, Liu J, Qi FZ. Knockdown of DEAD-box RNA helicase 52 (DDX52) suppresses the proliferation of melanoma cells in vitro and of nude mouse xenografts by targeting c-Myc. Bioengineered 2021; 12:3539-3549. [PMID: 34233596 PMCID: PMC8806535 DOI: 10.1080/21655979.2021.1950283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ATP-dependent protein DEAD-box RNA helicase 52 (DDX52) is an important regulator in RNA biology and has been implicated in the development of prostate and lung cancer. However, its biological functions and clinical importance in malignant melanoma (MM) are still unclear. Understanding the potential mechanism underlying the regulation of MM progression by DDX52 might lead to novel therapeutic strategies. The aim of the present study was to investigate the role of DDX52 in the regulation of MM progression and its clinical relevance. DDX52 expression in normal and MM tissues was evaluated by GEO analysis and immunohistochemistry. The effects of DDX52 on cell growth were evaluated in MM cells with downregulated DDX52 expression. In this study, we found that DDX52 was markedly overexpressed in MM tissues compared with nontumor tissues and was associated with shorter overall survival in patients; therefore, DDX52 might be a prognostic marker in MM. Downregulation of DDX52 expression in the MM cell lines A2058 and MV3 markedly inhibited cell proliferation and colony formation. Additionally, knockdown of DDX52 in MM cells caused significant regression of established tumors in nude mice and delayed the onset time. Moreover, downregulation of DDX52 markedly suppressed c-Myc mRNA and protein expression, and an RNA immunoprecipitation assay confirmed the association between DDX52 and c-Myc. Restoration of c-Myc expression partly rescued the effects of DDX52 deficiency in MM cells. In conclusion, our study found that DDX52 mediated oncogenesis by promoting the transcriptional activity of c-Myc and could be a therapeutic target in MM.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leqi Qian
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengyuan Tao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fa-Zhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Zhou C, He T, Chen L. LncRNA CASC19 accelerates chondrocytes apoptosis and proinflammatory cytokine production to exacerbate osteoarthritis development through regulating the miR-152-3p/DDX6 axis. J Orthop Surg Res 2021; 16:399. [PMID: 34158095 PMCID: PMC8218455 DOI: 10.1186/s13018-021-02543-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/08/2021] [Indexed: 01/02/2023] Open
Abstract
Background Osteoarthritis (OA) is one kind of degenerative joint disease that happens in articular cartilage and other joint tissues. Long non-coding RNAs (lncRNAs) have been reported to serve as pivotal regulators in many diseases, including OA. However, the role and relevant regulatory mechanisms of CASC19 in OA remain unknown. Methods The expression levels of CASC19, miR-152-3p, and DDX6 were identified by reverse-transcription polymerase chain reaction (RT-qPCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. The relationship between miR-152-3p and CASC19 or DDX6 was predicted by bioinformatics tools and verified by the dual-luciferase reporter assay. Results CASC19 was verified to exhibit higher expression in OA tissues and cells. Moreover, inhibition of CASC19 weakened proinflammatory cytokine (IL-6, IL-8, and TNF-α) production and cell apoptosis but facilitated cell viability. Experiments of the ceRNA mechanism elucidated that miR-152-3p was a sponge for CASC19, and miR-152-3p targeted DDX6, suggesting that CASC19 sponged miR-152-3p to release DDX6. Finally, results from rescue assays proved that the impacts of CASC19 silencing on chondrocytes apoptosis and proinflammatory cytokine production could be reversed by DDX6 overexpression. Conclusions It was concluded that lncRNA CASC19 accelerated chondrocytes apoptosis and proinflammatory cytokine production to exacerbate osteoarthritis development through regulating the miR-152-3p/DDX6 axis. These findings may offer an effective biological target for OA treatment.
Collapse
Affiliation(s)
- Chang Zhou
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Tianda He
- Department of Osteoarthritis, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Liji Chen
- Department of Encephalopathy, Changzhou Hospital of Traditional Chinese Medicine, No. 25 Heping North Road, Changzhou, 213000, People's Republic of China.
| |
Collapse
|
16
|
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021; 10:cells10061540. [PMID: 34207140 PMCID: PMC8234093 DOI: 10.3390/cells10061540] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regulation has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. In this review, we discuss the essential roles and mechanisms of RNA helicases in the regulation of the cell cycle at different phases. For that, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. We also discuss the different targeting strategies against RNA helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on specific RNA helicases, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
|
17
|
Wei Q, Geng J, Chen Y, Lin H, Wang J, Fang Z, Wang F, Zhang Z. Structure and function of DEAH-box helicase 32 and its role in cancer. Oncol Lett 2021; 21:382. [PMID: 33777205 PMCID: PMC7988694 DOI: 10.3892/ol.2021.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/23/2020] [Indexed: 11/06/2022] Open
Abstract
DEAH-box helicase 32 (DHX32) is an RNA helicase with unique structural characteristics that is involved in numerous biological processes associated with RNA, including ribosome biosynthesis, transcription, mRNA splicing and translation. Increasing evidence suggests that abnormal DHX32 expression contributes to cancer initiation and development, due to dysregulated cell proliferation, differentiation, apoptosis and other processes. In the current review, the discovery, structure and function of DHX32, as well as the association between abnormal DHX32 expression and tumors are discussed. DHX32 expression is downregulated in acute lymphoblastic leukemia, but upregulated in solid tumors, including colorectal and breast cancer. Furthermore, DHX32 expression levels are associated with the pathological and clinical features of the cancer. Therefore, DHX32 may serve as a novel liquid biopsy marker for auxiliary diagnosis and prognosis screening, as well as a possible target for cancer therapy. The molecular mechanism underlying the contribution of DHX32 towards the initiation and development of cancer requires further investigation for the development of anticancer treatments based on manipulating DHX32 expression and function.
Collapse
Affiliation(s)
- Qingchun Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Jinting Geng
- Xiamen Key Laboratory of Biomarker Translational Medicine, Center of Medical Laboratory of Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Yongquan Chen
- Xiamen Key Laboratory of Biomarker Translational Medicine, Center of Medical Laboratory of Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Huayue Lin
- Center of Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, Fujian 361104, P.R. China
| | - Jiajia Wang
- Center of Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, Fujian 361104, P.R. China
| | - Zanxi Fang
- Center of Clinical Laboratory, Xiamen University Affiliated Zhongshan Hospital, Xiamen, Fujian 361104, P.R. China
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Zhongying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P.R. China
- Xiamen Key Laboratory of Biomarker Translational Medicine, Center of Medical Laboratory of Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| |
Collapse
|
18
|
The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis. Int J Clin Oncol 2021; 26:795-825. [PMID: 33656655 DOI: 10.1007/s10147-021-01892-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
DEAD-box RNA helicases comprise a family within helicase superfamily 2 and make up the largest group of RNA helicases. They are a profoundly conserved family of RNA-binding proteins, carrying a generic Asp-Glu-Ala-Asp (D-E-A-D) motif that gives the family its name. Members of the DEAD-box family of RNA helicases are engaged in all facets of RNA metabolism from biogenesis to decay. DEAD-box proteins ordinarily function as constituents of enormous multi-protein complexes and it is believed that interactions with other components in the complexes might be answerable for the various capacities ascribed to these proteins. Therefore, their exact function is probably impacted by their interacting partners and to be profoundly context dependent. This may give a clarification to the occasionally inconsistent reports proposing that DEAD-box proteins have both pro- and anti-proliferative functions in cancer. There is emerging evidence that DEAD-box family of RNA helicases play pivotal functions in various cellular processes and in numerous cases have been embroiled in cellular proliferation and/or neoplastic transformation. In various malignancy types, DEAD-box RNA helicases have been reported to possess pro-proliferation or even oncogenic roles as well as anti-proliferative or tumor suppressor functions. Clarifying the exact function of DEAD-box helicases in cancer is probably intricate, and relies upon the cellular milieu and interacting factors. This review aims to summarize the current data on the numerous capacities that have been ascribed to DEAD-box RNA helicases. It also highlights their diverse actions upon malignant transformation in the various tumor types.
Collapse
|
19
|
Chen L, Xu M, Zhong W, Hu Y, Wang G. Knockdown of DDX46 suppresses the proliferation and invasion of gastric cancer through inactivating Akt/GSK-3β/β-catenin pathway. Exp Cell Res 2020; 399:112448. [PMID: 33347858 DOI: 10.1016/j.yexcr.2020.112448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
DEAD-box RNA helicase 46 (DDX46) has recently been identified as a candidate oncogene in several types of human malignancies. To date, the role of DDX46 in gastric cancer has not been determined. The purpose of the current study was to explore the role of DDX46 in gastric cancer and the potential mechanism. DDX46-silecing or overexpressing gastric cancer cell lines were established to validate the role of DDX46. Our results showed that the expression of DDX46 was significantly increased in gastric cancer tissues and cell lines. Knockdown of DDX46 suppressed the proliferation and invasion of gastric cancer cells. Whereas, DDX46 overexpression enhanced the cell proliferation and invasion of gastric cancer cells. Furthermore, knockdown of DDX46 markedly suppressed the tumor growth of xenografts. Research into the mechanism revealed that DDX46 depletion inhibited the Akt/GSK-3β/β-catenin signaling pathway in gastric cancer cells. Notably, activation of Akt or β-catenin overexpression reversed the DDX46 depletion-mediated anti-cancer effect. In conclusion, these findings indicated that DDX46 exerted an oncogenic role in gastric cancer via regulating the Akt/GSK-3β/β-catenin signaling pathway. Thus, DDX46 might be utilized as a therapeutic anti-cancer target.
Collapse
Affiliation(s)
- Lihong Chen
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Min Xu
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Wenting Zhong
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yinghui Hu
- International Medical Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
20
|
Autoantibodies against tumor-associated antigens in sputum as biomarkers for lung cancer. Transl Oncol 2020; 14:100991. [PMID: 33333369 PMCID: PMC7736713 DOI: 10.1016/j.tranon.2020.100991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
Tumor antigens (TAs) can initiate host immune responses and produce TA-associated autoantibody (TAAbs), potential cancer biomarkers. Sputum is directly generated from the upper and lower airways, and thus can be used as a surrogate sample for the diagnosis of lung cancer based on molecular analysis. To develop sputum TAAb biomarkers for the early detection of lung cancer, the leading cause of cancer death, we probed a protein microarray containing more than 9,000 antigens with sputum supernatants of a discovery set of 30 lung cancer patients and 30 cancer-free smokers. Twenty-eight TAs with higher reactivity in sputum of lung cancer cases vs. controls were identified. The diagnostic significance of TAAbs against the TAs was determined by enzyme-linked immunosorbent assays (ELISAs) in sputum of the discovery set and additional 166 lung cancer patients and 213 cancer-free smokers (validation set). Three sputum TAAbs against DDX6, ENO1, and 14-3-3ζ were developed as a biomarker panel with 81% sensitivity and 83% specificity for diagnosis of lung cancer, regardless of stages, locations, and histological types of lung tumors. This study provides the first evidence that sputum TAAbs could be used as biomarkers for the early detection of lung cancer.
Collapse
|
21
|
Wang Y, Li G, Deng M, Liu X, Huang W, Zhang Y, Liu M, Chen Y. The multifaceted functions of RNA helicases in the adaptive cellular response to hypoxia: From mechanisms to therapeutics. Pharmacol Ther 2020; 221:107783. [PMID: 33307143 DOI: 10.1016/j.pharmthera.2020.107783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia is a hallmark of cancer. Hypoxia-inducible factor (HIF), a master player for sensing and adapting to hypoxia, profoundly influences genome instability, tumor progression and metastasis, metabolic reprogramming, and resistance to chemotherapies and radiotherapies. High levels and activity of HIF result in poor clinical outcomes in cancer patients. Thus, HIFs provide ideal therapeutic targets for cancers. However, HIF biology is sophisticated, and currently available HIF inhibitors have limited clinical utility owing to their low efficacy or side effects. RNA helicases, which are master players in cellular RNA metabolism, are usually highly expressed in tumors to meet the increased oncoprotein biosynthesis demand. Intriguingly, recent findings provide convincing evidence that RNA helicases are crucial for the adaptive cellular response to hypoxia via a mutual regulation with HIFs. More importantly, some RNA helicase inhibitors may suppress HIF signaling by blocking the translation of HIF-responsive genes. Therefore, RNA helicase inhibitors may work synergistically with HIF inhibitors in cancer to improve treatment efficacy. In this review, we discuss current knowledge of how cells sense and adapt to hypoxia through HIFs. However, our primary focus is on the multiple functions of RNA helicases in the adaptive response to hypoxia. We also highlight how these hypoxia-related RNA helicases can be exploited for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guangqiang Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Mingxia Deng
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yao Zhang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Min Liu
- Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yan Chen
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
22
|
Shahcheraghi SH, Tchokonte-Nana V, Lotfi M, Lotfi M, Ghorbani A, Sadeghnia HR. Wnt/beta-catenin and PI3K/Akt/mTOR Signaling Pathways in Glioblastoma: Two Main Targets for Drug Design: A Review. Curr Pharm Des 2020; 26:1729-1741. [PMID: 32003685 DOI: 10.2174/1381612826666200131100630] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is the most common and malignant astrocytic glioma, accounting for about 90% of all brain tumors with poor prognosis. Despite recent advances in understanding molecular mechanisms of oncogenesis and the improved neuroimaging technologies, surgery, and adjuvant treatments, the clinical prognosis of patients with GBM remains persistently unfavorable. The signaling pathways and the regulation of growth factors of glioblastoma cells are very abnormal. The various signaling pathways have been suggested to be involved in cellular proliferation, invasion, and glioma metastasis. The Wnt signaling pathway with its pleiotropic functions in neurogenesis and stem cell proliferation is implicated in various human cancers, including glioma. In addition, the PI3K/Akt/mTOR pathway is closely related to growth, metabolism, survival, angiogenesis, autophagy, and chemotherapy resistance of GBM. Understanding the mechanisms of GBM's invasion, represented by invasion and migration, is an important tool in designing effective therapeutic interventions. This review will investigate two main signaling pathways in GBM: PI3K/Akt/mTOR and Wnt/beta-catenin signaling pathways.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of medical sciences, Yazd, Iran
| | - Venant Tchokonte-Nana
- Comparative Anatomy, Experimental Anatomopathology and Surgery, Faculty of Medicine and Health Sciences, University des Montagnes, Bangangte, Cameroon
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of medical sciences, Yazd, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid R Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Cai MZ, Wen SY, Wang XJ, Liu Y, Liang H. MYC Regulates PHF8, Which Promotes the Progression of Gastric Cancer by Suppressing miR-22-3p. Technol Cancer Res Treat 2020; 19:1533033820967472. [PMID: 33111613 PMCID: PMC7607725 DOI: 10.1177/1533033820967472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Plant homeodomain finger protein 8 (PHF8) has been reported to participate in cancer development and metastasis of various types of tumors. However, little is known about the functional mechanism of PHF8 in gastric cancer (GC). This study aimed to explore the PHF8 expression pattern and function, and the role of the MYC/miRNA/PHF8 axis in GC. PHF8 expression was upregulated in GC tissues and cells as measured using quantitative reverse transcription polymerase chain reaction and western blotting. PHF8 knockdown suppressed the proliferation, migration, and invasion of GC cells, as determined using the CCK-8 assay and Transwell assay. MicroRNA-22-3p targeted PHF8, as verified by a dual-luciferase reporter assay. MYC upregulated the protein expression of PHF8 but had no effect on PHF8 mRNA expression. MYC regulates PHF8 by affecting the stability of miR-22-3p. We identified a novel MYC/miR-22-3p/PHF8 regulatory axis in GC. Therefore, PHF8 may provide a new therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Ming-Zhi Cai
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Shao-Yan Wen
- Comprehensive Surgery Department, Tianjin Cancer Hospital Airport Hospital, Tianjin, People's Republic of China
| | - Xue-Jun Wang
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Yong Liu
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Han Liang
- Department of Gastrointestinal Cancer, 74675Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| |
Collapse
|
24
|
Lin Q, Jin HJ, Zhang D, Gao L. DDX46 silencing inhibits cell proliferation by activating apoptosis and autophagy in cutaneous squamous cell carcinoma. Mol Med Rep 2020; 22:4236-4242. [PMID: 33000271 PMCID: PMC7533510 DOI: 10.3892/mmr.2020.11509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
DEAD-Box Helicase 46 (DDX46) is an ATP-dependent RNA helicase that plays a central role in transcription splicing and ribosome assembly. However, the role of DDX46 in cutaneous squamous cell carcinoma (CSCC) remains to be elucidated. The aim of the present study was to investigate the role of DDX46 in CSCC by assessing DDX46 expression levels in CSCC tissues and cell lines. The effect of DDX46 silencing on CSCC cell proliferation, apoptosis and autophagy were also analyzed. It was demonstrated that DDX46 was significantly overexpressed in CSCC tissues and cells (P<0.05). Furthermore, it was found that DDX46 silencing could dramatically inhibit cell proliferation (P<0.05). Moreover, cell apoptosis and autophagy were activated in DDX46 silencing groups (P<0.05). Therefore, the present results suggested that DDX46 was overexpressed in CSCC and that DDX46 silencing can inhibit cell proliferation by inducing apoptosis and activating autophagy. Thus, DDX46 may serve as a novel potential therapeutic target for CSCC.
Collapse
Affiliation(s)
- Quan Lin
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hong-Juan Jin
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Duo Zhang
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ling Gao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
25
|
Ao X, Li X, Chen Y, Zang Z, Guo W, Liang J. TMEM98 mRNA promotes proliferation and invasion of gastric cells by directly interacting with NF90 protein. Cell Biol Int 2020; 44:1820-1830. [PMID: 32379372 DOI: 10.1002/cbin.11375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/15/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
Transmembrane protein 98 (TMEM98) is a recently discovered gene, the inhibition of which has preliminarily been demonstrated to inhibit progression of several solid cancers in vitro. However, its involvement in tumorigenesis of gastric cancer (GC) has not been reported. Here, we aimed to explore the expression of TMEM98 in GC tissues and cell lines and to determine the role of TMEM98 in GC cell proliferation and invasion. TMEM98 was significantly upregulated in GC tissues, which was associated with low survival rate of GC patients. Interestingly, GC cell proliferation and invasion were promoted by TMEM98 messenger RNA (mRNA) upregulation and inhibited by TMEM98 mRNA downregulation, but not affected by TMEM98 protein. Using RNA-binding protein immunoprecipitation assay and RNA pull-down assay, we demonstrated that TMEM98 mRNA could directly bind with and upregulate nuclear factor 90 (NF90). Similarly, NF90 protein could not only enhance the stability of TMEM98 mRNA but antagonize the suppressive effect of TMEM98-small interfering RNA on proliferation and invasion in MKN-45 cells. Moreover, RNA pull-down assay, with wild-type (WT) and binding-site-mutated biotinylated TMEM98 mRNA transcripts, demonstrated that WT TMEM98 mRNA bound with NF90 protein through an 8-nt motif at the last exon, but the motif mutation abolished the capacity of TMEM98 mRNA binding to NF90 protein. Furthermore, overexpression of the WT last exon of TMEM98 increased NF90 expression and cell proliferation/invasion expectedly, but overexpression of the mutated last exon had no obvious effect. In conclusion, TMEM98 mRNA enhanced the proliferation and invasion of GC cells by interacting with the NF90 protein.
Collapse
Affiliation(s)
- Xudong Ao
- Department of Breast Oncology, Affiliated People's Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Xinxin Li
- State Key Laboratory for Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Yongxia Chen
- Department of Breast Oncology, Affiliated People's Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Zhichao Zang
- Department of Breast Oncology, Affiliated People's Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Weichun Guo
- Department of Breast Oncology, Affiliated People's Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Junqing Liang
- Department of Breast Oncology, Affiliated People's Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
26
|
Cervantes-Ayalc A, Ruiz Esparza-Garrido R, Velázquez-Flores MÁ. Long Interspersed Nuclear Elements 1 (LINE1): The chimeric transcript L1-MET and its involvement in cancer. Cancer Genet 2020; 241:1-11. [PMID: 31918342 DOI: 10.1016/j.cancergen.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 11/19/2022]
Abstract
Long interspersed nuclear elements 1 (LINE1) are non-LTR retrotransposons that represent the greatest remodeling force of the human genome during evolution. Genomically, LINE1 are constituted by a 5´ untranslated region (UTR), where the promoter regions are located, three open reading frames (ORF0, ORF1, and ORF2) and one 3´UTR, which has a poly(A) tail that harbors the short interspersed nuclear elements (SINEs) Alu and SVA. Although the intrinsic nature of LINE1 is to be copied and inserted into the genome, an increase in their mobility produces genomic instability. In response to this, the cell has "designed" many mechanisms controlling the retrotransposition levels of LINE1; however, alterations in these regulation systems can increase LINE1 mobility and the formation of chimeric genes. Evidence indicates that 988 human genes have LINE1 inserted in their sequence, resulting in the transcriptional control of genes by their own promoters, as well as by the LINE1 antisense promoter (ASP). To date, very little is known about the biologic impact of this and the L1-MET chimera is a more or less studied case. ASP hypomethylation has been observed in all studied cancer types, leading to increased L1-MET expression. In specific types of cancer, this L1-MET increase controls both low and high MET protein levels. It remains to be clarified if this protein product is a chimeric protein.
Collapse
Affiliation(s)
- Andrea Cervantes-Ayalc
- Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México.
| | - Ruth Ruiz Esparza-Garrido
- Catedrática CONACyT, Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México; Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México.
| | - Miguel Ángel Velázquez-Flores
- Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México; Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico.
| |
Collapse
|
27
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
28
|
Tokumaru Y, Tajirika T, Sugito N, Kuranaga Y, Shinohara H, Tsujino T, Matsuhashi N, Futamura M, Akao Y, Yoshida K. Synthetic miR-143 Inhibits Growth of HER2-Positive Gastric Cancer Cells by Suppressing KRAS Networks Including DDX6 RNA Helicase. Int J Mol Sci 2019; 20:ijms20071697. [PMID: 30959742 PMCID: PMC6479539 DOI: 10.3390/ijms20071697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers worldwide. In the clinical setting, the identification of HER2 overexpression in GC was a significant finding, as trastuzumab, an anti-HER2 drug, provides a survival advantage to HER2-positive GC patients. In HER2-postive GC, the dysregulation of PI3K/AKT and MAPK/ERK signaling pathways has been reported, and inhibition of these pathways is an important therapeutic strategy. MiR-143 is known to act as a tumor suppressor in several cancers, such as bladder cancer, breast cancer, colorectal cancer, and gastric cancer. In the current study, we developed a novel chemically-modified miR-143 and explored the functions of this synthetic miR-143 (syn-miR-143) in HER2-positive gastric cancer. The expression level of miR-143 was down-regulated in GC cell lines, including HER2-positive GC cell lines, MKN7, and KATO-III. The ectopic expression of miR-143 in those cell lines suppressed cell growth through systemic silencing of KRAS and its effector signaling molecules, AKT and ERK. Furthermore, syn-miR-143 indirectly down-regulated the expression of HER2, an upstream molecule of KRAS, through silencing DEAD/H-box RNA helicase 6 (DDX6), RNA helicase, which enhanced HER2 protein expression at the translational step in HER2-positive GC cells. These findings suggested that syn-miR-143 acted as a tumor suppressor through the impairment of KRAS networks including the DDX6.
Collapse
Affiliation(s)
- Yoshihisa Tokumaru
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Toshihiro Tajirika
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Takuya Tsujino
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
- Department of Urology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
29
|
Analysis of Extracellular Vesicles in Gastric Juice from Gastric Cancer Patients. Int J Mol Sci 2019; 20:ijms20040953. [PMID: 30813244 PMCID: PMC6412909 DOI: 10.3390/ijms20040953] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are secretory membrane vesicles containing lipids, proteins, and nucleic acids; they function in intercellular transport by delivering their components to recipient cells. EVs are observed in various body fluids, i.e., blood, saliva, urine, amniotic fluid, and ascites. EVs secreted from cancer cells play important roles in the formation of their environment, including fibrosis, angiogenesis, evasion of immune surveillance, and even metastasis. However, EVs in gastric juice (GJ-EVs) have been largely unexplored. In this study, we sought to clarify the existence of GJ-EVs derived from gastric cancer patients. GJ-EVs were isolated by the ultracentrifuge method combined with our own preprocessing from gastric cancer (GC) patients. We verified GJ-EVs by morphological experiments, i.e., nanoparticle tracking system analysis and electron microscopy. In addition, protein and microRNA markers of EVs were examined by Western blotting analysis, Bioanalyzer, or quantitative reverse transcription polymerase chain reaction. GJ-EVs were found to promote the proliferation of normal fibroblast cells. Our findings suggest that isolates from the GJ of GC patients contain EVs and imply that GJ-EVs partially affect their microenvironments and that analysis using GJ-EVs from GC patients will help to clarify the pathophysiology of GC.
Collapse
|
30
|
Wang H, Yu J, Wang X, Zhang Y. The RNA helicase DHX33 is required for cancer cell proliferation in human glioblastoma and confers resistance to PI3K/mTOR inhibition. Cell Signal 2018; 54:170-178. [PMID: 30552990 DOI: 10.1016/j.cellsig.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022]
Abstract
Human Glioblastoma is one deadly disease; the median survival time is reported to be 13.9 months after treatment. In the present study, we discovered that DHX33 is highly expressed in 84% of all Glioblastoma multiforme (GBM). Knockdown of DHX33 led to significant reduced proliferation and migration in glioblastoma cells in vitro and in vivo. Mechanistically, DHX33 regulated a set of critical genes involved in cell cycle and cell migration to promote glioblastoma development. Additionally, DHX33 was found to be induced by inhibitors of PI3K and mTOR whose activation has been detected in 50% of glioblastoma. Overexpression of wild type DHX33 protein, but not the helicase dead mutant, confers resistance to mTOR inhibitors in glioblastoma cells. DHX33 probably functions as a critical regulator to promote GBM development. Our results highlight its therapeutic potential in treating GBM.
Collapse
Affiliation(s)
- Hongzhong Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Junyan Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xingshun Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China; Southern University of Science and Technology - University of Macau Joint Ph.D Program, Shenzhen, Guangdong, China
| | - Yandong Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
31
|
Tajirika T, Tokumaru Y, Taniguchi K, Sugito N, Matsuhashi N, Futamura M, Yanagihara K, Akao Y, Yoshida K. DEAD-Box Protein RNA-Helicase DDX6 Regulates the Expression of HER2 and FGFR2 at the Post-Transcriptional Step in Gastric Cancer Cells. Int J Mol Sci 2018; 19:ijms19072005. [PMID: 29987267 PMCID: PMC6073682 DOI: 10.3390/ijms19072005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 01/27/2023] Open
Abstract
The human DEAD/H-box RNA helicase DDX6 (RCK/p54) is a protein encoded by the fusion gene from the t(11;14)(q23;q32) chromosomal translocation observed in human B-cell lymphoma cell line RC-K8. DDX6 has a variety of functions such as translation initiation, pre-mRNA splicing, and ribosome assembly. However, details of the regulatory mechanism governing DDX6 and the functions of DDX6 are largely unknown. Previously, we reported that DDX6 is overexpressed in most malignant cell lines and clinical colorectal tumor samples and that DDX6 positively contributes to the pathogenesis of various cancers. In the current study, we aimed at revealing the function of DDX6 in HER2 and FGFR2 related human gastric cancer (GC) by using clinical samples and GC cell lines. DDX6 protein was overexpressed in about 60% of the clinical samples; HER2, in 35%; and FGFR2, in 30%, (n = 20). Interestingly, the DDX6 protein was overexpressed in all HER2-positive samples (n = 7), and in 83% (5 of 6) of the FGFR2-positive samples, which could reflect the contribution of DDX6 to the expression of HER2 and FGFR2. In the GC cell line MKN7, which has HER2 amplification, the knockdown of DDX6 by siR-DDX6 led to the decreased expression of the HER2 protein. On the other hand, the knockdown of HER2 did not influence the DDX6 expression. Similar results were also obtained for the KATO-III and HSC39 cell lines having amplified FGFR2 expression. The increased expression of DDX6 induced a significantly increased expression of the HER2 protein without increasing the mRNA expression. The results of an RNP Immunoprecipitation (RIP)-assay using GC cells indicated that the DDX6 protein acted as an RNA-binding protein for HER2 and FGFR2 mRNAs and positively regulated their post-transcriptional processes. These findings demonstrated that DDX6 was an upstream molecule that positively regulated the expression of HER2 and FGFR2 at the post-transcriptional step in GC cells.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Cell Line, Tumor
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Toshihiro Tajirika
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Yoshihisa Tokumaru
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
- Translational Research Program Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Nobuhisa Matsuhashi
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Manabu Futamura
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwa, Chiba 277-8577, Japan.
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
32
|
Taniguchi K, Sugito N, Shinohara H, Kuranaga Y, Inomata Y, Komura K, Uchiyama K, Akao Y. Organ-Specific MicroRNAs ( MIR122, 137, and 206) Contribute to Tissue Characteristics and Carcinogenesis by Regulating Pyruvate Kinase M1/2 ( PKM) Expression. Int J Mol Sci 2018; 19:E1276. [PMID: 29695138 PMCID: PMC5983799 DOI: 10.3390/ijms19051276] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Pyruvate kinase is known as the glycolytic enzyme catalyzing the final step in glycolysis. In mammals, two different forms of it exist, i.e., pyruvate kinase M1/2 (PKM) and pyruvate kinase L/R (PKLR). Also, PKM has two isoforms, i.e., PKM1 and PKM2. These genes have tissue-specific distribution. Namely, PKM1 is distributed in high-energy-demanding organs, such as brain and muscle. Also, PKM2 is distributed in various other organs, such as the colon. On the other hand, PKLR is distributed in liver and red blood cells (RBCs). Interestingly, PKM2 has been recognized as one of the essential genes for the cancer-specific energy metabolism termed the “Warburg effect”. However, the mechanism(s) underlying this fact have remained largely unclear. Recently, we found that some organ-specific microRNAs (miRNAs, MIR) regulate PKM isoform expression through direct targeting of polypyrimidine tract binding protein 1 (PTBP1), which is the splicer responsible for PKM2-dominant expression. In this study, we examined whether this machinery was conserved in the case of other PTBP1- and PKM-targeting miRNAs. We focused on the MIRs 122, 137, and 206, and investigated the expression profiles of each of these miRNAs in tissues from mouse and human organs. Also, we examined the regulatory mechanisms of PKM isoform expression by testing each of these miRNAs in human cancer cell lines. Presently, we found that brain-specific MIR137 and muscle-specific MIR206 predominantly induced PKM1 expression through direct targeting of PTBP1. Also, liver-specific MIR122 suppressed the expression of both PKM1 and PKM2, which action occurred through direct targeting of PKM to enable the expression of PKLR. Moreover, the expression levels of these miRNAs were downregulated in cancer cells that had originated from these tissues, resulting in PKM2 dominance. Our results suggest that the organ-specific distribution of miRNAs is one of the principal means by which miRNA establishes characteristics of a tissue and that dysregulation of these miRNAs results in cancer development through a change in the ratio of PKM isoform expression. Also, our results contribute to cancer diagnosis and will be useful for cancer-specific therapy for the Warburg effect in the near future.
Collapse
Affiliation(s)
- Kohei Taniguchi
- Department of General and Gastroenterological Surgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
- Translational Research Program, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Yosuke Inomata
- Department of General and Gastroenterological Surgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
| | - Kazumasa Komura
- Translational Research Program, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686, Japan.
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|