1
|
Li R, Wang F, Huang L, Zhao L, Qin T, Liu S, Xu K, Wang B, Li L, He S. Morin inhibits the progression of 5-fluorouracil-resistant colorectal cancer by suppressing autophagy. Int J Biochem Cell Biol 2025:106783. [PMID: 40287051 DOI: 10.1016/j.biocel.2025.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/12/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Resistance to 5-fluorouracil (5-FU) poses a significant challenge in colorectal cancer (CRC) treatment. Morin is a flavonoid with anti-tumor properties. However, its role in overcoming acquired 5-FU resistance in CRC remains unclear. METHODS 5-FU-resistant CRC (5-FU/CRC) cell lines (HT29/5-FU and HCT116/5-FU) were established using the IC50 concentration increment method. After treatment with Morin and autophagy inhibitors (3-MA) or agonists (RAPA), cell viability, apoptosis, colony formation, migration, invasion, and autophagy were evaluated. In vivo, xenograft models of 5-FU/CRC assessed Morin's therapeutic effects. RESULTS 5-FU/CRC cells were successfully constructed. Morin inhibited the viability, migration, and invasion of 5-FU/CRC cells and promoted apoptosis. Morin also inhibited autophagy in 5-FU/CRC cells. Besides, autophagy activated by RAPA could eliminate the effect of Morin on 5-FU/CRC cells, while 3-MA enhanced the effects of Morin. In nude mouse models, Morin inhibited the growth and improved the pathological structure of 5-FU/CRC xenografts by inhibiting autophagy. CONCLUSION Morin suppresses the progression of 5-FU/CRC by inhibiting autophagy, suggesting its potential as a therapeutic agent to combat 5-FU resistance.
Collapse
Affiliation(s)
- Rui Li
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Fengxia Wang
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Lu Huang
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Lvheng Zhao
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Ting Qin
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Shan Liu
- The Second Clinical School of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, China
| | - Kunyao Xu
- Department of Geriatrics, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, China
| | - Bi Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou 550002, China; Key Laboratory of Medical Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou 550002, China
| | - Ling Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou 550002, China; Key Laboratory of Medical Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, Guizhou 550002, China
| | - Sha He
- Department of Rehabilitation, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China.
| |
Collapse
|
2
|
Burge KY, Georgescu C, Zhong H, Wilson AP, Gunasekaran A, Yu Z, Franca A, Eckert JV, Wren JD, Chaaban H. Spatial transcriptomics delineates potential differences in intestinal phenotypes of cardiac and classical necrotizing enterocolitis. iScience 2025; 28:112166. [PMID: 40201118 PMCID: PMC11978348 DOI: 10.1016/j.isci.2025.112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/20/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating neonatal gastrointestinal disease, often resulting in multi-organ failure and death. While classical NEC is strictly associated with prematurity, cardiac NEC is a subset of the disease occurring in infants with comorbid congenital heart disease. Despite similar symptomatology, the NEC subtypes vary slightly in presentation and may represent etiologically distinct diseases. We compared ileal spatial transcriptomes of patients with cardiac and classical NEC. Epithelial and immune cells cluster well by cell-type segment and NEC subtype. Differences in metabolism and immune cell activation functionally differentiate the cell-type makeup of the NEC subtypes. The classical NEC phenotype is defined by dysbiosis-induced inflammatory signaling and metabolic acidosis, while that of cardiac NEC involves reduced angiogenesis and endoplasmic reticulum stress-induced apoptosis. Despite subtype-associated clinical and demographic variability, spatial transcriptomics has substantiated pathway and network differences within immune and epithelial segments between cardiac and classical NEC.
Collapse
Affiliation(s)
- Kathryn Y. Burge
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Constantin Georgescu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hua Zhong
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam P. Wilson
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Aarthi Gunasekaran
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Addison Franca
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jeffrey V. Eckert
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hala Chaaban
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Stanford SM, Nguyen TP, Chang J, Zhao Z, Hackman GL, Santelli E, Sanders CM, Katiki M, Dondossola E, Brauer BL, Diaz MA, Zhan Y, Ramsey SH, Watson PA, Sankaran B, Paindelli C, Parietti V, Mikos AG, Lodi A, Bagrodia A, Elliott A, McKay RR, Murali R, Tiziani S, Kettenbach AN, Bottini N. Targeting prostate tumor low-molecular weight tyrosine phosphatase for oxidation-sensitizing therapy. SCIENCE ADVANCES 2024; 10:eadg7887. [PMID: 38295166 PMCID: PMC10830117 DOI: 10.1126/sciadv.adg7887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024]
Abstract
Protein tyrosine phosphatases (PTPs) play major roles in cancer and are emerging as therapeutic targets. Recent reports suggest low-molecular weight PTP (LMPTP)-encoded by the ACP1 gene-is overexpressed in prostate tumors. We found ACP1 up-regulated in human prostate tumors and ACP1 expression inversely correlated with overall survival. Using CRISPR-Cas9-generated LMPTP knockout C4-2B and MyC-CaP cells, we identified LMPTP as a critical promoter of prostate cancer (PCa) growth and bone metastasis. Through metabolomics, we found that LMPTP promotes PCa cell glutathione synthesis by dephosphorylating glutathione synthetase on inhibitory Tyr270. PCa cells lacking LMPTP showed reduced glutathione, enhanced activation of eukaryotic initiation factor 2-mediated stress response, and enhanced reactive oxygen species after exposure to taxane drugs. LMPTP inhibition slowed primary and bone metastatic prostate tumor growth in mice. These findings reveal a role for LMPTP as a critical promoter of PCa growth and metastasis and validate LMPTP inhibition as a therapeutic strategy for treating PCa through sensitization to oxidative stress.
Collapse
Affiliation(s)
| | - Tiffany P. Nguyen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joseph Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zixuan Zhao
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - G. Lavender Hackman
- Department of Nutritional Sciences, College of Natural Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Eugenio Santelli
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Colton M. Sanders
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brooke L. Brauer
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Michael A. Diaz
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yuan Zhan
- Department of Pediatrics and Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, College of Natural Sciences, The University of Texas at Austin, Austin, TX USA
| | - Sterling H. Ramsey
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Philip A. Watson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Claudia Paindelli
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vanessa Parietti
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alessia Lodi
- Department of Nutritional Sciences, College of Natural Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Aditya Bagrodia
- Department of Urology, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Elliott
- Department of Clinical and Translational Research, Caris Life Sciences, Phoenix, AZ, USA
| | - Rana R. McKay
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ramachandran Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Pediatrics and Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, College of Natural Sciences, The University of Texas at Austin, Austin, TX USA
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Mazumder MAR, Tolaema A, Chaikhemarat P, Rawdkuen S. Antioxidant and Anti-Cytotoxicity Effect of Phenolic Extracts from Psidium guajava Linn. Leaves by Novel Assisted Extraction Techniques. Foods 2023; 12:2336. [PMID: 37372547 DOI: 10.3390/foods12122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochemicals (PCs) are gaining popularity due to their antioxidant effects and potential protection against infection, cardiovascular disease, and cellular metabolic activity. These PCs must be retained as much as possible during extraction. This research focused on the extraction of PC from Psidium guajava Linn. leaves due to higher antioxidant potential. Solvent extraction (SE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (UAE) using distilled water (DW) or 60% (v/v) ethanol/water (ET) were used for the extraction of PC. ET shows higher total phenolic (TPC) and total flavonoid content (TFC) as well as higher antioxidant activity than DW. Phytochemical screening demonstrated that all of the screening showed positive results in all extraction methods, except glycoside. There were no significant differences (p > 0.05) in TPC and TFC during MAE/ET, SE/ET, and UAE/ET. Antioxidant analysis shows that MAE and SE resulted in high (p < 0.05) DPPH and FRAP values for ET and DW, respectively. MAE/ET showed the highest inhibitory activity (IC50 = 16.67 µg/mL). HPLC and TLC analysis reveal the fingerprint of morin, which might function as an anticancer agent with other bioactives. Increasing the extract content increased the inhibitory activity of SW480 cells via MTT assay. In conclusion, MAE/ET is the most efficient among the extraction techniques in terms of anti-cytotoxicity effects.
Collapse
Affiliation(s)
- Md Anisur Rahman Mazumder
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Arif Tolaema
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Pongpasin Chaikhemarat
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
5
|
Casertano M, Genovese M, Santi A, Pranzini E, Balestri F, Piazza L, Del Corso A, Avunduk S, Imperatore C, Menna M, Paoli P. Evidence of Insulin-Sensitizing and Mimetic Activity of the Sesquiterpene Quinone Avarone, a Protein Tyrosine Phosphatase 1B and Aldose Reductase Dual Targeting Agent from the Marine Sponge Dysidea avara. Pharmaceutics 2023; 15:pharmaceutics15020528. [PMID: 36839851 PMCID: PMC9964544 DOI: 10.3390/pharmaceutics15020528] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease characterized by impaired glucose homeostasis and serious long-term complications. First-line therapeutic options for T2DM treatment are monodrug therapies, often replaced by multidrug therapies to ensure that non-responding patients maintain target glycemia levels. The use of multitarget drugs instead of mono- or multidrug therapies has been emerging as a main strategy to treat multifactorial diseases, including T2DM. Therefore, modern drug discovery in its early stages aims to identify potential modulators for multiple targets; for this purpose, exploration of the chemical space of natural products represents a powerful tool. Our study demonstrates that avarone, a sesquiterpene quinone obtained from the sponge Dysidea avara, is capable of inhibiting in vitro PTP1B, the main negative regulator of the insulin receptor, while it improves insulin sensitivity, and mitochondria activity in C2C12 cells. We observe that when avarone is administered alone, it acts as an insulin-mimetic agent. In addition, we show that avarone acts as a tight binding inhibitor of aldose reductase (AKR1B1), the enzyme involved in the development of diabetic complications. Overall, avarone could be proposed as a novel natural hit to be developed as a multitarget drug for diabetes and its pathological complications.
Collapse
Affiliation(s)
- Marcello Casertano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Massimo Genovese
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Francesco Balestri
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56123 Pisa, Italy
- Interdepartmental Research Center for Marine Pharmacology, Via Bonanno 6, 56126 Pisa, Italy
| | - Lucia Piazza
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56123 Pisa, Italy
| | - Antonella Del Corso
- Biochemistry Unit, Department of Biology, University of Pisa, Via S. Zeno 51, 56123 Pisa, Italy
- Interdepartmental Research Center for Marine Pharmacology, Via Bonanno 6, 56126 Pisa, Italy
| | - Sibel Avunduk
- Medical Laboratory Programme, Vocational School of Health Care, Mugla University, Marmaris 48187, Turkey
| | - Concetta Imperatore
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Marialuisa Menna
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
- Correspondence: (M.M.); (P.P.); Tel.: +39-081678518 (M.M.); +39-0552751248 (P.P.)
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Correspondence: (M.M.); (P.P.); Tel.: +39-081678518 (M.M.); +39-0552751248 (P.P.)
| |
Collapse
|
6
|
De S, Paul S, Manna A, Majumder C, Pal K, Casarcia N, Mondal A, Banerjee S, Nelson VK, Ghosh S, Hazra J, Bhattacharjee A, Mandal SC, Pal M, Bishayee A. Phenolic Phytochemicals for Prevention and Treatment of Colorectal Cancer: A Critical Evaluation of In Vivo Studies. Cancers (Basel) 2023; 15:993. [PMID: 36765950 PMCID: PMC9913554 DOI: 10.3390/cancers15030993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed and second leading cause of cancer-related death worldwide. Limitations with existing treatment regimens have demanded the search for better treatment options. Different phytochemicals with promising anti-CRC activities have been reported, with the molecular mechanism of actions still emerging. This review aims to summarize recent progress on the study of natural phenolic compounds in ameliorating CRC using in vivo models. This review followed the guidelines of the Preferred Reporting Items for Systematic Reporting and Meta-Analysis. Information on the relevant topic was gathered by searching the PubMed, Scopus, ScienceDirect, and Web of Science databases using keywords, such as "colorectal cancer" AND "phenolic compounds", "colorectal cancer" AND "polyphenol", "colorectal cancer" AND "phenolic acids", "colorectal cancer" AND "flavonoids", "colorectal cancer" AND "stilbene", and "colorectal cancer" AND "lignan" from the reputed peer-reviewed journals published over the last 20 years. Publications that incorporated in vivo experimental designs and produced statistically significant results were considered for this review. Many of these polyphenols demonstrate anti-CRC activities by inhibiting key cellular factors. This inhibition has been demonstrated by antiapoptotic effects, antiproliferative effects, or by upregulating factors responsible for cell cycle arrest or cell death in various in vivo CRC models. Numerous studies from independent laboratories have highlighted different plant phenolic compounds for their anti-CRC activities. While promising anti-CRC activity in many of these agents has created interest in this area, in-depth mechanistic and well-designed clinical studies are needed to support the therapeutic use of these compounds for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Samhita De
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Sourav Paul
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | - Anirban Manna
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | | | - Koustav Pal
- Jawaharlal Institute Post Graduate Medical Education and Research, Puducherry 605 006, India
| | - Nicolette Casarcia
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol 713 301, India
| | - Vinod Kumar Nelson
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Anantapur 515 721, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Joyita Hazra
- Department of Biotechnology, Indian Institute of Technology, Chennai 600 036, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur 713 209, India
| | | | - Mahadeb Pal
- Division of Molecular Medicine, Bose Institute, Kolkata 700 054, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
7
|
Liao W, Zhang L, Chen X, Xiang J, Zheng Q, Chen N, Zhao M, Zhang G, Xiao X, Zhou G, Zeng J, Tang J. Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154524. [PMID: 36375238 DOI: 10.1016/j.phymed.2022.154524] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are strongly associated with high tumourigenicity, chemotherapy or radiotherapy resistance, and metastasis and recurrence, particularly in colorectal cancer (CRC). Therefore, targeting CSCs may be a promising approach. Recently, discovery and research on phytochemicals that effectively target colorectal CSCs have been gaining popularity because of their broad safety profile and multi-target and multi-pathway modes of action. PURPOSE This review aimed to elucidate and summarise the effects and mechanisms of phytochemicals with potential anti-CSC agents that could contribute to the better management of CRC. METHODS We reviewed PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases from the original publication date to March 2022 to review the mechanisms by which phytochemicals inhibit CRC progression by targeting CSCs and their key signalling pathways. Phytochemicals were classified and summarised based on the mechanisms of action. RESULTS We observed that phytochemicals could affect the biological properties of colorectal CSCs. Phytochemicals significantly inhibit self-renewal, migration, invasion, colony formation, and chemoresistance and induce apoptosis and differentiation of CSCs by regulating the Wnt/β-catenin pathway (e.g., diallyl trisulfide and genistein), the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway (e.g., caffeic acid and piperlongumine), the neurogenic locus notch homolog protein pathway (e.g., honokiol, quercetin, and α-mangostin), the Janus kinase-signal transducer and activator of transcription pathway (e.g., curcumin, morin, and ursolic acid), and other key signalling pathways. It is worth noting that several phytochemicals, such as resveratrol, silibinin, evodiamine, and thymoquinone, highlight multi-target and multi-pathway effects in restraining the malignant biological behaviour of CSCs. CONCLUSIONS This review demonstrates the potential of targeted therapies for colorectal CSCs using phytochemicals. Phytochemicals could serve as novel therapeutic agents for CRC and aid in drug development.
Collapse
Affiliation(s)
- Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Chen
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Juyi Xiang
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhou
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
8
|
Xu Y, He X, Wang Y, Jian J, Peng X, Zhou L, Kang Y, Wang T. 5-Fluorouracil reduces the fibrotic scar via inhibiting matrix metalloproteinase 9 and stabilizing microtubules after spinal cord injury. CNS Neurosci Ther 2022; 28:2011-2023. [PMID: 35918897 PMCID: PMC9627390 DOI: 10.1111/cns.13930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 05/13/2022] [Accepted: 06/04/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Fibrotic scars composed of a dense extracellular matrix are the major obstacles for axonal regeneration. Previous studies have reported that antitumor drugs promote neurofunctional recovery. METHODS We investigated the effects of 5-fluorouracil (5-FU), a classical antitumor drug with a high therapeutic index, on fibrotic scar formation, axonal regeneration, and functional recovery after spinal cord injury (SCI). RESULTS 5-FU administration after hemisection SCI improved hind limb sensorimotor function of the ipsilateral hind paws. 5-FU application also significantly reduced the fibrotic scar formation labeled with aggrecan and fibronectin-positive components, Iba1+ /CD11b+ macrophages/microglia, vimentin, chondroitin sulfate proteoglycan 4 (NG2/CSPG4), and platelet-derived growth factor receptor beta (PDGFRβ)+ pericytes. Moreover, 5-FU treatment promoted stromal cells apoptosis and inhibited fibroblast proliferation and migration by abrogating the polarity of these cells and reducing matrix metalloproteinase 9 expression and promoted axonal growth of spinal neurons via the neuron-specific protein doublecortin-like kinase 1 (DCLK1). Therefore, 5-FU administration impedes the formation of fibrotic scars and promotes axonal regeneration to further restore sensorimotor function after SCI.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West ChinaChinese Academy of Medical SciencesChengduChina,Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Xiuying He
- Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West ChinaChinese Academy of Medical SciencesChengduChina,Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Yangyang Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West ChinaChinese Academy of Medical SciencesChengduChina
| | - Jiao Jian
- Institute of Neuroscience, Laboratory Zoology DepartmentKunming Medical UniversityKunmingChina
| | - Xia Peng
- Institute of Neuroscience, Laboratory Zoology DepartmentKunming Medical UniversityKunmingChina
| | - Lie Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research CenterKunming Medical UniversityKunmingChina
| | - Yi Kang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina,National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| | - Tinghua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West ChinaChinese Academy of Medical SciencesChengduChina,Institute of Neuroscience, Laboratory Zoology DepartmentKunming Medical UniversityKunmingChina,National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Zhang Y, Zhang C, Li J, Jiang M, Guo S, Yang G, Zhang L, Wang F, Yi S, Wang J, Fu Y, Zhang Y. Inhibition of AKT induces p53/SIRT6/PARP1-dependent parthanatos to suppress tumor growth. Cell Commun Signal 2022; 20:93. [PMID: 35715817 PMCID: PMC9205131 DOI: 10.1186/s12964-022-00897-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/09/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Targeting AKT suppresses tumor growth through inducing apoptosis, however, during which whether other forms of cell death occurring is poorly understood. METHODS The effects of increasing PARP1 dependent cell death (parthanatos) induced by inhibiting AKT on cell proliferation were determined by CCK-8 assay, colony formation assay, Hoechst 33,258 staining and analysis of apoptotic cells by flow cytometry. For the detailed mechanisms during this process, Western blot analysis, qRT-PCR analysis, immunofluorescence and co-immunoprecipitation were performed. Moreover, the inhibition of tumor growth by inducing p53/SIRT6/PARP1-dependent parthanatos was further verified in the xenograft mouse model. RESULTS For the first time, we identified that inhibiting AKT triggered parthanatos, a new form of regulated cell death, leading to colon cancer growth suppression. For the mechanism investigation, we found that after pharmacological or genetic AKT inhibition, p53 interacted with SIRT6 and PARP1 directly to activate it, and promoted the formation of PAR polymer. Subsequently, PAR polymer transported to outer membrane of mitochondria and resulted in AIF releasing and translocating to nucleus thus promoting cell death. While, blocking PARP1 activity significantly rescued colon cancer from death. Furthermore, p53 deletion or mutation eliminated PAR polymer formation, AIF translocation, and PARP1 dependent cell death, which was promoted by overexpression of SIRT6. Meanwhile, reactive oxygen species production was elevated after inhibition of AKT, which might also play a role in the occurrence of parthanatos. In addition, inhibiting AKT initiated protective autophagy simultaneously, which advanced tumor survival and growth. CONCLUSION Our findings demonstrated that AKT inhibition induced p53-SIRT6-PARP1 complex formation and the activation of parthanatos, which can be recognized as a novel potential therapeutic strategy for cancer. Video Abstract.
Collapse
Affiliation(s)
- Yizheng Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
- Department of Pathology and Neuropathology, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Chuchu Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Jiehan Li
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Meimei Jiang
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Shuning Guo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lingling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Feng Wang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, 200072, China
| | - Shiqi Yi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yingjie Zhang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China.
- School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
10
|
Oleuropein-Rich Leaf Extract as a Broad Inhibitor of Tumour and Macrophage iNOS in an Apc Mutant Rat Model. Antioxidants (Basel) 2021; 10:antiox10101577. [PMID: 34679712 PMCID: PMC8533120 DOI: 10.3390/antiox10101577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Oleuropein, the major compound found in olive leaves, has been reported to exert numerous pharmacological properties, including anti-inflammatory, anti-diabetic and anti-cancer effects. The purpose of this study was to evaluate, for the first time, the effect of oleuropein-rich leaf extracts (ORLE) in already-developed colon tumours arising in Apc (adenomatous polyposis coli) mutated PIRC rats (F344/NTac-Apcam1137). Here, we were able to investigate in parallel the anti-cancer effect of ORLE, both in vivo and in vitro, and its anti-inflammatory effect on macrophages, representing a critical and abundant population in most solid tumour microenvironment. We found that in vivo ORLE treatment promoted apoptosis and attenuated iNOS activity both in colon tumours as in peritoneal macrophages of PIRC rats. We this confirmed in vitro using primary RAW264.7 cells: ORLE reduced iNOS activity in parallel with COX-2 and pro-inflammatory cytokines, such as IL-1β, IL-6 and TGF-β. These findings suggest that ORLE possess a strong anti-inflammatory activity, which could be crucial for dampening the pro-tumourigenic activity elicited by a chronic inflammatory state generated by either tumour cells or tumour-associated macrophages.
Collapse
|
11
|
Rajput SA, Wang XQ, Yan HC. Morin hydrate: A comprehensive review on novel natural dietary bioactive compound with versatile biological and pharmacological potential. Biomed Pharmacother 2021; 138:111511. [PMID: 33744757 DOI: 10.1016/j.biopha.2021.111511] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Flavonoids are natural plant-derived dietary bioactive compounds having a substantial impact on human health. Morin hydrate is a bioflavonoid mainly obtained from fruits, stem, and leaves of Moraceae family members' plants. Plenty of evidences supported that morin hydrate exerts its beneficial effects against various chronic and life-threatening degenerative diseases. Our current article discloses the recent advances that have been studied to explore the biological/pharmacological properties and molecular mechanisms to better understand the beneficial and multiple health benefits of morin hydrate. Indeed, Morin hydrate exerts free radical scavenging, antioxidant, anti-inflammatory, anti-cancerous, anti-microbial, antidiabetic, anti-arthritis, cardioprotective, neuroprotective, nephroprotective, and hepatoprotective effects. Moreover, morin hydrate exhibits its pharmacological activities by modulating various cellular signaling pathways such as Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-қB), Mitogen-activated protein kinase (MAPK), Janus kinases/ Signal transducer and activator of transcription proteins (JAKs/STATs), Kelch-like ECH-associated protein1/Nuclear erythroid-2-related factor (Keap1/Nrf2), Endoplasmic reticulum (ER), Mitochondrial-mediated apoptosis, Wnt/β-catenin, and Mechanistic target of rapamycin (mTOR). Most importantly, morin hydrate has the potential to modulate a variety of biological networks. Therefore, it can be predicted that this therapeutically potent compound could serve as a dietary agent for the expansion of human health and might be helpful for the development of the novel drug in the future. However, due to the lack of clinical trials, special human clinical trials are needed to address the effects of morin hydrate on various life-threatening disparities to recommend morin and/or morin-rich foods with other foods or bioactive dietary components, as well as dose-response interaction and safety profile.
Collapse
Affiliation(s)
- Shahid Ali Rajput
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Faria AVS, Fonseca EMB, Cordeiro HG, Clerici SP, Ferreira-Halder CV. Low molecular weight protein tyrosine phosphatase as signaling hub of cancer hallmarks. Cell Mol Life Sci 2021; 78:1263-1273. [PMID: 33052434 PMCID: PMC11073135 DOI: 10.1007/s00018-020-03657-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
In the past decade, significant progress has been made in understanding the role of protein tyrosine phosphatase as a positive regulator of tumor progression. In this scenario, our group was one of the first to report the involvement of the low molecular weight protein tyrosine phosphatase (LMWPTP or ACP1) in the process of resistance and migration of tumor cells. Later, we and others demonstrated a positive correlation between the amount of this enzyme in human tumors and the poor prognosis. With this information in mind, we asked if LMWPTP contribution to metastasis, would it have an action beyond the primary tumor site. We know that the amount of this enzyme in the tumor cell correlates positively with the ability of cancer cells to interact with platelets, an indication that this enzyme is also important for the survival of these cells in the bloodstream. Here, we discuss several molecular aspects that support the idea of LMWPTP as a signaling hub of cancer hallmarks. Chemical and genetic modulation of LMWPTP proved to shut down signaling pathways associated with cancer aggressiveness. Therefore, advances in the development of LMWPTP inhibitors have great applicability in human diseases such as cancer.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Emanuella Maria Barreto Fonseca
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
- Federal Institute of São Paulo, São Roque, São Paulo, Brazil
| | - Helon Guimarães Cordeiro
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Stefano Piatto Clerici
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
13
|
Capitani N, Lori G, Paoli P, Patrussi L, Troilo A, Baldari CT, Raugei G, D'Elios MM. LMW-PTP targeting potentiates the effects of drugs used in chronic lymphocytic leukemia therapy. Cancer Cell Int 2019; 19:67. [PMID: 30948927 PMCID: PMC6429822 DOI: 10.1186/s12935-019-0786-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/15/2019] [Indexed: 12/25/2022] Open
Abstract
Background Low molecular weight protein tyrosine phosphatase (LMW-PTP) is overexpressed in different cancer types and its expression is related to more aggressive disease, reduced survival rate and drug resistance. Morin is a natural polyphenol which negatively modulates, among others, the activity of LMW-PTP, leading to the potentiation of the effects of different antitumoral drugs, representing a potential beneficial treatment against cancer. Methods LMW-PTP levels were measured by immunoblot analysis both in CLL cells from patients and in chronic lymphocytic leukemia (CLL)-derived Mec-1 cells. Cell viability was assessed in Mec-1 cells treated with morin alone or in combination with either fludarabine or ibrutinib or following siRNA-mediated LMW-PTP knockdown. Furthermore, the expression levels of VLA-4 and CXCR4 were assessed by both qRT-PCR and flow cytometry and both adhesion to fibronectin-coated plates and migration toward CXCL12 were analyzed in Mec-1 cells treated with morin alone or in combination with fludarabine or ibrutinib. Results We observed that LMW-PTP is highly expressed in Mec-1 cells as well as in leukemic B lymphocytes purified from CLL patients compared to normal B lymphocytes. Morin treatment strongly decreased LMW-PTP expression levels in Mec-1 cells and potentiated the anticancer properties of both fludarabine and ibrutinib by increasing their apoptotic effects on leukemic cells. Moreover, morin negatively regulates adhesion and CXCL12-dependent migration of Mec-1 cells by affecting VLA-4 integrin expression and CXCR4 receptor recycling. Conclusions Morin treatment in CLL-derived Mec-1 cell line synergizes with conventional anticancer drugs currently used in CLL therapy by affecting leukemic cell viability and trafficking. Electronic supplementary material The online version of this article (10.1186/s12935-019-0786-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nagaja Capitani
- 1Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,3Department of Life Sciences, University of Siena, Siena, Italy
| | - Giulia Lori
- 2Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paolo Paoli
- 2Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Laura Patrussi
- 3Department of Life Sciences, University of Siena, Siena, Italy
| | - Arianna Troilo
- 1Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Giovanni Raugei
- 2Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mario Milco D'Elios
- 1Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|