1
|
Gao X, Zhang G, Wang F, Ruan W, Sun S, Zhang Q, Liu X. Emerging roles of EGFL family members in neoplastic diseases: Molecular mechanisms and targeted therapies. Biochem Pharmacol 2025; 236:116847. [PMID: 40044051 DOI: 10.1016/j.bcp.2025.116847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Epidermal growth factor-like proteins (EGFLs) contain more than a single EGF/EGF-like domain within their protein structure. To date, ten EGFL family members (EGFL1-10) have been characterized across diverse tissues and developmental stages under different conditions. In this review, we conclude that EGFLs are instrumental in regulating biological activities and pathological processes. Under physiological conditions, EGFLs participate in angiogenesis, neurogenesis, osteogenesis, and other processes. Under pathological conditions, EGFLs are linked with different diseases, particularly cancers. Furthermore, we highlight recent advancements in the study of EGFLs in biological conditions and cancers. In addition, the regulatory role and key underlying mechanism of EGFLs in mediating tumorigenesis are discussed. This paper also examines potential antagonists that target EGFL family members in cancer therapeutics. In summary, this comprehensive review elucidates the critical role of EGFLs in neoplastic diseases and highlights their potential as therapeutic targets.
Collapse
Affiliation(s)
- Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Guopeng Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Feitong Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Wenhui Ruan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China
| | - Shishuo Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China; Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China.
| |
Collapse
|
2
|
Hamze Sinno S, Imperatore JA, Bai S, Gomes-Jourdan N, Mafarachisi N, Coronnello C, Zhang L, Jašarević E, Osmanbeyoglu HU, Buckanovich RJ, Cascio S. Egfl6 promotes ovarian cancer progression by enhancing the immunosuppressive functions of tumor-associated myeloid cells. J Clin Invest 2024; 134:e175147. [PMID: 39312740 PMCID: PMC11527450 DOI: 10.1172/jci175147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) play a critical role in resistance to immunotherapy. In this study, we identified epidermal growth factor-like 6 (Egfl6) as a regulator of myeloid cell functions. Our analyses indicated that Egfl6, via binding with β3 integrins and activation of p38 and SYK signaling, acts as a chemotactic factor for myeloid cell migration and promotes their differentiation toward an immunosuppressive state. In syngeneic mouse models of ovarian cancer (OvCa), tumor expression of Egfl6 increased the intratumoral accumulation of polymorphonuclear (PMN) MDSCs and TAMs and their expression of immunosuppressive factors, including CXCL2, IL-10, and PD-L1. Consistent with this, in an immune 'hot' tumor model, Egfl6 expression eliminated response to anti-PD-L1 therapy, while Egfl6 neutralizing antibody decreased the accumulation of tumor-infiltrating CD206+ TAMs and PMN-MDSCs and restored the efficacy of anti-PD-L1 therapy. Supporting a role in human tumors, in human OvCa tissue samples, areas of high EGFL6 expression colocalized with myeloid cell infiltration. scRNA-Seq analyses revealed a correlation between EGFL6 and immune cell expression of immunosuppressive factors. Our data provide mechanistic insights into the oncoimmunologic functions of EGFL6 in mediating tumor immune suppression and identified EGFL6 as a potential therapeutic target to enhance immunotherapy in patients with OvCa.
Collapse
Affiliation(s)
- Sarah Hamze Sinno
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Shoumei Bai
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | - Linan Zhang
- Department of Applied Mathematics, School of Mathematics and Statistics, Ningbo University, Ningbo, Zhejiang, China
| | - Eldin Jašarević
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, Pittsburgh, Pennsylvania, USA
| | - Hatice U. Osmanbeyoglu
- Department of Biomedical Informatics, School of Medicine
- UPMC Hillman Cancer Center
- Department of Bioengineering, School of Engineering, and
| | - Ronald J. Buckanovich
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sandra Cascio
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center
| |
Collapse
|
3
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Garrett AA, Bai S, Cascio S, Gupta N, Yang D, Buckanovich RJ. EGFL6 promotes endometrial cancer cell migration and proliferation. Gynecol Oncol 2024; 185:75-82. [PMID: 38368816 PMCID: PMC11179989 DOI: 10.1016/j.ygyno.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE EGFL6, a growth factor produced by adipocytes, is upregulated in and implicated in the tumorigenesis of multiple tumor types. Given the strong link between obesity and endometrial cancer, we sought to determine the impact of EGFL6 on endometrial cancer. METHODS EGFL6 expression in endometrial cancer and correlation with patient outcomes was evaluated in the human protein atlas and TCGA. EGFL6 treatment, expression upregulation, and shRNA knockdown were used to evaluate the impact of EGFL6 on the proliferation and migration of 3 endometrial cancer cell lines in vitro. Similarly, the impact of EGFL6 expression and knockdown on tumor growth was evaluated. Western blotting was used to evaluate the impact of EGFL6 on MAPK phosphorylation. RESULTS EGFL6 is upregulated in endometrial cancer, primarily in cony-number high tumors. High tumor endometrial cancer expression of EGFL6 predicts poor patient prognosis. We find that EGFL6 acts to activate the MAPK pathway increasing cellular proliferation and migration. In xenograft models, EGFL6 overexpression increases endometrial cancer tumor growth while EGFL6 knockdown decreases endometrial cancer tumor growth. CONCLUSIONS EGFL6 is a marker of poor prognosis endometrial cancers, driving cancer cell proliferation and growth. As such EGFL6 represents a potential therapeutic target in endometrial cancer.
Collapse
Affiliation(s)
- Alison A Garrett
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Cascio
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Navneet Gupta
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Tang H, Fayomi AP, Bai S, Gupta N, Cascio S, Yang D, Buckanovich RJ. Generation and characterization of humanized affinity-matured EGFL6 antibodies for ovarian cancer therapy. Gynecol Oncol 2023; 171:49-58. [PMID: 36804621 PMCID: PMC10040429 DOI: 10.1016/j.ygyno.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
OBJECTIVES Epidermal growth factor EGF-like domain multiple-6 (EGFL6) is highly expressed in high grade serous ovarian cancer and promotes both endothelial cell proliferation/angiogenesis and cancer cell proliferation/metastasis. As such it has been implicated as a therapeutic target. As a secreted factor, EGFL6 is a candidate for antibody therapy. The objectives of this study were to create and validate humanized affinity-matured EGFL6 neutralizing antibodies for clinical development. METHODS A selected murine EGFL6 antibody was humanized using CDR grafting to create 26 variant humanized antibodies. These were screened and the lead candidate was affinity matured. Seven humanized affinity-matured EGFL6 antibodies were screened for their ability to block EGFL6 activity on cancer cells in vitro, two of which were selected and tested their therapeutic activity in vivo. RESULTS Humanized affinity matured antibodies demonstrated high affinity for EGFL6 (150 pM to 2.67 nM). We found that several humanized affinity-matured EGFL6 antibodies specifically bound to recombinant, and native human EGFL6. Two lead antibodies were able to inhibit EGFL6-mediated (i) cancer cell migration, (ii) proliferation, and (iii) increase in ERK phosphorylation in cancer cells in vitro. Both lead antibodies restricted growth of an EGFL6 expressing ovarian cancer patient derived xenograft. Analysis of treated human tumor xenografts indicated that anti-EGFL6 therapy suppressed angiogenesis, inhibited tumor cell proliferation, and promoted tumor cell apoptosis. CONCLUSIONS Our studies confirm the ability of these humanized affinity-matured antibodies to neutralize EGFL6 and acting as a therapeutic to restrict cancer growth. This work supports the development of these antibody for first-in-human clinical trials.
Collapse
Affiliation(s)
- Huijuan Tang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adetunji P Fayomi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Navneet Gupta
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sandra Cascio
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Neogambogic acid suppresses characteristics and growth of colorectal cancer stem cells by inhibition of DLK1 and Wnt/β-catenin pathway. Eur J Pharmacol 2022; 929:175112. [DOI: 10.1016/j.ejphar.2022.175112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
|
7
|
Ji Y, Lv J, Sun D, Huang Y. Therapeutic strategies targeting Wnt/β‑catenin signaling for colorectal cancer (Review). Int J Mol Med 2022; 49:1. [PMID: 34713301 PMCID: PMC8589460 DOI: 10.3892/ijmm.2021.5056] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common carcinomas. Although great progress has been made in recent years, CRC survival remains unsatisfactory due to high metastasis and recurrence. Understanding the underlying molecular mechanisms of CRC tumorigenesis and metastasis has become increasingly important. Recently, aberrant Wnt/β‑catenin signaling has been reported to be strongly associated with CRC tumorigenesis, metastasis and recurrence. Therefore, the Wnt/β‑catenin signaling pathway has potential value as a therapeutic target for CRC. In the present review, the dysregulation of this pathway in CRC and the promoting or suppressing function of therapeutic targets on CRC were explored. In addition, the interaction between this pathway and epithelial‑mesenchymal transition (EMT), cell stemness, mutations, metastasis‑related genes and tumor angiogenesis in CRC cells were also investigated. Numerous studies on this pathway may help identify the potential diagnostic and prognostic markers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Jian Lv
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Di Sun
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Yufeng Huang
- Department of Oncology, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
8
|
Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, Chai Y, Xu J, Zheng X. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther 2021; 12:415. [PMID: 34294121 PMCID: PMC8296592 DOI: 10.1186/s13287-021-02487-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis is tightly coupled with angiogenesis during bone repair and regeneration. However, the underlying mechanisms linking these processes remain largely undefined. The present study aimed to test the hypothesis that epidermal growth factor-like domain-containing protein 6 (EGFL6), an angiogenic factor, also functions in bone marrow mesenchymal stem cells (BMSCs), playing a key role in the interaction between osteogenesis and angiogenesis. Methods We evaluated how EGFL6 affects angiogenic activity of human umbilical cord vein endothelial cells (HUVECs) via proliferation, transwell migration, wound healing, and tube-formation assays. Alkaline phosphatase (ALP) and Alizarin Red S (AR-S) were used to assay the osteogenic potential of BMSCs. qRT-PCR, western blotting, and immunocytochemistry were used to evaluate angio- and osteo-specific markers and pathway-related genes and proteins. In order to determine how EGFL6 affects angiogenesis and osteogenesis in vivo, EGFL6 was injected into fracture gaps in a rat tibia distraction osteogenesis (DO) model. Radiography, histology, and histomorphometry were used to quantitatively evaluate angiogenesis and osteogenesis. Results EGFL6 stimulated both angiogenesis and osteogenic differentiation through Wnt/β-catenin signaling in vitro. Administration of EGFL6 in the rat DO model promoted CD31hiEMCNhi type H-positive capillary formation associated with enhanced bone formation. Type H vessels were the referred subtype involved during DO stimulated by EGFL6. Conclusion EGFL6 enhanced the osteogenic differentiation potential of BMSCs and accelerated bone regeneration by stimulating angiogenesis. Thus, increasing EGFL6 secretion appeared to underpin the therapeutic benefit by promoting angiogenesis-coupled bone formation. These results imply that boosting local concentrations of EGFL6 may represent a new strategy for the treatment of compromised fracture healing and bone defect restoration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02487-3.
Collapse
Affiliation(s)
- Junjie Shen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yi Sun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Xuanzhe Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Bingbo Bao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Tao Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Xianyou Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| |
Collapse
|
9
|
Sung TY, Huang HL, Cheng CC, Chang FL, Wei PL, Cheng YW, Huang CC, Lee YC, HuangFu WC, Pan SL. EGFL6 promotes colorectal cancer cell growth and mobility and the anti-cancer property of anti-EGFL6 antibody. Cell Biosci 2021; 11:53. [PMID: 33726836 PMCID: PMC7962215 DOI: 10.1186/s13578-021-00561-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The availability of a reliable tumor target for advanced colorectal cancer (CRC) therapeutic approaches is critical since current treatments are limited. Epidermal growth factor-like domain 6 (EGFL6) has been reported to be associated with cancer development. Here, we focused on the role of EGFL6 in CRC progression and its clinical relevance. In addition, an anti-EGFL6 antibody was generated by phage display technology to investigate its potential therapeutic efficacy in CRC. RESULTS EGFL6 expression significantly increased in the colon tissues from CRC patients and mice showing spontaneous tumorigenesis, but not in normal tissue. Under hypoxic condition, EGFL6 expression was enhanced at both protein and transcript levels. Moreover, EGFL6 could promote cancer cell migration invasion, and proliferation of CRC cells via up-regulation of the ERK/ AKT pathway. EGFL6 also regulated cell migration, invasion, proliferation, and self-renewal through EGFR/αvβ3 integrin receptors. Treatment with the anti-EGFL6 antibody EGFL6-E5-IgG showed tumor-inhibition and anti-metastasis abilities in the xenograft and syngeneic mouse models, respectively. Moreover, EGFL6-E5-IgG treatment had no adverse effect on angiogenesis and wound healing CONCLUSIONS: We demonstrated that EGFL6 plays a role in CRC tumorigenesis and tumor progression, indicating that EGFL6 is a potential therapeutic target worth further investigation.
Collapse
Affiliation(s)
- Ting-Yi Sung
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan
| | - Han-Li Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan.,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Chun-Chun Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Fu-Ling Chang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan
| | - Po-Li Wei
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, 11031, Taipei, Taiwan.,Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, 11031, Taipei, Taiwan.,Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Wen Cheng
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chiao Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Division of Breast Surgery, Department of Surgery, Taipei Medical University Hospital, No. 252, Wuxing St., 11031, Taipei, Taiwan.
| | - Yu-Ching Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan.
| | - Wei-Chun HuangFu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Shiow-Lin Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Biomedical Commercialization Center, Taipei Medical University, 11031, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, No. 250, Wuxing St., 11031, Taipei, Taiwan. .,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Shi S, Ma T, Xi Y. A Pan-Cancer Study of Epidermal Growth Factor-Like Domains 6/7/8 as Therapeutic Targets in Cancer. Front Genet 2021; 11:598743. [PMID: 33391349 PMCID: PMC7773905 DOI: 10.3389/fgene.2020.598743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023] Open
Abstract
With highly homologous epidermal growth factor (EGF)-like (EGFL) domains, the members of the EGFL family play crucial roles in growth, invasion, and metastasis of tumors and are closely associated with the apoptosis of tumor cells and tumor angiogenesis. Furthermore, their contribution to immunoreaction and tumor microenvironment is highly known. In this study, a comprehensive analysis of EGFL6, -7, and -8 was performed on the basis of their expression profiles and their relationship with the rate of patient survival. Through a pan-cancer study, their effects were correlated with immune subtypes, tumor microenvironment, and drug resistance. Using The Cancer Genome Atlas pan-cancer data, expression profiles of EGFL6, -7, and -8, and their association with the patient survival rate and tumor microenvironment were analyzed in 33 types of cancers. The expression of the EGFL family was different in different cancer types, revealing the heterogeneity among cancers. The results showed that the expression of EGFL8 was lower than EGFL6 and EGFL7 among all cancer types, wherein EGFL7 had the highest expression. The univariate Cox proportional hazard regression model showed that EGFL6 and EGFL7 were the risk factors to predict poor prognosis of cancers. Survival analysis was then used to verify the relationship between gene expression and patient survival. Furthermore, EGFL6, EGFL7, and EGFL8 genes revealed a clear association with immune infiltrate subtypes; they were also related to the infiltration level of stromal cells and immune cells with different degrees. Moreover, they were negatively correlated with the characteristics of cancer stem cells measured by DNAs and RNAs. In addition, EGFL6, -7, and -8 were more likely to contribute to the resistance of cancer cells. Our systematic analysis of EGFL gene expression and their correlation with immune infiltration, tumor microenvironment, and prognosis of cancer patients emphasized the necessity of studying each EGFL member as a separate entity within each particular type of cancer. Simultaneously, EGFL6, -7, and -8 signals were verified as promising targets for cancer therapies, although further laboratory validation is still required.
Collapse
Affiliation(s)
- Shanping Shi
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, School of Medicine, Institute of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| | - Ting Ma
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, School of Medicine, Institute of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| | - Yang Xi
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, School of Medicine, Institute of Biochemistry and Molecular Biology, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Tang CT, Zhang QW, Wu S, Tang MY, Liang Q, Lin XL, Gao YJ, Ge ZZ. Thalidomide targets EGFL6 to inhibit EGFL6/PAX6 axis-driven angiogenesis in small bowel vascular malformation. Cell Mol Life Sci 2020; 77:5207-5221. [PMID: 32008086 PMCID: PMC7671996 DOI: 10.1007/s00018-020-03465-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Small bowel vascular malformation disease (SBVM) is the most common cause of obscure gastrointestinal bleeding (OGIB). Several studies suggested that EGFL6 was able to promote the growth of tumor endothelial cells by forming tumor vessels. To date, it remains unclear how EGFL6 promotes pathological angiogenesis in SBVM and whether EGFL6 is a target of thalidomide. METHODS We took advantage of SBVM plasma and tissue samples and compared the expression of EGFL6 between SBVM patients and healthy people via ELISA and Immunohistochemistry. We elucidated the underlying function of EGFL6 in SBVM in vitro and by generating a zebrafish model that overexpresses EGFL6, The cycloheximide (CHX)-chase experiment and CoIP assays were conducted to demonstrate that thalidomide can promote the degradation of EGFL6 by targeting CRBN. RESULTS The analysis of SBVM plasma and tissue samples revealed that EGFL6 was overexpressed in the patients compared to healthy people. Using in vitro and in vivo assays, we demonstrated that an EMT pathway triggered by the EGFL6/PAX6 axis is involved in the pathogenesis of SBVM. Furthermore, through in vitro and in vivo assays, we elucidated that thalidomide can function as anti-angiogenesis medicine through the regulation of EGFL6 in a proteasome-dependent manner. Finally, we found that CRBN can mediate the effect of thalidomide on EGFL6 expression and that the CRBN protein interacts with EGFL6 via a Lon N-terminal peptide. CONCLUSION Our findings revealed a key role for EGFL6 in SBVM pathogenesis and provided a mechanism explaining why thalidomide can cure small bowel bleeding resulting from SBVM.
Collapse
Affiliation(s)
- Chao-Tao Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Qing-Wei Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Shan Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Ming-Yu Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Qian Liang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Xiao-Lu Lin
- Department of Digestive Endoscopy, Provincial Clinic Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yun-Jie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China
| | - Zhi-Zheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, 200001, China.
| |
Collapse
|
12
|
Huo FC, Zhu WT, Liu X, Zhou Y, Zhang LS, Mou J. Epidermal growth factor-like domain multiple 6 (EGFL6) promotes the migration and invasion of gastric cancer cells by inducing epithelial-mesenchymal transition. Invest New Drugs 2020; 39:304-316. [PMID: 32949323 DOI: 10.1007/s10637-020-01004-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/13/2020] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor-like domain multiple 6 (EGFL6) is implicated in tumor growth, metastasis and angiogenesis, and its ectopic alteration has been detected in aggressive malignancies. However, the pathophysiologic roles and molecular mechanisms of EGFL6 in gastric cancer (GC) remain to be elucidated. In this study, we investigated EGFL6 expression in GC cell lines and tissues using western blotting and immunohistochemistry. We found that EGFL6 was elevated expression in GC cell lines and tissues. The high expression of EGFL6 significantly was correlated with histological grade, depth of invasion, lymph node involvement, distant metastasis and TNM stage in GC and predicted poorer prognosis, and it could act an independent prognostic factor for GC patients. EGFL6 enhanced the proliferation, migration and invasion of GC cells. In addition, we identified the possible molecular mechanisms of EGFL6-involved epithelial-mesenchymal transition (EMT). EGFL6 regulated EMT process and induced metastasis partly through FAK/PI3K/AKT/mTOR, Notch and MAPK signaling pathways. In conclusion, EGFL6 confers an oncogenic function in GC progression and may be proposed as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China
| | - Wen-Tao Zhu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China
| | - Xu Liu
- Department of general surgery, Xuzhou Children's Hospital, Xuzhou Medical University, Quan shan District, Xuzhou, 221000, Jiangsu, China
| | - Yun Zhou
- Department of Radiation Oncology, Xuzhou Central Hospital, Xuzhou, 221000, Jiangsu, China
| | - Lan-Sheng Zhang
- Department of Oncological Radiotherapy, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
| | - Jie Mou
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China.
- School of Pharmacy, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
13
|
Zhu W, Liu C, Lu T, Zhang Y, Zhang S, Chen Q, Deng N. Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer. Front Oncol 2020; 10:1451. [PMID: 32983976 PMCID: PMC7477343 DOI: 10.3389/fonc.2020.01451] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor angiogenesis plays an important role in the progression and metastasis of ovarian cancer. EGFL6 protein is highly expressed in ovarian cancer and has been proposed to play an important role in promoting tumor angiogenesis. Here, a CRISPR/Cas9 system was used to knockout the EGFL6 gene in the ovarian cancer cell line SKOV3, using specific guide RNA targeting the exons of EGFL6. The knockout of EGFL6 markedly inhibited the proliferation, migration, and invasion of SKOV3 cells, as well as promoted apoptosis of tumor cells. In the nude mouse model of ovarian cancer, knockout of EGFL6 remarkably inhibited tumor growth and angiogenesis. The transcript profile assays detected 4,220 differentially expressed genes in the knockout cells, including 87 genes that were correlated to proliferation, migration, invasion, and angiogenesis. Moreover, Western blotting confirmed that EGFL6 knockout downregulated the FGF-2/PDGFB signaling pathway. Thus, the results of this study indicated that EGFL6 could regulate cell proliferation, migration, and angiogenesis in ovarian cancer cells by regulating the FGF-2/PDGFB signaling pathway.
Collapse
Affiliation(s)
- Wenhui Zhu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Chunyan Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Tongyi Lu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Yinmei Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Simin Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Zhang L, Dong X, Yan B, Yu W, Shan L. CircAGFG1 drives metastasis and stemness in colorectal cancer by modulating YY1/CTNNB1. Cell Death Dis 2020; 11:542. [PMID: 32681092 PMCID: PMC7367849 DOI: 10.1038/s41419-020-2707-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/18/2022]
Abstract
Colorectal cancer (CRC) is a common malignancy with high occurrence and mortality worldwide. In recent years, the overall survival rate of CRC patients has been improved because of the advances in early diagnosis and therapy. However, the prognosis of CRC patients at the advanced stage is still poor due to high recurrence rate and metastasis. The function of circular RNA (circRNA) ArfGAP with FG repeats 1 (circAGFG1) has been explored in non-small-cell lung cancer and triple-negative breast cancer. Nevertheless, its role in CRC is not clear. In this study, circAGFG1 was upregulated in CRC cell lines. CircAGFG1 silencing significantly suppressed cell proliferation, migration, invasion, and stemness, while promoted cell apoptosis in CRC. Meanwhile, we found that circAGFG1 also accelerated CRC tumor growth and metastasis in vivo. Importantly, circAGFG1 activated Wnt/β-catenin pathway through regulating CTNNB1. Afterwards, YY1 was found to transcriptionally activate CTNNB1. Furthermore, circAGFG1 directly sponged miR-4262 and miR-185-5p to upregulate YY1 expression. Eventually, rescue assays demonstrated that the effect of circAGFG1 silencing on CRC cell functions was observably reversed by upregulating YY1 or CTNNB1. In brief, our findings uncovered that circAGFG1 modulated YY1/CTNNB1 axis to drive metastasis and stemness in CRC by sponging miR-4262 and miR-185-5p.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Bo Yan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Letian Shan
- the First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
15
|
Kang J, Wang J, Tian J, Shi R, Jia H, Wang Y. The emerging role of EGFL6 in angiogenesis and tumor progression. Int J Med Sci 2020; 17:1320-1326. [PMID: 32624687 PMCID: PMC7330666 DOI: 10.7150/ijms.45129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor-like domain-containing protein 6 (EGFL6) belongs to the epidermal growth factor (EGF) superfamily. EGFL6 is expressed at higher levels in embryos and various malignant tumors than in normal tissues. Recent studies suggest that EGFL6 participates in the development of a variety of tumors. In this review, we summarize findings that support the role for EGFL6 in tumor proliferation, invasion and migration. Furthermore, our review results indicate the mechanism of EGFL6 activity angiogenesis. We also describe work toward the preparation of monoclonal antibodies against EGFL6. Altogether, the work of this review promotes understanding of the role of EGFL6 in tumor development, the mechanism of that action, and the potential of EGFL6 as a therapeutic target for tumor prevention and treatment.
Collapse
Affiliation(s)
- Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruyi Shi
- Department of Cell biology and Genetics, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongyan Jia
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|